JP2012253981A - Five-level conversion circuit - Google Patents

Five-level conversion circuit Download PDF

Info

Publication number
JP2012253981A
JP2012253981A JP2011126911A JP2011126911A JP2012253981A JP 2012253981 A JP2012253981 A JP 2012253981A JP 2011126911 A JP2011126911 A JP 2011126911A JP 2011126911 A JP2011126911 A JP 2011126911A JP 2012253981 A JP2012253981 A JP 2012253981A
Authority
JP
Japan
Prior art keywords
terminal
arm pair
arm
series
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011126911A
Other languages
Japanese (ja)
Other versions
JP5682459B2 (en
Inventor
Makoto Tanitsu
誠 谷津
弘行 ▲桑▼原
Hiroyuki Kuwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011126911A priority Critical patent/JP5682459B2/en
Publication of JP2012253981A publication Critical patent/JP2012253981A/en
Application granted granted Critical
Publication of JP5682459B2 publication Critical patent/JP5682459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: a conventional 5 level conversion circuit requires four DC power supplies and four semiconductor elements through which an electric current runs when converting, thus causing large loss and apparatus upsizing.SOLUTION: A conversion circuit for one phase includes: two DC power sullies; a semiconductor arm pair with three semiconductor elements connected in series; one capacitor series circuit; and one AC switch. Five-level conversion of DC to AC or AC to DC is achieved by reducing the number of the semiconductors through which current runs more than the conventional.

Description

本発明は、半導体電力変換装置の電力変換回路技術に関するもので、特に、5つの電圧レベルを選択して任意に変換する5レベル変換回路に関する。   The present invention relates to a power conversion circuit technology for a semiconductor power conversion device, and more particularly, to a five-level conversion circuit that selects and arbitrarily converts five voltage levels.

図6に、従来の技術を用いた5レベル変換回路の1相分を示す。図6において、直流単電源b11〜b22が直列に接続された直流組電源BA2の正極と負極の間には、半導体スイッチQ1〜Q8の直列回路が接続され、半導体スイッチQ4とQ5との接続点が交流出力Uとなり、リアクトルL3を介して交流端子Uoに接続される。また、半導体スイッチQ1とQ2との接続点及びQ5とQ6との接続点との間には、ダイオードD1とD4とを直列接続したダイオードアーム対DA1の外側端子が、そのダイオードアーム対DA1の中点端子は直流単電源b11とb12の接続点に、各々接続される。同様に、半導体スイッチQ2とQ3との接続点及びQ6とQ7との接続点との間にはダイオードD2とD5とを直列接続したダイオードアーム対DA2の外側端子が、そのダイオードアーム対DA2の中点端子には直流単電源b12とb21との接続点が、半導体スイッチQ3とQ4の接続点及びQ7とQ8の接続点との間にはダイオードD3とD6とを直列接続したダイオードアーム対DA3の外側端子が、そのダイオードアーム対DA3の中点端子には直流単電源b21とb22との接続点が、各々接続される。また、交流端子UoにはコンデンサC3が接続され、リアクトルL3とコンデンサC3による交流出力フィルタが形成され、半導体スイッチQ1〜Q8のスイッチングによる階段状波形を正弦波状の波形に整形している。   FIG. 6 shows one phase of a five-level conversion circuit using a conventional technique. In FIG. 6, a series circuit of semiconductor switches Q1 to Q8 is connected between a positive electrode and a negative electrode of a DC group power supply BA2 in which DC single power sources b11 to b22 are connected in series, and a connection point between the semiconductor switches Q4 and Q5. Becomes the AC output U and is connected to the AC terminal Uo via the reactor L3. Further, between the connection point of the semiconductor switches Q1 and Q2 and the connection point of Q5 and Q6, an outer terminal of the diode arm pair DA1 in which the diodes D1 and D4 are connected in series is provided in the diode arm pair DA1. The point terminals are respectively connected to connection points of the single DC power sources b11 and b12. Similarly, the outer terminal of the diode arm pair DA2 in which the diodes D2 and D5 are connected in series is connected between the connection point of the semiconductor switches Q2 and Q3 and the connection point of Q6 and Q7. The point terminal has a connection point between the single DC power sources b12 and b21, and a diode arm pair DA3 in which diodes D3 and D6 are connected in series between the connection point of the semiconductor switches Q3 and Q4 and the connection point of Q7 and Q8. The outer terminal is connected to the midpoint terminal of the diode arm pair DA3 at the connection point of the single DC power sources b21 and b22. Further, a capacitor C3 is connected to the AC terminal Uo to form an AC output filter by the reactor L3 and the capacitor C3, and the stepped waveform resulting from switching of the semiconductor switches Q1 to Q8 is shaped into a sinusoidal waveform.

この様な回路構成において、半導体スイッチQ1〜Q4をオン、Q5〜Q8をオフにすると、交流出力Uには+2Eの電圧が、半導体スイッチQ2〜Q5をオン、Q6〜Q8及びQ1をオフとすると、交流出力Uには+1Eの電圧が、半導体スイッチQ3〜Q6をオン、Q7、Q8、Q1、Q2をオフとすると、交流出力Uにはゼロ電圧が、半導体スイッチQ4〜Q7をオン、Q1〜Q3及びQ8をオフとすると、交流出力Uには−1Eの電圧が、半導体スイッチQ5〜Q8をオン、Q1〜Q4をオフとすると、交流出力Uには−2Eの電圧が、各々出力される。この様に、各半導体スイッチQ1〜Q8のオンオフを調節することにより、交流出力Uには、5レベルの電圧が出力可能となる。この回路は直流から交流に変換するインバ−タ動作だけでなく交流から直流に変換する整流器動作においても適用可能である。図6の回路の詳細な動作については、特許文献1に開示されている。   In such a circuit configuration, when the semiconductor switches Q1 to Q4 are turned on and Q5 to Q8 are turned off, a voltage of + 2E is applied to the AC output U, and when the semiconductor switches Q2 to Q5 are turned on and Q6 to Q8 and Q1 are turned off. When the semiconductor switch Q3 to Q6 is turned on and Q7, Q8, Q1 and Q2 are turned off, a zero voltage is applied to the AC output U and the semiconductor switches Q4 to Q7 are turned on. When Q3 and Q8 are turned off, a voltage of -1E is outputted to the AC output U, and when the semiconductor switches Q5 to Q8 are turned on and when Q1 to Q4 are turned off, a voltage of -2E is outputted to the AC output U. . In this way, by adjusting the on / off state of each of the semiconductor switches Q1 to Q8, a five-level voltage can be output to the AC output U. This circuit is applicable not only in inverter operation for converting from direct current to alternating current but also in rectifier operation for converting from alternating current to direct current. The detailed operation of the circuit of FIG. 6 is disclosed in Patent Document 1.

特開2006−271042号公報Japanese Patent Laid-Open No. 2006-271042

上述のように、図6に示す従来回路においては、直流組電源BA2から交流出力Uの間で出力電流が通過する半導体スイッチの数が最大4個となる。そのため、半導体スイッチにおける定常オン損失が大きくなり、装置全体の効率低下を招き、小形・低価格化が困難となる問題がある。
また、図6に示すような一般的な5レベル変換回路においては、交流出力Uから出力される電圧・電流が正負対称な交流波形の場合においても直流単電源b11とb12の分担する電力は原理的に同じとならないため、各々独立した直流電源を必要とする。b21とb22についても同様である。そのため、入力となる直流組電源BA2には、独立に電力を供給できる4つの単電源が必要となり、装置を製作する上で大きな制約となってしまう。この直流電源のアンバランスの問題については、例えば IEEE−PESC‘95のカンファレンスレコ−ドpp1144〜1150の「A multi-level voltage-source converter system with balanced DC voltage」に紹介されている。
従って、本発明の課題は、従来に比べ出力電流が通過する半導体スイッチの数を減らし発生損失を低減でき、さらに直流入力電源として2つの単電源で動作可能な5レベル変換回路を提供することである。
As described above, in the conventional circuit shown in FIG. 6, the maximum number of semiconductor switches through which an output current passes between the DC combined power source BA2 and the AC output U is four. For this reason, there is a problem that steady on-loss in the semiconductor switch is increased, the efficiency of the entire apparatus is lowered, and it is difficult to reduce the size and cost.
Further, in a general five-level conversion circuit as shown in FIG. 6, even when the voltage / current output from the AC output U has an AC waveform with positive and negative symmetry, the power shared by the DC single power sources b11 and b12 is the principle. Therefore, independent DC power supplies are required. The same applies to b21 and b22. Therefore, the DC combined power source BA2 as an input requires four single power sources that can supply power independently, which is a great restriction in manufacturing the device. This DC power supply imbalance problem is introduced in, for example, “A multi-level voltage-source converter system with balanced DC voltage” in IEEE-PESC '95 conference records pp 1144 to 1150.
Accordingly, an object of the present invention is to provide a five-level conversion circuit capable of reducing the number of semiconductor switches through which an output current passes as compared with the prior art and reducing generated loss, and operable with two single power supplies as a DC input power supply. is there.

上述の課題を解決するために、第1の発明においては、2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源から5つの電圧レベルを生成し、その5つの電圧レベルを任意に選択可能な5レベル変換回路において、ダイオードを逆並列接続した半導体スイッチアームを2つ直列接続した第1、第2及び第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチとを備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、第3アーム対の中間端子にフィルタコンデンサを、各々接続すると共に、前記第3アーム対の中間端子を交流出力端子とする回路構成で、前記第1及び第2のリアクトルは前記直流電源から前記第1アーム対、前記直列コンデンサ回路及び前記第2アーム対を介して流れる直列コンデンサ回路への突入電流成分を抑制する機能と、前記フィルタコンデンサと前記5レベル変換回路出力の高調波を低減する交流フィルタを形成する機能とを兼ね備える。   In order to solve the above-described problem, in the first invention, five voltage levels are generated from a DC power source having three terminals divided into two and having three different voltage levels including zero, In the five-level conversion circuit in which the five voltage levels can be arbitrarily selected, the semiconductor device is combined with the first, second and third arm pairs in which two semiconductor switch arms having anti-parallel connected diodes are connected in series. An alternating-current switch configured, and the first arm pair is disposed between a first direct current terminal having the highest potential of the direct current power source and a second direct current terminal having an intermediate potential, and the second direct current terminal and the potential are The second arm pair is disposed between the lowest third DC terminal and the first reactor and the second arm pair are disposed between the midpoint terminal of the first arm pair and the midpoint terminal of the second arm pair. Through the reactor A series capacitor circuit in which two capacitors are connected in series with the third arm pair in parallel with the third arm pair, and the intermediate capacitor is connected between the intermediate connection point of the series capacitor circuit and the intermediate terminal of the third arm pair. An AC switch is connected to a filter capacitor to an intermediate terminal of the third arm pair, and a circuit configuration in which the intermediate terminal of the third arm pair is an AC output terminal. The first and second reactors are the DC A function of suppressing an inrush current component from a power source to the series capacitor circuit flowing through the first arm pair, the series capacitor circuit, and the second arm pair; and harmonics of the filter capacitor and the 5-level conversion circuit output. Combined with the function of forming a reduced AC filter.

第2の発明においては、交流電源から、2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源を作り出す5レベル変換回路において、ダイオードアームを2つ直列接続して構成される第1及び第2のアーム対と、ダイオードを逆並列接続した半導体スイッチアームを2つ直列接続して構成される第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチとを備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、前記第3アーム対の中間端子に交流電源を、各々接続し、前記第3アーム対と前記交流スイッチをオンオフ制御することにより、前記交流電源から直流を得る高力率整流回路として動作する。   According to a second aspect of the present invention, in a five-level conversion circuit that generates a DC power source having three terminals divided into two from an AC power source and having three different voltage levels including zero, two diode arms are connected in series. A first and second arm pair configured by connecting, a third arm pair configured by connecting in series two semiconductor switch arms each having a diode connected in antiparallel, and a semiconductor device. An AC switch, and the first arm pair is disposed between a first DC terminal having the highest potential of the DC power supply and a second DC terminal having an intermediate potential, and a second potential having the lowest potential from the second DC terminal. The first arm pair and the second reactor are respectively connected between the DC terminal and the middle point terminal of the first arm pair and the middle point terminal of the second arm pair. Through A series capacitor circuit in which two capacitors are connected in series with the third arm pair in parallel with the third arm pair is connected between the intermediate connection point of the series capacitor circuit and the intermediate terminal of the third arm pair. Are operated as a high power factor rectifier circuit that obtains a direct current from the alternating current power supply by connecting an alternating current power supply to an intermediate terminal of the third arm pair and controlling on / off of the third arm pair and the alternating current switch. .

第3の発明においては、交流電源から、2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源を作り出す5レベル変換回路において、ダイオードアームとダイオードを逆並列接続した半導体スイッチアームとをこの順序で直列接続した第1のアーム対と、ダイオードを逆並列接続した半導体スイッチアームとダイオードアームとをこの順序で直列接続した第2のアーム対と、ダイオードアームを2つ直列接続した第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチと、を備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、前記第3アーム対の中間端子に交流電源を、各々接続し、前記第1及び第2アーム対の半導体スイッチと前記交流スイッチをオンオフ制御することにより、前記交流電源から直流を得る高力率整流回路として動作する。   According to a third aspect of the present invention, in a five-level conversion circuit that generates three direct current power supplies having three different voltage levels including zero, the diode arm and the diode are reversed. A first arm pair in which semiconductor switch arms connected in parallel are connected in series in this order, a second arm pair in which semiconductor switch arms and diode arms connected in reverse parallel are connected in series in this order, and a diode arm A third arm pair connected in series with each other and an AC switch configured by combining semiconductor devices, a first DC terminal having the highest potential of the DC power supply and a second DC terminal having an intermediate potential The first arm pair between the second DC terminal and the third DC terminal having the lowest potential, and the second arm pair between the second DC terminal and the third DC terminal. Between the midpoint terminal of the arm pair and the midpoint terminal of the second arm pair, the third arm pair is connected in parallel with the third arm pair via a first reactor and a second reactor, respectively. A series capacitor circuit in which two capacitors are connected in series, the AC switch between the intermediate connection point of the series capacitor circuit and the intermediate terminal of the third arm pair, and an AC power source at the intermediate terminal of the third arm pair, Each is connected and operates as a high power factor rectifier circuit that obtains direct current from the alternating current power supply by turning on and off the semiconductor switch and the alternating current switch of the first and second arm pairs.

第4の発明においては、第1〜第3の発明における交流スイッチを、半導体デバイスからなるアームを逆直列に接続して構成する。
第5の発明においては、第1〜第3の発明における交流スイッチを、逆耐圧のある半導体デバイスを逆並列接続して構成する。
In the fourth invention, the AC switch in the first to third inventions is configured by connecting arms made of semiconductor devices in anti-series.
In the fifth invention, the AC switch in the first to third inventions is configured by connecting in reverse parallel semiconductor devices having reverse breakdown voltage.

本発明では、直流電源として2個の単電源の直列回路を用い、この直流電源と交流(出力または入力)端子Uoの間を電流が通過する半導体スイッチの数が最大3個となり、損失を低減することができる。結果として、装置の高効率化・低価格化・小形化が可能となる。さらに直流電源を単電源2つの組合せとすることができるため、従来の5レベル変換回路より緩和された一般的な3レベル変換回路と同等な直流電源の条件にする事ができる。   In the present invention, a series circuit of two single power sources is used as the DC power source, and the number of semiconductor switches through which current passes between the DC power source and the AC (output or input) terminal Uo is up to three, thereby reducing loss. can do. As a result, it is possible to increase the efficiency, cost, and size of the apparatus. Further, since the DC power supply can be a combination of two single power supplies, the conditions of the DC power supply equivalent to that of a general three-level conversion circuit relaxed from the conventional five-level conversion circuit can be achieved.

本発明の第1の実施例を示す回路図(1相分)である。It is a circuit diagram (for 1 phase) which shows the 1st example of the present invention. 本発明の第1の実施例の変形例を示す回路図(1相分)である。It is a circuit diagram (for 1 phase) which shows the modification of the 1st Example of this invention. 本発明の第2の実施例を示す回路図(1相分)である。It is a circuit diagram (for 1 phase) which shows the 2nd Example of this invention. 本発明の第3の実施例を示す回路図(1相分)である。It is a circuit diagram (for 1 phase) which shows the 3rd Example of this invention. 本発明の第1の実施例の動作波形図である。It is an operation | movement waveform diagram of the 1st Example of this invention. 従来の5レベル変換回路図(1相分)である。It is a conventional 5-level conversion circuit diagram (for one phase).

本発明の要点は、1相分の変換回路として、2個の直流単電源と、3個の半導体素子を直列接続した半導体アーム対と、1個のコンデンサ直列回路と、1個の交流スイッチを用いて、直流から交流への5レベル変換または交流から直流への5レベル変換を、電流が通過する半導体素子数を従来より減らして実現している点である。   The main point of the present invention is that as a conversion circuit for one phase, two DC single power supplies, a pair of semiconductor arms in which three semiconductor elements are connected in series, one capacitor series circuit, and one AC switch. In other words, the five-level conversion from direct current to alternating current or the five-level conversion from alternating current to direct current is achieved by reducing the number of semiconductor elements through which a current passes compared to the prior art.

図1に、本発明の第1の実施例を示す。図1において、各々が2Eの電圧を持つ直流単電源b1とb2が直列に接続された直流組電源BA1の正極と中間端子の間には、半導体スイッチQ9、Q10を直列接続してなるアーム対QA1の外側端子が、BA1の中間端子と負極の間には、半導体スイッチQ11、Q12を直列接続してなるアーム対QA2の外側端子が、各々接続される。また、アーム対QA1とQA2の各中点端子間には、リアクトルL1及びL2を介し半導体スイッチQ13、Q14を直列接続してなるアーム対QA3の外側端子が接続され、このアーム対QA3の中点端子はフィルタコンデンサC3が接続されると共に交流端子Uoとなる。
さらに、アーム対QA3の外側端子間と並列にコンデンサC1、C2からなる直列コンデンサ回路CA1が接続され、このコンデンサC1とC2の中間接続点とアーム対QA3の中点端子との間には、半導体スイッチQ15とQ16を逆直列接続した交流スイッチSW1が接続される。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, an arm pair formed by connecting semiconductor switches Q9 and Q10 in series between a positive electrode and an intermediate terminal of a DC combined power source BA1 in which DC single power sources b1 and b2 each having a voltage of 2E are connected in series. The outer terminal of QA1 is connected between the intermediate terminal of BA1 and the negative electrode, and the outer terminal of arm pair QA2 formed by connecting semiconductor switches Q11 and Q12 in series, respectively. Further, between the midpoint terminals of the arm pairs QA1 and QA2, the outer terminals of the arm pair QA3 formed by connecting semiconductor switches Q13 and Q14 in series via the reactors L1 and L2, are connected. The midpoint of this arm pair QA3 The terminal is connected to the filter capacitor C3 and becomes an AC terminal Uo.
Further, a series capacitor circuit CA1 including capacitors C1 and C2 is connected in parallel with the outer terminals of the arm pair QA3. Between the intermediate connection point of the capacitors C1 and C2 and the midpoint terminal of the arm pair QA3, there is a semiconductor. An AC switch SW1 in which switches Q15 and Q16 are connected in reverse series is connected.

この様な回路構成において、半導体スイッチQ9、Q13をオン、Q10、Q14及びSW1のQ16をオフさせると交流端子Uoには+2Eの電圧が平滑された電圧が出力され、この時出力電流が通過する半導体スイッチはQ9、Q13の2個となる。さらに、この時Q12をオフ、Q11をオンしておくことで、アーム対QA1〜QA3のなかでオフしている半導体スイッチにかかる電圧は最大2Eでクランプされ、同様にオフしている交流スイッチSW1のQ16にかかる電圧はコンデンサC1の電圧VC1にクランプされる。また、この時Q9及びQ11がオンしているため、直列コンデンサ回路CA1の電圧は単電源b1の電圧と同じ2Eに保たれる。   In such a circuit configuration, when the semiconductor switches Q9 and Q13 are turned on and Q10, Q14 and Q1 of SW1 are turned off, a voltage obtained by smoothing the + 2E voltage is output to the AC terminal Uo, and at this time, the output current passes therethrough. There are two semiconductor switches, Q9 and Q13. Further, by turning off Q12 and turning on Q11 at this time, the voltage applied to the semiconductor switch that is turned off in the arm pairs QA1 to QA3 is clamped at a maximum of 2E, and the AC switch SW1 that is also turned off. The voltage applied to Q16 is clamped to the voltage VC1 of the capacitor C1. At this time, since Q9 and Q11 are on, the voltage of the series capacitor circuit CA1 is maintained at 2E, which is the same as the voltage of the single power supply b1.

その状態から次に交流スイッチSW1を全オン、Q13をオフさせると交流端子UoにはコンデンサC2の電圧(+VC2)が出力され、この時出力電流が通過する半導体スイッチはQ9、Q15、Q16またはQ11、Q15、Q16の3個となる。この時、アーム対QA1〜QA3の中でオフしている半導体スイッチにかかる電圧は最大2Eでクランプされる。   From this state, when the AC switch SW1 is fully turned on and Q13 is turned off, the voltage (+ VC2) of the capacitor C2 is output to the AC terminal Uo. At this time, the semiconductor switch through which the output current passes is Q9, Q15, Q16 or Q11. , Q15, and Q16. At this time, the voltage applied to the semiconductor switch turned off in the arm pairs QA1 to QA3 is clamped at a maximum of 2E.

次に、Q10、Q13をオンまたはQ11、Q14をオン、Q9、Q12及びSW1をオフさせると交流端子Uoにはゼロ電圧が出力される。この時出力電流が通過する半導体スイッチはQ10、Q13またはQ11、Q14の2個となる。また、アーム対QA1〜QA3の中でオフしている半導体スイッチにかかる電圧は最大2Eでクランプされ、同様に交流スイッチSW1にかかる電圧はコンデンサC1の電圧VC1またはC2の電圧VC2にクランプされる。   Next, when Q10 and Q13 are turned on or Q11 and Q14 are turned on and Q9, Q12 and SW1 are turned off, zero voltage is output to the AC terminal Uo. At this time, there are two semiconductor switches Q10 and Q13 or Q11 and Q14 through which the output current passes. Further, the voltage applied to the semiconductor switch that is turned off in the arm pairs QA1 to QA3 is clamped at a maximum of 2E, and similarly, the voltage applied to the AC switch SW1 is clamped to the voltage VC1 of the capacitor C1 or the voltage VC2 of C2.

半導体スイッチQ12、Q14をオン、Q11、Q13及びSW1をオフさせると交流端子Uoには−2Eの電圧を平滑した電圧が出力される。この時出力電流が通過する半導体スイッチはQ12、Q14の2個となる。さらにこの時Q9をオフ、Q10をオンしておくことで、アーム対QA1〜QA3の中でオフしている半導体スイッチにかかる電圧は最大2Eにクランプされる。同様にオフしている交流スイッチSW1のQ15にかかる電圧はコンデンサC2の電圧(VC2)にクランプされる。また、この時Q10及びQ12がオンしているため、直列コンデンサ回路CA1の電圧は直流単電源b2の電圧と同じ2Eに保たれる。   When the semiconductor switches Q12 and Q14 are turned on and Q11, Q13 and SW1 are turned off, a voltage obtained by smoothing the voltage −2E is output to the AC terminal Uo. At this time, there are two semiconductor switches Q12 and Q14 through which the output current passes. Further, when Q9 is turned off and Q10 is turned on at this time, the voltage applied to the semiconductor switch which is turned off in the arm pairs QA1 to QA3 is clamped to 2E at the maximum. Similarly, the voltage applied to Q15 of the AC switch SW1 that is turned off is clamped to the voltage (VC2) of the capacitor C2. At this time, since Q10 and Q12 are on, the voltage of the series capacitor circuit CA1 is maintained at 2E, which is the same as the voltage of the DC single power source b2.

その状態から次に交流スイッチSW1をオン、Q14をオフさせると交流端子UoにはコンデンサC1の電圧(−VC1)が出力され、この時出力電流が通過する半導体スイッチはQ15、Q16、Q12またはQ15、Q16、Q10の3個となる。この時、アーム対QA1〜QA3の中でオフしている半導体スイッチにかかる電圧は最大2Eでクランプされる。   Next, when the AC switch SW1 is turned on and Q14 is turned off from that state, the voltage (-VC1) of the capacitor C1 is output to the AC terminal Uo. At this time, the semiconductor switch through which the output current passes is Q15, Q16, Q12 or Q15. , Q16, and Q10. At this time, the voltage applied to the semiconductor switch turned off in the arm pairs QA1 to QA3 is clamped at a maximum of 2E.

上記の一連の動作により、交流端子Uoには、+2E、+VC2、0、−VC1、−2Eの5つのレベルの電圧を平滑した電圧出力が可能となる。この時の各半導体スイッチQ9〜Q14、Q15、Q16のオンオフパタ−ン及び交流端子Uoの電圧波形を図5に示す。この時、コンデンサC1及びC2の容量が同じで、各半導体スイッチQ9とQ12、Q10とQ11、Q5とQ6、Q15とQ16の動作が図5に示す様に正負の期間で対称の時、交流端子Uoの電圧は正負対称となり交流出力電流も正負対称となるため、コンデンサC1とC2の各電圧VC1、VC2は平均的には同じ電圧で1Eとなり、上記交流端子Uoの電圧は、+2E、+VC2=+1E、0、−VC1=−1E、−2E を平滑した正弦波状の電圧となる。   Through the above series of operations, the AC terminal Uo can output a voltage obtained by smoothing voltages of five levels of + 2E, + VC2, 0, −VC1, and −2E. FIG. 5 shows ON / OFF patterns of the semiconductor switches Q9 to Q14, Q15, and Q16 and the voltage waveform of the AC terminal Uo at this time. At this time, when the capacitances of the capacitors C1 and C2 are the same and the operations of the semiconductor switches Q9 and Q12, Q10 and Q11, Q5 and Q6, Q15 and Q16 are symmetric in the positive and negative periods as shown in FIG. Since the voltage of Uo is positive and negative and the AC output current is also positive and negative symmetric, the voltages VC1 and VC2 of the capacitors C1 and C2 are on average 1E at the same voltage, and the voltage of the AC terminal Uo is + 2E, + VC2 = + 1E, 0, −VC1 = −1E, −2E are smoothed sinusoidal voltages.

また半導体スイッチQ9、Q11がオン、Q10、Q12がオフの時、直列コンデンサ回路CA1はQ9→リアクトルL1→CA1→リアクトルL2→Q11の経路で直流単電源b1にクランプされる。逆にQ10、Q12がオン、Q9、Q11がオフの時は、Q10→L1→CA1→L2→Q12の経路で直流単電源b2にクランプされる。ここで、直流単電源b1とb2に電位差が生じている場合、直列コンデンサ回路CA1のクランプ先がb1からb2または逆のb2からb1に切り替わるタイミングでCA1に突入電流が流れようとするが、L1及びL2の電流抑制効果により突入電流は抑制される。   When the semiconductor switches Q9 and Q11 are turned on and Q10 and Q12 are turned off, the series capacitor circuit CA1 is clamped to the DC single power source b1 through a route of Q9 → reactor L1 → CA1 → reactor L2 → Q11. Conversely, when Q10 and Q12 are on and Q9 and Q11 are off, they are clamped to the DC single power source b2 along the route of Q10 → L1 → CA1 → L2 → Q12. Here, when a potential difference is generated between the DC single power sources b1 and b2, an inrush current tends to flow through CA1 at the timing when the clamp destination of the series capacitor circuit CA1 is switched from b1 to b2 or vice versa. And the inrush current is suppressed by the current suppressing effect of L2.

さらに、例えばQ9、Q11、Q13がオンで交流端子Uoに+2Eの電圧を平滑した電圧が出力されている時、出力電流の経路は直流組電源BA1の中間端子を基点に考えると、b1→Q9→L1→Q13→C3を通る第1の経路と、Q11→L2→C2→C1→Q13→C3を通る第2の経路の2通りがある。第1の経路ではL1、C3によるLCフィルタ回路が構成され、第2の経路ではL2、C3によるLCフィルタ回路が構成される。交流端子Uoの電圧が+1E、0、−1E、−2Eの電圧を平滑した電圧の場合においても同様に2つの電流経路が存在し、何れもL1、L2によるLCフィルタ回路が構成される。ここで、L1とL2のインダクタンス値を同じ値のLmに選んだ場合の等価的な交流出力LCフィルタとしてのカットオフ周波数ωは、
ω=1/√((Lm/2)・C3)となる。
ここで、LmとC3の値を適切に選択する事で、交流端子Uoの電圧は図5に示す階段状の波形から連続的な正弦波状の波形に波形整形され、L1とL2はインバ−タ用出力LCフィルタのリアクトルの機能も兼ね備えることができる。
この図1の変換回路は、直流から交流に変換するインバ−タ動作だけでなく交流から直流に変換する整流器動作においても各半導体スイッチQ9〜Q14、Q15、Q16のオンオフを制御することで、入力となる交流側電流を制御可能である。
Further, for example, when Q9, Q11, and Q13 are on and a voltage obtained by smoothing the voltage + 2E is output to the AC terminal Uo, the path of the output current is b1 → Q9, considering the intermediate terminal of the DC group power supply BA1 as a base point. There are two types: a first route that passes through L1, Q13, and C3, and a second route that passes through Q11, L2, C2, C1, Q13, and C3. An LC filter circuit composed of L1 and C3 is configured in the first path, and an LC filter circuit composed of L2 and C3 is configured in the second path. Similarly, when the voltage of the AC terminal Uo is a voltage obtained by smoothing the voltages of + 1E, 0, -1E, and -2E, there are two current paths, both of which constitute an LC filter circuit using L1 and L2. Here, the cutoff frequency ω as an equivalent AC output LC filter when the inductance values of L1 and L2 are selected to be the same Lm is
ω = 1 / √ ((Lm / 2) · C3).
Here, by appropriately selecting the values of Lm and C3, the voltage of the AC terminal Uo is shaped from the stepped waveform shown in FIG. 5 into a continuous sine waveform, and L1 and L2 are inverters. The reactor function of the output LC filter can also be provided.
The conversion circuit of FIG. 1 controls the on / off of each of the semiconductor switches Q9 to Q14, Q15, and Q16 not only in an inverter operation for converting from direct current to alternating current but also in a rectifier operation for converting from alternating current to direct current. It is possible to control the AC side current.

図2は、SW1の代わりに逆阻止形IGBTQ21とQ22を逆並列接続して構成した交流スイッチSW2を用いた実施例である。動作は、図1と同様である。図1のQ15をオンさせる代わりに図2のQ21を、Q16をオンさせる代わりにQ22をオンさせる他は、図1と同じ動作となる。
ただし,SW1に出力電流が通過する場合において,図1の回路では,Q15、Q16の各々半導体スイッチ2個分を通過するのに対し,図2のSW2においてはQ21またはQ22の何れか1個しか通過しないため,5レベルインバータ全体として出力電流が通過する半導体スイッチ(逆阻止形IGBTを含む)が最大3個から2個に減少する。この結果、さらなる高効率化が可能となる。
FIG. 2 shows an embodiment using an AC switch SW2 constructed by connecting reverse blocking IGBTs Q21 and Q22 in reverse parallel instead of SW1. The operation is the same as in FIG. The operation is the same as that of FIG. 1 except that Q21 of FIG. 2 is turned on instead of turning on Q15 of FIG. 1, and Q22 is turned on instead of turning on of Q16.
However, when the output current passes through SW1, the circuit of FIG. 1 passes two semiconductor switches of Q15 and Q16, whereas only one of Q21 or Q22 is passed through SW2 of FIG. Since it does not pass, the number of semiconductor switches (including reverse blocking IGBTs) through which the output current passes as a whole 5-level inverter is reduced from 3 to 2 at maximum. As a result, higher efficiency can be achieved.

図3に、本発明の第2の実施例を示す。図2との相違点は、半導体スイッチQ9〜Q12がダイオードD9〜D12に各々変更され、交流端子Uoには外部交流電源が接続されている点である。
この様な回路構成において、外部交流電源の電圧が正極性かつその振幅がコンデンサC2の電圧VC2より小さい時、Q14及びQ22をオン、Q13及びQ21をオフさせると、外部交流電源1→交流端子Uo→Q14→L2→D11→BA1の中点端子M、の経路で短絡電流が流れ、外部交流電源1のエネルギーがリアクトルL2に蓄積される。この状態からQ14をオフすると、電流は外部交流電源1→Q22→C2→L2→D11→BA1の中点端子Mの経路に転流し、リアクトルL2に蓄えられていたエネルギーはコンデンサC2に放出される。ここで、コンデンサC2の電圧上昇により直列コンデンサ回路CA1全体の電圧も上昇するため、電流は外部交流電源1→Q22→C1→L1→D9→b1→BA1の中点端子Mの経路にも分流し、最終的にエネルギーは直流電源の単電源b1に充電される。ここで、半導体スイッチQ14のオンオフの比率を制御することで入力となる交流電流の制御が可能となる。
FIG. 3 shows a second embodiment of the present invention. The difference from FIG. 2 is that the semiconductor switches Q9 to Q12 are changed to diodes D9 to D12, respectively, and an external AC power source is connected to the AC terminal Uo.
In such a circuit configuration, when Q14 and Q22 are turned on and Q13 and Q21 are turned off when the voltage of the external AC power supply is positive and its amplitude is smaller than the voltage VC2 of the capacitor C2, the external AC power supply 1 → AC terminal Uo A short-circuit current flows through the path of Q14 → L2 → D11 → BA1 midpoint terminal M, and the energy of the external AC power supply 1 is accumulated in the reactor L2. When Q14 is turned off from this state, the current is commutated to the path of the midpoint terminal M of the external AC power source 1 → Q22 → C2 → L2 → D11 → BA1, and the energy stored in the reactor L2 is released to the capacitor C2. . Here, since the voltage across the series capacitor circuit CA1 also rises due to the rise in the voltage of the capacitor C2, the current is also shunted to the path of the midpoint terminal M of the external AC power source 1 → Q22 → C1 → L1 → D9 → b1 → BA1. Finally, the energy is charged into the single power source b1 of the DC power source. Here, by controlling the on / off ratio of the semiconductor switch Q14, it becomes possible to control the alternating current input.

次に外部交流電源の電圧が正極性かつその振幅がコンデンサC2の電圧VC2より大きい時、Q22をオン、Q13、Q14、Q21をオフさせると、外部交流電源1→交流端子Uo→Q22→C2→L2→D11→BA1の中点端子Mの経路と、外部交流電源1→交流端子Uo→Q22→C1→L1→D9→b1→BA1の中点端子Mの2つの経路で短絡電流が流れ、エネルギーがリアクトルL1及びL2に蓄えられる。この状態から半導体スイッチQ22をオフすると、電流は外部交流電源1→交流端子Uo→Q13→CA1(C1、C2)→L2→D11→BA1中点端子Mの経路と、外部交流電源1→交流端子Uo→Q13→L1→D9→b1→BA1の中点端子Mの2つの経路で電流が流れ、リアクトルL1とL2に蓄えられていたエネルギーは直列コンデンサ回路CA1を介し最終的には直流電源の単電源b1に充電される。ここで、半導体スイッチQ22のオンオフの比率を制御することで入力となる交流電流の制御が可能となる。
これら、外部交流電源が正極性の期間においては、入力となる交流電流を制御しながら、直流単電源b1の充電が可能となる。
Next, when the voltage of the external AC power source is positive and the amplitude thereof is larger than the voltage VC2 of the capacitor C2, when Q22 is turned on and Q13, Q14, Q21 are turned off, the external AC power source 1 → AC terminal Uo → Q22 → C2 → The short-circuit current flows through the path of the midpoint terminal M of L2 → D11 → BA1 and the path of the external AC power source 1 → AC terminal Uo → Q22 → C1 → L1 → D9 → b1 → BA1 midpoint terminal M. Are stored in reactors L1 and L2. When the semiconductor switch Q22 is turned off from this state, the current flows from the external AC power source 1 → AC terminal Uo → Q13 → CA1 (C1, C2) → L2 → D11 → BA1 midpoint terminal M and external AC power source 1 → AC terminal. Current flows through two paths from the middle point M of Uo->Q13->L1->D9->b1-> BA1, and the energy stored in reactors L1 and L2 is finally connected to a single DC power source via series capacitor circuit CA1. The power supply b1 is charged. Here, by controlling the on / off ratio of the semiconductor switch Q22, it is possible to control the alternating current input.
During the period in which the external AC power source is positive, the DC single power source b1 can be charged while controlling the AC current to be input.

外部交流電源1の電圧が負極性の時についても、回路の対象性から正極性の時と同様の動作が可能となり、交流電流を制御しながら、直流単電源b2の充電が可能となる。また、外部交流電源1の電圧が正極性の時は、コンデンサC2の電圧VC2が増加し、コンデンサC1の電圧VC1は減少するが、外部交流電源1が負極性の時にはその逆の動作となるため、一周期を平均すると動作の対称性からVC1=VC2=+1Eとなる。   Even when the voltage of the external AC power supply 1 is negative, the same operation as that of the positive polarity is possible due to the target of the circuit, and the DC single power supply b2 can be charged while controlling the AC current. Further, when the voltage of the external AC power supply 1 is positive, the voltage VC2 of the capacitor C2 increases and the voltage VC1 of the capacitor C1 decreases, but when the external AC power supply 1 is negative, the reverse operation is performed. When one period is averaged, VC1 = VC2 = + 1E from the symmetry of operation.

図4に、本発明の第3の実施例を示す。図2との相違点は、半導体スイッチQ9、Q12〜Q14がダイオードD9、D12〜D14に各々変更され、交流端子Uoには外部交流電源1が接続されている点である。
この様な回路構成において、外部交流電源の電圧が正極性かつその振幅が+1Eより小さい時、Q10をオン、Q11、Q21及びQ22をオフさせると、外部交流電源1→交流端子Uo→D13→L1→Q10→BA1の中点端子M、の経路で短絡電流が流れ、外部交流電源のエネルギーがリアクトルL1に蓄積される。この状態から半導体スイッチQ10をオフ、Q22をオンすると、電流は外部交流電源1→Q22→C1→L1→D9→b1→BA1の中点端子Mの経路に転流し、リアクトルL1に蓄えられていたエネルギーはコンデンサC1の放電に伴い、直流単電源b1に充電される。ここで、半導体スイッチQ10とQ22のオンオフの比率を制御することで入力となる交流電流の制御が可能となる。
FIG. 4 shows a third embodiment of the present invention. The difference from FIG. 2 is that the semiconductor switches Q9 and Q12 to Q14 are changed to diodes D9 and D12 to D14, respectively, and the external AC power supply 1 is connected to the AC terminal Uo.
In such a circuit configuration, when the voltage of the external AC power supply is positive and its amplitude is smaller than + 1E, when Q10 is turned on and Q11, Q21 and Q22 are turned off, the external AC power supply 1 → AC terminal Uo → D13 → A short-circuit current flows through a path of L1 → Q10 → BA1 midpoint terminal M, and the energy of the external AC power supply is accumulated in the reactor L1. When the semiconductor switch Q10 is turned off and Q22 is turned on from this state, the current is commutated to the path of the midpoint terminal M of the external AC power source 1 → Q22 → C1 → L1 → D9 → b1 → BA1 and stored in the reactor L1. As the capacitor C1 is discharged, the energy is charged into the single DC power supply b1. Here, by controlling the ON / OFF ratio of the semiconductor switches Q10 and Q22, it is possible to control the alternating current that is input.

次に外部交流電源の電圧が正極性かつその振幅がコンデンサC2の電圧VC2より大きい時、Q22をオン、Q10、Q11、Q21をオフさせると、外部交流電源1→交流端子Uo→Q22→C2→L2→Q11→BA1の中点端子Mの経路と、外部交流電源1→交流端子Uo→Q22→C1→L1→D9→b1→BA1の経路の2つの経路で短絡電流が流れ、エネルギーがリアクトルL1及びL2に蓄えられる。この状態から半導体スイッチQ22をオフすると、電流は外部交流電源1→交流端子Uo→D13→CA1(C1、C2)→L2→Q11→BA1の中点端子Mの経路と、外部交流電源1→交流端子Uo→D13→L1→D9→b1→BA1の中点端子Mの経路の2つの経路で電流が流れ、リアクトルL1とL2に蓄えられていたエネルギーは直列コンデンサ回路CA1を介して最終的には直流単電源b1に充電される。ここで、Q22のオンオフの比率を制御することで入力となる交流電流の制御が可能となる。
これら、外部交流1が正極性の期間においては、入力となる交流電流を制御しながら、直流単電源b1の充電が可能となる。
Next, when the voltage of the external AC power source is positive and its amplitude is larger than the voltage VC2 of the capacitor C2, when Q22 is turned on and Q10, Q11, and Q21 are turned off, the external AC power source 1 → AC terminal Uo → Q22 → C2 → The short-circuit current flows through the path L2 → Q11 → BA1 midpoint terminal M and the external AC power source 1 → AC terminal Uo → Q22 → C1 → L1 → D9 → b1 → BA1. And stored in L2. When the semiconductor switch Q22 is turned off from this state, the current flows from the external AC power source 1 → AC terminal Uo → D13 → CA1 (C1, C2) → L2 → Q11 → BA1 midpoint terminal M and external AC power source 1 → AC. Current flows through two paths of the terminal Uo, D13, L1, D9, b1, and BA1, and the energy stored in the reactors L1 and L2 is finally passed through the series capacitor circuit CA1. The direct current single power source b1 is charged. Here, by controlling the on / off ratio of Q22, it becomes possible to control the alternating current input.
During the period in which the external AC 1 is positive, the DC single power source b1 can be charged while controlling the AC current to be input.

外部交流電源1の電圧が負極性の時には、回路の対象性から正極性の時と同様の動作が可能となり、交流電流を制御しながら、直流単電源b2の充電が可能となる。また、外部交流電源の電圧が正極性の時は、コンデンサC2の電圧VC2は増加し、コンデンサC1の電圧VC1は減少するが、外部交流電源が負極性の時にはその逆の動作となるため、一周期を平均すると動作の対称性からVC1=VC2=+1Eとなる。   When the voltage of the external AC power source 1 is negative, the same operation as that of the positive polarity is possible due to the target of the circuit, and the DC single power source b2 can be charged while controlling the AC current. When the voltage of the external AC power source is positive, the voltage VC2 of the capacitor C2 increases and the voltage VC1 of the capacitor C1 decreases. However, when the external AC power source is negative, the reverse operation is performed. If the periods are averaged, VC1 = VC2 = + 1E from the symmetry of operation.

本発明は、5レベル変換回路を用いて少ない個数の直流電源から高電圧の交流を作り出す直流−交流変換回路と、交流−直流変換回路の提案である。大容量の無停電電源装置(UPS)や電動機駆動用インバータなどへの適用が可能である。   The present invention is a proposal of a DC-AC conversion circuit that generates high-voltage AC from a small number of DC power sources using a five-level conversion circuit, and an AC-DC conversion circuit. The present invention can be applied to a large-capacity uninterruptible power supply (UPS) and an inverter for driving an electric motor.

Q1〜Q16・・・スイッチング素子
Q21、Q22・・・スイッチング素子(逆阻止形)
QA1、QA2、QA3・・・アーム対
QA4、QA5・・・アーム対
D1〜D6、D9〜D14・・・ダイオード
b1、b2、b11、b12、b21、b22・・・直流単電源
BA1、BA2・・・直流組電源 1・・・交流電源
DA1〜DA6・・・ダイオードアーム対
L1、L2、L3・・・リアクトル C1〜C3・・・コンデンサ
CA1・・・直列コンデンサ回路
SW1、SW2・・・交流スイッチ
Q1-Q16 ... switching element Q21, Q22 ... switching element (reverse blocking type)
QA1, QA2, QA3 ... Arm pair QA4, QA5 ... Arm pair D1-D6, D9-D14 ... Diode b1, b2, b11, b12, b21, b22 ... DC single power supply BA1, BA2, ..DC group power supply 1 ... AC power supply DA1 to DA6 ... Diode arm pair L1, L2, L3 ... Reactor C1 to C3 ... Capacitor CA1 ... Series capacitor circuit SW1, SW2 ... AC switch

Claims (5)

2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源から5つの電圧レベルを生成し、その5つの電圧レベルを任意に選択可能な5レベル変換回路において、
ダイオードを逆並列接続した半導体スイッチアームを2つ直列接続した第1、第2及び第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチとを備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、第3アーム対の中間端子にフィルタコンデンサを、各々接続すると共に、前記第3アーム対の中間端子を交流出力端子とする回路構成で、
前記第1及び第2のリアクトルは前記直流電源から前記第1アーム対、前記直列コンデンサ回路及び前記第2アーム対を介して流れる直列コンデンサ回路への突入電流成分を抑制する機能と、前記フィルタコンデンサと前記5レベル変換回路出力の高調波を低減する交流フィルタを形成する機能とを兼ね備えたことを特徴とする5レベル変換回路。
In a five-level conversion circuit having three terminals divided into two, generating five voltage levels from a DC power supply having three different voltage levels including zero, and arbitrarily selecting the five voltage levels ,
A first, second and third arm pair in which two semiconductor switch arms having diodes connected in antiparallel are connected in series, and an AC switch configured by combining semiconductor devices, the potential of the DC power supply being the highest The first arm pair is provided between the first DC terminal and the second DC terminal having an intermediate potential, and the second arm pair is provided between the second DC terminal and the third DC terminal having the lowest potential. The third arm pair is interposed between the midpoint terminal of the first arm pair and the midpoint terminal of the second arm pair via a first reactor and a second reactor, respectively. A series capacitor circuit in which two capacitors are connected in series with each other, and the AC switch is connected between the intermediate connection point of the series capacitor circuit and the intermediate terminal of the third arm pair, and the intermediate switch of the third arm pair is filtered. Conden And with each connecting a circuit configuration of the AC output terminals of the intermediate terminal of the third arm pair,
The first and second reactors have a function of suppressing an inrush current component from the DC power supply to the series capacitor circuit flowing through the first arm pair, the series capacitor circuit, and the second arm pair, and the filter capacitor. And a function of forming an AC filter that reduces harmonics of the output of the five-level conversion circuit.
交流電源から、2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源を作り出す5レベル変換回路において、
ダイオードアームを2つ直列接続して構成される第1及び第2のアーム対と、ダイオードを逆並列接続した半導体スイッチアームを2つ直列接続して構成される第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチとを備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、前記第3アーム対の中間端子に交流電源を、各々接続し、前記第3アーム対と前記交流スイッチをオンオフ制御することにより、前記交流電源から直流を得る高力率整流回路として動作することを特徴とする5レベル変換回路。
In a five-level conversion circuit that generates a DC power supply having three different voltage levels including zeros, including three terminals divided into two from an AC power supply,
A first and second arm pair configured by connecting two diode arms in series; a third arm pair configured by connecting two semiconductor switch arms having diodes connected in reverse parallel; and a semiconductor device Between the first DC terminal having the highest potential of the DC power source and the second DC terminal having an intermediate potential, and the second DC terminal. And the third DC terminal having the lowest potential, the second arm pair, and the midpoint terminal of the first arm pair and the midpoint terminal of the second arm pair, respectively. And a series capacitor circuit in which two capacitors are connected in series with the third arm pair in parallel with the third arm pair via a second reactor, an intermediate connection point of the series capacitor circuit and the third arm pair. Intermediate terminal and A high power factor for obtaining direct current from the alternating current power source by connecting the alternating current switch between them and an alternating current power source to an intermediate terminal of the third arm pair, and controlling the on / off of the third arm pair and the alternating current switch. A five-level conversion circuit which operates as a rectifier circuit.
交流電源から、2つに分割された3つの端子を備え、ゼロを含む互いに異なる3つの電圧レベルを持つ直流電源を作り出す5レベル変換回路において、
ダイオードアームとダイオードを逆並列接続した半導体スイッチアームとをこの順序で直列接続した第1のアーム対と、ダイオードを逆並列接続した半導体スイッチアームとダイオードアームとをこの順序で直列接続した第2のアーム対と、ダイオードアームを2つ直列接続した第3のアーム対と、半導体デバイスを組み合わせて構成される交流スイッチとを備え、前記直流電源の電位が最も高い第1直流端子と中間電位となる第2直流端子との間には前記第1アーム対を、前記第2直流端子と電位が最も低い第3直流端子との間には前記第2アーム対を、前記第1アーム対の中点端子と前記第2アーム対の中点端子との間には各々第1のリアクトル及び第2のリアクトルを介して前記第3アーム対を、この第3アーム対と並列に2つのコンデンサを直列接続した直列コンデンサ回路を、この直列コンデンサ回路の中間接続点と前記第3アーム対の中間端子との間に前記交流スイッチを、前記第3アーム対の中間端子に交流電源を、各々接続し、前記第1及び第2アーム対の半導体スイッチと前記交流スイッチをオンオフ制御することにより、前記交流電源から直流を得る高力率整流回路として動作することを特徴とする5レベル変換回路。
In a five-level conversion circuit that generates a DC power supply having three different voltage levels including zeros, including three terminals divided into two from an AC power supply,
A first arm pair in which a diode arm and a semiconductor switch arm in which diodes are connected in antiparallel are connected in series in this order, and a second semiconductor switch arm in which diodes are connected in antiparallel and a diode arm are connected in series in this order. An arm switch, a third arm pair in which two diode arms are connected in series, and an AC switch configured by combining semiconductor devices, and the first DC terminal having the highest potential of the DC power supply has an intermediate potential The first arm pair between the second DC terminals, the second arm pair between the second DC terminal and the third DC terminal having the lowest potential, and the midpoint of the first arm pair. Between the terminal and the midpoint terminal of the second arm pair, the third arm pair is connected in parallel with the third arm pair via a first reactor and a second reactor, respectively. A series capacitor circuit in which sensors are connected in series, the AC switch between the intermediate connection point of the series capacitor circuit and the intermediate terminal of the third arm pair, and the AC power source at the intermediate terminal of the third arm pair, A five-level conversion circuit that operates as a high power factor rectifier circuit that obtains direct current from the alternating current power supply by connecting and controlling on / off of the semiconductor switch of the first and second arm pairs and the alternating current switch.
前記交流スイッチを、半導体デバイスからなるアームを逆直列に接続して構成することを特徴とする請求項1〜3に記載の5レベル変換回路。   The 5-level conversion circuit according to claim 1, wherein the AC switch is configured by connecting an arm made of a semiconductor device in reverse series. 前記交流スイッチを、逆耐圧のある半導体デバイスを逆並列接続して構成することを特徴とする請求項1〜3に記載の5レベル変換回路。   The 5-level conversion circuit according to claim 1, wherein the AC switch is configured by connecting a semiconductor device having a reverse breakdown voltage in reverse parallel.
JP2011126911A 2011-06-07 2011-06-07 5-level conversion circuit Active JP5682459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011126911A JP5682459B2 (en) 2011-06-07 2011-06-07 5-level conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126911A JP5682459B2 (en) 2011-06-07 2011-06-07 5-level conversion circuit

Publications (2)

Publication Number Publication Date
JP2012253981A true JP2012253981A (en) 2012-12-20
JP5682459B2 JP5682459B2 (en) 2015-03-11

Family

ID=47526220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126911A Active JP5682459B2 (en) 2011-06-07 2011-06-07 5-level conversion circuit

Country Status (1)

Country Link
JP (1) JP5682459B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174127A1 (en) * 2012-05-25 2013-11-28 华为技术有限公司 Power electronic circuit
DE102014100717A1 (en) 2013-02-13 2014-08-14 Fuji Electric Co., Ltd power converters
WO2014184830A1 (en) * 2013-05-17 2014-11-20 富士電機株式会社 Power conversion device
WO2014206092A1 (en) * 2013-06-24 2014-12-31 华为技术有限公司 Single-phase inverter and three-phase inverter
CN104393778A (en) * 2014-12-18 2015-03-04 阳光电源股份有限公司 Method and device for modulating five-level inverter and photovoltaic system
JP2016015848A (en) * 2014-07-03 2016-01-28 株式会社明電舎 Five level power conversion device
CN105577012A (en) * 2016-03-15 2016-05-11 东南大学 Hybrid five-level current converter and control method thereof
WO2017076366A1 (en) * 2015-11-06 2017-05-11 汪洪亮 Five-voltage level inverter topology circuit, and three-phase and five-voltage level inverter topology circuit
CN106921306A (en) * 2017-03-24 2017-07-04 江苏固德威电源科技股份有限公司 The level three-phase inverter of T-shaped active clamp type five and parallel network reverse electricity generation system
WO2021038158A1 (en) * 2019-08-30 2021-03-04 Socomec Modular multilevel converter for low-voltage application with optimized capacitor sizing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136954A (en) * 1997-10-28 1999-05-21 Yaskawa Electric Corp Three-level neutral point clamp-type inverter circuit
JP2001016866A (en) * 1999-06-28 2001-01-19 Toshiba Corp Multi-level neutral point potential-fixed power converter
JP2001054284A (en) * 1999-06-03 2001-02-23 Mitsubishi Electric Corp Converter device and converter/inverter system
JP2009027806A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Power conversion device
WO2010044164A1 (en) * 2008-10-16 2010-04-22 東芝三菱電機産業システム株式会社 Power converter
JP2010252548A (en) * 2009-04-16 2010-11-04 Fuji Electric Systems Co Ltd Snubber circuit of three-level power converter
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
JP2011078296A (en) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp Power conversion circuit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136954A (en) * 1997-10-28 1999-05-21 Yaskawa Electric Corp Three-level neutral point clamp-type inverter circuit
JP2001054284A (en) * 1999-06-03 2001-02-23 Mitsubishi Electric Corp Converter device and converter/inverter system
JP2001016866A (en) * 1999-06-28 2001-01-19 Toshiba Corp Multi-level neutral point potential-fixed power converter
JP2009027806A (en) * 2007-07-18 2009-02-05 Mitsubishi Electric Corp Power conversion device
WO2010044164A1 (en) * 2008-10-16 2010-04-22 東芝三菱電機産業システム株式会社 Power converter
JP2010252548A (en) * 2009-04-16 2010-11-04 Fuji Electric Systems Co Ltd Snubber circuit of three-level power converter
JP2011078296A (en) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp Power conversion circuit
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174127A1 (en) * 2012-05-25 2013-11-28 华为技术有限公司 Power electronic circuit
DE102014100717A1 (en) 2013-02-13 2014-08-14 Fuji Electric Co., Ltd power converters
US8861240B2 (en) 2013-02-13 2014-10-14 Fuji Electric Co., Ltd. Power converter
WO2014184830A1 (en) * 2013-05-17 2014-11-20 富士電機株式会社 Power conversion device
JP5874835B2 (en) * 2013-05-17 2016-03-02 富士電機株式会社 Power converter
WO2014206092A1 (en) * 2013-06-24 2014-12-31 华为技术有限公司 Single-phase inverter and three-phase inverter
JP2016015848A (en) * 2014-07-03 2016-01-28 株式会社明電舎 Five level power conversion device
US10044291B2 (en) 2014-12-18 2018-08-07 Sungrow Power Supply Co., Ltd. Method and device for modulating a five-level inverter, and photovoltaic system
CN104393778A (en) * 2014-12-18 2015-03-04 阳光电源股份有限公司 Method and device for modulating five-level inverter and photovoltaic system
CN108702104A (en) * 2015-11-06 2018-10-23 汪洪亮 Five-electrical level inverter topological circuit and three-phase five-level inverter topological circuit
WO2017076366A1 (en) * 2015-11-06 2017-05-11 汪洪亮 Five-voltage level inverter topology circuit, and three-phase and five-voltage level inverter topology circuit
CN108702104B (en) * 2015-11-06 2020-06-16 汪洪亮 Five-level inverter topology circuit and three-phase five-level inverter topology circuit
CN105577012A (en) * 2016-03-15 2016-05-11 东南大学 Hybrid five-level current converter and control method thereof
CN106921306A (en) * 2017-03-24 2017-07-04 江苏固德威电源科技股份有限公司 The level three-phase inverter of T-shaped active clamp type five and parallel network reverse electricity generation system
WO2021038158A1 (en) * 2019-08-30 2021-03-04 Socomec Modular multilevel converter for low-voltage application with optimized capacitor sizing
FR3100403A1 (en) * 2019-08-30 2021-03-05 Socomec Sa Modular multilevel converter for low voltage application with optimized capacitor sizing

Also Published As

Publication number Publication date
JP5682459B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5682459B2 (en) 5-level conversion circuit
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
JP5974516B2 (en) 5-level power converter
JP5085742B2 (en) Power converter
KR101189428B1 (en) Power conversion device
EP2306629B1 (en) Five-level converter
JP5417641B2 (en) Power converter
WO2013005498A1 (en) Multilevel conversion circuit
WO2013105156A1 (en) Multilevel power conversion circuit
JP6232944B2 (en) Multi-level power converter
JP2013223274A (en) Multilevel power conversion device
JP2013223274A5 (en)
Ebrahimi et al. A new single DC source six-level flying capacitor based converter with wide operating range
JP5362657B2 (en) Power converter
Floricau et al. New multilevel flying-capacitor inverters with coupled-inductors
JP2012191761A (en) Ac-dc conversion circuit
Barwar et al. A multilevel PFC rectifier with sensor-less voltage balancing capability
WO2013151542A1 (en) Multilevel converter
Baksi et al. Minimum switch count nine-level inverter with low voltage stress for photovoltaics application
JP2004180422A (en) Pwm rectifier
Kamani et al. A new multilevel inverter topology with reduced device count and blocking voltage
Yuan A new five-level converter for low-voltage motor drive applications
JP6264091B2 (en) AC-DC power converter
Anand et al. Symmetrical Flying Capacitor Based Multilevel Inverter with Reduced Voltage Stress for High Frequency Aircraft Application
JP2013158077A (en) Multilevel power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250