JP2011216775A - Coating paste for electric double-layer capacitor - Google Patents

Coating paste for electric double-layer capacitor Download PDF

Info

Publication number
JP2011216775A
JP2011216775A JP2010085271A JP2010085271A JP2011216775A JP 2011216775 A JP2011216775 A JP 2011216775A JP 2010085271 A JP2010085271 A JP 2010085271A JP 2010085271 A JP2010085271 A JP 2010085271A JP 2011216775 A JP2011216775 A JP 2011216775A
Authority
JP
Japan
Prior art keywords
layer capacitor
electric double
double layer
coating paste
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010085271A
Other languages
Japanese (ja)
Inventor
Yukiko Kato
有希子 加藤
Masashi Uzawa
正志 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010085271A priority Critical patent/JP2011216775A/en
Publication of JP2011216775A publication Critical patent/JP2011216775A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a paste for an electric double-layer capacitor by which an electrode is easily manufactured and an electric double-layer capacitor can be easily manufactured and which can have excellent flexibility and high electrical conductivity by solving a problem in the prior art that bending a film formed in a conventional manner causes destruction of the film from an interface between a medium with particles dispersed therein and the particles, thus destroying the film.SOLUTION: The coating paste for an electric double-layer capacitor electrode contains an aqueous dispersion comprising at least one kind of carbon nanotube (A), a polyanilines having an acid group (B), and water or a water-soluble solvent.

Description

本発明は電気二重層キャパシタ用塗布ペーストに関する。   The present invention relates to a coating paste for an electric double layer capacitor.

近年、電子機器の進展はめざましく、携帯用電子機器の小型化及び軽量化が急速に進行している。従って、携帯用電子機器の電源となる電池には小型化及び軽量化するために高エネルギー密度化が要求されている。
このような状況において、電気二重層キャパシタは携帯電子機器用の電池とキャパシタ(コンデンサー)の中間に値する新規な電源として注目されている。即ち、携帯電子機器用の電池における充放電の許容回数が300回〜500回程度であるのに対して、電気二重層キャパシタにおける充放電の許容回数は10,000〜100,000回程度であること、携帯電子機器用の電池に比較して10倍以上の高電流で貯蔵又は放電が可能であること等の、携帯電子機器用の電池には求めることができない高い性能を有することから、電気二重層キャパシタは停電用電源若しくは電気自動車等の補助電源として又は回生エネルギー回収用電源としての期待が大きい。
更に、昨今注目されているフレキシブルエレクトロニクスの観点からも、電気二重層キャパシタ自体に可撓性を持たせることにより、これまでにない形態の電気製品の作製が期待される。
In recent years, electronic devices have made remarkable progress, and portable electronic devices have been rapidly reduced in size and weight. Therefore, a battery serving as a power source for a portable electronic device is required to have a high energy density in order to reduce the size and weight.
Under such circumstances, the electric double layer capacitor has been attracting attention as a novel power source deserving an intermediate value between a battery for portable electronic devices and a capacitor (capacitor). That is, the allowable number of times of charging and discharging in a battery for portable electronic devices is about 300 to 500 times, while the allowable number of times of charging and discharging in an electric double layer capacitor is about 10,000 to 100,000. In addition, since it has a high performance that cannot be obtained for a battery for portable electronic devices, such as being able to store or discharge at a current 10 times higher than that of a battery for portable electronic devices, The double layer capacitor is highly expected as a power source for power failure, an auxiliary power source for electric vehicles, etc., or a power source for recovering regenerative energy.
Furthermore, from the viewpoint of flexible electronics, which has been attracting attention recently, it is expected that an electric product of an unprecedented form will be produced by making the electric double layer capacitor itself flexible.

一般的に、電気二重層キャパシタは比較的消費電流の大きい機器用電源として使用されることが多いことから、電気二重層キャパシタの電極を厚膜化し、電極体積を大きくする必要がある。
従来、電気二重層キャパシタの電極の成形方法として、例えば、活性炭粉末等の活物質に導電材を加え、テフロン(登録商標)粉末、ポリエチレン粉末等の粉末状バインダーと共に混合したものを圧縮成形する方法が挙げられるが、この方法により厚膜で大体積の電極を調製することには困難を伴う。
一方、ブタジエン系ゴム、EPDMゴム等のバインダーを使用する場合には、有機溶剤溶液又は水に乳化したブタジエン系ゴム及びEPDMゴムのラテックスに電極活物質粉末を加えて分散した後、この分散体を、集電体である金属箔上に塗布し、乾燥することにより電極を形成する方法が提案されている。
上記の方法では電極が容易に得られる利点がある。反面、絶縁性物質であるバインダーは、金属箔との密着性を高めると、電極としてキャパシタの内部抵抗の著しい上昇を招き、実用上、必ずしも満足できるものではなかった。ポリフッ化ビニリデンがこの問題点を解決する一方法として提案されているが、使用されるN−メチルピロリドン、ジメチルアセトアミド、ヘキサメチルホスホトリアミド、ジメチルスルホキシド等の溶剤の沸点が高く極性が強いので、これらの溶剤がキャパシタ中に残存するとキャパシタ特性に悪影響を及ぼしやすい。また、溶剤によっては毒性の強いものもあり、環境面及び人体への影響が懸念される。
In general, since an electric double layer capacitor is often used as a power source for equipment that consumes a relatively large amount of current, it is necessary to increase the electrode volume by increasing the thickness of the electrode of the electric double layer capacitor.
Conventionally, as a method for forming an electrode of an electric double layer capacitor, for example, a method in which a conductive material is added to an active material such as activated carbon powder and mixed with a powdered binder such as Teflon (registered trademark) powder or polyethylene powder is compression molded. However, it is difficult to prepare a thick film and large volume electrode by this method.
On the other hand, when a binder such as butadiene rubber or EPDM rubber is used, an electrode active material powder is added to and dispersed in an organic solvent solution or latex of butadiene rubber and EPDM rubber emulsified in water. There has been proposed a method of forming an electrode by applying on a metal foil as a current collector and drying.
The above method has an advantage that an electrode can be easily obtained. On the other hand, the binder, which is an insulating substance, increases the internal resistance of the capacitor as an electrode when the adhesion to the metal foil is increased, and is not always satisfactory in practice. Polyvinylidene fluoride has been proposed as a method for solving this problem, but the solvents such as N-methylpyrrolidone, dimethylacetamide, hexamethylphosphotriamide, dimethylsulfoxide and the like used have a high boiling point and high polarity. If these solvents remain in the capacitor, the capacitor characteristics are liable to be adversely affected. In addition, some solvents are highly toxic, and there are concerns about environmental impacts and effects on the human body.

また、フッ化ビニリデン、ヘキサフロロプロピレン及び四フッ化エチレンから得られるフッ素系高分子共重合体は通常の塗工溶剤に容易に溶けて安定なバインダー溶液を与えるとされている。しかしながら、上記フッ素系高分子共重合体はプロピレンカーボネート、2−メチルテトラヒドロフラン、γ−ブチロラクトン等の通常用いられる電解液中で60°C以上で放置しておくと、キャパシタ容量の低下を招くことがある。
前述の如く、電極の調製の方法として実用上以下の要求項目を全て満足するものはないと言われていた。
1)溶剤の沸点が比較的低く、乾燥が容易であること。
2)人体への毒性が小さく、地球環境に優れていること。
3)溶剤コストが低いこと。
4)バインダーは溶剤には溶解し、乾燥後は電解液には不溶又は低い膨潤性を示すものが望ましく、電極として電極活物質の実用性能が発揮されること。
5)金属箔表面に一度に塗布し、乾燥して50〜300μmの厚膜を得るために十分な粘稠性を有すること。
このような問題を解決するため、例えば特許文献1には、電極活物質(A)、水に可溶な導電性高分子結着剤である、酸性基を有するポリアニリン類(B)並びに必要に応じてカルボキシメチルセルロース類、ポリアクリル酸類又は導電材を含んでいる電気2重層電極用塗布ペーストを作製する方法が提案されている。
Further, it is said that a fluorine-based polymer copolymer obtained from vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene is easily dissolved in an ordinary coating solvent to give a stable binder solution. However, if the fluorine-based polymer copolymer is allowed to stand at 60 ° C. or higher in a commonly used electrolyte such as propylene carbonate, 2-methyltetrahydrofuran or γ-butyrolactone, the capacitance of the capacitor may be reduced. is there.
As described above, it has been said that none of the electrode preparation methods satisfy practically all the following requirements.
1) The solvent has a relatively low boiling point and can be easily dried.
2) Toxic to the human body and excellent in the global environment.
3) The solvent cost is low.
4) The binder is preferably dissolved in the solvent and insoluble in the electrolytic solution after drying or exhibits low swellability, and the practical performance of the electrode active material as an electrode should be exhibited.
5) It should have sufficient viscosity to be applied to the surface of the metal foil at a time and dried to obtain a thick film of 50 to 300 μm.
In order to solve such a problem, for example, Patent Document 1 discloses an electrode active material (A), a polyaniline (B) having an acidic group, which is a conductive polymer binder soluble in water, and necessary. Accordingly, a method for producing a coating paste for an electric double layer electrode containing carboxymethylcelluloses, polyacrylic acids or a conductive material has been proposed.

特開2003−17370号公報JP 2003-17370 A

しかしながら、特許文献1では、アセチレンブラック、ファーネスブラック等の粒子状の導電性物質を用いているため、成膜した後に折り曲げを行うと、粒子を分散させている媒体と粒子との界面からの破壊が起こり、膜が破壊されるため、可撓性に劣る。
本発明は上記事情に鑑みてなされたもので、可撓性に優れ、かつ高い導電性を有する電気二重層キャパシタの作成が可能な電気二重層キャパシタ用ペーストを提供することを目的とする。
However, in Patent Document 1, since a particulate conductive material such as acetylene black or furnace black is used, if the film is bent after film formation, destruction from the interface between the medium in which the particles are dispersed and the particles Occurs, and the film is broken, so that the flexibility is poor.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a paste for an electric double layer capacitor which is excellent in flexibility and capable of producing an electric double layer capacitor having high conductivity.

本発明は、少なくとも1種のカーボンナノチューブ(A)、酸性基を有するポリアニリン類(B)、及び水又は水溶性溶剤からなる水性分散体を含む電気二重層キャパシタ電極用塗布ペーストを要旨とする。   The gist of the present invention is an electric double layer capacitor electrode coating paste containing an aqueous dispersion composed of at least one carbon nanotube (A), polyaniline (B) having an acidic group, and water or a water-soluble solvent.

本発明の電気二重層キャパシタ電極用塗布ペーストは可撓性に優れ、かつ高い導電性を有する電気二重層キャパシタを作成することができる。また、酸性基を有するポリアニリン類(B)はカーボンナノチューブ(A)を極めて良く分散することができるため、塗布性が良好な電気二重層キャパシタ用塗布ペーストを得ることができる。更に、分散によりほぐれたカーボンナノチューブ(A)同士が効率よく絡み合うことで、柔軟で可撓性に優れ、かつ導電性の高い膜を形成することができる。   The coating paste for an electric double layer capacitor electrode of the present invention is excellent in flexibility and can produce an electric double layer capacitor having high conductivity. Moreover, since the polyaniline (B) which has an acidic group can disperse | distribute a carbon nanotube (A) very well, the coating paste for electric double layer capacitors with favorable applicability | paintability can be obtained. Furthermore, the carbon nanotubes (A) loosened by the dispersion are efficiently entangled with each other, so that a soft, flexible and highly conductive film can be formed.

<カーボンナノチューブ(A)>
本発明で用いられるカーボンナノチューブ(A)としては、例えば、フラーレン、金属内包フラーレン、玉葱状フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、ピーポッド、気相成長カーボン(VGCF)、グラファイト、グラフェン、カーボンナノ粒子及びケッチェンブラックが挙げられる。これらは単独で、又は2種以上を併用して使用できる。これらの中で、得られる電気二重層キャパシタ電極用ペーストの導電性又は透明性の点から、カーボンナノチューブが好ましい。
カーボンナノチューブ(A)の形状としては、例えば、単層カーボンナノチューブ、何層かが同心円状に重なった多層カーボンナノチューブ及び単層カーボンナノチューブ又は多層カーボンナノチューブがコイル状になったものが挙げられる。
また、カーボンナノチューブ(A)として、例えば、厚さ数原子の層のグラファイト状炭素原子面を丸めた円筒状のものが単層又は複数個入れ子構造になり、ナノメーターオーダーの外径の極めて微小な物質を使用することができる。 更に、カーボンナノチューブ(A)として、例えば、カーボンナノチューブの片側が閉じた形をしたカーボンナノホーンやその頭部に穴があいたコップ型のナノカーボン物質を使用することができる。
<Carbon nanotube (A)>
Examples of the carbon nanotube (A) used in the present invention include fullerene, metal-encapsulated fullerene, onion-like fullerene, carbon nanotube, carbon nanohorn, carbon nanofiber, peapod, vapor grown carbon (VGCF), graphite, graphene, carbon Examples include nanoparticles and ketjen black. These can be used alone or in combination of two or more. Among these, carbon nanotubes are preferable from the viewpoint of conductivity or transparency of the obtained electric double layer capacitor electrode paste.
Examples of the shape of the carbon nanotube (A) include single-wall carbon nanotubes, multi-wall carbon nanotubes in which several layers are concentrically overlapped, and single-wall carbon nanotubes or multi-wall carbon nanotubes in a coil shape.
Further, as the carbon nanotube (A), for example, a cylindrical shape in which a graphite-like carbon atom surface of a layer of several atoms is rounded has a single-layer or a plurality of nested structures, and has an extremely small outer diameter of nanometer order. New materials can be used. Furthermore, as the carbon nanotube (A), for example, a carbon nanohorn in which one side of the carbon nanotube is closed or a cup-type nanocarbon substance having a hole in the head can be used.

本発明においては、カーボンナノチューブ(A)として、必要に応じてボールミル、振動ミル、サンドミル、ロールミル等のボール型混練装置等を用いて粉砕したものや、化学的又は物理的処理によって短く切断されているものを用いることができる。
本発明の電気二重層キャパシタ電極用塗布ペースト中のカーボンナノチューブ(A)の含有量は、カーボンナノチューブ(A)及びポリアニリン類(B)の合計量100質量部に対して25〜75質量部が好ましい。カーボンナノチューブ(A)の含有量が25質量部以上で、カーボンナノチューブ(A)のネットワークが密になるため、得られる電気二重層キャパシタ電極の可撓性が良好となる傾向にある。また、カーボンナノチューブ(A)の含有量が75質量部以下で、本発明の電気二重層キャパシタ電極用塗布ペースト中のカーボンナノチューブ(A)の分散性が良好となり、得られる電気二重層キャパシタ電極の成型加工性が良好となる傾向にある。)
カーボンナノチューブ(A)の製造方法としては、例えば、二酸化炭素の接触水素還元法、アーク放電法、レーザー蒸発法、CVD法、気相成長法、気相流動法及び一酸化炭素を高温高圧化で鉄触媒と共に反応させて気相で成長させるHiPco法が挙げられる。
カーボンナノチューブ(A)としては、上記の製造方法によって得られる単層カーボンナノチューブ及び多層カーボンナノチューブが好ましく、各種機能をより発現しやすい点から、更に洗浄法、遠心分離法、ろ過法、酸化法、クロマトグラフ法等の種々の精製法によって、より高純度化されたものがより好ましい。
In the present invention, the carbon nanotube (A) is pulverized using a ball-type kneading device such as a ball mill, a vibration mill, a sand mill, a roll mill or the like as necessary, or is cut short by chemical or physical treatment. Can be used.
The content of the carbon nanotube (A) in the coating paste for electric double layer capacitor electrode of the present invention is preferably 25 to 75 parts by mass with respect to 100 parts by mass of the total amount of the carbon nanotube (A) and the polyaniline (B). . When the content of the carbon nanotube (A) is 25 parts by mass or more and the network of the carbon nanotube (A) becomes dense, the electric double layer capacitor electrode obtained tends to have good flexibility. Further, when the content of the carbon nanotube (A) is 75 parts by mass or less, the dispersibility of the carbon nanotube (A) in the coating paste for an electric double layer capacitor electrode of the present invention is improved, and the electric double layer capacitor electrode obtained is The moldability tends to be good. )
Examples of the method for producing the carbon nanotube (A) include a catalytic hydrogen reduction method of carbon dioxide, an arc discharge method, a laser evaporation method, a CVD method, a vapor phase growth method, a vapor phase flow method, and carbon monoxide at high temperature and high pressure. A HiPco method in which a reaction is performed with an iron catalyst and grown in a gas phase can be mentioned.
As the carbon nanotube (A), single-walled carbon nanotubes and multi-walled carbon nanotubes obtained by the above production method are preferable, and from the viewpoint that various functions are more easily expressed, a cleaning method, a centrifugal separation method, a filtration method, an oxidation method, More highly purified by various purification methods such as chromatographic methods is more preferred.

<ポリアニリン類(B)>
本発明で用いられるポリアニリン類(B)は酸性基を有する。
ポリアニリン類(B)としては、本発明の電気二重層キャパシタ電極用塗布ペースト中での分散性の点で、水又は有機溶剤に溶解するもので、スルホン酸基(−SOH)及びカルボキシ基(−COOH)から選ばれる少なくとも1種の酸性基を有するものが好ましい。この場合、ポリアニリン類(B)中のスルホン酸基又はカルボキシ基は、それぞれ、酸の状態(−SOH又は−COOH)又はイオンの状態(−SO 又は−COO)のいずれの状態でもよい。
<Polyanilines (B)>
The polyaniline (B) used in the present invention has an acidic group.
The polyanilines (B) are those that dissolve in water or an organic solvent in terms of dispersibility in the coating paste for electric double layer capacitor electrodes of the present invention, and include sulfonic acid groups (—SO 3 H) and carboxy groups. Those having at least one acidic group selected from (—COOH) are preferred. In this case, the sulfonic acid group or carboxy group in the polyaniline (B) is in any state of an acid state (—SO 3 H or —COOH) or an ionic state (—SO 3 or —COO ), respectively. But you can.

ポリアニリン類(B)の具体例としては、特開昭61−197,633号公報、特開昭63−39,916号公報、特開平01−301,714号公報、特開平05−504,153号公報、特開平05−503,953号公報、特開平04−32,848号公報、特開平04−328,181号公報、特開平06−145,386号公報、特開平06−56,987号公報、特開平05−226,238号公報、特開平05−178,989号公報、特開平06−293,828号公報、特開平07−118,524号公報、特開平06−32,845号公報、特開平06−87,949号公報、特開平06−256,516号公報、特開平07−41,756号公報、特開平07−48,436号公報及び特開平04−268,331号公報に示された水溶性導電性ポリマーが挙げられる。
これらの中で、ポリアニリン類(B)としては、下式(1)で表される繰り返し単位から選ばれる少なくとも1種の繰り返し単位(以下、「繰り返し単位(a1)」という。)を有するものが好ましい。
Specific examples of the polyanilines (B) include JP-A 61-197,633, JP-A 63-39,916, JP-A 01-301,714, and JP-A 05-504,153. JP, 05-503,953, JP 04-32,848, JP 04-328,181, JP 06-145,386, JP 06-56,987. JP, 05-226,238, JP 05-178,989, JP 06-293,828, JP 07-118,524, JP 06-32,845. JP, 06-87,949, JP 06-256,516, JP 07-41,756, JP 07-48,436 and JP 04-268,331. issue It is shown in multicast water-soluble electroconductive polymer.
Among these, as polyanilines (B), those having at least one repeating unit selected from repeating units represented by the following formula (1) (hereinafter referred to as “repeating unit (a1)”) are included. preferable.

Figure 2011216775
Figure 2011216775

式(1)中、R〜Rは各々独立に、−H、炭素数1〜24の直鎖若しくは分岐のアルキル基、炭素数1〜24の直鎖若しくは分岐のアルコキシ基、酸性基、水酸基、ニトロ基、−F、−Cl、−Br又は−Iであり、R〜Rのうちの少なくとも一つは酸性基である。
ここで、「酸性基」はスルホン酸基又はカルボキシ基を示す。つまり、式(1)中、R〜Rのうちの少なくとも一つは−SO 、−SOH、−COOH又は−COOである。
In formula (1), R 1 to R 4 are each independently -H, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group, It is a hydroxyl group, a nitro group, -F, -Cl, -Br or -I, and at least one of R 1 to R 4 is an acidic group.
Here, the “acidic group” represents a sulfonic acid group or a carboxy group. That is, in formula (1), at least one of R 1 to R 4 is —SO 3 , —SO 3 H, —COOH, or —COO .

繰り返し単位(a1)を有するポリアニリン類(B)の中で、製造が容易な点で、R〜Rのうちのいずれか一つが炭素数1〜4の直鎖又は分岐のアルコキシ基であり、他のいずれか一つが−SO 又は−SOHであり、残りが−Hであるものが好ましい。
上記ポリアニリン類(B)の中で、合成の容易さの点で、ポリ(2−スルホ−5−メトキシ−1,4−イミノフェニレン)が好ましい。
ポリアニリン類(B)としては、導電性の点で、1分子中に繰り返し単位(a1)を10以上有することが好ましい。
Among the polyanilines (B) having the repeating unit (a1), any one of R 1 to R 4 is a linear or branched alkoxy group having 1 to 4 carbon atoms in terms of easy production. Any one of the other is —SO 3 or —SO 3 H, and the remaining is —H.
Among the polyanilines (B), poly (2-sulfo-5-methoxy-1,4-iminophenylene) is preferable from the viewpoint of ease of synthesis.
The polyaniline (B) preferably has 10 or more repeating units (a1) in one molecule from the viewpoint of conductivity.

ポリアニリン類(B)の質量平均分子量としては、3,000〜1,000,000が好ましく、3,000〜50,000がより好ましい。ポリアニリン類(B)の質量平均分子量が3,000以上で、得られる電気二重層キャパシタ電極用ペーストの導電性、成膜性及び膜強度に優れる傾向にある。また、ポリアニリン類(B)の質量平均分子量が1,000,000以下で、ポリアニリン類(B)の溶媒への溶解性に優れる傾向にある。
尚、ポリアニリン類(B)の質量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)によって測定される質量平均分子量(ポリエチレングリコール換算)を示す。
As a mass average molecular weight of polyaniline (B), 3,000-1,000,000 are preferable and 3,000-50,000 are more preferable. When the polyaniline (B) has a mass average molecular weight of 3,000 or more, the electric double layer capacitor electrode paste obtained tends to be excellent in conductivity, film formability and film strength. Further, the polyaniline (B) has a mass average molecular weight of 1,000,000 or less, and the polyaniline (B) tends to be excellent in solubility in a solvent.
In addition, the mass average molecular weight of polyaniline (B) shows the mass average molecular weight (polyethylene glycol conversion) measured by gel permeation chromatography (GPC).

本発明の電気二重層キャパシタ電極用塗布ペースト中のポリアニリン類(B)の含有量はカーボンナノチューブ(A)及びポリアニリン類(B)の合計量100質量部に対して25〜75質量部が好ましい。ポリアニリン類(B)の含有量が25質量部以上で、カーボンナノチューブ(A)の分散性が良好となるため、得られる電気二重層キャパシタ電極の成型加工性が良好となる傾向にある。また、ポリアニリン類(B)の含有量が75質量部以下で、カーボンナノチューブ(A)のネットワークが密になるため、得られる電気二重層キャパシタ電極の可撓性が良好となる傾向にある。
ポリアニリン類(B)の製造方法としては化学重合又は電解重合等の各種合成法が挙げられるが、例えば、特開平7−196,791号公報又は特開平7−324,132号公報に記載の合成方法が挙げられる。
The content of the polyaniline (B) in the electric double layer capacitor electrode coating paste of the present invention is preferably 25 to 75 parts by mass with respect to 100 parts by mass of the total amount of the carbon nanotubes (A) and the polyaniline (B). When the content of the polyaniline (B) is 25 parts by mass or more, the dispersibility of the carbon nanotube (A) becomes good, and therefore, the moldability of the obtained electric double layer capacitor electrode tends to be good. Further, since the content of the polyaniline (B) is 75 parts by mass or less and the network of the carbon nanotubes (A) becomes dense, the electric double layer capacitor electrode obtained tends to have good flexibility.
Examples of the method for producing the polyaniline (B) include various synthesis methods such as chemical polymerization and electrolytic polymerization. For example, the synthesis described in JP-A-7-196,791 or JP-A-7-324,132 is described. A method is mentioned.

<電気二重層キャパシタ電極用塗布ペースト>
本発明の電気二重層キャパシタ電極用塗布ペーストは水性分散体である。
また、本発明の電気二重層キャパシタ電極用塗布ペーストはカーボンナノチューブ(A)、ポリアニリン類(B)、及び水又は水溶性溶剤を含有している。
なお、上記水溶性溶剤としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテルなどの20℃における水に対する溶解性が50g/L以上の水溶性溶剤を含有することができる。
本発明においては、本発明の電気二重層キャパシタ電極用塗布ペースト中に、必要に応じてカーボンナノチューブ(A)以外の電極活物質を含有することができる。
本発明においては、本発明の電気二重層キャパシタ電極用塗布ペースト中に、必要に応じて導電材を含有することができる。
<Coating paste for electric double layer capacitor electrode>
The coating paste for electric double layer capacitor electrodes of the present invention is an aqueous dispersion.
The coating paste for electric double layer capacitor electrodes of the present invention contains carbon nanotubes (A), polyanilines (B), and water or a water-soluble solvent.
In addition, as said water-soluble solvent, with respect to water at 20 degreeC, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether A water-soluble solvent having a solubility of 50 g / L or more can be contained.
In this invention, electrode active materials other than a carbon nanotube (A) can be contained in the coating paste for electric double layer capacitor electrodes of this invention as needed.
In the present invention, the electric double layer capacitor electrode coating paste of the present invention can contain a conductive material as required.

<電極活物質>
本発明で用いられる電極活物質としては、例えば、活性炭が挙げられる。
活性炭の具体例としては、フェノール系、アクリル系、レーヨン系、ピッチ系等の繊維状物から合成された繊維状活性炭;ヤシ殻系、石炭系、木質系等の素灰から賦活された活性炭;及び合成高分子から誘導されるガラス状又は繊維状カーボンの粉砕物が挙げられる。
電極活物質の質量平均粒子径としては、良好な電極性能を得る点で、1〜50μmが好ましく、3〜30μmがより好ましい。
本発明の電気二重層キャパシタ電極用塗布ペースト中の電極活物質の含有量としては、カーボンナノチューブ(A)及びポリアニリン類(B)の合計量100質量部に対して5質量部以下が好ましい。電極活物質の含有量が5質量部以下で、カーボンナノチューブ(A)のネットワーク形成が阻害されず、得られる電気二重層キャパシタ電極の可撓性が良好となる傾向にある。
<Electrode active material>
Examples of the electrode active material used in the present invention include activated carbon.
Specific examples of the activated carbon include fibrous activated carbon synthesized from a fibrous material such as phenolic, acrylic, rayon, and pitch; activated carbon activated from ash such as coconut shell, coal, and wood; And a pulverized product of glassy or fibrous carbon derived from a synthetic polymer.
The mass average particle diameter of the electrode active material is preferably 1 to 50 μm, more preferably 3 to 30 μm, from the viewpoint of obtaining good electrode performance.
As content of the electrode active material in the coating paste for electric double layer capacitor electrodes of this invention, 5 mass parts or less are preferable with respect to 100 mass parts of total amounts of a carbon nanotube (A) and polyaniline (B). When the content of the electrode active material is 5 parts by mass or less, the network formation of the carbon nanotube (A) is not inhibited, and the flexibility of the obtained electric double layer capacitor electrode tends to be good.

<導電材>
本発明で使用される導電材としては、例えば、微粒子炭素が挙げられる。
微粒子炭素の具体例としては、石炭乾留で副生されるクレオソート油及び石油精製等で副生される重質芳香族油を不完全燃焼させて得たもの並びにアセチレン等の炭化水素を熱分解して製造したものが挙げられる。
本発明の電気二重層キャパシタ電極用塗布ペースト中の導電材の含有量としては、電気二重層キャパシタ電極用ペーストの導電性の点で、カーボンナノチューブ(A)及びポリアニリン類(B)の合計量100質量部に対して0〜5質量部が好ましい。導電材の含有量が5質量部以下でカーボンナノチューブ(A)のネットワーク形成が阻害されず、得られる電気二重層キャパシタ電極の可撓性が良好となる傾向にある。
<Conductive material>
Examples of the conductive material used in the present invention include fine carbon particles.
Specific examples of particulate carbon include those obtained by incomplete combustion of creosote oil by-produced in coal dry distillation and heavy aromatic oil by-produced in petroleum refining, and hydrocarbons such as acetylene are pyrolyzed. And manufactured.
The content of the conductive material in the electric double layer capacitor electrode coating paste of the present invention is 100 in terms of the total amount of carbon nanotubes (A) and polyanilines (B) in terms of conductivity of the electric double layer capacitor electrode paste. 0-5 mass parts is preferable with respect to mass parts. When the content of the conductive material is 5 parts by mass or less, the network formation of the carbon nanotube (A) is not hindered, and the resulting electric double layer capacitor electrode tends to have good flexibility.

以下、本発明を実施例により説明する。尚、以下において「部」及び「%」は夫々「質量部」及び「質量%」を示す。また、電気二重層キャパシタ電極用塗布ペーストを用いて作製した電気二重層キャパシタの静電容量及び可撓性の評価は以下の方法により実施した。   Hereinafter, the present invention will be described with reference to examples. In the following, “part” and “%” indicate “part by mass” and “% by mass”, respectively. In addition, the electrostatic capacity and flexibility of the electric double layer capacitor produced using the electric double layer capacitor electrode coating paste were evaluated by the following methods.

(1)静電容量
放電曲線(放電電圧/放電時間)から放電エネルギー(放電電圧×電流(2mA))の時間積分として合計放電エネルギー(W・s)を求め、下式を用いて電気二重層キャパシタの静電容量を算出し、電気二重層キャパシタのカーボンナノチューブの単位質量当たりの静電容量(F/g)を求めた。
静電容量(F)=2×(合計放電エネルギー(W・s))/(放電開始電圧(V))
(1) Capacitance Total discharge energy (W · s) is obtained as a time integral of discharge energy (discharge voltage × current (2 mA)) from the discharge curve (discharge voltage / discharge time). The capacitance of the capacitor was calculated, and the capacitance per unit mass of the carbon nanotube of the electric double layer capacitor (F / g) was determined.
Capacitance (F) = 2 × (total discharge energy (W · s)) / (discharge start voltage (V)) 2

(2)可撓性
電気二重層キャパシタの一端を固定し、逆側の端を1cm持ち上げて戻す操作を100回行い、亀裂の有無を目視にて確認した。
(2) Flexibility An operation of fixing one end of the electric double layer capacitor and lifting and returning the opposite end by 1 cm was performed 100 times, and the presence or absence of cracks was visually confirmed.

[合成例1]ポリアニリン類(B−1)の合成
2−アミノアニソール−4−スルホン酸200mmolと、トリエチルアミン100mmolを、0℃で、蒸留水45mL及びアセトニトリル45mLを含有する混合溶液90mLに溶解し、溶液(あ)を得た。次いで溶液(あ)を、蒸留水90mL及びアセトニトリル90mLを含有する混合溶液180mLにペルオキソ二硫酸アンモニウム100mmolと濃硫酸1.1gを溶解した5℃の溶液(い)の中に滴下した。このときの溶液(あ)の滴下速度は2.4g/時間であり、容器内の溶液の最高到達温度は20℃であった。また、容器内の溶液のpHは溶液(あ)の滴下開始前でpH1、溶液(あ)の滴下終了後でpH1であり、pHの最高値は3であった。
溶液(あ)の滴下終了後、容器内の溶液を25℃で1時間更に攪拌したのち、反応生成物を遠心濾過器にてろ別後、メチルアルコールにて洗浄後乾燥し、酸性基を有するポリアニリン類(B−1)の粉末34g(質量平均分子量10,000)を得た。
得られたポリアニリン類(B−1)中に含まれる、残留モノマーである2−アミノアニソール−4−スルホン酸は0.2%、副生塩であるトリエチルアミン硫酸塩は0.05%であった。
[Synthesis Example 1] Synthesis of polyaniline (B-1) 200 mmol of 2-aminoanisole-4-sulfonic acid and 100 mmol of triethylamine were dissolved in 90 mL of a mixed solution containing 45 mL of distilled water and 45 mL of acetonitrile at 0 ° C. A solution (a) was obtained. Next, the solution (A) was dropped into a solution (I) at 5 ° C. in which 100 mmol of ammonium peroxodisulfate and 1.1 g of concentrated sulfuric acid were dissolved in 180 mL of a mixed solution containing 90 mL of distilled water and 90 mL of acetonitrile. At this time, the dropping rate of the solution (A) was 2.4 g / hour, and the maximum temperature reached by the solution in the container was 20 ° C. The pH of the solution in the container was pH 1 before the start of dropping of the solution (A), pH 1 after the end of dropping of the solution (A), and the maximum pH was 3.
After the dropping of the solution (a) is completed, the solution in the container is further stirred at 25 ° C. for 1 hour, and then the reaction product is filtered with a centrifugal filter, washed with methyl alcohol, dried, and polyaniline having an acidic group. 34 g (mass average molecular weight 10,000) of powder (B-1) was obtained.
Residual monomer 2-aminoanisole-4-sulfonic acid contained in the obtained polyaniline (B-1) was 0.2%, and triethylamine sulfate as a by-product salt was 0.05%. .

[調整例1]電気二重層キャパシタ電極用塗布ペースト(1)の調整
合成例1で得たポリアニリン類(B−1)1部及び多層カーボンナノチューブ(ナノシル社製、商品名:NC7000)1部を蒸留水100部に室温にて混合し、超音波ホモジナイザー(SONIC社製、商品名:vibra cell)を用いて20kHzで1時間処理し、電気二重層キャパシタ電極用塗布ペースト(1)を調製した。
[Adjustment Example 1] Preparation of coating paste (1) for electric double layer capacitor electrode 1 part of polyaniline (B-1) obtained in Synthesis Example 1 and 1 part of multi-walled carbon nanotube (manufactured by Nanosil Co., Ltd., trade name: NC7000) The mixture was mixed with 100 parts of distilled water at room temperature and treated for 1 hour at 20 kHz using an ultrasonic homogenizer (manufactured by SONIC, trade name: vibra cell) to prepare a coating paste for electric double layer capacitor electrode (1).

[実施例1]
調整例1で得た電気二重層キャパシタ電極用塗布ペースト(1)を、化成処理によって表面を粗くした厚み20μmのアルミ箔の表面に乾燥後の膜厚が200μmになるように塗布した後130°Cで真空乾燥し、積層体を得た。この積層体を1.5cm×2.0cmに切り出し、電気二重層キャパシタ電極を得た。
得られた電気二重層キャパシタ電極2枚を正負両極として、予め150℃で真空乾燥したガラス繊維濾紙(アドバンテック東洋(株)製、商品名:GA100)を電気二重層キャパシタ電極2枚の間にセパレーターとして介在させ、1モル/リットルの(CNBFのプロピレンカーボネート溶液を電解液として電気二重層キャパシタを作製した。得られた電気二重層キャパシタの静電容量と可撓性の評価結果を表1に示す。
[Example 1]
After applying the coating paste for electric double layer capacitor electrode (1) obtained in Preparation Example 1 to the surface of a 20 μm thick aluminum foil whose surface has been roughened by chemical conversion treatment so that the film thickness after drying becomes 200 μm, 130 ° Vacuum drying was performed with C to obtain a laminate. This laminate was cut into 1.5 cm × 2.0 cm to obtain an electric double layer capacitor electrode.
A glass fiber filter paper (manufactured by Advantech Toyo Co., Ltd., trade name: GA100) previously vacuum-dried at 150 ° C. is used as a separator between the two electric double layer capacitor electrodes. An electric double layer capacitor was produced using a 1 mol / liter propylene carbonate solution of (C 2 H 5 ) 4 NBF 4 as an electrolyte. Table 1 shows the evaluation results of the capacitance and flexibility of the obtained electric double layer capacitor.

Figure 2011216775
Figure 2011216775

表1中の略号は以下のものを示す。
NC7000:多層カーボンナノチューブ(ナノシル社製、商品名)
BAC:水蒸気賦活の活性炭(呉羽化学工業(株)製、商品名)
ダイアブラックSA:微粒子炭素(三菱化学(株)製、商品名)
The abbreviations in Table 1 indicate the following.
NC7000: Multi-walled carbon nanotube (trade name, manufactured by Nanosil)
BAC: Activated steam activated by steam (Kureha Chemical Industry Co., Ltd., trade name)
Diamond Black SA: Fine carbon (Mitsubishi Chemical Corporation, trade name)

[実施例2]
電気二重層キャパシタ電極用塗布ペースト(1)100部に質量平均粒子径20μmの水蒸気賦活の活性炭(呉羽化学工業(株)製、商品名:BAC)0.05部を混合、撹拌して得られた電気二重層キャパシタ電極用塗布ペーストを使用した。それ以外は実施例1と同様にして電気二重層キャパシタを作製した。得られた電気二重層キャパシタの静電容量と可撓性の評価結果を表1に示す。
[Example 2]
It is obtained by mixing and stirring 0.05 part of water vapor activated activated carbon (trade name: BAC, manufactured by Kureha Chemical Co., Ltd.) having a mass average particle diameter of 20 μm to 100 parts of the coating paste for electric double layer capacitor electrode (1). An electric double layer capacitor electrode coating paste was used. Other than that was carried out similarly to Example 1, and produced the electrical double layer capacitor. Table 1 shows the evaluation results of the capacitance and flexibility of the obtained electric double layer capacitor.

[実施例3]
電気二重層キャパシタ電極用塗布ペースト(1)100部に、微粒子炭素(三菱化学(株)製、商品名:ダイアブラックSA)0.01部を混合、撹拌して得られた電気二重層キャパシタ電極用塗布ペーストを使用した。それ以外は実施例1と同様にして電気二重層キャパシタを作製した。得られた電気二重層キャパシタの静電容量と可撓性の評価結果を表1に示す。
[Example 3]
Electric double layer capacitor electrode obtained by mixing and stirring 0.01 part of fine particle carbon (trade name: Dia Black SA, manufactured by Mitsubishi Chemical Corporation) to 100 parts of coating paste for electric double layer capacitor electrode (1) Application paste was used. Other than that was carried out similarly to Example 1, and produced the electrical double layer capacitor. Table 1 shows the evaluation results of the capacitance and flexibility of the obtained electric double layer capacitor.

[実施例4]
電気二重層キャパシタ電極用塗布ペースト(1)100部に質量平均粒子径20μmの水蒸気賦活の活性炭(呉羽化学工業(株)製、商品名:BAC)0.05部及び微粒子炭素(三菱化学(株)製、商品名:ダイアブラックSA)0.01部を混合、撹拌して得られた電気二重層キャパシタ電極用塗布ペーストを使用した。それ以外は実施例1と同様にして電気二重層キャパシタを作製した。得られた電気二重層キャパシタの静電容量と可撓性の評価結果を表1に示す。
[Example 4]
Electric double layer capacitor electrode coating paste (1) 100 parts of steam activated activated carbon (made by Kureha Chemical Industry Co., Ltd., trade name: BAC) having a mass average particle size of 20 μm and fine carbon (Mitsubishi Chemical Corporation) Product name: Diablack SA) A coating paste for electric double layer capacitor electrode obtained by mixing and stirring 0.01 parts was used. Other than that was carried out similarly to Example 1, and produced the electrical double layer capacitor. Table 1 shows the evaluation results of the capacitance and flexibility of the obtained electric double layer capacitor.

[比較例1]
質量平均粒子径20μmの水蒸気賦活の活性炭(呉羽化学工業(株)製、商品名:BAC)0.93部、ポリアニリン類(B−1)0.07部及び蒸留水100部を混合、撹拌して得られた電気二重層キャパシタ電極用塗布ペーストを使用した。それ以外は実施例1と同様にして電気二重層キャパシタを作製した。得られた電気二重層キャパシタの静電容量と可撓性の評価結果を表1に示す。
[Comparative Example 1]
Mix and stir 0.93 parts of steam activated activated carbon (trade name: BAC, manufactured by Kureha Chemical Co., Ltd.), 0.07 part of polyaniline (B-1) and 100 parts of distilled water with a mass average particle diameter of 20 μm. The coating paste for electric double layer capacitor electrodes obtained in this way was used. Other than that was carried out similarly to Example 1, and produced the electrical double layer capacitor. Table 1 shows the evaluation results of the capacitance and flexibility of the obtained electric double layer capacitor.

Claims (1)

少なくとも1種のカーボンナノチューブ(A)、酸性基を有するポリアニリン類(B)、及び水又は水溶性溶剤からなる水性分散体を含む電気二重層キャパシタ電極用塗布ペースト。   An electric double layer capacitor electrode coating paste comprising an aqueous dispersion comprising at least one carbon nanotube (A), an acidic group-containing polyaniline (B), and water or a water-soluble solvent.
JP2010085271A 2010-04-01 2010-04-01 Coating paste for electric double-layer capacitor Pending JP2011216775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085271A JP2011216775A (en) 2010-04-01 2010-04-01 Coating paste for electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085271A JP2011216775A (en) 2010-04-01 2010-04-01 Coating paste for electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2011216775A true JP2011216775A (en) 2011-10-27

Family

ID=44946201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085271A Pending JP2011216775A (en) 2010-04-01 2010-04-01 Coating paste for electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2011216775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087859A1 (en) * 2012-12-04 2014-06-12 日東電工株式会社 Electricity storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124079A (en) * 1998-10-15 2000-04-28 Tokin Corp Electric double-layer capacitor
JP2003017370A (en) * 2001-06-29 2003-01-17 Masayuki Yoshio Coating paste for capacitor and electric double layer capacitor electrode
JP2006045383A (en) * 2004-08-05 2006-02-16 Mitsubishi Rayon Co Ltd Method for producing electrically-conductive molded product and the electrically-conductive molded product
JP2009275225A (en) * 2008-05-14 2009-11-26 Qinghua Univ Carbon nanotube/polymer composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124079A (en) * 1998-10-15 2000-04-28 Tokin Corp Electric double-layer capacitor
JP2003017370A (en) * 2001-06-29 2003-01-17 Masayuki Yoshio Coating paste for capacitor and electric double layer capacitor electrode
JP2006045383A (en) * 2004-08-05 2006-02-16 Mitsubishi Rayon Co Ltd Method for producing electrically-conductive molded product and the electrically-conductive molded product
JP2009275225A (en) * 2008-05-14 2009-11-26 Qinghua Univ Carbon nanotube/polymer composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087859A1 (en) * 2012-12-04 2014-06-12 日東電工株式会社 Electricity storage device

Similar Documents

Publication Publication Date Title
Zhou et al. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes
Bandyopadhyay et al. Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application
Kulandaivalu et al. Designing an advanced electrode of mixed carbon materials layered on polypyrrole/reduced graphene oxide for high specific energy supercapacitor
Salinas-Torres et al. Strategies to enhance the performance of electrochemical capacitors based on carbon materials
Chen et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes
Kwon et al. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high‐capacity energy storage
Gao et al. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes
SuongáOu Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes
Subramanian et al. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials
Guo et al. DNA-assisted assembly of carbon nanotubes and MnO 2 nanospheres as electrodes for high-performance asymmetric supercapacitors
Sohn et al. Water-dispersible, sulfonated hyperbranched poly (ether-ketone) grafted multiwalled carbon nanotubes as oxygen reduction catalysts
US20120026643A1 (en) Supercapacitor with a meso-porous nano graphene electrode
US20140205841A1 (en) Granules of graphene oxide by spray drying
US10460881B2 (en) Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode
Carter et al. Solution assembled single-walled carbon nanotube foams: superior performance in supercapacitors, lithium-ion, and lithium–air batteries
Salleh et al. Electrode polymer binders for supercapacitor applications: A review
JP2018535284A (en) Carbon nanotube dispersion and method for producing the same
Abdah et al. Enhancement of electrochemical performance based on symmetrical poly-(3, 4-ethylenedioxythiophene) coated polyvinyl alcohol/graphene oxide/manganese oxide microfiber for supercapacitor
EP2062276A2 (en) Carbon nanotube nanocomposites, methods of making carbon nanotube nanocomposites, and devices comprising the nanocomposites
Sun et al. Interfacial synthesis and supercapacitive performance of hierarchical sulfonated carbon nanotubes/polyaniline nanocomposites
CN105247640B (en) The manufacturing method of electrode, the double layer capacitor for having used the electrode and electrode
Karimi et al. Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor
US20080042110A1 (en) Polyaniline/porous carbon composite and electric double layer capacitor using the same
US8946971B2 (en) Actuator
Jo et al. All-printed paper-based micro-supercapacitors using water-based additive-free oxidized single-walled carbon nanotube pastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140320