JP2000124079A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2000124079A
JP2000124079A JP10313998A JP31399898A JP2000124079A JP 2000124079 A JP2000124079 A JP 2000124079A JP 10313998 A JP10313998 A JP 10313998A JP 31399898 A JP31399898 A JP 31399898A JP 2000124079 A JP2000124079 A JP 2000124079A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
carbon
double layer
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10313998A
Other languages
Japanese (ja)
Inventor
Kazuyo Omura
和世 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10313998A priority Critical patent/JP2000124079A/en
Publication of JP2000124079A publication Critical patent/JP2000124079A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized electric double-layer capacitor having a high-capacitance. SOLUTION: This capacitor comprises a positive electrode 1 and a negative electrode 5, which form a pair of polarizable electrodes impregnated with an electrolytic liq. are deposited via a separator 7, and carbon nanotubes are contained in the positive electrode 1 and a negative electrode 5. The positive electrode 1 and the negative electrode 5 being polar electrodes are composed of carbon nanotubes, carbon powder and binder. The carbon powder is composed of active carbon and/or carbon black.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタに関し、とくに分極性電極を用いた電気二重層キャ
パシタに関する。
The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor using a polarizable electrode.

【0002】[0002]

【従来の技術】従来、電気二重層キャパシタでは、集電
体上に活性炭を主とする分極性電極層を形成した一対の
分極性電極の間にポリプロピレン不織布などのセパレー
タを挟んで素子とし、この素子に電解液を含浸させ、金
属容器に収容し、封口板とガスケットにより、金属容器
に密封した構造がとられていた。また、一対のシート状
分極性電極の間にセパレータを挟んだ積層シートを捲回
し、電解液を含浸させて金属容器に収容し、金属開口部
を封口部材で密閉した構造をとる電気二重層キャパシタ
もあった。これらの、小型の電気二重層キャパシタは、
おもにICメモリのバックアップに使用されていた。
2. Description of the Related Art Conventionally, in an electric double layer capacitor, a device such as a polypropylene nonwoven fabric is sandwiched between a pair of polarizable electrodes having a polarizable electrode layer mainly composed of activated carbon formed on a current collector. The element was impregnated with an electrolytic solution, housed in a metal container, and sealed in a metal container with a sealing plate and a gasket. Further, an electric double layer capacitor having a structure in which a laminated sheet in which a separator is sandwiched between a pair of sheet-shaped polarizable electrodes is impregnated with an electrolytic solution and accommodated in a metal container, and a metal opening is sealed with a sealing member. There was also. These small electric double layer capacitors
It was mainly used for backup of IC memory.

【0003】多数のシート状分極静電極の分極静電極層
の間にセパレータを挟んで積層した素子を有する積層型
の電気二重層キャパシタも提案されている(特開平4−
154106、特開平4−286108)。積層型の電
気二重層キャパシタは、主に大電流・大容量向けに用い
られる。
A multilayer electric double layer capacitor having an element laminated with a separator interposed between polarized electrostatic electrode layers of a large number of sheet-shaped polarized electrostatic electrodes has also been proposed (Japanese Unexamined Patent Publication (Kokai) No. Heisei 4-4-1).
154106, JP-A-4-286108). The multilayer electric double layer capacitor is mainly used for large current and large capacity.

【0004】これらの電気二重層キャパシタを構成する
分極性電極は、従来、大比表面積を有する活性炭を主と
するものであった。また、電解液としては、電解質を高
濃度で溶解できるように、水や炭酸エステルなどの高誘
電率の極性溶媒が用いられていた。
The polarizable electrodes constituting these electric double layer capacitors have conventionally been mainly made of activated carbon having a large specific surface area. In addition, as the electrolytic solution, a polar solvent having a high dielectric constant such as water or carbonate ester has been used so that the electrolyte can be dissolved at a high concentration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、大比表
面積を有する活性炭は、一般に電気伝導度が小さく、活
性炭のみでは分極性電極の内部抵抗が大きくなって、大
電流を取り出せない。このため、内部抵抗を下げる目的
で、分極性電極中に電気伝導度を高めるカーボンブラッ
クなどを導電材として混合していた。
However, activated carbon having a large specific surface area generally has low electric conductivity, and the activated carbon alone cannot increase the internal resistance of the polarizable electrode, so that a large current cannot be taken out. Therefore, for the purpose of lowering the internal resistance, carbon black or the like for increasing electric conductivity has been mixed as a conductive material in the polarizable electrode.

【0006】しかし、導電材の混合割合が高くなると、
内部抵抗は低下するものの、活性炭の混合割合が低くな
るため、電気二重層キャパシタの容量が減少する。ま
た、従来、大表面積の活性炭の比表面積は、3000m
2/g程度が最大であり、活性炭を用いた電気二重層キ
ャパシタの単位容積当たりの容量も、ほぼ限界に達し
た。
However, when the mixing ratio of the conductive material increases,
Although the internal resistance decreases, the mixing ratio of the activated carbon decreases, so that the capacity of the electric double layer capacitor decreases. Conventionally, the specific surface area of a large surface area activated carbon is 3000 m
The maximum value is about 2 / g, and the capacity per unit volume of the electric double layer capacitor using activated carbon has almost reached the limit.

【0007】他方において、ICメモリをバックアップ
することができる時間を、さらに長くできるように、よ
り大容量の電気二重層キャパシタの実現が待たれてい
た。
On the other hand, the realization of a larger-capacity electric double layer capacitor has been awaited so that the time during which the IC memory can be backed up can be further extended.

【0008】本発明の目的は、上記従来技術の問題点を
解決し、小型で大容量を有する電気二重層キャパシタを
提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an electric double layer capacitor having a small size and a large capacity.

【0009】[0009]

【課題を解決するための手段】本発明者は、より大容量
を発現できる電気二重層キャパシタの開発を目的として
鋭意努力した。その結果、末端が開口構造のカーボンナ
ノチューブを採用すると有効なことを見出した。すなわ
ち、カーボンナノチューブを、従来の活性炭粉末および
カーボンブラックと混合し、分極性電極を形成すること
により、大容量の電気二重層キャパシタを製造すること
ができる。
The present inventors have made intensive efforts to develop an electric double layer capacitor capable of exhibiting a larger capacity. As a result, it has been found that it is effective to adopt a carbon nanotube having an open end structure. That is, a large-capacity electric double layer capacitor can be manufactured by mixing a carbon nanotube with a conventional activated carbon powder and carbon black to form a polarizable electrode.

【0010】本発明によれば、分極性電極が、大比表面
積の活性炭粉末、導電材としてのカーボンブラック、お
よび末端が開口構造のカーボンナノチューブを含有する
ことを特徴とする電気二重層キャパシタが得られる。
According to the present invention, there is provided an electric double layer capacitor wherein the polarizable electrode contains activated carbon powder having a large specific surface area, carbon black as a conductive material, and carbon nanotubes having an open end structure. Can be

【0011】本発明による電気二重層キャパシタは、電
解液を含浸させた一対の分極性電極を、セパレータを介
して配置し、分極性電極にカーボンナノチューブを含有
したことを特徴とする。本発明において、分極性電極
は、カーボンナノチューブ、炭素粉末、および、バイン
ダからなり、また、炭素粉末は、活性炭、および/また
は、カーボンブラックからなる。
[0011] The electric double layer capacitor according to the present invention is characterized in that a pair of polarizable electrodes impregnated with an electrolytic solution are arranged via a separator, and the polarizable electrodes contain carbon nanotubes. In the present invention, the polarizable electrode comprises carbon nanotubes, carbon powder, and a binder, and the carbon powder comprises activated carbon and / or carbon black.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0013】従来の電気二重層キャパシタでは、分極性
電極は、主に活性炭粉末とカーボンブラック、および、
バインダによって形成されていた。大容量の電気二重層
キャパシタを得るために、活性炭の細孔径を利用してい
た。活性炭の細孔には、径の大きな順に、マクロ孔、メ
ソ孔、ミクロ孔がある。電気二重層キャパシタでは、細
孔内に電解質イオンが吸脱着することにより、容量が発
現されるが、このイオンの吸脱着にはイオンの直径の2
倍程度の細孔径が最適とされている[西村ら、第6回日
本吸着学会研究会発表会予稿集、52ページ(1992
年)]。活性炭の場合、有機系の電解液を使用すると、
実際に容量を発現できるのはミクロ孔だけであり、マク
ロ孔とメソ孔の部分は多くが無駄になっていた。
In the conventional electric double layer capacitor, the polarizable electrode mainly comprises activated carbon powder and carbon black, and
It was formed by a binder. In order to obtain a large-capacity electric double layer capacitor, the pore diameter of activated carbon has been used. Macropores, mesopores, and micropores are present in the pores of the activated carbon in descending order of diameter. In an electric double layer capacitor, the capacity is developed by the adsorption and desorption of electrolyte ions in the pores.
Nishimura et al., Proceedings of the 6th Annual Meeting of the Adsorption Society of Japan, 52 pages (1992)
Year)]. In the case of activated carbon, if an organic electrolyte is used,
Only the micropores can actually exhibit the capacity, and many of the macropores and the mesopores are wasted.

【0014】カーボンナノチューブは、その名の通り、
六員環ネットが積み重なってできたナノサイズの穴径を
もつカーボンチューブである。通常、電気二重層キャパ
シタに用いられる有機系電解液は、プロピレンカーボネ
ートなどの溶媒にテトラエチルアンモニウムテトラフル
オロボレートやテトラエチルアンモニウムヘキサフルオ
ロホスファートなどの電解質を溶解することにより調製
される。この電解質イオンの直径は、約0.4〜0.6n
mであり、穴径が1〜2nmのカーボンナノチューブ
は、このイオンの吸脱着に最適である。従来の分極性電
極を形成していた活性炭の一部、または全部を、カーボ
ンナノチューブに置き換えることによって、従来なかっ
た大容量の電気二重層キャパシタを得ることができる。
本発明で用いるカーボンナノチューブは、多層のもので
も単層のものでも構わない。
Carbon nanotubes are, as the name implies,
It is a carbon tube with a nano-sized hole diameter formed by stacking six-membered ring nets. Usually, an organic electrolyte used for an electric double layer capacitor is prepared by dissolving an electrolyte such as tetraethylammonium tetrafluoroborate or tetraethylammonium hexafluorophosphate in a solvent such as propylene carbonate. The diameter of this electrolyte ion is about 0.4 to 0.6 n.
m, and a carbon nanotube having a hole diameter of 1 to 2 nm is most suitable for adsorption and desorption of this ion. By replacing part or all of the activated carbon forming the conventional polarizable electrode with carbon nanotubes, a large-capacity electric double-layer capacitor that has not been available can be obtained.
The carbon nanotubes used in the present invention may be multi-walled or single-walled.

【0015】本発明の電気二重層キャパシタに用いる、
末端が開口構造のカーボンナノチューブは、公知の方法
で作製できる。たとえば、アルミニウム陽極酸化被膜を
鋳型としてプロピレンの気相酸化を行う方法などである
[Kyotaniら、Chem.Mater.、第8
巻、2109ページ、(1996年)]。開口構造のカ
ーボンナノチューブは、末端が多面体的に閉じている構
造をなすカーボンナノチューブを破砕することによって
も得ることができる。
For use in the electric double layer capacitor of the present invention,
The carbon nanotube having an open end structure can be produced by a known method. For example, there is a method in which propylene is vapor-phase oxidized using an aluminum anodic oxide coating as a template [Kyotani et al., Chem. Mater. , Eighth
Vol., 2109, (1996)]. The carbon nanotube having an open structure can also be obtained by crushing a carbon nanotube having a structure whose ends are closed polyhedrally.

【0016】分極性電極は、活性炭粉末、カーボンブラ
ック、末端が開口型のカーボンナノチューブ、および、
バインダを含む。分極性電極は、公知の方法で作製でき
る。たとえば、活性炭粉末、カーボンブラック、カーボ
ンナノチューブ、および、バインダに、アルコールを加
えて混練し、シート状に成形して分極性電極とする方法
がある。電気二重層キャパシタの構築に際しては、分極
性電極と集電極とを、導電性接着剤などで接着すればよ
い。
The polarizable electrode includes activated carbon powder, carbon black, open-ended carbon nanotubes, and
Including binder. The polarizable electrode can be manufactured by a known method. For example, there is a method in which alcohol is added to activated carbon powder, carbon black, carbon nanotubes, and a binder, kneaded, and formed into a sheet to obtain a polarizable electrode. When constructing the electric double layer capacitor, the polarizable electrode and the collector electrode may be bonded with a conductive adhesive or the like.

【0017】また、活性炭粉末、カーボンブラック、カ
ーボンナノチューブ、および、バインダに、溶媒を加え
て混合してスラリとし、集電極であるアルミニウムなど
の金属箔上に塗工し、乾燥して分極性電極とする方法も
ある。
A slurry is prepared by adding a solvent to activated carbon powder, carbon black, carbon nanotubes, and a binder, and the slurry is coated on a metal foil, such as aluminum, which is a collecting electrode. There is also a method.

【0018】分極性電極に使用される活性炭としては、
フェノール樹脂系活性炭、やしがら系活性炭、石油コー
クス系活性炭などがある。これらの中でも、大容量の電
気二重層キャパシタを得るために、フェノール樹脂系活
性炭を用いることが好ましい。また、大容量で、かつ、
低内部抵抗の電気二重層キャパシタを得るために、平均
粒径が20μm以下で比表面積が2000〜3000m
2/gの活性炭を使用することが好ましい。
Activated carbon used for the polarizable electrode includes:
There are phenol resin-based activated carbon, coconut-based activated carbon, petroleum coke-based activated carbon, and the like. Among these, it is preferable to use phenolic resin-based activated carbon in order to obtain a large-capacity electric double layer capacitor. In addition, with large capacity,
In order to obtain an electric double layer capacitor having a low internal resistance, the average particle size is 20 μm or less and the specific surface area is 2000 to 3000 m.
It is preferred to use 2 / g of activated carbon.

【0019】また、活性炭の賦活処理方法としては、水
蒸気賦活処理法、溶融KOH賦活処理法などがある。溶
融KOH賦活処理法による活性炭を使用すると、より大
きな容量の電気二重層キャパシタが得られる。
The activated carbon activation method includes a steam activation method and a molten KOH activation method. When activated carbon obtained by the molten KOH activation treatment method is used, an electric double layer capacitor having a larger capacity can be obtained.

【0020】分極性電極のバインダには、有機溶媒系電
解液を使用する場合に、耐薬品性が高いポリテトラフル
オロエチレン系バインダ使用することが好ましい。
When an organic solvent-based electrolyte is used as the binder for the polarizable electrode, it is preferable to use a polytetrafluoroethylene-based binder having high chemical resistance.

【0021】本発明に用いられるカーボンナノチュー
ブ、活性炭粉末、カーボンブラック、および、バインダ
の混合比について、カーボンナノチューブの含有量が1
0重量%以上とすることが好ましいが、特に限定される
ものではない。
Regarding the mixing ratio of the carbon nanotube, activated carbon powder, carbon black and binder used in the present invention, the content of the carbon nanotube is 1
The content is preferably 0% by weight or more, but is not particularly limited.

【0022】[0022]

【実施例】本実施の形態の詳細を、以下に、実施例をも
って説明する。
EXAMPLES The details of this embodiment will be described below with reference to examples.

【0023】(実施例1)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)40重量%、カーボンブラック(日本黒
鉛製)30重量%、カーボンナノチューブ(平均穴径
1.2nm)20重量%、および、ポリテトラフルオロ
エチレン系バインダ10重量%からなる混合物に、エタ
ノールを加えて混練し、ロール圧延することにより、幅
8cm、長さ10cm、厚さ0.6cmのシートとし、
これを250℃で2時間乾燥した。
(Example 1) Melted KO based on phenolic resin
H-activated activated carbon powder (specific surface area 2500 m 2 / g, average particle diameter 5 μm) 40% by weight, carbon black (manufactured by Nippon Graphite) 30% by weight, carbon nanotubes (average hole diameter 1.2 nm) 20% by weight, and poly Ethanol was added to a mixture consisting of 10% by weight of a tetrafluoroethylene-based binder, kneaded, and roll-rolled to form a sheet having a width of 8 cm, a length of 10 cm, and a thickness of 0.6 cm.
This was dried at 250 ° C. for 2 hours.

【0024】図1は、本発明の実施例によるコイン型の
電気二重層キャパシタの縦断面図である。図1に示すよ
うに、分極性電極からなる正極1および負極5は、上記
シートを直径10mmに打ち抜いて得た。正極1および
負極5は、グラファイト系導電性接着剤2を用いて、ス
テンレス製容器のケース3、および、ステンレス製容器
のふた4に接着されている。
FIG. 1 is a longitudinal sectional view of a coin-type electric double layer capacitor according to an embodiment of the present invention. As shown in FIG. 1, the positive electrode 1 and the negative electrode 5 each composed of a polarizable electrode were obtained by punching the sheet into a diameter of 10 mm. The positive electrode 1 and the negative electrode 5 are bonded to a case 3 of a stainless steel container and a lid 4 of the stainless steel container by using a graphite-based conductive adhesive 2.

【0025】ステンレス製容器のケース3および分極性
電極からなる正極1および負極5を、300℃、減圧下
で2hr乾燥したのちに、乾燥窒素雰囲気のグローブボ
ックス中で電解液を分極性電極に含浸させた。電解液
は、テトラエチルアンモニウムテトラフルオロボレート
(以下、TEABF4)を1mol/lの濃度で、プロ
ピレンカーボネート(以下、PC)に溶解することによ
って調製した。電解液を含浸した分極性電極を、ポリプ
ロピレン製不織布のセパレータを介して対向させ、ポリ
プロピレン製ガスケットを用いてかしめ封口した。
The positive electrode 1 and the negative electrode 5 composed of the case 3 of a stainless steel container and the polarizable electrode are dried at 300 ° C. under reduced pressure for 2 hours, and then the polarizable electrode is impregnated with the electrolytic solution in a glove box in a dry nitrogen atmosphere. I let it. The electrolyte solution was prepared by dissolving tetraethylammonium tetrafluoroborate (hereinafter, TEABF4) at a concentration of 1 mol / l in propylene carbonate (hereinafter, PC). The polarizable electrodes impregnated with the electrolytic solution were opposed to each other with a polypropylene nonwoven fabric separator interposed therebetween, and sealed with a polypropylene gasket.

【0026】(実施例2)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)40重量%、カーボンブラック(日本黒
鉛製)30重量%、カーボンナノチューブ(平均穴径
1.8nm)20重量%、および、ポリテトラフルオロ
エチレン系バインダ10重量%からなる混合物に、エタ
ノールを加えて混練し、ロール圧延することにより、幅
8cm、長さ10cm、厚さ0.6cmのシートとし、
これを250℃で2時間乾燥した。
Example 2 Phenolic resin-based molten KO
H-activated activated carbon powder (specific surface area 2500 m 2 / g, average particle diameter 5 μm) 40% by weight, carbon black (manufactured by Nippon Graphite) 30% by weight, carbon nanotubes (average hole diameter 1.8 nm) 20% by weight, and poly Ethanol was added to a mixture consisting of 10% by weight of a tetrafluoroethylene-based binder, kneaded, and roll-rolled to form a sheet having a width of 8 cm, a length of 10 cm, and a thickness of 0.6 cm.
This was dried at 250 ° C. for 2 hours.

【0027】このシートを用いて、直径10mmに打ち
抜いて、正極1および負極5を作製し、実施例1と同じ
く、図1に示すコイン型の電気二重層キャパシタを構築
した。正極1および負極5は、グラファイト系導電性接
着剤2を用いて、ステンレス製容器のケース3、および
テンレス製容器のふた4に接着されている。
Using this sheet, a positive electrode 1 and a negative electrode 5 were produced by punching into a diameter of 10 mm, and a coin-type electric double layer capacitor shown in FIG. 1 was constructed as in Example 1. The positive electrode 1 and the negative electrode 5 are bonded to a case 3 of a stainless steel container and a lid 4 of a stainless steel container using a graphite-based conductive adhesive 2.

【0028】ステンレス製容器のケース3、および正極
1および負極5を、300℃、減圧下で2hr乾燥した
のちに、乾燥窒素雰囲気のグローブボックス中で電解液
を分極性電極に含浸させた。電解液には、テトラエチル
アンモニウムヘキサフルオロホスファーと(以下、TE
APF6)を0.5mol/lの濃度でPCに溶解する
ことによって調製した。以下、実施例1と同様にして、
コイン型の電気二重層キャパシタを組み立てた。
After the case 3 of the stainless steel container, the positive electrode 1 and the negative electrode 5 were dried at 300 ° C. under reduced pressure for 2 hours, the polarizable electrode was impregnated with the electrolytic solution in a glove box in a dry nitrogen atmosphere. The electrolyte includes tetraethylammonium hexafluorophosphate (hereinafter referred to as TE).
APF6) was prepared by dissolving 0.5 mol / l in PC. Hereinafter, in the same manner as in Example 1,
A coin-type electric double layer capacitor was assembled.

【0029】(実施例3)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)20重量%、カーボンブラック(日本黒
鉛製)30重量%、カーボンナノチューブ(平均穴径
1.2nm)40重量%、および、ポリテトラフルオロ
エチレン系バインダ10重量%からなる混合物を調製し
た。この混合物にエタノールを加えて混練し、ロール圧
延することにより、幅8cm、長さ10cm、厚さ0.
6cmのシートとし、これを250℃で2時間乾燥し、
以下、実施例1と同様にして、コイン型の電気二重層キ
ャパシタを組み立てた。
Example 3 Molten KO based on phenolic resin
H-activated activated carbon powder (specific surface area 2500 m 2 / g, average particle diameter 5 μm) 20% by weight, carbon black (manufactured by Nippon Graphite) 30% by weight, carbon nanotubes (average hole diameter 1.2 nm) 40% by weight, and poly A mixture consisting of 10% by weight of a tetrafluoroethylene-based binder was prepared. Ethanol was added to the mixture, kneaded, and roll-rolled to a width of 8 cm, a length of 10 cm, and a thickness of 0.1 cm.
A 6 cm sheet was dried at 250 ° C. for 2 hours,
Hereinafter, a coin-type electric double layer capacitor was assembled in the same manner as in Example 1.

【0030】(実施例4)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)20重量%、カーボンブラック(日本黒
鉛製)30重量%、カーボンナノチューブ(平均穴径
1.8nm)40重量%、および、ポリテトラフルオロ
エチレン系バインダ10重量%からなる混合物を調製し
た。この混合物にエタノールを加えて混練し、ロール圧
延することにより幅8cm、長さ10cm、厚さ0.6
cmのシートとし、これを250℃で2時間乾燥し、以
下、実施例2と同様にして、コイン型の電気二重層キャ
パシタを組み立てた。
Example 4 Phenol resin-based molten KO
H-activated activated carbon powder (specific surface area 2500 m 2 / g, average particle size 5 μm) 20% by weight, carbon black (manufactured by Nippon Graphite) 30% by weight, carbon nanotubes (average hole diameter 1.8 nm) 40% by weight, and poly A mixture consisting of 10% by weight of a tetrafluoroethylene-based binder was prepared. Ethanol is added to the mixture, and the mixture is kneaded and roll-rolled to obtain a width of 8 cm, a length of 10 cm, and a thickness of 0.6.
cm sheet, dried at 250 ° C. for 2 hours, and thereafter, a coin-shaped electric double layer capacitor was assembled in the same manner as in Example 2.

【0031】(比較例1)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)60重量%、カーボンブラック(日本黒
鉛製)30重量%およびポリテトラフルオロエチレン系
バインダ10重量%からなる混合物を調製した。この混
合物にエタノールを加えて混練し、ロール圧延すること
により幅8cm、長さ10cm、厚さ0.6cmのシー
トとし、これを250℃で2時間乾燥し、以下、実施例
1と同様にして、コイン型の電気二重層キャパシタを組
み立てた。
(Comparative Example 1) Phenol resin-based molten KO
A mixture comprising 60% by weight of H activated activated carbon powder (specific surface area 2500 m 2 / g, average particle size 5 μm), 30% by weight of carbon black (manufactured by Nippon Graphite) and 10% by weight of a polytetrafluoroethylene-based binder was prepared. Ethanol was added to this mixture, kneaded, and roll-rolled to form a sheet having a width of 8 cm, a length of 10 cm, and a thickness of 0.6 cm, which was dried at 250 ° C. for 2 hours, and thereafter, in the same manner as in Example 1, A coin-type electric double layer capacitor was assembled.

【0032】(比較例2)フェノール樹脂系の溶融KO
H賦活処理活性炭粉末(比表面積2500m2/g、平
均粒径5μm)20重量%、カーボンブラック(日本黒
鉛製)30重量%およびポリテトラフルオロエチレン系
バインダ10重量%からなる混合物を調製した。この混
合物にエタノールを加えて混練し、ロール圧延すること
により幅8cm、長さ10cm、厚さ0.6cmのシー
トとし、これを250℃で2時間乾燥し、以下、実施例
1と同様にして、コイン型の電気二重層キャパシタを組
み立てた。
(Comparative Example 2) Phenol resin-based molten KO
A mixture comprising 20% by weight of H activated activated carbon powder (specific surface area 2500 m 2 / g, average particle size 5 μm), 30% by weight of carbon black (manufactured by Nippon Graphite) and 10% by weight of a polytetrafluoroethylene-based binder was prepared. Ethanol was added to this mixture, kneaded, and roll-rolled to form a sheet having a width of 8 cm, a length of 10 cm, and a thickness of 0.6 cm, which was dried at 250 ° C. for 2 hours, and thereafter, in the same manner as in Example 1, A coin-type electric double layer capacitor was assembled.

【0033】本発明による電気二重層キャパシタは、活
性炭粉末とカーボンブラック、カーボンナノチューブ、
および、バインダによって分極性電極が形成されるのが
特徴である。表1は、実施例1〜4、比較例1、2にお
いてそれぞれ組み立てたコイン型の電気二重層キャパシ
タを、印加電圧2.5Vで充電し、約0.5mAで放電し
た場合の、初期静電容量と内部抵抗の測定結果を示す表
である。
The electric double layer capacitor according to the present invention comprises activated carbon powder, carbon black, carbon nanotube,
Further, a polarizable electrode is formed by the binder. Table 1 shows that the coin-type electric double layer capacitors assembled in Examples 1 to 4 and Comparative Examples 1 and 2 were charged at an applied voltage of 2.5 V and discharged at about 0.5 mA, respectively. 9 is a table showing measurement results of capacitance and internal resistance.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から明らかなように、本発明の実施例
1、2、3、4における、穴径1〜2nmのカーボンナ
ノチューブを含有する分極性電極を用いた電気二重層キ
ャパシタは、比較例1、2における、カーボンナノチュ
ーブを含まない電気二重層キャパシタと比較して、容量
が大きい電気二重層キャパシタを得られる。
As is apparent from Table 1, the electric double layer capacitors using the polarizable electrodes containing carbon nanotubes having a hole diameter of 1-2 nm in Examples 1, 2, 3, and 4 of the present invention are comparative examples. An electric double layer capacitor having a larger capacity than those of the electric double layer capacitors not containing carbon nanotubes in 1 and 2 can be obtained.

【0036】[0036]

【発明の効果】以上、説明したように、本発明によれ
ば、小型で大容量を有する電気二重層キャパシタが得ら
れる。
As described above, according to the present invention, an electric double layer capacitor having a small size and a large capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電気二重層キャパシタの縦断面
図。
FIG. 1 is a longitudinal sectional view of an electric double layer capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 グラファイト系導電性接着剤 3 ステンレス製容器のケース 4 ステンレス製容器のふた 5 負極 6 電解液 7 セパレータ 8 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Graphite conductive adhesive 3 Stainless steel container case 4 Stainless steel container lid 5 Negative electrode 6 Electrolyte solution 7 Separator 8 Gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解液を含浸させた一対の分極性電極
が、セパレータを介して配置された電気二重層キャパシ
タにおいて、前記分極性電極にカーボンナノチューブを
含有することを特徴とする電気二重層キャパシタ。
1. An electric double-layer capacitor in which a pair of polarizable electrodes impregnated with an electrolytic solution is disposed via a separator, wherein the polarizable electrode contains carbon nanotubes. .
【請求項2】 前記分極性電極は、カーボンナノチュー
ブ、炭素粉末、およびバインダからなることを特徴とす
る請求項1記載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the polarizable electrode is made of carbon nanotube, carbon powder, and a binder.
【請求項3】 前記炭素粉末は、活性炭、および/また
は、カーボンブラックからなることを特徴とする請求項
2記載の電気二重層キャパシタ。
3. The electric double layer capacitor according to claim 2, wherein the carbon powder is made of activated carbon and / or carbon black.
JP10313998A 1998-10-15 1998-10-15 Electric double-layer capacitor Pending JP2000124079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313998A JP2000124079A (en) 1998-10-15 1998-10-15 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313998A JP2000124079A (en) 1998-10-15 1998-10-15 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2000124079A true JP2000124079A (en) 2000-04-28

Family

ID=18047999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313998A Pending JP2000124079A (en) 1998-10-15 1998-10-15 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2000124079A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008086A (en) * 2001-10-17 2002-01-29 (주) 나노텍 Manufacture of pelletized activated carbon using carbon nanotube
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
JP2003092105A (en) * 2001-09-18 2003-03-28 Denso Corp Positive electrode for lithium secondary battery and lithium secondary battery
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
KR100432486B1 (en) * 2000-12-22 2004-05-20 일진나노텍 주식회사 Method of manufacturing electrodes for high power supercapacitor and supercapacitor using the same
JP2004193443A (en) * 2002-12-13 2004-07-08 Honda Motor Co Ltd Electrode for electric double-layer capacitor
KR100439945B1 (en) * 2001-12-27 2004-07-12 박수길 Manufacturing method of carbon nanofiber electrode for supercapacitor
JP2004221531A (en) * 2002-12-26 2004-08-05 Toin Gakuen Light chargeable laminated electric double-layered capacitor
EP1447828A1 (en) * 2001-09-26 2004-08-18 Japan Science and Technology Agency POLARIZING ELECTRODE AND ITS MANUFACTURING METHOD, AND ELECTRIC DOUBLE−LAYER CAPACITOR
FR2867600A1 (en) * 2004-03-09 2005-09-16 Arkema Preparation of electrode, used in supercapacitor, comprises mixing a carbonated pulverizing material and a solvent, adding a binding polymer, drying the mixture, optionally mixing the mixture and recovering the collector
JP2006045034A (en) * 2004-08-09 2006-02-16 Futaba Corp Composite material of carbon nanotube and its manufacturing method
KR100558171B1 (en) * 2003-06-27 2006-03-10 (주)에스와이하이테크 Manufacturing method of polarizing electrode using carbon nanotube and electric double-layer capacitor using the polarizing electrode
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP2006193391A (en) * 2005-01-17 2006-07-27 National Univ Corp Shizuoka Univ Carbon composition, its manufacturing method and polarizable electrode for electrochemical capacitor
JP2006269847A (en) * 2005-03-25 2006-10-05 Shinshu Univ Electrode for electric double layer capacitor
JP2006310795A (en) * 2005-03-28 2006-11-09 Sanyo Electric Co Ltd Electric double layer capacitor and its manufacturing method
KR100772442B1 (en) 2005-12-28 2007-11-01 엘지전자 주식회사 Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
JP2008016769A (en) * 2006-07-10 2008-01-24 Shimizu Corp Electric double layer capacitor, carbon electrode therefor, and method of manufacturing carbon electrode therefor
US7382601B2 (en) 2005-03-28 2008-06-03 Saga Sanyo Industries Co., Ltd. Electric double layer capacitor and method of manufacturing same
FR2912554A1 (en) * 2007-02-12 2008-08-15 Arkema France Electrode, useful for electrochemical energy storage system, which is useful as battery backup unit of personal computer, information server or cell phone, comprises nitroxide and carbon nanotube
US7691533B2 (en) 2003-07-28 2010-04-06 Tdk Corporation Electrode with conductive polymer-covered carbon nanotubes and electrochemical element employing the same
JP2011216775A (en) * 2010-04-01 2011-10-27 Mitsubishi Rayon Co Ltd Coating paste for electric double-layer capacitor
JP2012209193A (en) * 2011-03-30 2012-10-25 Nissin Kogyo Co Ltd Porous body for electrode using caron nanofiber, electrode, battery, capacitor, water treatment apparatus, oil field device, and method for producing porous body for electrode
WO2014069640A1 (en) * 2012-11-01 2014-05-08 スペースリンク株式会社 Carbon nanotube film capacitor
WO2014129540A1 (en) 2013-02-20 2014-08-28 日本ケミコン株式会社 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
US10020123B2 (en) 2013-11-13 2018-07-10 Honda Motor Co., Ltd. Carbon fiber membrane

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432486B1 (en) * 2000-12-22 2004-05-20 일진나노텍 주식회사 Method of manufacturing electrodes for high power supercapacitor and supercapacitor using the same
JP2003092105A (en) * 2001-09-18 2003-03-28 Denso Corp Positive electrode for lithium secondary battery and lithium secondary battery
EP1447828A4 (en) * 2001-09-26 2007-12-05 Japan Science & Tech Agency Polarizing electrode and its manufacturing method, and electric double-layer capacitor
EP1447828A1 (en) * 2001-09-26 2004-08-18 Japan Science and Technology Agency POLARIZING ELECTRODE AND ITS MANUFACTURING METHOD, AND ELECTRIC DOUBLE−LAYER CAPACITOR
KR20020008086A (en) * 2001-10-17 2002-01-29 (주) 나노텍 Manufacture of pelletized activated carbon using carbon nanotube
KR100439945B1 (en) * 2001-12-27 2004-07-12 박수길 Manufacturing method of carbon nanofiber electrode for supercapacitor
WO2003073440A1 (en) * 2002-02-27 2003-09-04 Hitachi Zosen Corporation Conductive material using carbon nano-tube, and manufacturing method thereof
US6858891B2 (en) 2002-03-06 2005-02-22 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US7081385B2 (en) 2002-03-06 2006-07-25 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
JP2004193443A (en) * 2002-12-13 2004-07-08 Honda Motor Co Ltd Electrode for electric double-layer capacitor
JP2004221531A (en) * 2002-12-26 2004-08-05 Toin Gakuen Light chargeable laminated electric double-layered capacitor
KR100558171B1 (en) * 2003-06-27 2006-03-10 (주)에스와이하이테크 Manufacturing method of polarizing electrode using carbon nanotube and electric double-layer capacitor using the polarizing electrode
US7691533B2 (en) 2003-07-28 2010-04-06 Tdk Corporation Electrode with conductive polymer-covered carbon nanotubes and electrochemical element employing the same
JP2007528596A (en) * 2004-03-09 2007-10-11 アルケマ フランス Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
KR101046895B1 (en) * 2004-03-09 2011-07-06 아르끄마 프랑스 Electrode manufacturing method, electrode manufactured by the method and supercapacitor comprising the electrode
FR2867600A1 (en) * 2004-03-09 2005-09-16 Arkema Preparation of electrode, used in supercapacitor, comprises mixing a carbonated pulverizing material and a solvent, adding a binding polymer, drying the mixture, optionally mixing the mixture and recovering the collector
US7532454B2 (en) 2004-03-09 2009-05-12 Arkema France Method for making an electrode, resulting electrode and supercapacitor including same
WO2005088657A3 (en) * 2004-03-09 2006-02-02 Arkema Method for making an electrode, resulting electrode and supercapacitor including same
WO2005088657A2 (en) * 2004-03-09 2005-09-22 Arkema France Method for making an electrode, resulting electrode and supercapacitor including same
JP4754553B2 (en) * 2004-03-09 2011-08-24 アルケマ フランス Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
JP2006045034A (en) * 2004-08-09 2006-02-16 Futaba Corp Composite material of carbon nanotube and its manufacturing method
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
KR100855166B1 (en) * 2004-12-24 2008-08-29 마쯔시다덴기산교 가부시키가이샤 Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP2006193391A (en) * 2005-01-17 2006-07-27 National Univ Corp Shizuoka Univ Carbon composition, its manufacturing method and polarizable electrode for electrochemical capacitor
JP2006269847A (en) * 2005-03-25 2006-10-05 Shinshu Univ Electrode for electric double layer capacitor
JP4660239B2 (en) * 2005-03-25 2011-03-30 国立大学法人信州大学 Electrode for electric double layer capacitor
US7382601B2 (en) 2005-03-28 2008-06-03 Saga Sanyo Industries Co., Ltd. Electric double layer capacitor and method of manufacturing same
JP2006310795A (en) * 2005-03-28 2006-11-09 Sanyo Electric Co Ltd Electric double layer capacitor and its manufacturing method
KR100772442B1 (en) 2005-12-28 2007-11-01 엘지전자 주식회사 Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
JP4706975B2 (en) * 2006-07-10 2011-06-22 清水建設株式会社 Carbon electrode for electric double layer capacitor and method for producing carbon electrode for electric double layer capacitor
JP2008016769A (en) * 2006-07-10 2008-01-24 Shimizu Corp Electric double layer capacitor, carbon electrode therefor, and method of manufacturing carbon electrode therefor
WO2008104683A1 (en) * 2007-02-12 2008-09-04 Arkema France Electrode containing at least one nitroxide and carbon nanotubes
FR2912554A1 (en) * 2007-02-12 2008-08-15 Arkema France Electrode, useful for electrochemical energy storage system, which is useful as battery backup unit of personal computer, information server or cell phone, comprises nitroxide and carbon nanotube
JP2011216775A (en) * 2010-04-01 2011-10-27 Mitsubishi Rayon Co Ltd Coating paste for electric double-layer capacitor
JP2012209193A (en) * 2011-03-30 2012-10-25 Nissin Kogyo Co Ltd Porous body for electrode using caron nanofiber, electrode, battery, capacitor, water treatment apparatus, oil field device, and method for producing porous body for electrode
WO2014069640A1 (en) * 2012-11-01 2014-05-08 スペースリンク株式会社 Carbon nanotube film capacitor
WO2014129540A1 (en) 2013-02-20 2014-08-28 日本ケミコン株式会社 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
KR20150119849A (en) 2013-02-20 2015-10-26 닛뽄 케미콘 가부시끼가이샤 Electrode, electric double-layer capacitor using same, and electrode manufacturing method
US9997301B2 (en) 2013-02-20 2018-06-12 Nippon Chemi-Con Corporation Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode
US10020123B2 (en) 2013-11-13 2018-07-10 Honda Motor Co., Ltd. Carbon fiber membrane

Similar Documents

Publication Publication Date Title
JP2000124079A (en) Electric double-layer capacitor
KR101046895B1 (en) Electrode manufacturing method, electrode manufactured by the method and supercapacitor comprising the electrode
JP3496338B2 (en) Electric double layer capacitor
Frackowiak et al. Supercapacitor electrodes from multiwalled carbon nanotubes
JPH08107048A (en) Electric double-layer capacitor
Ma et al. Processing and Performance of Electric Double-Layer Capacitors with Block-Type Carbon Nanotube Electrodes.
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
JP2002231585A (en) Electric double-layered capacitor
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP4374888B2 (en) Electric double layer capacitor
JP2006032371A (en) Electric double layer capacitor and its fabrication process
JP2003243260A (en) Electric double layer capacitor
JP2507125B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2000299259A (en) Electric double layer capacitor and manufacture thereof
JP3792528B2 (en) Manufacturing method of electric double layer capacitor
JPS61102023A (en) Electric double-layer capacitor
JP2003297695A (en) Electric double layer capacitor
JPS58222520A (en) Electric double layer capacitor
JPH07307250A (en) Electric double-layer capacitor
JP2003224037A (en) Electric double layer capacitor
JP4026806B2 (en) Electric double layer capacitor
JPH1064765A (en) Method of manufacturing electric double layer capacitor
JP2000012404A (en) Electric double-layer capacitor
JPS60211821A (en) Electric couble layer capacitor
JP2001332456A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A521 Written amendment

Effective date: 20050405

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20061227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529