JP2011166852A - Method for controlling ac-dc converter and control apparatus - Google Patents

Method for controlling ac-dc converter and control apparatus Download PDF

Info

Publication number
JP2011166852A
JP2011166852A JP2010023445A JP2010023445A JP2011166852A JP 2011166852 A JP2011166852 A JP 2011166852A JP 2010023445 A JP2010023445 A JP 2010023445A JP 2010023445 A JP2010023445 A JP 2010023445A JP 2011166852 A JP2011166852 A JP 2011166852A
Authority
JP
Japan
Prior art keywords
harmonic
command value
voltage
output
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023445A
Other languages
Japanese (ja)
Inventor
Hidemi Hayashi
秀美 林
Takeshi Harimoto
毅 張本
Katsuaki Murata
勝昭 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2010023445A priority Critical patent/JP2011166852A/en
Publication of JP2011166852A publication Critical patent/JP2011166852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling an AC-DC converter for achieving suppression of fifth harmonic voltage of a power system by outputting the fifth harmonic voltage from a power conversion part; and to provide a control apparatus. <P>SOLUTION: In the method for controlling the AC-DC converter configured by applying a PWM control method, an initial value of a switching angle is computed by inputting a basic wave amplitude command value and a DC voltage into a computing circuit 5 for computing the initial value of the switching angle and outputting it; a change in the switching angle is computed by inputting a command value of amplitude of an odd-symmetrical component of the fifth harmonics and a command value of amplitude of an even-symmetric component of the fifth harmonics, the DC voltage and the basic wave amplitude command value/DC voltage into a computing circuit 7 for computing a change in the switching angle and outputting it, the output initial value of the switching angle and the change in the switching angle are totaled by an adder 24, and low-order harmonics other than the fifth harmonics are not output but only the basic wave and the fifth harmonics are output in accordance with the command value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、パルス幅変調(PWM)を適用した交直変換装置の制御方法及び制御装置に関する。   The present invention relates to a control method and a control device for an AC / DC converter to which pulse width modulation (PWM) is applied.

電力変換部のPWM制御の方式として、低次高調波消去PWM制御方式、正弦波・三角波比較PWM制御方式が知られている。(特許文献1〜3、非特許文献1)   As a PWM control method for the power converter, a low-order harmonic elimination PWM control method and a sine wave / triangular wave comparison PWM control method are known. (Patent Documents 1 to 3, Non-Patent Document 1)

前記低次高調波消去PWM制御方式は、フィルタで取り除くことが難しい低次高調波を消去可能なスイッチング角度を予めオフラインで算出し、その結果を記憶装置に記憶しておき、外部からの基本波振幅指令値に応じて角度を記憶装置から呼び出して、波形を制御する方式である。この方式は、予め決められた理想的な角度でスイッチングが可能なため、高調波の低減、スイッチング回数の低減によるロスの低減、フィルタの小型化が可能という長所がある。   In the low-order harmonic elimination PWM control method, a switching angle capable of erasing low-order harmonics that are difficult to remove by a filter is calculated offline in advance, the result is stored in a storage device, and an external fundamental wave is stored. In this method, the angle is called from the storage device according to the amplitude command value and the waveform is controlled. Since this method allows switching at an ideal angle determined in advance, there are advantages in that harmonics can be reduced, loss can be reduced by reducing the number of switching times, and the size of the filter can be reduced.

また、正弦波・三角波比較PWM制御方式は、三角搬送波と変調波を比較し、その交点のタイミングをスイッチング角度としてPWM波形を作成する方式である。   The sine wave / triangular wave comparison PWM control method is a method of comparing a triangular carrier wave and a modulated wave and creating a PWM waveform with the timing of the intersection as a switching angle.

また、本出願人は、特許文献3で正弦波との比較により低次高調波を消去したPWM波形が作成可能なひずみ三角波と、基本波のみからなる変調波との比較で、PWM波形を作成し、このPWM波形で交直変換装置を制御する方式を提案した。   In addition, the present applicant creates a PWM waveform by comparing a distorted triangular wave capable of creating a PWM waveform in which low-order harmonics are eliminated by comparison with a sine wave in Patent Document 3 and a modulated wave consisting only of a fundamental wave. And the system which controls an AC / DC converter with this PWM waveform was proposed.

図14は従来の低次高調波消去PWM制御方式を用いた交直変換装置であり、1は直流部、2は直流を交流に変換する電力変換部、3は連系リアクトル、4はフィルタコンデンサ、5はPWM波形の演算回路、6はスイッチング角度の初期値の演算回路、11は低次高調波が含まれないPWM波形のスイッチング角度が保存された第1の記憶装置、21は除算器である。従来の低次高調波消去PWM制御では、図14の第1の記憶装置11に図13を記憶しておき、基本波振幅の指令値V に対して除算器でξ =V /Edcを計算し、ξ に応じたスイッチング角度θを第1の記憶装置11から読み出してPWM波形を作成する。 FIG. 14 shows a conventional AC / DC converter using a low-order harmonic elimination PWM control system, in which 1 is a direct current unit, 2 is a power conversion unit that converts direct current to alternating current, 3 is an interconnection reactor, 4 is a filter capacitor, 5 is a PWM waveform calculation circuit, 6 is an initial value of a switching angle calculation circuit, 11 is a first storage device in which the switching angle of a PWM waveform not including low-order harmonics is stored, and 21 is a divider. . In the conventional low-order harmonic elimination PWM control, FIG. 13 is stored in the first storage device 11 of FIG. 14, and ξ 1 * = V 1 by a divider with respect to the command value V 1 * of the fundamental wave amplitude. * / E dc is calculated, and the switching angle θ k corresponding to ξ 1 * is read from the first storage device 11 to create a PWM waveform.

特開2004−064878号公報JP 2004-064878 A 特開2001−339959号公報JP 2001-339959 A 特開2009−213255号公報JP 2009-213255 A

電気学会半導体電力変換方式調査専門委員会編:「半導体電力変換回路」IEEJ Semiconductor Power Conversion Method Research Committee: “Semiconductor Power Conversion Circuit”

低次高調波消去PWM制御方式は、予め計算で求めた低次高調波が消去されたスイッチング角度でしかスイッチングできないため、電力変換部から低次高調波電圧を出力することはできない。しかし、電力系統の系統電圧には低次高調波が含まれており、電力系統に接続される交直変換装置を用いてこの低次高調波を抑制することが期待されている。具体的には、系統に接続される交直変換装置において、接続点の低次高調波電圧を検出し、電力系統から交直変換装置に向かって接続点の低次高調波電圧に比例した低次高調波電流を流すことで、電力系統の低次高調波電圧を抑制できることが知られている。そのためには、交直変換装置の電力変換部において、前記の低次高調波電流を流すために必要な低次高調波電圧を出力する必要がある。しかし、低次高調波消去PWM制御方式は、低次高調波電圧を出力できないため、電力系統の高調波電圧を抑制することはできない。   In the low-order harmonic elimination PWM control method, switching can be performed only at the switching angle at which the low-order harmonics obtained in advance are eliminated, and thus the low-order harmonic voltage cannot be output from the power conversion unit. However, the system voltage of the power system includes low-order harmonics, and it is expected to suppress the low-order harmonics using an AC / DC converter connected to the power system. Specifically, in an AC / DC converter connected to the grid, a low-order harmonic voltage at the connection point is detected from the power system toward the AC / DC converter, and a low-order harmonic proportional to the low-order harmonic voltage at the connection point is detected. It is known that a low-order harmonic voltage of a power system can be suppressed by flowing a wave current. For this purpose, it is necessary to output a low-order harmonic voltage necessary for flowing the low-order harmonic current in the power converter of the AC / DC converter. However, since the low-order harmonic elimination PWM control method cannot output the low-order harmonic voltage, it cannot suppress the harmonic voltage of the power system.

また、正弦波・三角波比較PWM制御方式は、電力変換部から低次高調波の出力が可能なため系統電圧の低次高調波電圧の抑制が可能である。しかし、低次高調波消去PWM制御方式と比べると、フィルタで取り除かなくてはならない不要な高調波成分の次数が低いため、低次高調波消去PWM制御方式に比べて大きなフィルタが必要となり、設置スペース及びコストの増大という課題がある。   Further, since the sine wave / triangular wave comparison PWM control method can output low-order harmonics from the power converter, it is possible to suppress the low-order harmonic voltage of the system voltage. However, compared to the low-order harmonic cancellation PWM control method, the order of unnecessary harmonic components that must be removed by a filter is low, so a larger filter is required than the low-order harmonic cancellation PWM control method. There is the problem of increased space and cost.

そこで、本発明は、低次高調波が含まれないPWM波形のスイッチング角度が保存された第1の記憶装置と、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置と、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算する第1の演算回路を用いて、電力変換部から5次高調波電圧の出力し、電力系統の5次高調波電圧の抑制を実現する交直変換装置の制御方法及び制御装置を提供するものである。   Therefore, the present invention outputs the first storage device in which the switching angle of the PWM waveform not including the low-order harmonics is stored, and outputs only the fifth-order harmonics without outputting the low-order harmonics of other orders. A second storage device storing data of coefficients necessary for calculating a change in switching angle, and a switching angle for outputting only the fifth harmonic without outputting the lower harmonics of other orders. Provided is a control method and a control device for an AC / DC converter that outputs a fifth harmonic voltage from a power converter using a first arithmetic circuit that calculates a change and realizes suppression of the fifth harmonic voltage of the power system. To do.

請求項1の発明は、PWM制御方式を適用した交直変換装置の制御方法において、スイッチング角度の初期値を演算して出力する演算回路に、基本波振幅指令値と直流電圧を入力してスイッチング角度の初期値を演算し、スイッチング角度の変化を演算して出力する演算回路に、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値、直流電圧、及び基本波振幅指令値/直流電圧を入力してスイッチング角度の変化を演算し、出力されたスイッチング角度の初期値及び出力されたスイッチング角度の変化を合計し、5次以外の低次高調波は出力せずに基本波と5次高調波を出力することを特徴とする交直変換装置の制御方法である。   The invention according to claim 1 is a control method for an AC / DC converter to which a PWM control system is applied, wherein a fundamental wave amplitude command value and a DC voltage are input to an arithmetic circuit that calculates and outputs an initial value of a switching angle, and the switching angle The command value of the amplitude of the oddly symmetric component of the fifth harmonic and the command value of the amplitude of the even component of the fifth harmonic are output to the arithmetic circuit that calculates and outputs the change of the switching angle. DC voltage and fundamental wave amplitude command value / DC voltage are input to calculate the change in switching angle, and the initial value of the output switching angle and the output change of the switching angle are summed to obtain a low value other than the fifth order. A control method for an AC / DC converter characterized by outputting a fundamental wave and a fifth harmonic without outputting a second harmonic.

請求項2の発明は、基本波振幅指令値と直流電圧を第1の除算器に入力して基本波振幅指令値/直流電圧を計算して出力し、第1の記憶装置に入力して第1の記憶装置から基本波振幅指令値/直流電圧に対応するスイッチング角度の初期値を演算することを特徴とする請求項1に記載の交直変換装置の制御方法である。   The invention according to claim 2 inputs the fundamental wave amplitude command value and the DC voltage to the first divider, calculates and outputs the fundamental wave amplitude command value / DC voltage, and inputs it to the first storage device. 2. The AC / DC converter control method according to claim 1, wherein an initial value of a switching angle corresponding to the fundamental wave amplitude command value / DC voltage is calculated from one storage device.

請求項3の発明は、5次高調波の奇対称な成分の振幅の指令値と直流電圧を第2の除算器に入力して5次高調波の奇対称な成分の振幅の指令値/直流電圧を計算し、5次高調波の偶対象な成分の振幅の指令値と直流電圧を第3の除算器に入力して5次高調波の偶対象な成分の振幅の指令値/直流電圧を計算し、第1の除算器の出力を、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置に入力し、第2の記憶装置から出力された係数、第2の除算器の出力、および第3の除算器の出力を前記第1の演算回路に入力して予め決められた演算式を用いて、他の次数の低次高調波を出力せずに5次高調波だけを出力するスイッチング角度の変化を計算することを特徴とする請求項2に記載の交直変換装置の制御方法である。   According to the invention of claim 3, the command value of the amplitude of the odd-symmetric component of the fifth harmonic and the DC voltage are inputted to the second divider, and the command value of the amplitude of the odd-symmetric component of the fifth harmonic / DC Calculate the voltage, input the command value of the amplitude of the even harmonic component of the fifth harmonic and the DC voltage to the third divider, and calculate the command value / DC voltage of the amplitude of the even harmonic component of the fifth harmonic. The data of the coefficient necessary to calculate and calculate the change of the switching angle that outputs only the 5th harmonic without outputting the output of the first divider and the lower harmonic of other orders is saved. The coefficient input from the second storage device, the output of the second divider, and the output of the third divider are input to the first arithmetic circuit and determined in advance. Calculate the change in the switching angle that outputs only the 5th harmonic without outputting the low-order harmonics of other orders using the calculated equation. A control method of the AC-DC converter according to claim 2, wherein the door.

請求項4の発明は、交直変換装置と電力系統の接続点の5次高調波電圧を計算する第2の演算回路と、接続点の5次高調波電流指令値を計算する第3の演算回路と、電力変換部の5次高調波電圧指令値を計算する第4の演算回路とを備え、第4の演算回路の出力を、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値とすることを特徴とする請求項1〜3のいずれかに記載の交直変換装置の制御方法である。   The invention according to claim 4 is a second arithmetic circuit for calculating a fifth harmonic voltage at a connection point between the AC / DC converter and the power system, and a third arithmetic circuit for calculating a fifth harmonic current command value at the connection point. And a fourth arithmetic circuit for calculating the fifth harmonic voltage command value of the power converter, and the output of the fourth arithmetic circuit uses the command value of the amplitude of the odd-symmetric component of the fifth harmonic, 5 The control method for an AC / DC converter according to any one of claims 1 to 3, wherein the command value of the amplitude of the even harmonic component of the second harmonic is used.

請求項5の発明は、第3の演算器において接続点の5次高調波電流指令値を接続点の5次高調波電圧に比例させることを特徴とする請求項4に記載の交直変換装置の制御方法である。   The invention according to claim 5 is characterized in that, in the third arithmetic unit, the fifth harmonic current command value at the connection point is proportional to the fifth harmonic voltage at the connection point. It is a control method.

請求項6の発明は、PWM制御方式を適用した交直変換装置の制御装置において、低次高調波が含まれないPWM波形のスイッチング角度が保存された第1の記憶装置と第1の除算器を備え、入力された基本波振幅指令値と直流電圧が入力されてスイッチング角度の初期値を演算して出力する演算回路と、第2の除算器、第3の除算器、及び他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置を備え、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値、直流電圧、及び第1の除算器で計算された基本波振幅指令値/直流電圧が入力されてスイッチング角度の変化を演算して出力する演算回路と、出力されたスイッチング角度の初期値及び出力されたスイッチング角度の変化を合計する加算器を備え、5次以外の低次高調波は出力せずに基本波と5次高調波だけを指令値どおりに出力することを特徴とする交直変換装置の制御装置である。   According to a sixth aspect of the present invention, there is provided a control device for an AC / DC converter to which a PWM control system is applied, wherein a first storage device and a first divider in which a switching angle of a PWM waveform not including a low-order harmonic is stored are stored. A calculation circuit for calculating and outputting an initial value of a switching angle by inputting an input fundamental wave amplitude command value and a DC voltage, a second divider, a third divider, and other low order orders A second storage device storing data of coefficients necessary for calculating a change in switching angle for outputting only the fifth harmonic without outputting the second harmonic is provided, and the odd harmonic of the fifth harmonic is provided. Component amplitude command value, fifth harmonic even component amplitude command value, DC voltage, and fundamental wave amplitude command value / DC voltage calculated by the first divider are input to determine the switching angle. An arithmetic circuit that calculates and outputs the change, and an output An adder for summing the initial value of the switching angle and the output change of the switching angle is provided, and only the fundamental wave and the fifth harmonic are output according to the command value without outputting the lower harmonics other than the fifth. It is a control apparatus of the AC / DC converter characterized by the above.

請求項7の発明は、基本波振幅指令値と直流電圧が入力されて基本波振幅指令値/直流電圧を計算して出力する第1の除算器と、第1の除算器から出力された基本波振幅指令値/直流電圧が入力された第1の記憶装置から前記基本波振幅指令値/直流電圧に対応するスイッチング角度の初期値を演算する演算回路を備えたことを特徴とする請求項6に記載の交直変換装置の制御装置である。   According to a seventh aspect of the present invention, there is provided a first divider that receives a fundamental wave amplitude command value and a DC voltage and calculates and outputs a fundamental wave amplitude command value / DC voltage, and a fundamental that is output from the first divider. 7. An arithmetic circuit for calculating an initial value of a switching angle corresponding to the fundamental wave amplitude command value / DC voltage from a first storage device to which a wave amplitude command value / DC voltage is input. It is a control apparatus of the AC / DC conversion apparatus as described in above.

請求項8の発明は、5次高調波の奇対称な成分の振幅の指令値と直流電圧を入力して5次高調波の奇対称な成分の振幅の指令値/直流電圧を計算して出力する第2の除算器と、5次高調波の偶対象な成分の振幅の指令値と直流電圧を入力して5次高調波の偶対象な成分の振幅の指令値/直流電圧を計算して出力する第3の除算器と、第1の除算器の出力が入力されて第2の記憶装置から出力された係数、第2の除算器の出力、および第3の除算器の出力が入力されて予め決められた演算式を用いて他の次数の低次高調波を出力せずに5次高調波だけを出力するスイッチング角度の変化を計算する第1の演算回路を備えたことを特徴とする請求項7に記載の交直変換装置の制御装置である。   The invention of claim 8 inputs the command value and the DC voltage of the odd-symmetric component of the fifth harmonic, and calculates and outputs the command value / DC voltage of the odd-symmetric component of the fifth harmonic. Input the command value and DC voltage of the fifth harmonic even component, and calculate the command value / DC voltage of the fifth harmonic component. The third divider to be output, the coefficient output from the second storage device by the input of the first divider, the output of the second divider, and the output of the third divider are input. And a first arithmetic circuit that calculates a change in switching angle that outputs only the fifth harmonic without outputting the lower harmonic of other orders using a predetermined arithmetic expression. The control device for an AC / DC converter according to claim 7.

請求項9の発明は、交直変換装置と電力系統の接続点の5次高調波電圧を計算する第2の演算回路と、接続点の5次高調波電流指令値を計算する第3の演算回路と、電力変換部の5次高調波電圧指令値を計算し、5次高調波の奇対称な成分の振幅の指令値、及び5次高調波の偶対象な成分の振幅の指令値を出力する第4の演算回路とを備えたことを特徴とする請求項6〜8のいずれかに記載の交直変換装置の制御装置である。   The invention according to claim 9 is a second arithmetic circuit for calculating a fifth harmonic voltage at a connection point between the AC / DC converter and the power system, and a third arithmetic circuit for calculating a fifth harmonic current command value at the connection point. Then, the fifth harmonic voltage command value of the power converter is calculated, and the command value of the amplitude of the odd-symmetric component of the fifth harmonic and the command value of the amplitude of the even-numbered component of the fifth harmonic are output. 9. The control device for an AC / DC converter according to claim 6, further comprising a fourth arithmetic circuit.

請求項10の発明は、第3の演算器が接続点の5次高調波電流指令値を接続点の5次高調波電圧に比例させる比例器を備えたことを特徴とする請求項9に記載の交直変換装置の制御装置である。   The invention according to claim 10 is characterized in that the third arithmetic unit comprises a proportional device that makes the fifth harmonic current command value at the connection point proportional to the fifth harmonic voltage at the connection point. It is a control apparatus of the AC / DC conversion apparatus.

本発明によれば下記の効果を奏する。
(1)本発明のPWM制御方式を適用した交直変換装置において、従来の低次高調波消去PWM制御方式とは異なり、低次高調波を消去しながら特定の次数の高調波を目標値に従って出力することができる。このため本制御方式は、アクティブフィルタなど高調波の制御が必要な様々な機器にも適用が可能であり、これらの装置の、出力フィルタの小型化による装置の小型化、スイッチング回数の低減によるスイッチングロスの低減を図ることができる。
The present invention has the following effects.
(1) In an AC / DC converter to which the PWM control system of the present invention is applied, unlike a conventional low-order harmonic elimination PWM control system, a harmonic of a specific order is output according to a target value while eliminating a low-order harmonic. can do. For this reason, this control method can also be applied to various devices that require harmonic control, such as active filters, and these devices can be reduced in size by reducing the size of the output filter and switching by reducing the number of switching times. Loss can be reduced.

(2)本発明は、従来の低次高調波消去PWM制御方式とは異なり、交直変換装置から発生する高調波を抑制するだけでなく、接続点の特定の次数の高調波電圧も抑制することができる。このため本制御方式は、既存の低次高調波消去PWM制御方式が適用された交直変換装置の制御装置を変更するだけで、電力系統の高調波抑制が可能となる。 (2) Unlike the conventional low-order harmonic cancellation PWM control method, the present invention not only suppresses harmonics generated from the AC / DC converter, but also suppresses harmonic voltages of a specific order at the connection point. Can do. For this reason, this control system can suppress harmonics in the power system only by changing the control device of the AC / DC converter to which the existing low-order harmonic elimination PWM control system is applied.

本発明のスイッチング角度と係数のテーブル及び演算回路を使用し、基本波および高調波を制御可能な交直変換装置の回路図である。It is a circuit diagram of an AC / DC converter which can control a fundamental wave and a harmonic using the table and arithmetic circuit of the switching angle and coefficient of the present invention. 系統電圧の5次高調波電圧の抑制制御を行う交直変換装置の回路図である。It is a circuit diagram of the AC / DC converter which performs suppression control of the 5th harmonic voltage of a system voltage. 5次高調波振幅と角度の変化の理論値の関係を示すグラフである。It is a graph which shows the relationship between the 5th harmonic amplitude and the theoretical value of the change of an angle. 本発明の近似式の導出過程を示すグラフのうち、5次高調波振幅と角度の変化の理論値の関係を示すグラフである。It is a graph which shows the relationship between the theoretical value of the change of a 5th harmonic amplitude and an angle among the graphs which show the derivation | leading-out process of the approximate expression of this invention. 本発明の近似式の導出過程を示すグラフのうち、5次高調波振幅の偶対象な成分の割合と角度の変化の関係を示す図である。It is a figure which shows the relationship between the ratio of the component of the even number object of 5th harmonic amplitude, and the change of an angle among the graphs which show the derivation | leading-out process of the approximate expression of this invention. 本発明の近似式の導出過程を示すグラフのうち、5次高調波振幅と角度の変化の関係について、理論値と近似値の比較を示す図である。It is a figure which shows the comparison of a theoretical value and an approximate value about the relationship between a 5th harmonic amplitude and the change of an angle among the graphs which show the derivation | leading-out process of the approximate expression of this invention. 本発明の5次高調波制御用の係数のデータを示すグラフである。It is a graph which shows the data of the coefficient for the 5th harmonic control of this invention. 本発明により、電力変換部から、低次高調波を消去し、基本波電圧、5次高調波電圧だけを出力した場合の、電力変換部の出力電圧の高調波解析結果を示すグラフである。It is a graph which shows the harmonic analysis result of the output voltage of a power converter part at the time of deleting a lower order harmonic from a power converter part, and outputting only a fundamental voltage and a 5th harmonic voltage from this invention. 高調波発生源を含む模擬電力系統の回路図である。It is a circuit diagram of the simulation electric power system containing a harmonic generation source. 模擬系統に交直変換装置を接続した場合の系統電圧、交直変換部電圧及び交直変換装置への流入電流の波形について、従来方式と発明方式の比較を示すグラフである。It is a graph which shows the comparison of a conventional system and an invention system about the waveform of the system voltage at the time of connecting an AC / DC converter to a simulation system | strain, an AC / DC converter part voltage, and the inflow current to an AC / DC converter. 模擬系統に交直変換装置を接続した場合の系統電圧、交直変換部電圧及び交直変換装置への流入電流の高調波解析結果について、従来方式と発明方式の比較を示すグラフである。It is a graph which shows the comparison of a conventional system and an invention system about the harmonic analysis result of the system voltage at the time of connecting an AC / DC converter to a simulation system, an AC / DC converter part voltage, and the inflow current to an AC / DC converter. 半周期のパルス数が11個の3レベルインバータの出力電圧波形である。This is an output voltage waveform of a three-level inverter with 11 half-cycle pulses. 従来の低次高調波消去PWM制御方式で使用される、31次まで3の倍数の次数を除く低次高調波を消去した場合のPWM波形のスイッチング角度を示すグラフである。It is a graph which shows the switching angle of the PWM waveform at the time of erasing the low order harmonic except the order of the multiple of 3 to the 31st order used by the conventional low order harmonic elimination PWM control system. 従来の低次高調波消去PWM制御方式で使用した交直変換装置の回路図である。It is a circuit diagram of the AC / DC converter used with the conventional low order harmonic elimination PWM control system. 電力系統の5次高調波電圧の検出回路の一例である。It is an example of the detection circuit of the 5th harmonic voltage of an electric power system. 電力変換部の5次高調波電圧の指令値の演算回路の一例である。It is an example of the arithmetic circuit of the command value of the 5th harmonic voltage of a power converter.

以下、本発明の実施の形態を、系統連系用の交直変換装置を例にとり図面に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, taking a system interconnection AC / DC converter as an example.

図1において、1は直流部、2は直流を交流に変換する電力変換部、3は連系リアクトル、4はフィルタコンデンサ、5はPWM波形の演算回路、6はスイッチング角度の初期値の演算回路、7はスイッチング角度の変化の演算回路、11は低次高調波が含まれないPWM波形のスイッチング角度が保存された第1の記憶装置、12は他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置、13は他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算する演算回路、21,22,23は除算器、24は加算器である。   In FIG. 1, 1 is a direct current unit, 2 is a power conversion unit that converts direct current to alternating current, 3 is an interconnected reactor, 4 is a filter capacitor, 5 is a PWM waveform arithmetic circuit, and 6 is an initial value of a switching angle arithmetic circuit. , 7 is a calculation circuit for switching angle change, 11 is a first storage device in which the switching angle of the PWM waveform not including the low-order harmonics is stored, and 12 does not output low-order harmonics of other orders. The second storage device 13 stores the coefficient data necessary for calculating the change of the switching angle for outputting only the 5th harmonic in the 5th order without outputting the lower order harmonics of other orders. Arithmetic circuits for calculating the change of the switching angle that outputs only harmonics, 21, 22, 23 are dividers, and 24 is an adder.

本発明は、図1の電力変換部2の制御において、PWM波形の演算回路5の入力を直流電圧Edc、基本波振幅指令値V 、5次高調波の奇対象な成分の振幅の指令値ΔV5d、5次高調波の偶対象の成分の振幅の指令値ΔV5qのみとし、第1の記憶装置11、第2の記憶装置12、演算回路13を使って、低次の高調波を消去して、5次高調波だけを出力するPWM波形を作成するものである。 In the control of the power conversion unit 2 of FIG. 1, the present invention uses the input of the PWM waveform calculation circuit 5 as the DC voltage E dc , the fundamental wave amplitude command value V 1 * , the amplitude of the odd component of the fifth harmonic. The command value ΔV 5d , the command value ΔV 5q of the amplitude of the even- numbered component of the fifth harmonic, and the first storage device 11, the second storage device 12, and the arithmetic circuit 13 are used, and the lower order harmonics are used. And a PWM waveform that outputs only the fifth harmonic is generated.

本発明を理解しやすくするため、まず、従来の低次高調波PWM制御の原理と制御方法について説明する。   To facilitate understanding of the present invention, first, the principle and control method of conventional low-order harmonic PWM control will be described.

電力変換部の相電圧が、図12に示すように半周期のパルス数が11パルス、レベル数が3レベルの波形とする。この場合、1/4周期までのスイッチング角度をθ、θ、・・・θ11、図12の波形をフーリエ変換したときのn次高調波の振幅をVとすると、V/Edcは以下の式となる。 As shown in FIG. 12, the phase voltage of the power converter is a waveform having a half-cycle pulse number of 11 pulses and a level number of 3 levels. In this case, 1 the switching angle of up to 1/4 period θ, θ 2, ··· θ 11 , the amplitude of the n-th harmonic at the time of Fourier transform of the waveform in FIG. 12 when the V n, V n / E dc becomes the following formula.

この式は設定できるθの数が11個あるので、基本波振幅の制御と11個の高調波の消去ができる。そのときのスイッチング角度θ、θ、・・・θ11は、式(1)においてV/Edc=ξ(ξは任意の値)、V=0(n=5、7、11、13、・・・、29、31)とした11元連立方程式を解くことで得られる。その解を図13に示す。 Since there are 11 θ j that can be set in this equation, the fundamental amplitude can be controlled and 11 harmonics can be eliminated. The switching angles θ 1 , θ 2 ,... Θ 11 at that time are V 1 / E dc = ξ 11 is an arbitrary value) and V n = 0 (n = 5, 7 in Equation (1)) , 11, 13,..., 29, 31). The solution is shown in FIG.

次に、5次高調波を出力するPWM波形の作成方法について理論的に述べる。   Next, a method of creating a PWM waveform that outputs the fifth harmonic will be theoretically described.

電力変換部の相電圧vinvが、図12に示すように半周期のパルス数が11パルス、レベル数が3レベルの波形であるとする。ここで、vinvは、式(2)に示すように、基本波ξsin(ωt)・Edc、5次高調波電圧(Δξ5dsin(5ωt)+Δξ5qcos(5ωt))Edc及び不要高調波成分verr(3の倍数の次数の成分、31次より高い次数の成分)だけで構成されており、7次から31までの3の倍数の次数を除く低次高調波が含まれていないとする。Δξ5ddcは5次高調波電圧のうち奇対称な成分の振幅、Δξ5qdcは5次高調波電圧のうち偶対称な成分の振幅である。 It is assumed that the phase voltage v inv of the power conversion unit is a waveform with 11 half-cycle pulses and 3 level levels as shown in FIG. Here, v inv is the fundamental wave ξ 1 sin (ωt) · E dc , fifth harmonic voltage (Δξ 5d sin (5ωt) + Δξ 5q cos (5ωt)) E dc and It is composed only of unnecessary harmonic components v err (components of order of multiples of 3 and components of orders higher than 31), and includes low-order harmonics excluding orders of multiples of 3 from 7th to 31st. Suppose not. Δξ 5d E dc is the amplitude of the odd-symmetric component of the fifth-order harmonic voltage, and Δξ 5q E dc is the amplitude of the even-symmetric component of the fifth-order harmonic voltage.

この場合に、5次高調波電圧が零の時のスイッチング角度に対して、式(2)に示すように5次高調波電圧を出力した際のスイッチング角度の変化を導出する。   In this case, with respect to the switching angle when the fifth harmonic voltage is zero, the change in the switching angle when the fifth harmonic voltage is output is derived as shown in the equation (2).

図12の波形で半波対称(すなわちf(θ)=−f(π+θ))だけが成り立っているとすると、相電圧のn次調波の振幅は次式となる。   If only the half-wave symmetry (that is, f (θ) = − f (π + θ)) is established in the waveform of FIG. 12, the amplitude of the nth-order harmonic of the phase voltage is expressed by the following equation.

(3)式のVinv−nd は奇対称な成分、Vinv−nqは偶対称な成分である。(3)式からdθに対するdVinv−nの関係式を求めると、 In equation (3), V inv-nd is an oddly symmetric component, and V inv-nq is an evenly symmetric component. When a relational expression of dV inv−n with respect to dθ k is obtained from the expression (3),

(4)式,(5)式を次数1とn(n=6m±1(m=1、2、・・・5)について連立すると以下のようになる。   When Equations (4) and (5) are used for degree 1 and n (n = 6 m ± 1 (m = 1, 2,..., 5)), the results are as follows.

よって、(2)式の電圧を出力するスイッチング角度は、図13からV/Edc=ξにおけるスイッチング角度θ(ξ)を読み出し、これを初期値として(7)式の微分方程式を解いて振幅Δξ5ddc、Δξ5qdcの5次高調波を出力した際のθの変化Δθを計算することで得られる。Ratio=Δξ5q/Δξ5dとし、ξ=1.0,−0.1Δξ5d 0.1,−1Ratio1のときのΔθ(k=1)を計算すると、図3となる。しかし、図3を用いて5次高調波電圧を制御するには、全てのξとθについて図3と同様のグラフを用意する必要があり、非常に容量の大きなデータベースが必要となる。 Therefore, the switching angle for outputting the voltage of the expression (2) is obtained by reading the switching angle θ k1 ) at V 1 / E dc = ξ 1 from FIG. 13, and using this as an initial value, the differential equation of the expression (7) Is obtained by calculating the change Δθ k of θ k when the fifth harmonic of amplitudes Δξ 5d E dc and Δξ 5q E dc is output. When Ratio = Δξ 5q / Δξ 5d and ξ 1 = 1.0, −0.1 < Δξ 5d < 0.1, −1 < Ratio < 1, Δθ k (k = 1) is calculated. It becomes. However, to control the fifth-order harmonic voltage using FIG. 3, it is necessary to prepare a graph similar to FIG. 3 for all ξ 1 and θ k , and a very large capacity database is required.

そこで、本発明では近似式を用いる。まずC=Δθ/Δξ5dとし、図4のグラフを作成する。次にΔξ5d=Δξ5d_1,Δξ5d_2においてRatioとCの関係を図5に示すように一次関数で近似する。 Therefore, an approximate expression is used in the present invention. First, C k = Δθ k / Δξ 5d, and the graph of FIG. 4 is created. Next, in Δξ 5d = Δξ 5d_1 and Δξ 5d_2 , the relationship between Ratio and C k is approximated by a linear function as shown in FIG.

最後に、Δξ5d−1 Δξ5d Δξ5d2の範囲内で、Δξ5dとCを1次関数で近似する。 Finally, Δξ 5d and C k are approximated by a linear function within the range of Δξ 5d−1 < Δξ 5d < Δξ 5d2 .

(10)式に、(8)式,(9)式を代入すると、   Substituting Equation (8) and Equation (9) into Equation (10),

となる。図4に示したCの理論値と、近似式によって求めたCの比較を図6に示す。図6から近似の範囲内では理論値と近似値はほぼ一致している。 It becomes. And the theoretical value of C k shown in FIG. 4, the comparison of C k obtained by the approximate expression shown in FIG. In FIG. 6, the theoretical value and the approximate value almost coincide with each other within the approximate range.

最後に、0.88<ξ<1.12における係数a、b、c、dを図7に示す。 Finally, the coefficients a k , b k , c k , and d k when 0.88 <ξ 1 <1.12 are shown in FIG.

なお、本発明は5次高調波だけでなく、予め同様の計算を行って係数a、b、c、dを求めておくことで、他の低次高調波にも適用可能である。 Note that the present invention can be applied not only to the fifth-order harmonic but also to other lower-order harmonics by performing the same calculation in advance to obtain the coefficients a k , b k , c k , and d k. is there.

次に発明の実施方法のうち、PWM波形の演算方法について述べる。   Next, among the methods of implementing the invention, a method for calculating a PWM waveform will be described.

図1において、まずスイッチング角度の初期値の演算回路6に基本波振幅指令値V と直流部1の直流電圧Edcとを入力し、除算器21でξ =V /Edcを計算する。次に、ξ を第1の記憶装置11に入力し、第1の記憶装置11から低次高調波が含まれないPWM波形のスイッチング角度θk0を読み出す。これをスイッチング角度の初期値とする。 In FIG. 1, first, the fundamental wave amplitude command value V 1 * and the DC voltage E dc of the DC unit 1 are input to the arithmetic circuit 6 for the initial value of the switching angle, and ξ 1 * = V 1 * / E by the divider 21. Calculate dc . Next, ξ 1 * is input to the first storage device 11, and the switching angle θ k0 of the PWM waveform that does not include low-order harmonics is read from the first storage device 11. This is the initial value of the switching angle.

次に、スイッチング角度の変化の演算回路7に、5次高調波の奇対称な成分の振幅の指令値ΔV5d、5次高調波の偶対象な成分の振幅の指令値ΔV5qおよび直流電圧Edcを入力し、除算器22と除算器23において、Δξ5d とΔξ5q を計算する。また、演算回路6の除算器21で計算されたξ を第2の記憶装置12に入力し、第2の記憶装置12から他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のa、b、c、dを読み出す。そして、Δξ5d 、Δξ5q 、a、b、c、dを演算回路13に入力し、演算回路13において、前述の近似式(11)に従って、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化Δθを計算する。 Next, the switching angle change calculation circuit 7 is supplied with an amplitude command value ΔV 5d of an odd-symmetric component of the fifth harmonic, an amplitude command value ΔV 5q of an even target component of the fifth harmonic, and a DC voltage E. dc is input, and Δξ 5d * and Δξ 5q * are calculated in the divider 22 and the divider 23. Also, ξ 1 * calculated by the divider 21 of the arithmetic circuit 6 is input to the second storage device 12, and the lower harmonics of other orders are not output from the second storage device 12, but the fifth order harmonics are not output. The coefficients a k , b k , c k , and d k necessary for calculating the change in the switching angle that outputs only the wave are read. Then, Δξ 5d * , Δξ 5q * , a k , b k , c k , and d k are input to the arithmetic circuit 13, and the arithmetic circuit 13 uses other approximations of lower harmonics according to the approximate expression (11). A change in switching angle Δθ k that outputs only the fifth harmonic without outputting a wave is calculated.

最後に、加算器24で、スイッチング角度の初期値θk0とスイッチング角度の変化Δθを合計し、これをPWM波形のスイッチング角度θとする。 Finally, the adder 24 adds the initial value θ k0 of the switching angle and the change Δθ k of the switching angle, and this is set as the switching angle θ k of the PWM waveform.

次に本発明の電力系統の高調波電圧の抑制方法について述べる。   Next, a method for suppressing the harmonic voltage of the power system of the present invention will be described.

図2において、まず、電力系統の相電圧VRu、VRv、VRwを検出し、電力系統の5次高調波電圧の検出回路14で、5次高調波電圧VRd、VRqを計算する。VRdは奇対称な成分、VRqは偶対象な成分である。なお、5次高調波電圧の検出回路14の一例を図15に示す。 In FIG. 2, first, phase voltages V Ru , V Rv , and V Rw of the power system are detected, and the fifth harmonic voltages V Rd and V Rq are calculated by the detection circuit 14 of the fifth harmonic voltage of the power system. . V Rd is an oddly symmetric component, and V Rq is an even target component. An example of the fifth-order harmonic voltage detection circuit 14 is shown in FIG.

次に、交直変換装置の5次高調波電流の指令値の演算回路15の比例器25,26を用いて、電力系統から交直変換装置へ流れ込む5次高調波電流の指令値IR5d 、IR5q を計算する。IR5d は奇対称な成分、IR5q は偶対象な成分である。電力系統から交直変換装置に向かって、系統電圧の5次高調波電圧と同位相の高調波電流を流すことで、系統電圧の5次高調波電圧を抑制することができる。 Next, the command values I R5d * and I of the fifth harmonic current flowing from the power system to the AC / DC converter using the proportional devices 25 and 26 of the command circuit 15 for the fifth harmonic current of the AC / DC converter. Calculate R5q * . I R5d * is an odd-symmetric component, and I R5q * is an even- numbered component. By flowing a harmonic current having the same phase as the fifth harmonic voltage of the system voltage from the power system toward the AC / DC converter, the fifth harmonic voltage of the system voltage can be suppressed.

最後に、電力変換部の5次高調波電圧の指令値の演算回路16を用いて、電力変換部の5次高調波電圧の指令値ΔV5d 、ΔV5q を計算し、これをPWM波形の演算回路5への入力とする。なお、電力変換部の5次高調波電圧の指令値の演算回路の一例を図16に示す。 Finally, command values ΔV 5d * and ΔV 5q * of the fifth harmonic voltage of the power converter are calculated using the arithmetic circuit 16 of the command value of the fifth harmonic voltage of the power converter, and this is calculated as a PWM waveform. Input to the arithmetic circuit 5. An example of a calculation circuit for the command value of the fifth harmonic voltage of the power converter is shown in FIG.

以上の手順により、電力系統の5次高調波電圧を抑制するように電力変換装置を動作させることができる。   With the above procedure, the power converter can be operated so as to suppress the fifth harmonic voltage of the power system.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

まず、PWM波形の演算回路5を用いて5次高調波電圧を出力するように制御した結果を示す。   First, the result of controlling to output the fifth harmonic voltage using the PWM waveform calculation circuit 5 is shown.

図1において、PWM波形の演算回路5への入力を基本波振幅指令値V 、高調波振幅指令値ΔV5d 、ΔV5q とする。PWM波形の演算回路5において、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度θを演算する。最後に、スイッチング角度θを電力変換部2へ入力する。以上の動作により、電力変換部2からは、7次から31次までの3の倍数の次数を除く低次高調波が消去され、基本波、5次高調波及び33次以上の高調波成分だけで構成される相電圧が出力される。 In FIG. 1, the input of the PWM waveform to the arithmetic circuit 5 is a fundamental amplitude command value V 1 * , a harmonic amplitude command value ΔV 5d * , and ΔV 5q * . The PWM waveform calculation circuit 5 calculates a switching angle θ k that outputs only the fifth-order harmonic without outputting the other-order low-order harmonics. Finally, the switching angle θ k is input to the power conversion unit 2. As a result of the above operation, the power conversion unit 2 eliminates the lower harmonics except the orders of multiples of 3 from the 7th to the 31st, and only the harmonic components of the fundamental wave, the 5th harmonic, and the 33rd and higher harmonics. Is output.

図8に基本波振幅指令値ξ =0.88、5次高調波指令値をΔV5d =−0.05、ΔV5q =0.05としたときの電力変換部の相電圧の高調波解析結果を示す。 FIG. 8 shows the phase voltage of the power conversion unit when the fundamental wave amplitude command value ξ 1 * = 0.88 and the fifth harmonic command value are ΔV 5d * = − 0.05 and ΔV 5q * = 0.05. The result of harmonic analysis is shown.

図8から、7次から31次までの低次高調波を消去したまま、5次高調波だけを出力できていることが分かる。   It can be seen from FIG. 8 that only the fifth harmonic can be output while the lower harmonics from the seventh order to the 31st order are eliminated.

次に、電力系統の5次高調波電圧の抑制を行った結果を示す。   Next, the result of suppressing the fifth harmonic voltage of the power system is shown.

図2において、電力系統の5次高調波電圧の検出回路14により、系統の5次高調波電圧VR5d、VR5qを得る。次に交直変換装置の5次高調波電流の指令値の演算回路15により、電力変換装置に流入させる5次高調波電流の指令値IR5d 、IR5q を計算する。次に、5次高調波電流IR5d 、IR5q を交直変換装置に流入させるために必要な電力変換部の5次高調波電圧の指令値V5d 、V5q を電力変換部の5次高調波電圧の指令値の演算回路16で計算する。最後に、直流電圧Edc、基本波振幅指令値V 、5次高調波電圧の指令値ΔV5d 、ΔV5q をPWM波形の演算回路5に入力し、スイッチング角度θすなわちPWM波形を得る。 In FIG. 2, the fifth harmonic voltage V R5d and V R5q of the system are obtained by the fifth harmonic voltage detection circuit 14 of the power system. Next, the fifth harmonic current command values I R5d * and I R5q * to be flown into the power converter are calculated by the arithmetic circuit 15 for the fifth harmonic current command value of the AC / DC converter. Next, the command values V 5d * and V 5q * of the fifth harmonic voltage of the power conversion unit necessary for causing the fifth harmonic currents I R5d * and I R5q * to flow into the AC / DC converter are supplied to the power conversion unit. The calculation circuit 16 of the command value of the fifth harmonic voltage is calculated. Finally, the DC voltage E dc , the fundamental wave amplitude command value V 1 * , and the fifth harmonic voltage command values ΔV 5d * and ΔV 5q * are input to the PWM waveform calculation circuit 5, and the switching angle θ k, that is, the PWM waveform. Get.

高調波電圧を抑制した場合の例として、図9に示す模擬電力系統においてノード3に交直変換装置を接続した場合の結果を図10、図11に示す。   As an example of the case where the harmonic voltage is suppressed, the results when the AC / DC converter is connected to the node 3 in the simulated power system shown in FIG. 9 are shown in FIGS.

図10、図11に示すように、従来の低次高調波消去PWM制御方式を適用した場合は、系統電圧の高調波電圧は、5次調波比が5.4%、全高調波ひずみ率
(THD)が6.6%となる。
As shown in FIGS. 10 and 11, when the conventional low-order harmonic elimination PWM control method is applied, the harmonic voltage of the system voltage is 5.4% of the fifth harmonic ratio and the total harmonic distortion rate. (THD) is 6.6%.

しかし、図2に示す回路で、本発明による高調波抑制手法を適用した場合は、5次高調波が抑制でき、5次調波比が2.3%、THDが4.5%となり、従来方式と比較し高調波が低減できることが分かる。   However, when the harmonic suppression method according to the present invention is applied to the circuit shown in FIG. 2, the fifth harmonic can be suppressed, the fifth harmonic ratio is 2.3%, and the THD is 4.5%. It can be seen that harmonics can be reduced compared to the method.

なお、本発明は、つぎのように応用することができる。本発明の出力電圧制御方法により、電力系統に接続される交直変換装置において、交直変換装置から発生する低次の高調波を効果的に取り除くことでき、フィルタの小型化、スイッチング回数の低減によるロスの低減などが実現できる。また、電力系統の低次高調波の抑制も実現できる。このことから、太陽光連系インバータ、蓄電池の充放電用のインバータなどの用途に適用することができる。   The present invention can be applied as follows. According to the output voltage control method of the present invention, in the AC / DC converter connected to the power system, low-order harmonics generated from the AC / DC converter can be effectively removed, and the loss due to the downsizing of the filter and the reduction in the number of switching times. Can be reduced. In addition, it is possible to suppress low-order harmonics of the power system. From this, it can apply to uses, such as a photovoltaic interconnection inverter and the inverter for charging / discharging a storage battery.

また、電力系統における直流送電やBTB(Back to Back)の交直変換装置には、系統電圧が正弦波であることを前提として、従来の高調波の制御ができない低次高調波消去PWM制御が適用されている箇所もある。よって、電力系統の高調波に対する抑制効果がないが、本発明を使用すれば電力系統の高調波を抑制することができる。   In addition, low-order harmonic cancellation PWM control that cannot control conventional harmonics is applied to DC power transmission and AC / DC converters for BTB (Back to Back) in the power system, assuming that the system voltage is a sine wave. There is also a part that has been done. Therefore, although there is no effect of suppressing harmonics in the power system, the use of the present invention can suppress harmonics in the power system.

1 直流部
2 直流を交流に変換する電力変換部
3 連系リアクトル
4 フィルタコンデンサ
5 PWM波形の演算回路
6 スイッチング角度の初期値の演算回路
7 スイッチング角度の変化の演算回路
11 第1の記憶装置
12 第2の記憶装置
13 スイッチング角度の変化を計算する演算回路
14 電力系統の5次高調波電圧の検出回路
15 交直変換装置の5次高調波電流の指令値の演算回路
16 電力変換部の5次高調波電圧の指令値の演算回路
21 除算器
22 除算器
23 除算器
24 加算器
25 比例器
26 比例器
DESCRIPTION OF SYMBOLS 1 DC part 2 Power converter 3 which converts direct current into alternating current 3 Reactor 4 Filter capacitor 5 PWM waveform calculation circuit 6 Initial value of switching angle calculation circuit 7 Switching angle change calculation circuit 11 First storage device 12 Second storage device 13 Arithmetic circuit 14 for calculating change in switching angle Detection circuit 15 for fifth-order harmonic voltage of power system 15 Calculation circuit 16 for command value of fifth-order harmonic current of AC / DC converter 16th order of power converter Harmonic voltage command value calculation circuit 21 Divider 22 Divider 23 Divider 24 Adder 25 Proportional device 26 Proportional device

Claims (10)

PWM制御方式を適用した交直変換装置の制御方法において、
スイッチング角度の初期値を演算して出力する演算回路に、基本波振幅指令値と直流電圧を入力してスイッチング角度の初期値を演算し、
スイッチング角度の変化を演算して出力する演算回路に、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値、直流電圧、及び基本波振幅指令値/直流電圧を入力してスイッチング角度の変化を演算し、
出力されたスイッチング角度の初期値及び出力されたスイッチング角度の変化を合計し、5次以外の低次高調波は出力せずに基本波と5次高調波を出力することを特徴とする交直変換装置の制御方法。
In the control method of the AC / DC converter using the PWM control method,
Calculate the initial value of the switching angle by inputting the fundamental wave amplitude command value and the DC voltage to the arithmetic circuit that calculates and outputs the initial value of the switching angle.
The arithmetic circuit that calculates and outputs the change of the switching angle includes the command value of the amplitude of the oddly symmetric component of the fifth harmonic, the command value of the amplitude of the even component of the fifth harmonic, the DC voltage, and the fundamental wave. Input the amplitude command value / DC voltage and calculate the change of the switching angle.
The AC-DC conversion is characterized in that the initial value of the output switching angle and the change of the output switching angle are summed, and the fundamental wave and the fifth harmonic are output without outputting the lower harmonics other than the fifth. Control method of the device.
基本波振幅指令値と直流電圧を第1の除算器に入力して基本波振幅指令値/直流電圧を計算して出力し、第1の記憶装置に入力して第1の記憶装置から基本波振幅指令値/直流電圧に対応するスイッチング角度の初期値を演算することを特徴とする請求項1に記載の交直変換装置の制御方法。   The fundamental wave amplitude command value and DC voltage are input to the first divider, the fundamental wave amplitude command value / DC voltage is calculated and output, input to the first memory device, and the fundamental wave from the first memory device. 2. The control method for an AC / DC converter according to claim 1, wherein an initial value of a switching angle corresponding to the amplitude command value / DC voltage is calculated. 5次高調波の奇対称な成分の振幅の指令値と直流電圧を第2の除算器に入力して5次高調波の奇対称な成分の振幅の指令値/直流電圧を計算し、
5次高調波の偶対象な成分の振幅の指令値と直流電圧を第3の除算器に入力して5次高調波の偶対象な成分の振幅の指令値/直流電圧を計算し、
第1の除算器の出力を、他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置に入力し、
第2の記憶装置から出力された係数、第2の除算器の出力、および第3の除算器の出力を第1の演算回路に入力して予め決められた演算式を用いて、他の次数の低次高調波を出力せずに5次高調波だけを出力するスイッチング角度の変化を計算することを特徴とする請求項2に記載の交直変換装置の制御方法。
The command value and DC voltage of the odd harmonic component of the fifth harmonic are input to the second divider to calculate the command value / DC voltage of the odd harmonic component of the fifth harmonic,
Input the command value of the amplitude of the even harmonic component of the fifth harmonic and the DC voltage to the third divider to calculate the command value / DC voltage of the amplitude of the even harmonic component of the fifth harmonic,
The second data in which the coefficient necessary for calculating the change of the switching angle for outputting only the fifth harmonic without outputting the low-order harmonic of the other order is outputted as the output of the first divider is stored. To the storage device,
The coefficient output from the second storage device, the output of the second divider, and the output of the third divider are input to the first arithmetic circuit, and another order is determined using a predetermined arithmetic expression. The method of controlling an AC / DC converter according to claim 2, wherein a change in switching angle at which only the fifth harmonic is output without outputting the lower harmonic is calculated.
交直変換装置と電力系統の接続点の5次高調波電圧を計算する第2の演算回路と、接続点の5次高調波電流指令値を計算する第3の演算回路と、電力変換部の5次高調波電圧指令値を計算する第4の演算回路とを備え、
第4の演算回路の出力を、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値とすることを特徴とする請求項1〜3のいずれかに記載の交直変換装置の制御方法。
A second arithmetic circuit for calculating the fifth harmonic voltage at the connection point of the AC / DC converter and the power system, a third arithmetic circuit for calculating the fifth harmonic current command value at the connection point, and 5 of the power conversion unit A fourth arithmetic circuit for calculating a second harmonic voltage command value,
The output of the fourth arithmetic circuit is set as a command value of the amplitude of the odd-symmetric component of the fifth harmonic, and a command value of the amplitude of the even-numbered component of the fifth harmonic. The control method of the AC / DC converter in any one of.
第3の演算器において接続点の5次高調波電流指令値を接続点の5次高調波電圧に比例させることを特徴とする請求項4に記載の交直変換装置の制御方法。   5. The method of controlling an AC / DC converter according to claim 4, wherein in the third computing unit, the fifth harmonic current command value at the connection point is proportional to the fifth harmonic voltage at the connection point. PWM制御方式を適用した交直変換装置の制御装置において、
低次高調波が含まれないPWM波形のスイッチング角度が保存された第1の記憶装置と第1の除算器を備え、入力された基本波振幅指令値と直流電圧が入力されてスイッチング角度の初期値を演算して出力する演算回路と、
第2の除算器、第3の除算器、及び他の次数の低次高調波は出力せずに5次高調波だけを出力するスイッチング角度の変化を計算するために必要な係数のデータが保存された第2の記憶装置を備え、5次高調波の奇対称な成分の振幅の指令値、5次高調波の偶対象な成分の振幅の指令値、直流電圧、及び第1の除算器で計算された基本波振幅指令値/直流電圧が入力されてスイッチング角度の変化を演算して出力する演算回路と、
出力されたスイッチング角度の初期値及び出力されたスイッチング角度の変化を合計する加算器を備え、5次以外の低次高調波は出力せずに基本波と5次高調波だけを指令値どおりに出力することを特徴とする交直変換装置の制御装置。
In the control device of the AC / DC converter using the PWM control method,
A first storage device storing a switching angle of a PWM waveform that does not include low-order harmonics and a first divider are provided, and an input fundamental wave amplitude command value and a direct-current voltage are input to initialize the switching angle. An arithmetic circuit that calculates and outputs a value;
The second divider, the third divider, and other low-order harmonics are not output, but only the fifth harmonic is output, and the coefficient data necessary to calculate the change in the switching angle is stored. The second storage device is provided, and the command value of the amplitude of the odd-symmetric component of the fifth harmonic, the command value of the amplitude of the even-numbered component of the fifth harmonic, the DC voltage, and the first divider An arithmetic circuit that receives the calculated fundamental wave amplitude command value / DC voltage and calculates and outputs a change in switching angle; and
An adder that adds the initial value of the output switching angle and the change in the output switching angle is provided, and only the fundamental and fifth harmonics are output as command values without outputting the lower harmonics other than the fifth. A control device for an AC / DC converter, characterized in that the output is output.
基本波振幅指令値と直流電圧が入力されて基本波振幅指令値/直流電圧を計算して出力する第1の除算器と、第1の除算器から出力された基本波振幅指令値/直流電圧が入力された第1の記憶装置から基本波振幅指令値/直流電圧に対応するスイッチング角度の初期値を演算する演算回路を備えたことを特徴とする請求項6に記載の交直変換装置の制御装置。   A first divider for calculating and outputting a fundamental wave amplitude command value / DC voltage by inputting a fundamental wave amplitude command value and a DC voltage, and a fundamental wave amplitude command value / DC voltage output from the first divider. 7. The control of the AC / DC converter according to claim 6, further comprising an arithmetic circuit that calculates an initial value of a switching angle corresponding to the fundamental wave amplitude command value / DC voltage from the first storage device to which is input. apparatus. 5次高調波の奇対称な成分の振幅の指令値と直流電圧を入力して5次高調波の奇対称な成分の振幅の指令値/直流電圧を計算して出力する第2の除算器と、
5次高調波の偶対象な成分の振幅の指令値と直流電圧を入力して5次高調波の偶対象な成分の振幅の指令値/直流電圧を計算して出力する第3の除算器と、
第1の除算器の出力が入力されて第2の記憶装置から出力された係数、第2の除算器の出力、および第3の除算器の出力が入力されて予め決められた演算式を用いて他の次数の低次高調波を出力せずに5次高調波だけを出力するスイッチング角度の変化を計算する第1の演算回路を備えたことを特徴とする請求項7に記載の交直変換装置の制御装置。
A second divider for inputting the command value and the DC voltage of the odd-symmetric component of the fifth harmonic and calculating and outputting the command value / DC voltage of the odd-symmetric component of the fifth harmonic; ,
A third divider for inputting a command value and a DC voltage of the amplitude of the even harmonic component of the fifth harmonic and calculating and outputting a command value / DC voltage of the amplitude of the even harmonic component of the fifth harmonic; ,
The coefficient outputted from the second storage device when the output of the first divider is inputted, the output of the second divider, and the output of the third divider are inputted and a predetermined arithmetic expression is used. 8. The AC / DC conversion according to claim 7, further comprising a first arithmetic circuit that calculates a change in switching angle that outputs only the fifth harmonic without outputting the lower harmonic of other orders. Control device for the device.
交直変換装置と電力系統の接続点の5次高調波電圧を計算する第2の演算回路と、接続点の5次高調波電流指令値を計算する第3の演算回路と、電力変換部の5次高調波電圧指令値を計算し、5次高調波の奇対称な成分の振幅の指令値、及び5次高調波の偶対象な成分の振幅の指令値を出力する第4の演算回路とを備えたことを特徴とする請求項6〜8のいずれかに記載の交直変換装置の制御装置。   A second arithmetic circuit for calculating the fifth harmonic voltage at the connection point of the AC / DC converter and the power system, a third arithmetic circuit for calculating the fifth harmonic current command value at the connection point, and 5 of the power conversion unit A fourth arithmetic circuit that calculates a second harmonic voltage command value and outputs a command value of the amplitude of the odd-symmetric component of the fifth harmonic and a command value of the amplitude of the even-numbered component of the fifth harmonic; The control device for an AC / DC converter according to claim 6, wherein the controller is provided. 第3の演算器が接続点の5次高調波電流指令値を接続点の5次高調波電圧に比例させる比例器を備えたことを特徴とする請求項9に記載の交直変換装置の制御装置。   10. The control device for an AC / DC converter according to claim 9, wherein the third arithmetic unit includes a proportional device that makes the fifth harmonic current command value at the connection point proportional to the fifth harmonic voltage at the connection point. .
JP2010023445A 2010-02-04 2010-02-04 Method for controlling ac-dc converter and control apparatus Pending JP2011166852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023445A JP2011166852A (en) 2010-02-04 2010-02-04 Method for controlling ac-dc converter and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023445A JP2011166852A (en) 2010-02-04 2010-02-04 Method for controlling ac-dc converter and control apparatus

Publications (1)

Publication Number Publication Date
JP2011166852A true JP2011166852A (en) 2011-08-25

Family

ID=44596871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023445A Pending JP2011166852A (en) 2010-02-04 2010-02-04 Method for controlling ac-dc converter and control apparatus

Country Status (1)

Country Link
JP (1) JP2011166852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739083A (en) * 2012-07-05 2012-10-17 中国科学院电工研究所 Optimization modulation method of electric railway train traction rectifying system
CN104253549A (en) * 2014-10-11 2014-12-31 东南大学 LCL filtering-based circuit topology structure of high-power PWM (pulse-width modulation) rectifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122818A (en) * 1997-10-13 1999-04-30 Omron Corp System interconnector
JP2001016867A (en) * 1999-06-30 2001-01-19 Daihen Corp System interconnecting inverter
JP2008131735A (en) * 2006-11-21 2008-06-05 Meidensha Corp Output voltage controller for inverter
JP2008245349A (en) * 2007-03-26 2008-10-09 Daihen Corp Systematically interconnecting inverter device
JP2009247136A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Power converter and method for controlling harmonic current of the power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122818A (en) * 1997-10-13 1999-04-30 Omron Corp System interconnector
JP2001016867A (en) * 1999-06-30 2001-01-19 Daihen Corp System interconnecting inverter
JP2008131735A (en) * 2006-11-21 2008-06-05 Meidensha Corp Output voltage controller for inverter
JP2008245349A (en) * 2007-03-26 2008-10-09 Daihen Corp Systematically interconnecting inverter device
JP2009247136A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Power converter and method for controlling harmonic current of the power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739083A (en) * 2012-07-05 2012-10-17 中国科学院电工研究所 Optimization modulation method of electric railway train traction rectifying system
CN104253549A (en) * 2014-10-11 2014-12-31 东南大学 LCL filtering-based circuit topology structure of high-power PWM (pulse-width modulation) rectifier

Similar Documents

Publication Publication Date Title
US10404064B2 (en) Modular multilevel converter capacitor voltage ripple reduction
Liu et al. Real-time calculation of switching angles minimizing THD for multilevel inverters with step modulation
Maurya et al. An efficient technique to reduce total harmonics distortion in cascaded h-bridge multilevel inverter
Juárez-Abad et al. Generalized proportional integral tracking controller for a single-phase multilevel cascade inverter: An FPGA implementation
Bouhali et al. Solving harmonic elimination equations in multi-levelinverters by using neural networks
WO2021130911A1 (en) Power conversion device
Ruiz-Caballero et al. Cascaded symmetrical hybrid multilevel DC-AC converter
JP6282486B2 (en) Power converter
Hatas et al. FPGA implementation of SPWM for cascaded multilevel inverter by using XSG
JP2018088750A (en) Power conversion device
JP6396135B2 (en) Power converter
Muthyala et al. Comparative analysis of switching angle calculation methods for multilevel inverters
EP3723264A1 (en) Single-phase five-level converter control method and device
Nejad et al. Study of an hybrid current controller suitable for DC–DC or DC–AC applications
JP2011166852A (en) Method for controlling ac-dc converter and control apparatus
Kumar et al. Harmonic mitigation of cascaded multilevel inverter with non equal DC sources using Hybrid Newton Raphson Method
Kumar et al. Harmonic mitigation of cascaded multilevel inverter using particle swarm optimization technique
JP2016063688A (en) Power conversion device
Lopatkin Weighted THD factors evaluation of multilevel voltage source inverter with space vector control under common-mode voltage elimination
Sunitha et al. A new 23 level cascaded multi-level inverter with optimum structure
Xinghua et al. A novel voltage balance method for cascaded H-bridge rectifier
Jamuna et al. Analysis of new H-bridge based cascaded multilevel inverter
Hausmann et al. Harmonic compensation in a load emulation system using different control techniques
Zinoviev et al. Unified analysis technique for energy quality factors estimation of NPC multilevel VSC for energy storage systems
Setiawan et al. Fixed point arithmetic implementation of digital proportional-resonant single-phase current controllers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311