JP2011043442A - Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector - Google Patents

Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector Download PDF

Info

Publication number
JP2011043442A
JP2011043442A JP2009192557A JP2009192557A JP2011043442A JP 2011043442 A JP2011043442 A JP 2011043442A JP 2009192557 A JP2009192557 A JP 2009192557A JP 2009192557 A JP2009192557 A JP 2009192557A JP 2011043442 A JP2011043442 A JP 2011043442A
Authority
JP
Japan
Prior art keywords
load detection
plate
variable load
plates
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009192557A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
由紀夫 藤本
Eiji Shintaku
英司 新宅
Yoshikazu Tanaka
義和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2009192557A priority Critical patent/JP2011043442A/en
Publication of JP2011043442A publication Critical patent/JP2011043442A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin fluctuation load detection pad capable of detecting a large fluctuation load, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and a fluctuation load detector. <P>SOLUTION: The fluctuation load detection pad 1 includes: a piezoelectric plate 11 formed from polymer piezoelectric material; a pair of electrode plates 12, 13 sandwiching the piezoelectric plate 11 therebetween; and a pair of insulation plates 14, 15 sandwiching the pair of electrode plates 12, 13 therebetween. Each of the pair of electrode plates 12, 13 comes into face contact directly with the piezoelectric plate 11 and is non-adhesive. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、変動荷重検出パッド及びこれを用いた変動荷重検出板、分布型変動荷重検出板、並びに変動荷重検出装置に関する。   The present invention relates to a variable load detection pad, a variable load detection plate using the same, a distributed variable load detection plate, and a variable load detection device.

1kN(100kg)〜1MN(100ton)もの大きな変動荷重の計測、モニタリング技術が求められている。このような大きな変動荷重の計測等が求められる対象としては、例えば、クレーン車におけるアウトリガーのベース底面の変動荷重、コンテナトレーラのコンテナと車両との間の変動荷重、軌道と枕木の間の変動荷重、プレス機械の変動荷重、車両の衝突衝撃力などが挙げられる。   There is a demand for a technique for measuring and monitoring a fluctuating load as large as 1 kN (100 kg) to 1 MN (100 ton). Examples of the objects that require measurement of such a large variable load include, for example, a variable load on the base bottom of an outrigger in a crane vehicle, a variable load between a container of a container trailer and a vehicle, and a variable load between a track and a sleeper. , Fluctuating load of press machine, collision impact force of vehicle and the like.

このような重量物の変動荷重の測定では、薄型で、受圧面積が大きく、且つ、大きな変動荷重を計測可能な測定装置が要求される。また、状況によっては対象物が負荷する荷重に加え、ずれ力を検出することを要求される。   In the measurement of such a fluctuating load of a heavy object, a thin measuring device having a large pressure receiving area and capable of measuring a large fluctuating load is required. Further, depending on the situation, it is required to detect the displacement force in addition to the load applied by the object.

薄型で受圧面積が大きい圧力検出装置として、特許文献1に代表される変動荷重検出パッドが知られている。圧力検出装置には圧力を検出する素子として圧電フィルムが用いられており、圧電フィルムは、フィルム面の押圧、或いは、フィルム面方向への伸縮によって、フィルムの厚みを変化させ、この厚みの変化に応じて生じる電荷変動を両面に配置されている電極膜を介して取り出すことで、作用している荷重を検出するものである。   As a thin pressure detection device having a large pressure receiving area, a variable load detection pad represented by Patent Document 1 is known. A piezoelectric film is used as an element for detecting pressure in the pressure detection device. The piezoelectric film changes the thickness of the film by pressing the film surface or expanding and contracting in the film surface direction. The acting load is detected by taking out the electric charge fluctuation generated in response through the electrode films arranged on both sides.

特開2006−226858号公報JP 2006-226858 A

特許文献1等に開示されているように、通常、圧電板の表面に蒸着やスパッタリングによる金属膜、或いは導電性ペーストなどの電極膜が形成されたものが使用されている。これらの電極膜は非常に薄く強度が弱いので、大きな荷重が作用すると、電極膜のひび割れや剥離が生じる。このため、大きな変動荷重の計測には用いることは困難である。   As disclosed in Patent Document 1 or the like, a material in which an electrode film such as a metal film by evaporation or sputtering or a conductive paste is formed on the surface of a piezoelectric plate is usually used. Since these electrode films are very thin and weak in strength, the electrode films are cracked or peeled off when a large load is applied. For this reason, it is difficult to use it for measuring a large fluctuating load.

本発明は、上記事項に鑑みてなされたものであり、その目的とするところは、薄型で、且つ、大きな変動荷重を検出することが可能な変動荷重検出パッド及びこれを用いた変動荷重検出板、分布型変動荷重検出板、並びに変動荷重検出装置を提供することにある。   The present invention has been made in view of the above matters, and an object of the present invention is a variable load detection pad that is thin and capable of detecting a large variable load and a variable load detection plate using the same. Another object of the present invention is to provide a distributed variable load detection plate and a variable load detection device.

本発明に係る変動荷重検出パッドは、
高分子圧電材料から形成された圧電板と、
前記圧電板を挟む一対の電極板と、
前記一対の電極板を挟む一対の絶縁板と、を備え、
前記一対の電極板はそれぞれ前記圧電板に直に面接触し、且つ、非接着であり、
負荷される荷重に応じて前記圧電板の厚みを変化させ、前記圧電板から前記荷重に応じた電圧を出力させる、ことを特徴とする。
The variable load detection pad according to the present invention is:
A piezoelectric plate formed from a polymeric piezoelectric material;
A pair of electrode plates sandwiching the piezoelectric plate;
A pair of insulating plates sandwiching the pair of electrode plates,
Each of the pair of electrode plates is in direct surface contact with the piezoelectric plate, and is non-adherent.
The thickness of the piezoelectric plate is changed according to a load applied, and a voltage corresponding to the load is output from the piezoelectric plate.

また、前記一対の電極板のうち少なくとも一方が前記圧電板の面積よりも小さいことが望ましい。   Further, it is desirable that at least one of the pair of electrode plates is smaller than the area of the piezoelectric plate.

また、前記電極板が金属板であることが望ましい。   The electrode plate is preferably a metal plate.

また、前記金属板が耐腐食性の金属板或いは表面に錆止め処理が施された金属板であることが好ましい。   The metal plate is preferably a corrosion-resistant metal plate or a metal plate having a surface subjected to rust prevention treatment.

また、前記絶縁板は、硬質樹脂素材から構成されていてもよい。   The insulating plate may be made of a hard resin material.

また、前記絶縁板は、前記荷重を前記一対の電極板に分散させる弾性素材から構成されていてもよい。   The insulating plate may be made of an elastic material that distributes the load to the pair of electrode plates.

本発明に係る変動荷重検出板は、
上記いずれかの変動荷重検出パッドと、
前記変動荷重検出パッドを挟む一対の受圧板と、
前記一対の受圧板を互いに押し合わせて前記変動荷重検出パッドと一体的に固定させる固定部材と、を備えることを特徴とする。
Fluctuating load detection plate according to the present invention,
Any of the above fluctuating load detection pads;
A pair of pressure plates sandwiching the variable load detection pad;
A fixing member that presses the pair of pressure-receiving plates together to be fixed integrally with the fluctuating load detection pad.

また、前記圧電板に所定の負荷が加わるように前記固定部材によって固定され、
前記所定の負荷を超える荷重に応じて前記圧電板の厚み変化を生じさせるように構成してもよい。
Further, it is fixed by the fixing member so that a predetermined load is applied to the piezoelectric plate,
You may comprise so that the thickness change of the said piezoelectric plate may be produced according to the load exceeding the said predetermined load.

本発明の第1の観点に係る分布型変動荷重検出板は、上記いずれかの変動荷重検出パッドが同一平面上に複数配置されていることを特徴とする。   The distributed variable load detection plate according to the first aspect of the present invention is characterized in that a plurality of any of the above variable load detection pads are arranged on the same plane.

本発明の第2の観点に係る分布型変動荷重検出板は、上記いずれかの変動荷重検出板が同一平面上に複数配置されていることを特徴とする。   A distributed variable load detection plate according to a second aspect of the present invention is characterized in that a plurality of any of the above variable load detection plates are arranged on the same plane.

本発明に係る変動荷重検出装置は、
凹部が形成されて受圧面及び垂下部を有する断面コの字状の受圧部材と、
前記垂下部内壁に対向配置される一対の上記の変動荷重検出板と、
前記一対の変動荷重検出板に当接するずれ力伝達部を有し、前記ずれ力伝達部が前記受圧部材の凹部に内包される支持部材と、
前記受圧部材と前記支持部材との間に配置された弾性板と、を備え、
前記受圧部材に負荷される荷重によって前記受圧面に沿って生じるずれ力が前記ずれ力伝達部に伝達され、
前記ずれ力伝達部によって前記一対の変動荷重検出板のいずれかが押圧され、
前記一対の変動荷重検出板からそれぞれ出力される電圧の差から前記ずれ力を検出する、ことを特徴とする。
The variable load detection device according to the present invention is:
A pressure-receiving member having a U-shaped cross section having a pressure-receiving surface and a drooping portion formed with a recess;
A pair of the above-described fluctuating load detection plates disposed opposite to the hanging inner wall;
A support member that includes a displacement force transmission portion that contacts the pair of fluctuating load detection plates, and wherein the displacement force transmission portion is included in the recess of the pressure receiving member;
An elastic plate disposed between the pressure receiving member and the support member,
A displacement force generated along the pressure-receiving surface due to a load applied to the pressure-receiving member is transmitted to the displacement force transmission unit,
One of the pair of fluctuating load detection plates is pressed by the displacement force transmission unit,
The displacement force is detected from a difference between voltages output from the pair of fluctuating load detection plates.

また、前記一対の変動荷重検出板が二組それぞれ対向配置され、一組の前記変動荷重検出板を結ぶ線と他の一組の前記変動荷重検出板を結ぶ線とが十字状に交差するよう構成してもよい。   In addition, two sets of the pair of variable load detection plates are arranged opposite to each other so that a line connecting the one set of variable load detection plates and a line connecting the other set of the variable load detection plates intersect in a cross shape. It may be configured.

また、前記凹部が円盤状であり、前記凹部の周壁に複数対の前記変動荷重検出板がそれぞれ対向配置され、
前記支持部材は複数対の前記変動荷重検出板に当接する円盤状の前記ずれ力伝達部を備えていてもよい。
Further, the concave portion is disk-shaped, and a plurality of pairs of the variable load detection plates are respectively arranged to face the peripheral wall of the concave portion,
The support member may include the disc-shaped displacement force transmission unit that contacts a plurality of pairs of the fluctuating load detection plates.

更に、前記支持部材の底面に上記いずれかの変動荷重検出パッドが配置され、前記受圧部材に加わる変動荷重を検出するよう構成してもよい。   Furthermore, any one of the above-described fluctuating load detection pads may be disposed on the bottom surface of the support member, and the fluctuating load applied to the pressure receiving member may be detected.

本発明に係る変動荷重検出パッドは、機械的強度を有する一対の電極板で圧電板を挟んだ形態である。そして、圧電板と電極板とは直に面接触しており、且つ、非接着である。   The fluctuating load detection pad according to the present invention has a form in which a piezoelectric plate is sandwiched between a pair of electrode plates having mechanical strength. The piezoelectric plate and the electrode plate are in direct surface contact and are not bonded.

電極板は機械的強度を有するので、大きな荷重が作用しても、電極板にひび割れ等が生じにくく、大きな変動荷重の計測に用いることができる。   Since the electrode plate has mechanical strength, even if a large load is applied, the electrode plate is hardly cracked and can be used for measuring a large fluctuating load.

また、電極板と圧電板とは非接着であるので、電極板と圧電板との間に接着層がなく、静電容量が生じない。更に、ポアソン効果による電極板の面方向への伸びが生じない。このため、電極板に挟まれた圧電板は、面に沿って伸ばされることなく、負荷される荷重に応じて厚み方向に圧縮されるので、変動荷重を精度良く検出できる利点がある。   Further, since the electrode plate and the piezoelectric plate are not bonded, there is no adhesive layer between the electrode plate and the piezoelectric plate, and no capacitance is generated. In addition, there is no elongation in the surface direction of the electrode plate due to the Poisson effect. For this reason, since the piezoelectric plate sandwiched between the electrode plates is compressed in the thickness direction in accordance with the load applied without being stretched along the surface, there is an advantage that the variable load can be detected with high accuracy.

更に、それぞれ薄い圧電板、電極板、絶縁板から構成されるため、薄型で、且つ、受圧面積を大きく構成することができ、様々な使用用途に適応させることができる。   Furthermore, since each is composed of a thin piezoelectric plate, electrode plate, and insulating plate, it can be thin and can have a large pressure receiving area, and can be adapted to various uses.

実施の形態1に係る変動荷重検出パッドの外観斜視図である。1 is an external perspective view of a fluctuating load detection pad according to Embodiment 1. FIG. 実施の形態1に係る変動荷重検出パッドの平面透視図である。4 is a plan perspective view of the variable load detection pad according to Embodiment 1. FIG. 図2のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図2のB−B’断面図である。FIG. 3 is a B-B ′ sectional view of FIG. 2. (A)は電極膜が形成された圧電板の断面図、(B)は圧縮荷重が加わった状態の断面図である。(A) is sectional drawing of the piezoelectric plate in which the electrode film was formed, (B) is sectional drawing of the state to which the compressive load was added. 電極板の曲げ変形による影響を説明する図である。It is a figure explaining the influence by the bending deformation of an electrode plate. 凹凸がある場所での変動荷重検出パッドの使用状況を示す断面図である。It is sectional drawing which shows the use condition of the variable load detection pad in a location with an unevenness | corrugation. 実施の形態2に係る変動荷重検出板の断面図である。6 is a cross-sectional view of a fluctuating load detection plate according to Embodiment 2. FIG. 実施の形態3に係る分布型変動荷重検出板の外観斜視図である。10 is an external perspective view of a distributed variable load detection plate according to Embodiment 3. FIG. 実施の形態4に係る変動荷重検出装置の外観斜視図である。FIG. 10 is an external perspective view of a fluctuating load detection device according to a fourth embodiment. 図10のA−A’断面図である。It is A-A 'sectional drawing of FIG. 実施の形態4に係る変動荷重検出装置の部分断面図である。FIG. 6 is a partial cross-sectional view of a fluctuating load detection device according to a fourth embodiment. 実施の形態4に係る変動荷重検出装置の支持部材の平面図である。6 is a plan view of a support member of a fluctuating load detection device according to Embodiment 4. FIG. (A)は実施の形態5に係る変動荷重検出装置の外観斜視図、(B)はA−A’断面図、(C)はB−B’断面図である。(A) is an external perspective view of the fluctuating load detection device according to the fifth embodiment, (B) is an A-A ′ sectional view, and (C) is a B-B ′ sectional view. 実施の形態6に係る変動荷重検出装置の外観斜視図である。FIG. 10 is an external perspective view of a fluctuating load detection device according to a sixth embodiment. 実施の形態6に係る変動荷重検出装置の支持部材の外観斜視図である。FIG. 10 is an external perspective view of a support member of a variable load detection device according to a sixth embodiment. 図15のA−A’断面図である。It is A-A 'sectional drawing of FIG. 実施の形態7に係る変動荷重検出装置の断面図である。FIG. 10 is a cross-sectional view of a fluctuating load detection device according to a seventh embodiment. 実施の形態8に係る変動荷重検出装置の断面図である。FIG. 10 is a cross-sectional view of a fluctuating load detection device according to an eighth embodiment. 実施例1における荷重と変動荷重検出パッドの出力との関係を示す図である。It is a figure which shows the relationship between the load in Example 1, and the output of a fluctuation | variation load detection pad. 実施例2における荷重と変動荷重検出パッドの出力との関係を示す図である。It is a figure which shows the relationship between the load in Example 2, and the output of a fluctuation | variation load detection pad. 実施例3における荷重と変動荷重検出パッドの出力との関係を示す図である。It is a figure which shows the relationship between the load in Example 3, and the output of a fluctuation | variation load detection pad. 実施例4における荷重と変動荷重検出装置の出力との関係を示す図である。It is a figure which shows the relationship between the load in Example 4, and the output of a fluctuation | variation load detection apparatus.

(実施の形態1)
実施の形態1に係る変動荷重検出パッド1は、図1の外観斜視図、図2の平面透視図、図3及び図4の断面図に示すように、主として、圧電板11と、圧電板11を挟む一対の電極板12、13と、電極板12、13を挟む一対の絶縁板14、15と、スペーサ16を介して圧電板11と電極板12、13と絶縁板14、15とを一体に固定する接着部材17とから構成される。
(Embodiment 1)
As shown in the external perspective view of FIG. 1, the perspective plan view of FIG. 2, and the cross-sectional views of FIGS. The pair of electrode plates 12 and 13 sandwiching the electrode plate, the pair of insulating plates 14 and 15 sandwiching the electrode plates 12 and 13, and the piezoelectric plate 11, the electrode plates 12 and 13, and the insulating plates 14 and 15 through the spacer 16 are integrated. It is comprised from the adhesive member 17 fixed to.

圧電板11は、フィルム状の薄膜であり、柔軟性を備える高分子圧電材料から形成されている。圧電板11の具体的な素材の一例を挙げると、ポリフッ化ビニリデンや、シアン化ビニリデン等である。圧電板11は、たとえば、市販の厚さ20μm〜200μm、弾性率約3000MPaのポリフッ化ビニリデンを所定の形状寸法に切り出して用いればよい。   The piezoelectric plate 11 is a film-like thin film, and is formed from a polymer piezoelectric material having flexibility. Examples of specific materials for the piezoelectric plate 11 include polyvinylidene fluoride and vinylidene cyanide. For the piezoelectric plate 11, for example, a commercially available polyvinylidene fluoride having a thickness of 20 μm to 200 μm and an elastic modulus of about 3000 MPa may be cut into a predetermined shape and used.

高分子圧電材料から構成された圧電板11は、板面が押圧されることによって、圧電板11の厚みが変化し、この厚みの変化に応じた電荷変動が生じる。この電荷変動、即ち電圧を両面に配置されている電極板12、13を介して検出することで、変動荷重検出パッド1に作用している荷重を測定することができる。   The piezoelectric plate 11 made of a polymer piezoelectric material changes the thickness of the piezoelectric plate 11 when the plate surface is pressed, and the electric charge varies according to the change in thickness. The load acting on the variable load detection pad 1 can be measured by detecting this charge fluctuation, that is, the voltage via the electrode plates 12 and 13 arranged on both sides.

電極板12、13は、圧電板11を挟むように配置されている。それぞれの電極板12、13は圧電板11に直に面接触し、且つ、圧電板11に非接着である。そして、それぞれの電極板12、13には、圧電板11が発生する電荷信号を出力するための電気配線(不図示)を接続する端子部18、19が設けられている。圧電板11に蒸着、スパッタリングあるいは導電性ペーストなどによって電極膜が形成され、電極膜に配線を接続する方法では、電極膜が薄いので配線の接続方法が限られていたが、電極板12、13は金属板であるので、ハンダ付け、カシメ、ネジ止めなど、種々の方法で容易に端子部18、19に配線を接続することができる。   The electrode plates 12 and 13 are arranged so as to sandwich the piezoelectric plate 11. The respective electrode plates 12 and 13 are in direct surface contact with the piezoelectric plate 11 and are not bonded to the piezoelectric plate 11. The electrode plates 12 and 13 are provided with terminal portions 18 and 19 for connecting electrical wiring (not shown) for outputting a charge signal generated by the piezoelectric plate 11. In the method in which the electrode film is formed on the piezoelectric plate 11 by vapor deposition, sputtering, conductive paste, or the like and the wiring is connected to the electrode film, the electrode film is thin, so that the wiring connection method is limited. Since is a metal plate, wiring can be easily connected to the terminal portions 18 and 19 by various methods such as soldering, caulking, and screwing.

電極板12、13には、ともに、面内には強度を有し、面外にはある程度の柔軟性を有する薄い金属板を用いる。   For the electrode plates 12 and 13, a thin metal plate having strength in the plane and having some flexibility outside the plane is used.

電極板12、13は、圧電板11と直に接触して配置されるので、長期間使用した場合でも、接触面に錆が生じにくいステンレス、アルミ、銅など、耐腐食性の金属板であることが好ましい。或いは、電極板12、13は、錆の発生を抑えるために、少なくとも圧電板11と接する面に貴金属メッキ(金メッキ、銀メッキ等)等、錆止め処理が施された金属板であってもよい。   Since the electrode plates 12 and 13 are disposed in direct contact with the piezoelectric plate 11, they are corrosion-resistant metal plates such as stainless steel, aluminum, and copper, which do not easily rust on the contact surface even when used for a long time. It is preferable. Alternatively, the electrode plates 12 and 13 may be metal plates on which at least a surface in contact with the piezoelectric plate 11 is subjected to rust prevention treatment such as noble metal plating (gold plating, silver plating, etc.) in order to suppress the generation of rust.

電極板12、13の少なくとも一方は、圧電板11の面積より小さく構成するとよい。電極板12、13がともに圧電板11の寸法よりも大きいと、圧電板11からはみ出した部分で電極板12、13が接触してしまい、圧電板11から発生する電荷信号が計測できないおそれがあるためである。   At least one of the electrode plates 12 and 13 may be configured to be smaller than the area of the piezoelectric plate 11. If both the electrode plates 12 and 13 are larger than the size of the piezoelectric plate 11, the electrode plates 12 and 13 come into contact with each other at the portion protruding from the piezoelectric plate 11, and there is a possibility that the charge signal generated from the piezoelectric plate 11 cannot be measured. Because.

電極板12、13は圧電板11の表面と直に接触し、圧電板11との境界面には強い圧力が作用するので、電極板12、13の圧電板11に接触する面は、滑らかな平面に加工したものを用いるとよい。滑らかさの程度としては、圧電板11に傷を付けない研磨仕上げ(精密仕上げ)程度の滑らかさであればよい。   Since the electrode plates 12 and 13 are in direct contact with the surface of the piezoelectric plate 11 and a strong pressure acts on the boundary surface with the piezoelectric plate 11, the surfaces of the electrode plates 12 and 13 in contact with the piezoelectric plate 11 are smooth. It is good to use what was processed into the plane. The degree of smoothness may be as smooth as a polishing finish (precision finish) that does not damage the piezoelectric plate 11.

絶縁板14、15は、電極板12、13と圧縮力を負荷する対象物との間を電気的に絶縁する作用を備える。対象物の負荷により、絶縁板14、15にも大きな圧力が加わるので、絶縁板14、15は電気絶縁性が高く、且つ、弾性率が大きい材料から構成される。絶縁板14、15として、樹脂シート、樹脂板、繊維強化樹脂シート等の硬質樹脂が用いられ、具体的には、ポリエチレンテレフタラート樹脂、ナイロン樹脂、硬質塩化ビニル、ベークライト等が挙げられる。   The insulating plates 14 and 15 have an effect of electrically insulating between the electrode plates 12 and 13 and an object to which a compressive force is applied. Since a large pressure is also applied to the insulating plates 14 and 15 due to the load of the object, the insulating plates 14 and 15 are made of a material having high electrical insulation and a high elastic modulus. As the insulating plates 14 and 15, a hard resin such as a resin sheet, a resin plate, or a fiber reinforced resin sheet is used. Specific examples include polyethylene terephthalate resin, nylon resin, hard vinyl chloride, and bakelite.

絶縁板14と電極板12、及び、絶縁板15と電極板13は、それぞれ接着部材17で接着されている。更に、絶縁板14と絶縁板15の縁同士は、絶縁板14、15の縁全域に渡って、スペーサ16を介し、接着部材17で接着されている。このようにして、圧電板11、電極板12、13、絶縁板14、15が一体的に固定され、変動荷重検出パッド1が形成されている。   The insulating plate 14 and the electrode plate 12, and the insulating plate 15 and the electrode plate 13 are bonded to each other by an adhesive member 17. Further, the edges of the insulating plate 14 and the insulating plate 15 are bonded to each other by the adhesive member 17 through the spacer 16 over the entire edge of the insulating plates 14 and 15. In this way, the piezoelectric plate 11, the electrode plates 12 and 13, and the insulating plates 14 and 15 are integrally fixed, and the variable load detection pad 1 is formed.

接着部材17として、接着剤や粘着材等、絶縁板14と絶縁板15とを接着し得る種々のものが用いられる。圧電板11、及び電極板12、13を積層し、その厚みが大きい場合には、必要に応じてスペーサ16を挟んで接着してもよい。   As the bonding member 17, various materials that can bond the insulating plate 14 and the insulating plate 15, such as an adhesive or an adhesive material, are used. When the piezoelectric plate 11 and the electrode plates 12 and 13 are laminated and the thickness thereof is large, they may be bonded with a spacer 16 interposed therebetween as necessary.

また、圧電板11の寸法(面積)が小さい場合には、絶縁板14、15の縁同士を、接着部材17を介して接着するだけで、圧電板11と電極板12、13と絶縁板14、15とを一体に固定することができるが、圧電板11の寸法が大きい場合には、以下のように構成するとよい。   Further, when the size (area) of the piezoelectric plate 11 is small, the piezoelectric plate 11, the electrode plates 12, 13, and the insulating plate 14 can be obtained by simply bonding the edges of the insulating plates 14 and 15 via the adhesive member 17. , 15 can be fixed integrally, but when the size of the piezoelectric plate 11 is large, the following configuration is preferable.

図2の透視図、及び、図4の断面図に示すように、圧電板11及び電極板12、13に1箇所又は複数箇所の対応する開口部を設け、開口部分にもスペーサ16を介して絶縁板14、15同士を接着する。図2では、圧電板11及び電極板12、13に2箇所の円形状の開口部を設けている。   As shown in the perspective view of FIG. 2 and the cross-sectional view of FIG. 4, the piezoelectric plate 11 and the electrode plates 12 and 13 are provided with one or a plurality of corresponding openings, and the openings are also interposed via spacers 16. The insulating plates 14 and 15 are bonded together. In FIG. 2, two circular openings are provided in the piezoelectric plate 11 and the electrode plates 12 and 13.

上記のように構成することで、圧電板11と電極板12、13とが非接着であっても、圧電板11と電極板12、13との相互のずれを防止することができる。   By configuring as described above, even if the piezoelectric plate 11 and the electrode plates 12 and 13 are not bonded, the mutual displacement between the piezoelectric plate 11 and the electrode plates 12 and 13 can be prevented.

以上のように構成された変動荷重検出パッド1では、変動荷重検出パッド1の厚み方向に圧縮荷重を受けると、圧電板11が圧縮荷重に応じて圧縮され、圧縮量に応じた電荷を発生する。そして、この電荷を電極板12、13、及び、端子部18、19を介して取り出すことで、変動荷重検出パッド1に負荷された変動荷重を精度良く検出することができる。   In the variable load detection pad 1 configured as described above, when a compressive load is received in the thickness direction of the variable load detection pad 1, the piezoelectric plate 11 is compressed according to the compressive load and generates a charge corresponding to the amount of compression. . Then, by taking out this electric charge through the electrode plates 12 and 13 and the terminal portions 18 and 19, the fluctuation load applied to the fluctuation load detection pad 1 can be detected with high accuracy.

ここで、本実施の形態に係る変動荷重検出パッド1において、電極板12、13として金属板を用いる理由、及び、電極板12、13と圧電板11とが非接着である理由について説明する。   Here, the reason why the metal plates are used as the electrode plates 12 and 13 and the reason why the electrode plates 12 and 13 and the piezoelectric plate 11 are not bonded in the variable load detection pad 1 according to the present embodiment will be described.

まず、電極板12、13として金属板を用いる理由について説明する。   First, the reason why metal plates are used as the electrode plates 12 and 13 will be described.

前述のように、従来では圧電板11の両面に蒸着やスパッタリング等の極薄い電極膜が形成されているが、この電極膜は強度が低いので、大きな変動荷重が作用すると、電極膜のひび割れや、電極膜の剥離が生じる。このため、大きな変動荷重の検出ができない。   As described above, conventionally, an extremely thin electrode film such as vapor deposition or sputtering is formed on both surfaces of the piezoelectric plate 11. However, since this electrode film has low strength, if a large fluctuating load acts, The electrode film is peeled off. For this reason, a large fluctuating load cannot be detected.

一方、本実施の形態に係る変動荷重検出パッド1では、金属板から構成される電極板12、13を用いているため、変動荷重検出パッド1に大きな圧縮力が作用しても、強度の高い電極板12、13の破損は生じにくい。したがって、変動荷重検出パッド1は、負荷される大きな変動荷重にも十分に耐え得ることができ、大きな変動荷重の検出を可能にしている。   On the other hand, since the variable load detection pad 1 according to the present embodiment uses the electrode plates 12 and 13 made of a metal plate, the strength is high even if a large compressive force acts on the variable load detection pad 1. The electrode plates 12 and 13 are not easily damaged. Therefore, the fluctuating load detection pad 1 can sufficiently withstand a large fluctuating load to be applied, and can detect a large fluctuating load.

更に、電極板12、13に金属板を用いるもう一つの理由について、図5を参照して説明する。   Furthermore, another reason for using metal plates for the electrode plates 12 and 13 will be described with reference to FIG.

図5(A)は、従来の蒸着又はスパッタリング等で圧電板11両面に薄い電極膜20、21を形成し、電極膜20、21上に弾性層22、23を設けた場合の変動荷重検出パッド51の断面を模式的に示しており、また、図5(B)は、変動荷重検出パッド51に剛性板24、25を介して圧縮力が加わった状態の断面図を模式的に示している。   FIG. 5A shows a variable load detection pad when thin electrode films 20 and 21 are formed on both surfaces of the piezoelectric plate 11 by conventional vapor deposition or sputtering and elastic layers 22 and 23 are provided on the electrode films 20 and 21. FIG. 5B schematically shows a cross-sectional view of a state in which a compressive force is applied to the variable load detection pad 51 through the rigid plates 24 and 25. .

矢印で示すように、変動荷重検出パッド51に厚み方向に圧縮力が作用すると図5(B)に示すように、圧電板11は厚さ方向に縮むと同時に、圧電板11自身のポアソン効果によって面に沿って(圧縮力に対して垂直方向)伸びる変形をする。また、圧縮力が作用すると、弾性層22、23も厚さ方向に縮むと同時に、弾性層22、23のポアソン効果によって面に沿って(圧縮力に対して垂直方向)伸びる変形をする。この弾性層22、23の伸びは、弾性層22、23の弾性率が小さいほど大きく、また弾性層22、23の厚さが厚いほど大きくなる。   As indicated by arrows, when a compressive force is applied to the variable load detection pad 51 in the thickness direction, the piezoelectric plate 11 contracts in the thickness direction as shown in FIG. 5B, and at the same time, due to the Poisson effect of the piezoelectric plate 11 itself. A deformation that extends along the surface (perpendicular to the compressive force). When the compressive force is applied, the elastic layers 22 and 23 are also contracted in the thickness direction, and at the same time, the elastic layers 22 and 23 are deformed to extend along the surface (perpendicular to the compressive force) by the Poisson effect. The elongation of the elastic layers 22 and 23 increases as the elastic modulus of the elastic layers 22 and 23 decreases, and increases as the thickness of the elastic layers 22 and 23 increases.

電極膜20、21が蒸着やスパッタリング等で形成されている場合、電極膜20、21は弾性層22、23の伸びに対して強度的に抵抗しないので、弾性層22、23が伸びることにより、圧電板11も引き伸ばされることになる。したがって、圧電板11は、圧縮荷重を受けて厚さ方向に縮むことに加え、弾性層22、23による圧電板11の引き伸ばしにより、余計に厚さ方向に縮むことになる。   When the electrode films 20 and 21 are formed by vapor deposition, sputtering, or the like, the electrode films 20 and 21 do not strongly resist the elongation of the elastic layers 22 and 23. Therefore, the elastic layers 22 and 23 are stretched, The piezoelectric plate 11 is also stretched. Accordingly, the piezoelectric plate 11 is contracted in the thickness direction due to the expansion of the piezoelectric plate 11 by the elastic layers 22 and 23 in addition to being contracted in the thickness direction upon receiving a compressive load.

圧縮力は圧電板11の表面全体に作用するのに対して、弾性層22、23が圧電板11を水平方向に引き伸ばす力は薄い圧電板11の切断面に作用する。このため、弾性層22、23が圧電板11を引き伸ばすことによって生じる圧電板11の厚さ変化は、圧縮荷重による厚さ変化に対し、無視できない量である。このため、圧電板11からは、圧縮歪みによる電荷変動に加え、無視できない量の引き伸ばし歪みによる電荷変動が生じる。したがって、負荷される圧縮荷重と圧電板11からの電荷変動が比例しなくなり、圧縮荷重の精度の高い検出ができないことになる。   While the compressive force acts on the entire surface of the piezoelectric plate 11, the force by which the elastic layers 22 and 23 stretch the piezoelectric plate 11 in the horizontal direction acts on the cut surface of the thin piezoelectric plate 11. For this reason, the thickness change of the piezoelectric plate 11 caused by the elastic layers 22 and 23 stretching the piezoelectric plate 11 is an amount that cannot be ignored with respect to the thickness change due to the compressive load. For this reason, in addition to the charge fluctuation due to the compressive strain, the charge fluctuation due to a non-negligible amount of stretching strain occurs from the piezoelectric plate 11. Therefore, the applied compressive load and the charge fluctuation from the piezoelectric plate 11 are not proportional, and the compressive load cannot be detected with high accuracy.

たとえば、圧電体の両面にアルミ蒸着電極膜を付けた一辺が100mm四角の圧電フィルム(厚さ80μm)の両面に、厚さが異なるポリエチレンテレフタラート樹脂シート(0.2mm、0.7mm、1.2mm、1.7mm)をそれぞれゴム系接着剤で接着して、これを油圧サーボ試験機の圧縮平板の上に置き、上面側に60×60mm四角の金属の加圧板を置いて、繰り返し圧縮力2.5トンを負荷したときのセンサ出力を表1に示す。計測装置の構成は後述する実施例1で説明するものと同様である。表1より電極膜が薄い場合には、弾性層22、23の厚さによって圧電体の出力は変化し、弾性層が厚くなるほど出力が大きくなることがわかる。

Figure 2011043442
For example, polyethylene terephthalate resin sheets (0.2 mm, 0.7 mm, 1.2 mm) having different thicknesses on both sides of a 100 mm square piezoelectric film (80 μm thick) with aluminum vapor-deposited electrode films on both sides of the piezoelectric body. 2mm and 1.7mm) are each bonded with a rubber adhesive, and this is placed on the compression plate of the hydraulic servo tester, and a 60 x 60mm square metal pressure plate is placed on the upper surface to repeatedly compress the compression force. Table 1 shows the sensor output when 2.5 tons are loaded. The configuration of the measuring device is the same as that described in Example 1 described later. It can be seen from Table 1 that when the electrode film is thin, the output of the piezoelectric body varies depending on the thickness of the elastic layers 22 and 23, and the output increases as the elastic layer becomes thicker.
Figure 2011043442

これに対して本実施の形態に係る変動荷重検出パッド1は、電極板12、13が強度を有する金属板である。このため、変動荷重検出パッド1に負荷される圧縮力で、弾性層22、23のポアソン効果による水平方向の伸びが生じても、電極板12、13が引き伸ばされることはない。電極板12、13は、例えば、ステンレス薄板の場合、厚さ0.1mm以上あれば弾性層22、23の厚さや弾性率による影響を受けない。したがって、電極板12、13が引き伸ばされることはないので、電極板12、13に挟まれた圧電板11も引き伸ばされることがない。   On the other hand, the variable load detection pad 1 according to the present embodiment is a metal plate in which the electrode plates 12 and 13 have strength. Therefore, the electrode plates 12 and 13 are not stretched even if the compressive force applied to the variable load detection pad 1 causes the elastic layers 22 and 23 to extend in the horizontal direction due to the Poisson effect. For example, when the electrode plates 12 and 13 are stainless steel thin plates, the electrode plates 12 and 13 are not affected by the thickness and elastic modulus of the elastic layers 22 and 23 as long as the thickness is 0.1 mm or more. Accordingly, since the electrode plates 12 and 13 are not stretched, the piezoelectric plate 11 sandwiched between the electrode plates 12 and 13 is not stretched.

また、電極膜が蒸着やスパッタリングなどの極薄い電極膜の場合には、弾性層が圧電板を水平方向に引き伸ばす影響が、圧縮力を負荷した面積の外側にもある程度及ぶ。このため、圧電板の出力が荷重負荷面積の影響を受けることになる。即ち、たとえ同じ力を加えたとしても、力が加わっている面積によって、圧電板からの電荷変動が異なることになり、精度の高い測定が困難になる。   In addition, when the electrode film is an extremely thin electrode film such as vapor deposition or sputtering, the elastic layer extends the piezoelectric plate in the horizontal direction to some extent outside the area where the compressive force is applied. For this reason, the output of the piezoelectric plate is affected by the load area. In other words, even if the same force is applied, the charge fluctuation from the piezoelectric plate differs depending on the area where the force is applied, making it difficult to measure with high accuracy.

これに対して本発明の変動荷重検出パッド1は、圧縮力を受けると、電極板12、13は接触摩擦によって圧電板11の面に沿った伸びを拘束する。即ち、圧電板11には、圧縮力による厚さ変化のみが生じるようになる。このため、荷重負荷面積の影響をほとんど受けず、圧縮力に応じた電荷を発生するので、変動荷重を精度よく検出することができる。   On the other hand, when the variable load detection pad 1 of the present invention receives a compressive force, the electrode plates 12 and 13 restrain the elongation along the surface of the piezoelectric plate 11 by contact friction. That is, only the thickness change due to the compressive force occurs in the piezoelectric plate 11. For this reason, the load according to the compressive force is generated almost without being affected by the load area, so that the fluctuating load can be accurately detected.

以上説明したように、本発明の変動荷重検出パッド1では、電極板12、13として金属板を用いることにより、パッド寸法が小さくても、或いは大きくても圧縮力と圧電板11からの出力との比例定数が変化せず、更に、圧電板11の出力が、荷重負荷面積の影響をほとんど受けない利点を備えている。   As described above, in the variable load detection pad 1 of the present invention, the metal plate is used as the electrode plates 12 and 13, so that the compression force and the output from the piezoelectric plate 11 can be obtained even if the pad size is small or large. Further, there is an advantage that the output of the piezoelectric plate 11 is hardly affected by the load area.

続いて、本実施の形態に係る変動荷重検出パッド1において、電極板12、13と圧電板11とが非接着である理由について説明する。   Next, the reason why the electrode plates 12 and 13 and the piezoelectric plate 11 are not bonded in the variable load detection pad 1 according to the present embodiment will be described.

電極板12、13と圧電板11とが接着されている場合、電極板12、13と圧電板11との間に、接着部材或いは粘着部材からなる接着層が生じることになる。これによって、電極板12、13と圧電板11の間で静電容量が生じ、圧電板11の出力信号が大幅に小さくなってしまう。   When the electrode plates 12 and 13 and the piezoelectric plate 11 are bonded, an adhesive layer made of an adhesive member or an adhesive member is formed between the electrode plates 12 and 13 and the piezoelectric plate 11. As a result, capacitance is generated between the electrode plates 12 and 13 and the piezoelectric plate 11, and the output signal of the piezoelectric plate 11 is significantly reduced.

また、圧電板11の表面に電極板12、13が接着されていると、大きな圧縮力が作用した場合に、電極板12、13と圧電板11の間に介在する接着層の厚さ変化が生じる。接着層の厚さ変化が生じると、電極板12、13と圧電板11表面で構成された静電容量が変化することとなり、検出精度が低下してしまう。   In addition, when the electrode plates 12 and 13 are bonded to the surface of the piezoelectric plate 11, the thickness of the adhesive layer interposed between the electrode plates 12 and 13 and the piezoelectric plate 11 changes when a large compressive force is applied. Arise. When the thickness of the adhesive layer changes, the capacitance formed by the surfaces of the electrode plates 12 and 13 and the piezoelectric plate 11 changes, and the detection accuracy decreases.

これに対して、本実施の形態に係る変動荷重検出パッド1では、電極板12、13と圧電板11表面とが非接着状態にあるので、電極板12、13面と圧電板11表面の間隔が零になり、静電容量が生じないので精度の高い計測を実現できる。   On the other hand, in the fluctuating load detection pad 1 according to the present embodiment, the electrode plates 12 and 13 and the surface of the piezoelectric plate 11 are in the non-bonded state. Becomes zero and no capacitance is generated, so that highly accurate measurement can be realized.

また、電極板12、13は薄い金属薄板から構成されているとよい。電極板12、13として、厚い金属板が用いられている場合、変動荷重検出パッド1は使用中に圧縮力を受けて面外に撓むこともある。たとえば、図6に示すように圧縮力を受けて、電極板12、13の紙面下側に向けて凸状に曲げ変形したとする。このとき、電極板12、13は弾性率の大きい金属板であるので、上下の電極板12、13は、図6の一点鎖線で示すそれぞれの中立軸周りに曲がる。すると、紙面上、上側の電極板12の圧電板11と接触する面は曲げ変形によって伸びる歪みを生じる。また、下側の電極板13の圧電板11と接触する表面は曲げ変形によって縮む歪みを生じる。すると電極板12、13と圧電板11の間の摩擦力によって、圧電板11の上側表面は伸びる歪みを生じ、圧電板11の下側表面は縮む歪みを生じる。その結果、圧電板11は曲げ変形による出力を生じるようになる。   Moreover, the electrode plates 12 and 13 are good to be comprised from the thin metal thin plate. When thick metal plates are used as the electrode plates 12 and 13, the variable load detection pad 1 may be bent out of plane due to a compressive force during use. For example, as shown in FIG. 6, it is assumed that a compressive force is received and the electrode plates 12 and 13 are bent and deformed downward toward the bottom of the drawing sheet. At this time, since the electrode plates 12 and 13 are metal plates having a large elastic modulus, the upper and lower electrode plates 12 and 13 bend around the respective neutral axes shown by the one-dot chain line in FIG. Then, the surface of the upper electrode plate 12 in contact with the piezoelectric plate 11 on the paper surface is distorted by bending deformation. Further, the surface of the lower electrode plate 13 that comes into contact with the piezoelectric plate 11 is distorted by bending deformation. Then, due to the frictional force between the electrode plates 12 and 13 and the piezoelectric plate 11, the upper surface of the piezoelectric plate 11 is strained to expand, and the lower surface of the piezoelectric plate 11 is strained to contract. As a result, the piezoelectric plate 11 generates an output due to bending deformation.

これに対して、電極板12、13が薄い金属薄板であれば、電極板12、13が曲げ変形しても電極板12、13表面の曲げ歪みの変化が少なく、変動荷重検出パッド1が使用中に面外に撓んだ場合でも精度の高い計測が可能になる。   On the other hand, if the electrode plates 12 and 13 are thin metal plates, even if the electrode plates 12 and 13 are bent and deformed, there is little change in bending distortion on the surfaces of the electrode plates 12 and 13, and the variable load detection pad 1 is used. Even when it is bent out of the plane, highly accurate measurement is possible.

続いて、変動荷重検出パッド1の耐荷力について説明する。変動荷重検出パッド1において、圧電板11に作用する圧力は、絶縁板14、15、及び、電極板12、13を介して伝達される。例えば、面積が小さい方の電極板12の表面が一辺50mmの正方形であって、100kN(10ton)の圧縮荷重が変動荷重検出パッド1両面の中央部に作用した場合、圧電板11に作用する圧力は40MPa(σ=100,000(N)/(50×50)mm=40)である。たとえば、圧電板11の厚さを0.1mmとすると、40MPaの圧力によって生じる圧電板11の厚さの縮み量は約0.0013mm((δ=σ×h/E=40(MPa)×0.1(mm)/3000(MPa))であり、圧電板11の厚みの約1.3%である。この厚み変化は圧電板11の耐荷能力の範囲にある。つまり、50mm四角の加圧板寸法の変動荷重検出パッド1で10トンの圧縮力が計測可能である。 Next, the load bearing capacity of the variable load detection pad 1 will be described. In the variable load detection pad 1, the pressure acting on the piezoelectric plate 11 is transmitted through the insulating plates 14 and 15 and the electrode plates 12 and 13. For example, when the surface of the electrode plate 12 having a smaller area is a square having a side of 50 mm and a compressive load of 100 kN (10 ton) is applied to the center of both surfaces of the variable load detection pad 1, the pressure applied to the piezoelectric plate 11 Is 40 MPa (σ = 100,000 (N) / (50 × 50) mm 2 = 40). For example, when the thickness of the piezoelectric plate 11 is 0.1 mm, the amount of contraction of the thickness of the piezoelectric plate 11 caused by the pressure of 40 MPa is about 0.0013 mm ((δ = σ × h / E = 40 (MPa) × 0 0.1 (mm) / 3000 (MPa)), which is about 1.3% of the thickness of the piezoelectric plate 11. This change in thickness is in the range of the load bearing capacity of the piezoelectric plate 11. That is, a 50 mm square pressure plate A compressive force of 10 tons can be measured with the dimension variable load detection pad 1.

次に、変動荷重検出パッド1の全体の剛性を、上記圧電板11の縮み量に加えて、仮に、電極板12、13がともに厚さ0.1mmのステンレス板、一対の絶縁板14、15がともに厚さ0.2mmで弾性率E=2500MPaの樹脂板である場合について概略計算したものを表2に示す。

Figure 2011043442
Next, in addition to the amount of contraction of the piezoelectric plate 11, the overall rigidity of the variable load detection pad 1 is assumed to be such that the electrode plates 12 and 13 are both a stainless steel plate having a thickness of 0.1 mm and a pair of insulating plates 14 and 15. Table 2 shows the results of a rough calculation for the case where both are resin plates having a thickness of 0.2 mm and an elastic modulus E = 2500 MPa.
Figure 2011043442

同表において、変動荷重検出パッド1の全体厚さは0.7mmである。この変動荷重検出パッド1に100kN(10ton)の圧縮力を加えたときの全体厚さの縮み量の合計は0.0078mmと極わずかである。このように本実施の形態に係る変動荷重検出パッド1は大きな圧縮力に対して剛性のある構成となっている。   In the table, the total thickness of the fluctuating load detection pad 1 is 0.7 mm. When the compressive force of 100 kN (10 ton) is applied to the fluctuating load detection pad 1, the total amount of shrinkage of the entire thickness is as small as 0.0078 mm. Thus, the variable load detection pad 1 according to the present embodiment has a configuration that is rigid with respect to a large compressive force.

上記では、硬質樹脂シートを用いた絶縁板14、15について説明したが、絶縁板14、15として、電極板12、13に圧縮荷重を分散させるクッション部材としての機能を兼ねる弾性素材から構成してもよい。絶縁板14、15として、例えば、天然ゴム、合成ゴム、布引ゴム等の低弾性率の素材を用いるとよい。   In the above, the insulating plates 14 and 15 using the hard resin sheet have been described. However, the insulating plates 14 and 15 are made of an elastic material that also functions as a cushion member that distributes a compressive load to the electrode plates 12 and 13. Also good. As the insulating plates 14 and 15, for example, a low elastic modulus material such as natural rubber, synthetic rubber, or cloth-drawn rubber may be used.

絶縁板14、15として、弾性素材を用いた場合、重量物たとえば、トレーラの台車表面や、コンクリートの地面等に設置して対象物の圧縮力を計測する際に効果的である。このような場合、変動荷重検出パッド1を載置しようとする台車やコンクリート等の支持部材の表面に砂粒が付着していること、溶接のスパッタが付いていること、或いは、局部的に撓んでおり平面ではないことがある。   When an elastic material is used as the insulating plates 14 and 15, it is effective when measuring the compressive force of an object by installing it on a heavy object such as a trailer carriage surface or concrete ground. In such a case, sand particles are attached to the surface of a support member such as a truck or concrete on which the variable load detection pad 1 is to be placed, welding spatter is attached, or it is locally bent. It may not be flat.

図7に、圧縮力を負荷する対象物26の表面、及び、載置台27の表面に砂粒28が付着している箇所で変動荷重検出パッド1を使用した場合の断面を模式的に示す。ゴム板のような低弾性率の絶縁板14、15により、対象物26と載置台27の表面の砂粒28による凹凸の影響を吸収して、電極板12、13になだらかに圧縮力を伝達するようになる。   In FIG. 7, the cross section at the time of using the variable load detection pad 1 in the location where the sand grain 28 has adhered to the surface of the target object 26 which applies compressive force, and the surface of the mounting base 27 is shown typically. The insulating plates 14 and 15 having a low elastic modulus such as rubber plates absorb the influence of unevenness caused by the sand particles 28 on the surface of the object 26 and the mounting table 27, and gently transmit the compressive force to the electrode plates 12 and 13. It becomes like this.

また、変動荷重検出パッド1は、圧電板11が柔軟性を有する高分子材料から構成されていること、及び、電極板12、13は強度を備え、且つ、面外に撓むことが可能な金属薄板であるため、圧電板11と電極板12、13が圧力の分布に応じて撓み変形することができる。   In the variable load detection pad 1, the piezoelectric plate 11 is made of a flexible polymer material, and the electrode plates 12 and 13 have strength and can be bent out of plane. Since it is a metal thin plate, the piezoelectric plate 11 and the electrode plates 12 and 13 can bend and deform according to the pressure distribution.

このため、変動荷重検出パッド1を載置しようとする台車やコンクリート等に砂粒が付着している等、載置する箇所に凹凸を有する場合でも精度良く変動荷重を計測することができる。   For this reason, even when there is unevenness in the place where the load is placed, such as sand particles adhering to the cart or concrete on which the load changing pad 1 is to be placed, the load changing can be measured with high accuracy.

また、変動荷重検出パッド1は、圧電板11と電極板12、13がスペーサ16の部分を除き、変動荷重検出パッド1の略全面にわたって配置されているので、受圧面積の大きい変動荷重検出パッド1を実現することができる。また、受圧面の形状は、矩形の他、用途に応じて自由に製作して用いることができる。   In addition, since the variable load detection pad 1 is arranged over substantially the entire surface of the variable load detection pad 1 except for the spacer 16 portion, the variable load detection pad 1 having a large pressure receiving area is provided. Can be realized. Further, the shape of the pressure receiving surface can be freely manufactured and used in accordance with the application other than the rectangular shape.

(実施の形態2)
続いて、実施の形態2に係る圧縮力を検出する変動荷重検出板2について図8の断面図を参照して説明する。
(Embodiment 2)
Next, the variable load detection plate 2 for detecting the compressive force according to the second embodiment will be described with reference to the cross-sectional view of FIG.

変動荷重検出板2は、上述した変動荷重検出パッド1を、一対の受圧板31、32で挟み、固定部材33でこれらを一体的にした構成である。   The variable load detection plate 2 has a configuration in which the above-described variable load detection pad 1 is sandwiched between a pair of pressure receiving plates 31 and 32 and these are integrated with a fixing member 33.

固定部材33として、例えば、上述した変動荷重検出パッド1に設けた開口部にボルトを通してナットで締め付ける固定具が用いられる。   As the fixing member 33, for example, a fixing tool that is tightened with a nut through a bolt in the opening provided in the above-described variable load detection pad 1 is used.

受圧板31、32は、それぞれ機械的強度を有する金属等から形成される。   The pressure receiving plates 31 and 32 are each formed of a metal having mechanical strength.

変動荷重検出パッド1の開口部の直径をボルト直径より少し大きめに製作してボルト及びナットで締め付け、2枚の受圧板31、32が変動荷重検出パッド1を圧縮するように互いに押圧した状態となる。このように固定することで、変動荷重検出パッド1内に配置されている圧電板11には、所定の負荷が加わった状態、即ち、所定の厚み程、圧電板11が圧縮された状態となる。   The diameter of the opening of the variable load detection pad 1 is made slightly larger than the bolt diameter, and is tightened with bolts and nuts. The two pressure receiving plates 31, 32 are pressed against each other so as to compress the variable load detection pad 1. Become. By fixing in this way, a predetermined load is applied to the piezoelectric plate 11 disposed in the variable load detection pad 1, that is, the piezoelectric plate 11 is compressed by a predetermined thickness. .

このようにすると、所定の圧縮力を越える圧縮力に対して変動荷重検出板2が抵抗無く厚み変化を生じさせる、即ち、所定の圧縮力を超える圧縮力に応じて、圧電板11の厚み変化を生じさせることができる。   In this way, the variable load detecting plate 2 causes a thickness change without resistance to a compressive force exceeding a predetermined compressive force, that is, the thickness change of the piezoelectric plate 11 according to the compressive force exceeding the predetermined compressive force. Can be generated.

また、変動荷重検出パッド1の寸法を変動荷重検出板2の寸法の大部分にわたって配設するようにすると、薄くて、受圧面積が大きく、強度の高い変動荷重検出板2を構成することができる。   Further, when the size of the variable load detection pad 1 is arranged over most of the size of the variable load detection plate 2, the variable load detection plate 2 which is thin, has a large pressure receiving area and high strength can be configured. .

また、固定部材33はボルト頭部およびナットが受圧板31、32から突出しない埋め込み状態にするとよい。そして、変動荷重検出板2は、載置台等の上に置いての使用、あるいは一方の面を粘着シートで固定しての使用、或いは受圧板31、32のどちらか一方を大きく作製してネジ等により壁等に固定して使用することができる。なお、受圧板31、32同士の周囲の隙間はゴム系接着剤などでシールしてもよい。   The fixing member 33 is preferably in an embedded state in which the bolt head and nut do not protrude from the pressure receiving plates 31 and 32. The variable load detection plate 2 is used by placing it on a mounting table or the like, or by fixing one surface with an adhesive sheet, or by making one of the pressure receiving plates 31 and 32 large and screwing it. It can be used by being fixed to a wall or the like. The gap around the pressure receiving plates 31 and 32 may be sealed with a rubber adhesive or the like.

(実施の形態3)
続いて、実施の形態3に係る分布型変動荷重検出板3について、図9を参照して説明する。分布型変動荷重検出板3は、図9の外観斜視図に示すように、上述した変動荷重検出パッド1を同一平面上に複数配置した構成である。このように、変動荷重検出パッド1を配置することで、どの箇所にどの程度の荷重が加わっているのか、容易に検出することができる。
(Embodiment 3)
Next, the distributed variable load detection plate 3 according to Embodiment 3 will be described with reference to FIG. As shown in the external perspective view of FIG. 9, the distributed variable load detection plate 3 has a configuration in which a plurality of the above-described variable load detection pads 1 are arranged on the same plane. Thus, by arranging the variable load detection pad 1, it is possible to easily detect how much load is applied to which part.

変動荷重検出パッド1は、全て同寸法のものを用いるとよい。また、変動荷重検出パッド1は、それぞれの端面を接着して配置しても、剛性板等の上にそれぞれの変動荷重検出パッド1を配置してもよい。なお、図9では、変動荷重検出パッド1を二次元状に配置しているが、一次元的に配置してもよく、使用用途に応じて適宜適切な配置にすればよい。   The variable load detection pads 1 may be all the same size. Further, the variable load detection pad 1 may be disposed with its end faces adhered, or each variable load detection pad 1 may be disposed on a rigid plate or the like. In FIG. 9, the fluctuating load detection pad 1 is two-dimensionally arranged, but may be arranged one-dimensionally and may be appropriately arranged according to the intended use.

また、実施の形態2に係る変動荷重検出板2を用い、同様に、同一平面上に二次元的、或いは一次元的に配列させて用いてもよい。   Further, the fluctuating load detection plate 2 according to the second embodiment may be used, and similarly, two-dimensionally or one-dimensionally arranged on the same plane.

(実施の形態4)
続いて、上述した変動荷重検出板2を用いた、圧縮荷重が加わった際のずれ力を検出する変動荷重検出装置4について説明する。
(Embodiment 4)
Next, a description will be given of a variable load detection device 4 that uses the above-described variable load detection plate 2 to detect a displacement force when a compressive load is applied.

図10の外観斜視図、図11の断面図を示すように、実施の形態4に係る変動荷重検出装置4は、主として、受圧面及び垂下部を有する断面コの字状の受圧部材41と、垂下部内壁に対向配置される一対の変動荷重検出板2a、2a’と、一対の変動荷重検出板2a、2a’に当接するずれ力伝達部44a、44a’を有し、ずれ力伝達部44a、44a’が受圧部材41に内包される支持部材43と、受圧部材41と支持部材43との間に配置された弾性板42とから構成される。   As shown in the external perspective view of FIG. 10 and the cross-sectional view of FIG. 11, the variable load detection device 4 according to Embodiment 4 mainly includes a pressure-receiving member 41 having a U-shaped cross-section having a pressure-receiving surface and a hanging part, It has a pair of fluctuating load detection plates 2a, 2a 'arranged opposite to the inner wall of the drooping portion, and displacement force transmitting portions 44a, 44a' that come into contact with the pair of fluctuating load detection plates 2a, 2a '. , 44 a ′ are comprised of a support member 43 enclosed in the pressure receiving member 41, and an elastic plate 42 disposed between the pressure receiving member 41 and the support member 43.

受圧部材41は、一方の底面が開口した函体であり、機械的強度を備える金属等の素材から形成されている。受圧部材41の垂下部内壁には、一対の変動荷重検出板2a、2a’が対向して配置されている。変動荷重検出板2a、2a’は、上述した変動荷重検出板2と同様の構成であるため、説明を省略する。なお、図では受圧部材41は、函体の場合について説明しているが、1軸のずれ力を検出する場合には、板状部材が断面コの字状に折り曲げられた形態であってもよい。   The pressure receiving member 41 is a box having an opening on one side, and is made of a material such as metal having mechanical strength. A pair of fluctuating load detection plates 2a and 2a 'are disposed on the inner wall of the hanging portion of the pressure receiving member 41 so as to face each other. The fluctuating load detection plates 2a and 2a 'have the same configuration as that of the fluctuating load detection plate 2 described above, and a description thereof will be omitted. In the figure, the pressure receiving member 41 is described as a box. However, when detecting a uniaxial displacement force, the plate-like member may be bent in a U-shaped cross section. Good.

支持部材43は、金属等機械的強度の高い素材から形成されている。支持部材43は、断面コの字状の受圧部材41に一部が内包されており、支持部材43と受圧部材41の受圧面の裏面との間には弾性板42が配置されている。支持部材43は、ベース46等に固定されていてもよい。そして、ベース46には、壁や載置台等にネジ等で固定して使用するための孔45が設けられていてもよい。   The support member 43 is made of a material having high mechanical strength such as metal. A part of the support member 43 is included in a U-shaped pressure receiving member 41, and an elastic plate 42 is disposed between the support member 43 and the back surface of the pressure receiving surface of the pressure receiving member 41. The support member 43 may be fixed to the base 46 or the like. The base 46 may be provided with a hole 45 that is fixed to a wall or a mounting table with screws or the like.

受圧部材41の垂下部に対向する支持部材43の側面に、ずれ力伝達部44a、44a’が形成されている。ずれ力伝達部44a、44a’は、受圧部材41の垂下部に配置された変動荷重検出板2a、2a’に向けて円弧状に突出し、それぞれのずれ力伝達部44a、44a’が、変動荷重検出板2a、2a’と接触している。   Displacement force transmitting portions 44 a and 44 a ′ are formed on the side surface of the support member 43 facing the hanging portion of the pressure receiving member 41. The displacement force transmitting portions 44a and 44a ′ project in an arc shape toward the variable load detection plates 2a and 2a ′ arranged at the hanging portion of the pressure receiving member 41, and the respective displacement force transmission portions 44a and 44a ′ It is in contact with the detection plates 2a and 2a ′.

前記ずれ力伝達部44a、44a’の両端の円孤部は、ずれ力伝達部44a、44a’の幅の中心と接触部を半径とする円弧状に加工してある。また、図示はしていないが、受圧部材41の両端の垂下部には、ずれ力伝達部44a、44a’に変動荷重検出板2a、2a’を押しつけて接触させるための調節ネジ等が備えられている。   The arcuate portions at both ends of the displacement force transmitting portions 44a and 44a 'are processed into an arc shape with the center of the width of the displacement force transmitting portions 44a and 44a' and the contact portion as a radius. Although not shown, the hanging parts at both ends of the pressure receiving member 41 are provided with adjusting screws or the like for pressing the fluctuating load detecting plates 2a and 2a 'against the displacement force transmitting portions 44a and 44a'. ing.

弾性板42は受圧部材41の底面の圧縮力を支持部材43に伝達するとともに、ずれ力を伝達しない特性を備える。つまり、受圧部材41が受けたずれ力は垂下部に固定された一対の変動荷重検出板2a、2a’からずれ力伝達部44a、44a’を介して支持部材43に伝達するようにしたものである。弾性板42には、ゴム板、硬質ゴム板、あるいは軟質塩化ビニル、フッ素樹脂板のような低弾性率の板を用いるとよい。   The elastic plate 42 has a characteristic of transmitting a compressive force of the bottom surface of the pressure receiving member 41 to the support member 43 and not transmitting a displacement force. In other words, the displacement force received by the pressure receiving member 41 is transmitted from the pair of fluctuating load detection plates 2a and 2a ′ fixed to the hanging portion to the support member 43 via the displacement force transmitting portions 44a and 44a ′. is there. The elastic plate 42 may be a rubber plate, a hard rubber plate, or a low elastic modulus plate such as soft vinyl chloride or a fluororesin plate.

弾性板42が圧縮力を受けると、図12の破線で示す元の状態から、実線で示す状態に厚さ方向に大きく縮むと同時に、幅方向にも広がって支持部材43からはみ出すので、矩形に形成する場合、弾性板42の形状は図13の平面図で示すように、圧縮力が作用した状態で支持部材43の上面の寸法に略一致する形状に作製するとよい。図13に示すように、各辺を内方に湾曲させた形状の弾性板42にすることで、圧縮力が加わった際に、破線で示す形状に変形することになる。   When the elastic plate 42 receives a compressive force, it contracts greatly in the thickness direction from the original state shown by the broken line in FIG. When formed, the elastic plate 42 may be formed in a shape that substantially matches the size of the upper surface of the support member 43 in a state where a compressive force is applied, as shown in the plan view of FIG. As shown in FIG. 13, by forming the elastic plate 42 with each side curved inward, when a compressive force is applied, the elastic plate 42 is deformed into a shape indicated by a broken line.

続いて、上記変動荷重検出装置4のずれ力の検出原理について説明する。受圧部材41の表面に圧縮力と同時にずれ力が作用すると、圧縮力によって弾性板42は厚さ方向に縮む。また、圧縮力が受圧部材41の中央からずれた位置に作用する場合は、受圧部材41はわずかに回転する。   Next, the principle of detecting the displacement force of the variable load detection device 4 will be described. When a displacement force simultaneously acts on the surface of the pressure receiving member 41, the elastic plate 42 contracts in the thickness direction due to the compression force. Further, when the compressive force acts at a position shifted from the center of the pressure receiving member 41, the pressure receiving member 41 slightly rotates.

また、弾性板42は摩擦力によってずれ力の一部を支持部材43に伝達するように感じられるが、実際には、ずれ力によって弾性板42を剪断変形させようとしても、ずれ力伝達部44a、44a’は両端の円弧部が変動荷重検出板2a、2a’と接触していること、及び、変動荷重検出板2a、2a’が厚さ方向に硬いので、受圧部材41が変動荷重検出板2a、2a’を介してずれ力伝達部44a、44a’押しても、受圧部材41はずれ力の方向にほとんど変位することができない。   In addition, the elastic plate 42 feels as if a part of the displacement force is transmitted to the support member 43 by the frictional force. However, actually, even if the elastic plate 42 is sheared and deformed by the displacement force, the displacement force transmitting portion 44a. 44a ', the arc portions at both ends are in contact with the variable load detection plates 2a, 2a' and the variable load detection plates 2a, 2a 'are hard in the thickness direction, so that the pressure receiving member 41 is the variable load detection plate. Even if the displacement force transmitting portions 44a and 44a ′ are pushed through 2a and 2a ′, the pressure receiving member 41 can hardly be displaced in the direction of the displacement force.

つまり、弾性板42は弾性率が小さいので、ずれ力によって容易に剪断変形するものであるが、ずれ力伝達部44a、44a’が受圧部材41の変位を止めることになる。このため、弾性板42は剪断変形せず、ずれ力をほとんど伝達しないことになる。   That is, since the elastic plate 42 has a small elastic modulus, the elastic plate 42 is easily sheared and deformed by the displacement force, but the displacement force transmitting portions 44 a and 44 a ′ stop the displacement of the pressure receiving member 41. For this reason, the elastic plate 42 is not shear-deformed and transmits almost no displacement force.

このため、ずれ力のほとんど全てが、一対の変動荷重検出板2a、2a’に伝達されることになるので、一対の変動荷重検出板2a、2a’、すなわち、それぞれの変動荷重検出板2a、2a’内に配置されている圧電板11からの出力を取り出し、その差分を計測することでずれ力を計測できるのである。   For this reason, almost all of the displacement force is transmitted to the pair of variable load detection plates 2a, 2a ′, so that the pair of variable load detection plates 2a, 2a ′, that is, the respective variable load detection plates 2a, The displacement force can be measured by taking out the output from the piezoelectric plate 11 arranged in 2a 'and measuring the difference.

以上説明したように、本実施の形態に係るずれ力を検出する変動荷重検出板4は、起歪部を宙に浮かせないで圧縮力を弾性板42で受け止める構造であるので、薄くて、受圧面積が大きく、強度の高い変動荷重検出板4を提供することができる。   As described above, the variable load detection plate 4 for detecting the displacement force according to the present embodiment has a structure in which the compressive force is received by the elastic plate 42 without floating the strain-generating portion in the air. The variable load detection plate 4 having a large area and high strength can be provided.

なお、本実施の形態に係るずれ力の検出原理は、変動荷重検出板2a、2a’が厚さ方向に硬いことが必要であるが、厚さ方向に硬いものであれば従来のセラミクスなどの圧電体であっても適用することができる。   The shift force detection plate 2a, 2a ′ needs to be hard in the thickness direction according to the principle of detecting the displacement force according to the present embodiment. However, if it is hard in the thickness direction, the conventional ceramics or the like can be used. Even a piezoelectric body can be applied.

(実施の形態5)
また、上記では、1軸方向のずれ力を検出する形態について説明したが、2軸方向のずれ力を検出する形態にすることもできる。例えば、以下の構成にすればよい。
(Embodiment 5)
Moreover, although the form which detects the deviation | shift force of a uniaxial direction was demonstrated above, it can also be set as the form which detects the deviation | shift force of a biaxial direction. For example, the following configuration may be used.

図14(A)は、実施の形態5に係る変動荷重検出装置5の外観斜視図、図14(B)、図14(C)は、それぞれ図14(A)のA−A’断面図、B−B’断面図である。受圧部材41は、垂下部分がX軸方向及びX軸方向に直交するY軸方向の2方向に設けられた函体である。そして、図14(B)に示すように、受圧部材41のX軸方向に対向するそれぞれの垂下部内壁に変動荷重検出板2a、2a’が配置され、また、図14(C)に示すように、Y軸方向に対向するそれぞれの垂下部内壁に変動荷重検出板2b、2b’が配置されている。したがって、支持部材43のX軸方向に突出させて形成されたずれ力伝達部44a、44a’がそれぞれ変動荷重検出板2a、2a’と当接するように配置され、また、支持部材43のY軸方向に突出させて形成されたずれ力伝達部44b、44b’がそれぞれ変動荷重検出板2b、2b’と当接するように配置されている。   14A is an external perspective view of the fluctuating load detection device 5 according to Embodiment 5, and FIGS. 14B and 14C are cross-sectional views taken along line AA ′ of FIG. It is BB 'sectional drawing. The pressure receiving member 41 is a box provided with hanging portions in two directions of the X axis direction and the Y axis direction orthogonal to the X axis direction. As shown in FIG. 14 (B), the variable load detection plates 2a, 2a 'are arranged on the inner walls of the hanging parts facing the X-axis direction of the pressure receiving member 41, and as shown in FIG. 14 (C). In addition, the variable load detection plates 2b and 2b ′ are arranged on the inner walls of the drooping portions facing each other in the Y-axis direction. Accordingly, the displacement force transmitting portions 44a and 44a ′ formed by projecting in the X-axis direction of the support member 43 are disposed so as to contact the variable load detection plates 2a and 2a ′, respectively. Displacement force transmitting portions 44b and 44b ′ formed so as to protrude in the direction are arranged so as to abut against the variable load detection plates 2b and 2b ′, respectively.

このように構成することで、変動荷重検出板2a、2a’からの出力電圧の差、及び、変動荷重検出板2b、2b’からの出力電圧の差を検出することにより、受圧部材41の受圧面に作用するX軸及びY軸方向のずれ力を検出することができる。   With this configuration, the pressure receiving member 41 receives the pressure by detecting the difference between the output voltages from the fluctuating load detection plates 2a and 2a 'and the difference between the output voltages from the fluctuating load detection plates 2b and 2b'. The displacement force in the X-axis and Y-axis directions acting on the surface can be detected.

(実施の形態6)
更に、複数対の変動荷重検出板2を用いて、複数軸のずれ力を検出する形態とすることもできる。複数軸のずれ力を検出するには、例えば、以下の構成にすればよい。
(Embodiment 6)
Furthermore, it can also be set as the form which detects the shift | offset | difference force of a several axis | shaft using the several pairs variable load detection board 2. FIG. In order to detect the displacement force of a plurality of axes, for example, the following configuration may be used.

図15は、実施の形態6に係る変動荷重検出装置6の外観斜視図、図16は支持部材43の外観斜視図、図17は、図15のA−A’断面図である。   15 is an external perspective view of the fluctuating load detection device 6 according to Embodiment 6, FIG. 16 is an external perspective view of the support member 43, and FIG. 17 is a cross-sectional view taken along line A-A ′ of FIG.

受圧部材41は、受圧面を底面とする扁平の円筒から構成されており、つまり、内部に円盤状の凹部が形成されているものである。受圧部材41に形成されたこの円盤状の凹部にずれ力伝達部44が形成された支持部材43が内包されている。   The pressure receiving member 41 is composed of a flat cylinder having a pressure receiving surface as a bottom surface, that is, a disk-shaped recess is formed inside. A support member 43 in which a displacement force transmitting portion 44 is formed is included in the disk-shaped recess formed in the pressure receiving member 41.

ベース46に固定された支持部材43は、扁平の円柱体であり、円柱体の全周に渡り外方へ向けて円弧状に突出したずれ力伝達部44が形成されている。支持部材43と受圧部材41の受圧面の裏面との間に弾性板42が配置されている。   The support member 43 fixed to the base 46 is a flat cylindrical body, and is formed with a displacement force transmitting portion 44 that protrudes outward in an arc shape over the entire circumference of the cylindrical body. An elastic plate 42 is disposed between the support member 43 and the back surface of the pressure receiving surface of the pressure receiving member 41.

そして、受圧部材41の凹部周壁には、図17に示すように、受圧部材41の中心を中心点として、複数対の変動荷重検出板2a、2a’、2b、2b’、2c、2c’、2d、2d’、2e、2e’、2f、2f’、2g、2g’、2h、2h’がそれぞれ放射状に配置されている。   As shown in FIG. 17, a plurality of pairs of fluctuating load detection plates 2 a, 2 a ′, 2 b, 2 b ′, 2 c, 2 c ′ are formed on the peripheral wall of the concave portion of the pressure receiving member 41 with the center of the pressure receiving member 41 as the center point. 2d, 2d ′, 2e, 2e ′, 2f, 2f ′, 2g, 2g ′, 2h, and 2h ′ are arranged radially.

上記の構成とすることで、受圧部材41の受圧面に作用する複数軸のずれ力を検出することができる。   With the above-described configuration, it is possible to detect a plurality of axial displacement forces acting on the pressure receiving surface of the pressure receiving member 41.

(実施の形態7)
続いて、実施の形態7に係る変動荷重検出装置7について、図18の断面図を参照して説明する。変動荷重検出装置7は、上述した変動荷重検出装置4の別の構成の一例を示すものである。
(Embodiment 7)
Next, the variable load detection device 7 according to Embodiment 7 will be described with reference to the cross-sectional view of FIG. The fluctuating load detection device 7 shows an example of another configuration of the fluctuating load detection device 4 described above.

受圧部材41の垂下部の幅を広くして、支持部材43のずれ力伝達部44a、44a’の幅を小さくした構成である。また、弾性板42はずれ力伝達部44a、44a’の左右2箇所に設けて圧縮力を支持部材43に伝達するようにしたものである。また、図18では支持部材43をピン等の固定部材47で対象物に固定するようにしているが、図を上下逆転させて、支持部材43を上側に、受圧部材41を下側にして使用してもよい。また、上記同様に2軸のずれ力を検出するように構成してもよい。   In this configuration, the width of the hanging portion of the pressure receiving member 41 is widened, and the widths of the displacement force transmitting portions 44 a and 44 a ′ of the support member 43 are reduced. The elastic plate 42 is provided at two positions on the left and right sides of the displacement force transmitting portions 44 a and 44 a ′ so as to transmit the compression force to the support member 43. In FIG. 18, the support member 43 is fixed to the object by a fixing member 47 such as a pin. However, the figure is reversed upside down and used with the support member 43 on the upper side and the pressure receiving member 41 on the lower side. May be. Moreover, you may comprise so that the displacement force of 2 axes may be detected similarly to the above.

(実施の形態8)
続いて、受圧部材41の受圧面に垂直方向に作用する圧縮力と、受圧面の表面に沿う方向に作用するずれ力の両方を検出する変動荷重検出装置8について図19を用いて説明する。
(Embodiment 8)
Next, the variable load detection device 8 that detects both the compressive force acting in the direction perpendicular to the pressure receiving surface of the pressure receiving member 41 and the displacement force acting in the direction along the surface of the pressure receiving surface will be described with reference to FIG.

変動荷重検出装置8は、実施の形態4で説明した変動荷重検出装置4において、支持部材43とベース46との間に、実施の形態1で説明した変動荷重検出パッド1を挟み込んだ構成である。   The variable load detection device 8 has a configuration in which the variable load detection pad 1 described in the first embodiment is sandwiched between the support member 43 and the base 46 in the variable load detection device 4 described in the fourth embodiment. .

例えば、支持部材43とベース46との間に、変動荷重検出パッド1を挟み込んで、所定の圧力を加えてボルト・ナット等の固定部材48で固定することで、固定部材48の圧縮力を越える圧縮力に対して変動荷重検出パッド1が抵抗無く厚み変化を生じうるように固定することができる。   For example, the variable load detection pad 1 is sandwiched between the support member 43 and the base 46, a predetermined pressure is applied, and the fixed member 48 such as a bolt and a nut is fixed, thereby exceeding the compressive force of the fixed member 48. The fluctuating load detection pad 1 can be fixed so as to cause a thickness change without resistance against the compressive force.

このように構成することで、受圧部材41の受圧面に作用する圧縮力と、ずれ力との双方を同時に検出することができる。   With this configuration, both the compressive force acting on the pressure receiving surface of the pressure receiving member 41 and the displacement force can be detected simultaneously.

(実施例1)
絶縁板としてポリエチレンテレフタラート樹脂板を用いた変動荷重検出パッドについて実験を行った。一辺が80mm四角で厚さ80μmの圧電板の両面に、厚さ0.1mmのステンレスの電極板を圧電板と直に接触するように配置し、その両側に厚さ0.2mmのポリエチレンテレフタラート樹脂板を接着して縁部分を固定した変動荷重検出パッド(以下、変動荷重検出パッドA1と記す)を作製した。
Example 1
An experiment was conducted on a variable load detection pad using a polyethylene terephthalate resin plate as an insulating plate. A stainless steel electrode plate with a thickness of 0.1 mm is arranged on both sides of a piezoelectric plate with a side of 80 mm square and a thickness of 80 μm so as to be in direct contact with the piezoelectric plate, and a polyethylene terephthalate with a thickness of 0.2 mm on both sides. A fluctuating load detection pad (hereinafter referred to as fluctuating load detection pad A1) was prepared by adhering a resin plate and fixing the edge portion.

変動荷重検出パッドA1を容量200KNの油圧サーボ疲労試験機の圧縮平板に挟んで2Hzの繰り返し速度で圧縮力を加えた。   The variable load detection pad A1 was sandwiched between compression plates of a hydraulic servo fatigue tester having a capacity of 200 KN, and a compression force was applied at a repetition rate of 2 Hz.

電極板には電気配線を接続し、電気配線には積分回路を接続し(コンデンサ4.4μFを並列に接続)、積分回路の出力を電圧記録計(入力インピーダンス1ΜΩ、オムニエースRA1300、NEC三栄)に接続して、油圧サーボ疲労試験機のロードセルの荷重波形と同時に記録した。   Electrical wiring is connected to the electrode plate, and an integration circuit is connected to the electrical wiring (capacitor 4.4 μF is connected in parallel), and the output of the integration circuit is a voltage recorder (input impedance 1ΜΩ, Omniace RA1300, NEC Sanei) And recorded simultaneously with the load waveform of the load cell of the hydraulic servo fatigue tester.

図20は、試験機のロードセルで記録した圧縮力の変動幅と変動荷重検出パッドA1の出力の変動幅の関係の一例を示すが、変動荷重検出パッドA1の出力は荷重と良い比例関係にあることがわかる。   FIG. 20 shows an example of the relationship between the fluctuation range of the compressive force recorded by the load cell of the testing machine and the fluctuation range of the output of the fluctuation load detection pad A1, and the output of the fluctuation load detection pad A1 is in a good proportional relationship with the load. I understand that.

また、図20に、一辺が20mm四角および40mm四角で同じ構成の変動荷重検出パッドA1を用いた実験結果も示しているが、パッド出力はパッド寸法の影響を受けないことがわかる。   FIG. 20 also shows experimental results using a variable load detection pad A1 having a side of 20 mm square and 40 mm square and the same configuration, but it can be seen that the pad output is not affected by the pad size.

また、最大100kN(約10ton)の正弦波形を2000回繰り返して負荷したが、変動荷重検出パッドの出力波形には変化が見られなかった。したがって、変動荷重検出パッドA1は、電極板として金属板を用いているので、破損することもなく耐荷重が大きいことがわかる。   Further, a maximum of 100 kN (about 10 ton) sinusoidal waveform was loaded 2000 times, but no change was observed in the output waveform of the variable load detection pad. Therefore, since the variable load detection pad A1 uses a metal plate as an electrode plate, it can be seen that the load resistance is large without being damaged.

(実施例2)
続いて、アルミ蒸着電極膜を形成した圧電フィルムを用いた場合の耐用性について検証した。
(Example 2)
Subsequently, the durability when a piezoelectric film on which an aluminum vapor deposition electrode film was formed was verified.

アルミ蒸着電極膜を付けた一辺が100mm四角の圧電フィルム(厚さ80μm)の両面に、厚さ0.5mmのシリコンゴム板をゴム系接着剤で接着した出力増幅部材を設けた変動荷重検出パッド(以下、これを変動荷重検出パッドB1と記す)を作成した。また、厚さ1mmのシリコンゴム板を用いて同様に変動荷重検出パッド(以下、変動荷重検出パッドB2と記す)作成した。更に、実施例1と同様の構成で、圧電板の寸法を一辺が100mm四角とした変動荷重検出パッド(以下、変動荷重検出パッドA2と記す)を作成した。   A variable load detection pad provided with an output amplification member in which a silicon rubber plate with a thickness of 0.5 mm is bonded with a rubber adhesive on both sides of a 100 mm square piezoelectric film (80 μm thickness) with an aluminum deposited electrode film (Hereinafter, this is referred to as a variable load detection pad B1). Similarly, a variable load detection pad (hereinafter referred to as a variable load detection pad B2) was prepared using a silicon rubber plate having a thickness of 1 mm. Further, a variable load detection pad (hereinafter referred to as a variable load detection pad A2) having the same configuration as that of Example 1 and having a piezoelectric plate dimension of 100 mm square on one side was created.

これらの変動荷重検出パッドB1、B2、A2を、それぞれ油圧サーボ疲労試験機の圧縮平板の上に置き、上面側に40×40mm四角、60×60mm四角、又は100×100mm四角の金属の加圧板を置いて、繰り返し圧縮力を負荷した。計測装置の構成は実施例1で説明したものと同じである。   These fluctuating load detection pads B1, B2, and A2 are placed on the compression plate of the hydraulic servo fatigue tester, respectively, and a metal pressure plate of 40 × 40 mm square, 60 × 60 mm square, or 100 × 100 mm square on the upper surface side. And repeatedly applied compressive force. The configuration of the measuring device is the same as that described in the first embodiment.

その結果を図21に示す。アルミ蒸着電極膜を形成した変動荷重検出パッドB1、B2では、×印で示すように、40×40mm四角の加圧板で荷重した場合、それぞれ約0.7トン、2.0トンの荷重で電極膜にひび割れが生じ、それ以上の荷重を計測することができなかった。一方、金属板を電極板に用いた変動荷重検出パッドA2では、それ以上の荷重でも破損することなく計測できていることがわかる。   The result is shown in FIG. In the variable load detection pads B1 and B2 formed with the aluminum vapor-deposited electrode film, as shown by x, when loaded with a 40 × 40 mm square pressure plate, the electrodes are loaded with a load of about 0.7 tons and 2.0 tons, respectively. The film was cracked and no further load could be measured. On the other hand, it can be seen that the variable load detection pad A2 using the metal plate as the electrode plate can be measured without being damaged even if the load exceeds that.

また、変動荷重検出パッドB1、B2の出力は、シリコンゴム板による荷重負荷面積によって変化し、荷重負荷面積が小さい方がセンサ出力は大きくなっており、一定の出力が生じていない。一方、変動荷重検出パッドA2では、面方向に伸びにくい金属板を電極板として用いているため、加圧板の面積の相違による荷重負荷面積による影響を受けず、いずれも一定の出力が生じていることがわかる。   Further, the outputs of the variable load detection pads B1 and B2 vary depending on the load load area by the silicon rubber plate, and the sensor output is larger when the load load area is smaller, and a constant output is not generated. On the other hand, the variable load detection pad A2 uses a metal plate that is difficult to extend in the surface direction as an electrode plate, and therefore is not affected by the load load area due to the difference in the area of the pressure plate, and both generate a constant output. I understand that.

(実施例3)
絶縁板としてシリコンゴム板を用いた変動荷重検出パッドについて実験を行った。
(Example 3)
An experiment was conducted on a variable load detection pad using a silicon rubber plate as an insulating plate.

厚さ80ミクロンの圧電フィルムの両面に0.1mm厚のステンレス板を配置し、その外側の両面にゴム硬度70で厚さ1mmのシリコンゴム板を接着した、一辺が50mm四角の変動荷重検出パッド(以下、変動荷重検出パッドA3と記す)を作成した。   A 0.1mm thick stainless steel plate is placed on both sides of an 80 micron thick piezoelectric film, and a 1mm thick silicon rubber plate with a rubber hardness of 70 is bonded to both outer sides. (Hereinafter referred to as a fluctuating load detection pad A3).

この変動荷重検出パッドA3の底面に直径0.7mmの針金を2本略平行に敷き、変動荷重検出パッドA3上面には直径0.7mmの針金1本を底面の針金とほぼ直交するように置いて、両側を油圧サーボ疲労試験機の圧縮平板で挟んで繰り返して圧縮力を加えた。   Two 0.7 mm diameter wires are laid in parallel on the bottom surface of the variable load detection pad A3, and one 0.7 mm diameter wire is placed on the top surface of the variable load detection pad A3 so as to be substantially orthogonal to the bottom wire. Then, both sides were sandwiched between compression plates of a hydraulic servo fatigue tester, and compression force was applied repeatedly.

また、変動荷重検出パッドA3の底面と上面に厚さ0.5mmのアルミ板を千鳥状にずらせて置いて圧縮平板で繰り返して圧縮力を加えた。   Further, an aluminum plate having a thickness of 0.5 mm was placed in a staggered manner on the bottom and top surfaces of the variable load detection pad A3, and a compression force was repeatedly applied on the compression plate.

その結果を図22に示す。針金を置いた場合でも、また、アルミ板を置いた場合でも、針金等を置かない場合と同様に、変動荷重検出パッドA3は加えた荷重とセンサ出力が精度良く比例関係を示すことがわかる。   The result is shown in FIG. Whether the wire is placed or an aluminum plate is placed, the variable load detection pad A3 shows that the applied load and the sensor output are proportional to each other with high accuracy, as in the case where no wire is placed.

(実施例4)
実施の形態4で説明した変動荷重検出装置を用いて実験を行った。
Example 4
An experiment was performed using the fluctuating load detection apparatus described in the fourth embodiment.

実験室では大きなずれ力を負荷することが困難なため、変動荷重検出装置の支持部材を油圧サーボ疲労試験機の水平なベッドの上に傾斜させておき、アクチュエータに先端部を丸くした押し棒を取り付けて1Hzの繰り返し速度で受圧板の上面を押した。傾斜角度は8.8度、14度、17.2度、あるいは45度にした。   Since it is difficult to load a large displacement force in the laboratory, the support member of the fluctuating load detector is tilted on the horizontal bed of the hydraulic servo fatigue tester, and a push rod with a rounded tip is attached to the actuator. The upper surface of the pressure receiving plate was pushed at a repetition rate of 1 Hz. The inclination angle was 8.8 degrees, 14 degrees, 17.2 degrees, or 45 degrees.

そして、試験機のロードセルの波形とセンサの出力波形を記録した。ずれ力は試験機のベッドと支持部材の傾斜角度θから、押し棒に加えた力Wにsinθを乗じて、ずれ力=W×sinθで求めた。   The waveform of the load cell of the testing machine and the output waveform of the sensor were recorded. The displacement force was obtained from the inclination angle θ between the bed of the test machine and the support member by multiplying the force W applied to the push rod by sin θ and the displacement force = W × sin θ.

図23にずれ力と変動荷重検出装置の出力との関係を示す。グラフより、変動荷重検出装置は、ずれ力とセンサ出力が精度良く比例関係を示すことがわかる。   FIG. 23 shows the relationship between the displacement force and the output of the fluctuating load detection device. From the graph, it can be seen that the fluctuating load detection device shows a proportional relationship between the displacement force and the sensor output with high accuracy.

以上説明したように、本発明に係る変動荷重検出パッドは、薄型でありながら、耐荷重が大きく、大きな変動荷重を検出することができる。したがって、クレーン車におけるアウトリガーのベース底面の変動荷重、コンテナトレーラのコンテナと車両との間の変動荷重、軌道と枕木の間の変動荷重、プレス機械の変動荷重、車両の衝突衝撃力等、大きな荷重を測定する際に利用可能である。   As described above, the variable load detection pad according to the present invention is thin, has a large load resistance, and can detect a large variable load. Therefore, large loads such as fluctuating loads on the base bottom of outriggers in crane trucks, fluctuating loads between containers and vehicles on container trailers, fluctuating loads between tracks and sleepers, fluctuating loads on press machines, collision impact forces on vehicles, etc. It can be used when measuring.

1 変動荷重検出パッド
2、2a〜2h、2a’〜2h’変動荷重検出板
3 分布型変動荷重検出板
4 変動荷重検出装置
5 変動荷重検出装置
6 変動荷重検出装置
7 変動荷重検出装置
8 変動荷重検出装置
11 圧電板
12 電極板
13 電極板
14 絶縁板
15 絶縁板
16 スペーサ
17 接着部材
18 端子部
19 端子部
20 電極膜
21 電極膜
22 弾性層
23 弾性層
24 剛性板
25 剛性板
26 対象物
27 載置台
28 砂粒
31 受圧板
32 受圧板
33 固定部材
41 受圧部材
42 弾性板
43 支持部材
44 ずれ力伝達部
44a、44a’、44b、44b’ずれ力伝達部
45 孔
46 ベース
47 固定部材
48 固定部材
51 変動荷重検出パッド
DESCRIPTION OF SYMBOLS 1 Fluctuation load detection pad 2, 2a-2h, 2a'-2h 'Fluctuation load detection board 3 Distributed type fluctuation load detection board 4 Fluctuation load detection apparatus 5 Fluctuation load detection apparatus 6 Fluctuation load detection apparatus 7 Fluctuation load detection apparatus 8 Fluctuation load detection apparatus 8 Detection device 11 Piezoelectric plate 12 Electrode plate 13 Electrode plate 14 Insulating plate 15 Insulating plate 16 Spacer 17 Adhesive member 18 Terminal unit 19 Terminal unit 20 Electrode film 21 Electrode film 22 Elastic layer 23 Elastic layer 24 Rigid plate 25 Rigid plate 26 Object 27 Mounting table 28 Sand grain 31 Pressure receiving plate 32 Pressure receiving plate 33 Fixed member 41 Pressure receiving member 42 Elastic plate 43 Support member 44 Displacement force transmitting portion 44a, 44a ', 44b, 44b' Displacement force transmitting portion 45 hole 46 base 47 fixing member 48 fixing member 51 Fluctuating load detection pad

Claims (14)

高分子圧電材料から形成された圧電板と、
前記圧電板を挟む一対の電極板と、
前記一対の電極板を挟む一対の絶縁板と、を備え、
前記一対の電極板はそれぞれ前記圧電板に直に面接触し、且つ、非接着であり、
負荷される荷重に応じて前記圧電板の厚みを変化させ、前記圧電板から前記荷重に応じた電圧を出力させる、ことを特徴とする変動荷重検出パッド。
A piezoelectric plate formed from a polymeric piezoelectric material;
A pair of electrode plates sandwiching the piezoelectric plate;
A pair of insulating plates sandwiching the pair of electrode plates,
Each of the pair of electrode plates is in direct surface contact with the piezoelectric plate, and is non-adherent.
A variable load detection pad, wherein the thickness of the piezoelectric plate is changed according to a load applied, and a voltage corresponding to the load is output from the piezoelectric plate.
前記一対の電極板のうち少なくとも一方が前記圧電板の面積よりも小さいことを特徴とする請求項1に記載の変動荷重検出パッド。   The variable load detection pad according to claim 1, wherein at least one of the pair of electrode plates is smaller than an area of the piezoelectric plate. 前記電極板が金属板であることを特徴とする請求項1又は2に記載の変動荷重検出パッド。   The variable load detection pad according to claim 1, wherein the electrode plate is a metal plate. 前記金属板が耐腐食性の金属板或いは表面に錆止め処理が施された金属板であることを特徴とする請求項3に記載の変動荷重検出パッド。   The variable load detection pad according to claim 3, wherein the metal plate is a corrosion-resistant metal plate or a metal plate having a surface subjected to rust prevention treatment. 前記絶縁板は、硬質樹脂素材から構成されることを特徴とする請求項1に記載の変動荷重検出パッド。   The variable load detection pad according to claim 1, wherein the insulating plate is made of a hard resin material. 前記絶縁板は、前記荷重を前記一対の電極板に分散させる弾性素材から構成されていることを特徴とする請求項1に記載の変動荷重検出パッド。   The variable load detection pad according to claim 1, wherein the insulating plate is made of an elastic material that distributes the load to the pair of electrode plates. 請求項1乃至6のいずれかに記載の変動荷重検出パッドと、
前記変動荷重検出パッドを挟む一対の受圧板と、
前記一対の受圧板を互いに押し合わせて前記変動荷重検出パッドと一体的に固定させる固定部材と、を備えることを特徴とする変動荷重検出板。
The variable load detection pad according to any one of claims 1 to 6,
A pair of pressure plates sandwiching the fluctuating load detection pad;
A variable load detection plate, comprising: a fixing member that presses the pair of pressure receiving plates together to be fixed integrally with the variable load detection pad.
前記圧電板に所定の負荷が加わるように前記固定部材によって固定され、
前記所定の負荷を超える荷重に応じて前記圧電板の厚み変化を生じさせる、ことを特徴とする請求項7に記載の変動荷重検出板。
It is fixed by the fixing member so that a predetermined load is applied to the piezoelectric plate,
The fluctuation load detection plate according to claim 7, wherein a thickness change of the piezoelectric plate is caused in response to a load exceeding the predetermined load.
請求項1乃至6のいずれかに記載の変動荷重検出パッドが同一平面上に複数配置されていることを特徴とする分布型変動荷重検出板。   A distributed variable load detection plate, wherein a plurality of the variable load detection pads according to claim 1 are arranged on the same plane. 請求項7又は8に記載の変動荷重検出板が同一平面上に複数配置されていることを特徴とする分布型変動荷重検出板。   A distributed variable load detection plate, wherein a plurality of variable load detection plates according to claim 7 or 8 are arranged on the same plane. 凹部が形成されて受圧面及び垂下部を有する断面コの字状の受圧部材と、
前記垂下部内壁に対向配置される一対の請求項7又は8に記載の変動荷重検出板と、
前記一対の変動荷重検出板に当接するずれ力伝達部を有し、前記ずれ力伝達部が前記受圧部材の凹部に内包される支持部材と、
前記受圧部材と前記支持部材との間に配置された弾性板と、を備え、
前記受圧部材に負荷される荷重によって前記受圧面に沿って生じるずれ力が前記ずれ力伝達部に伝達され、
前記ずれ力伝達部によって前記一対の変動荷重検出板のいずれかが押圧され、
前記一対の変動荷重検出板からそれぞれ出力される電圧の差から前記ずれ力を検出する、ことを特徴とする変動荷重検出装置。
A pressure-receiving member having a U-shaped cross section having a pressure-receiving surface and a drooping portion formed with a recess;
A pair of fluctuating load detection plates according to claim 7 or 8, which are arranged to face the hanging wall.
A support member that includes a displacement force transmission portion that contacts the pair of fluctuating load detection plates, and wherein the displacement force transmission portion is included in the recess of the pressure receiving member;
An elastic plate disposed between the pressure receiving member and the support member,
A displacement force generated along the pressure-receiving surface due to a load applied to the pressure-receiving member is transmitted to the displacement force transmission unit,
One of the pair of fluctuating load detection plates is pressed by the displacement force transmission unit,
The variable load detection device, wherein the shift force is detected from a difference between voltages respectively output from the pair of variable load detection plates.
前記一対の変動荷重検出板が二組それぞれ対向配置され、一組の前記変動荷重検出板を結ぶ線と他の一組の前記変動荷重検出板を結ぶ線とが十字状に交差していることを特徴とする請求項11に記載の変動荷重検出装置。   Two sets of the pair of variable load detection plates are arranged opposite to each other, and a line connecting the one set of variable load detection plates and a line connecting the other set of the variable load detection plates intersect in a cross shape. The fluctuating load detection device according to claim 11. 前記凹部が円盤状であり、前記凹部の周壁に複数対の前記変動荷重検出板がそれぞれ対向配置され、
前記支持部材は複数対の前記変動荷重検出板に当接する円盤状の前記ずれ力伝達部を備えていることを特徴とする請求項11に記載の変動荷重検出装置。
The concave portion is disk-shaped, and a plurality of pairs of the fluctuating load detection plates are respectively opposed to the peripheral wall of the concave portion,
The variable load detection device according to claim 11, wherein the support member includes the disc-shaped displacement force transmission unit that abuts against a plurality of pairs of the variable load detection plates.
更に、前記支持部材の底面に請求項1乃至6のいずれかに記載の変動荷重検出パッドが配置され、前記受圧部材に加わる変動荷重を検出する請求項11乃至13のいずれかに記載の変動荷重検出装置。   Furthermore, the variable load detection pad according to any one of claims 1 to 6 is arranged on the bottom surface of the support member, and the variable load applied to the pressure receiving member is detected. Detection device.
JP2009192557A 2009-08-21 2009-08-21 Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector Pending JP2011043442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192557A JP2011043442A (en) 2009-08-21 2009-08-21 Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192557A JP2011043442A (en) 2009-08-21 2009-08-21 Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector

Publications (1)

Publication Number Publication Date
JP2011043442A true JP2011043442A (en) 2011-03-03

Family

ID=43830973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192557A Pending JP2011043442A (en) 2009-08-21 2009-08-21 Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector

Country Status (1)

Country Link
JP (1) JP2011043442A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247355A (en) * 2011-05-30 2012-12-13 Oriental Shiraishi Corp Concrete stress meter
WO2014185530A1 (en) * 2013-05-16 2014-11-20 三井化学株式会社 Pressing-detection device and touch panel
CN104880265A (en) * 2014-02-27 2015-09-02 精工爱普生株式会社 Force detector and mechanical arm
JP2017054435A (en) * 2015-09-11 2017-03-16 株式会社村田製作所 Display device
WO2019021981A1 (en) * 2017-07-26 2019-01-31 株式会社村田製作所 Pressure sensor and electronic device
WO2019187653A1 (en) * 2018-03-26 2019-10-03 住友理工株式会社 Transducer sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221287A (en) * 1984-04-13 1985-11-05 三菱電機株式会社 Force sensor for robot
JPS61184934U (en) * 1985-05-09 1986-11-18
JPH03295430A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Load sensor
JPH08330642A (en) * 1995-05-30 1996-12-13 Hokkai Can Co Ltd Ferroelectric element for piezoelectric conversion and piezoelectric conversion detector
JP2000275123A (en) * 1999-03-25 2000-10-06 Tokai Rubber Ind Ltd Distribution sensor
JP2003130740A (en) * 2001-10-25 2003-05-08 Ngk Spark Plug Co Ltd Piezoelectric sensor and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221287A (en) * 1984-04-13 1985-11-05 三菱電機株式会社 Force sensor for robot
JPS61184934U (en) * 1985-05-09 1986-11-18
JPH03295430A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Load sensor
JPH08330642A (en) * 1995-05-30 1996-12-13 Hokkai Can Co Ltd Ferroelectric element for piezoelectric conversion and piezoelectric conversion detector
JP2000275123A (en) * 1999-03-25 2000-10-06 Tokai Rubber Ind Ltd Distribution sensor
JP2003130740A (en) * 2001-10-25 2003-05-08 Ngk Spark Plug Co Ltd Piezoelectric sensor and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247355A (en) * 2011-05-30 2012-12-13 Oriental Shiraishi Corp Concrete stress meter
WO2014185530A1 (en) * 2013-05-16 2014-11-20 三井化学株式会社 Pressing-detection device and touch panel
CN105229436A (en) * 2013-05-16 2016-01-06 三井化学株式会社 Pressing detection device and contact panel
JP5985744B2 (en) * 2013-05-16 2016-09-06 三井化学株式会社 Press detection device and touch panel
US10031606B2 (en) 2013-05-16 2018-07-24 Mitsui Chemicals, Inc. Pressure detecting device and touch panel
US10201902B2 (en) 2014-02-27 2019-02-12 Seiko Epson Corporation Force detector and robot
CN104880265A (en) * 2014-02-27 2015-09-02 精工爱普生株式会社 Force detector and mechanical arm
JP2015161564A (en) * 2014-02-27 2015-09-07 セイコーエプソン株式会社 Power detection device and robot
US9931752B2 (en) 2014-02-27 2018-04-03 Seiko Epson Corporation Force detector and robot
JP2017054435A (en) * 2015-09-11 2017-03-16 株式会社村田製作所 Display device
WO2019021981A1 (en) * 2017-07-26 2019-01-31 株式会社村田製作所 Pressure sensor and electronic device
JPWO2019021981A1 (en) * 2017-07-26 2020-02-06 株式会社村田製作所 Press sensor and electronic equipment
US11906373B2 (en) 2017-07-26 2024-02-20 Murata Manufacturing Co., Ltd. Pressure sensor and electronic equipment
WO2019187653A1 (en) * 2018-03-26 2019-10-03 住友理工株式会社 Transducer sheet
JP2019168413A (en) * 2018-03-26 2019-10-03 住友理工株式会社 Transducer sheet

Similar Documents

Publication Publication Date Title
JP2011043442A (en) Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector
US20120180575A1 (en) Capacitance-type force sensor
JP4427665B2 (en) Bending deformation sensor and deformation measuring apparatus
JP6117919B2 (en) Measuring element, measuring body and measuring arrangement for measuring force, and use of such a measuring body
JP5318761B2 (en) Piezoelectric ceramic planar actuator and method of manufacturing the planar actuator
JP6697072B2 (en) Device for detecting force and torque
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
CN105556267B (en) Pressing detection sensors
JP2007132888A (en) Pressure-sensitive sensor device
US8297133B2 (en) Pressure sensor
US9972768B2 (en) Actuator structure and method
US10677667B2 (en) Component transducer and multi-component transducer using such component transducer as well as use of such multi-component transducer
JP5348451B2 (en) Load detection device
JP7473720B2 (en) device
JP6324566B2 (en) Sensor using polymer gel
JP5408687B2 (en) Shear stress sensor and distributed shear stress sensor
WO2009007047A2 (en) Piezoelectric device for detecting or generating forces and torques in multiple directions
JP6324803B2 (en) Pressure-sensitive sensor and manufacturing method thereof
JP4230241B2 (en) Touch sensor, gripping robot
JP4141061B2 (en) Load transducer
JP2001153735A (en) Load cell
JP4399545B2 (en) Tactile sensor and multi-point tactile sensor
JP3925645B2 (en) Load cell
WO2019124019A1 (en) Curvature detection sensor
LU93175B1 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120507

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130418

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910