JP2009025065A - Pressure sensor and distributed pressure sensor using the same - Google Patents

Pressure sensor and distributed pressure sensor using the same Download PDF

Info

Publication number
JP2009025065A
JP2009025065A JP2007186545A JP2007186545A JP2009025065A JP 2009025065 A JP2009025065 A JP 2009025065A JP 2007186545 A JP2007186545 A JP 2007186545A JP 2007186545 A JP2007186545 A JP 2007186545A JP 2009025065 A JP2009025065 A JP 2009025065A
Authority
JP
Japan
Prior art keywords
pressure
piezoelectric thin
thin plate
pressure sensor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007186545A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
由紀夫 藤本
Arif Setyanto Taufiq
アリフ セテイアント タウフィック
Eiji Shintaku
英司 新宅
Yoshikazu Tanaka
義和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2007186545A priority Critical patent/JP2009025065A/en
Publication of JP2009025065A publication Critical patent/JP2009025065A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact pressure sensor which can measure a micro pressure whose pressure level is in a degree of 1 kPa, can measure the varying pressure over a wide range of 1 kPa to 100 kPa, and is less apt to break, and to provide a distributed pressure sensor capable of measuring a pressure distribution with high density. <P>SOLUTION: A pair of elastic members 30 are jointed to both surfaces of a piezoelectric lamella 10, formed by stretching a polymer piezoelectric material, and a pressure-receivingplate 40 is jointed to an end face of the piezoelectric lamella 10. A micro varying pressure can be measured with high sensitivity, by making the surface area of the pressure plate 40 which is wider than the cross section of the end face of the piezoelectric lamella 10, and thereby allowing pressure received with the large pressure plate 40 to gather and act on the thin cut face of the piezoelectric lamella 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体、気体または固体の微小な変動圧力を検出する圧力センサと、圧力分布を検出する分布型圧力センサに関する。特に、高感度でかつ壊れにくく受圧面の寸法を小さく作製できる圧力センサと、複数の圧力センサを高密度に配置した分布型圧力センサに関する。   The present invention relates to a pressure sensor that detects minute fluctuating pressure of liquid, gas, or solid, and a distributed pressure sensor that detects pressure distribution. In particular, the present invention relates to a pressure sensor that is highly sensitive and that is difficult to break, and that can be manufactured with a small size of a pressure receiving surface, and a distributed pressure sensor in which a plurality of pressure sensors are arranged at high density.

従来の圧力センサは、周囲を支持した円形の受圧板の背面に歪みゲージ等の歪み検出素子を接着し、圧力を受けて受圧板が面外に曲げ変形するときの曲げ歪みを計測して圧力を測定するものが多い。そして、受圧板及び歪みゲージを一体的にしたものとして、圧電材料板が広く使われるようになってきた。   A conventional pressure sensor has a strain detection element such as a strain gauge attached to the back of a circular pressure plate that supports the periphery, and measures the bending strain when the pressure plate is bent out of the plane under pressure. There are many things to measure. Then, a piezoelectric material plate has been widely used as an integrated pressure receiving plate and strain gauge.

圧電材料板は荷重による圧電効果で、電気信号を感度よく出力する特性を有するので、この圧電材料板の面積の大きい方の面に対して垂直方向から力を作用させ、圧電材料板を歪ませて生じる電荷信号を検出し、液体、気体又は固体の圧力を測定するセンサの開発が進んでいる(例えば、特許文献1の図1及び[0026]、特許文献2の図1、特許文献4の図3、特許文献5図2及び[0018]、特許文献6の図1及び図2、特許文献7の図1、図2、[0008]及び[0009]、特許文献8の図1、特許文献9の図4、図5及び[0009]、特許文献10の図1及び図3、特許文献11の図1及び図4、特許文献12の図1、特許文献13の図1及び図3、特許文献14の第1図をそれぞれ参照)。
特開2006−340944号公報 特開2006−226858号公報 特開2006−194669号公報 特開2006−38710号公報 特開2005−221339号公報 特開2005−147991号公報 特開2005−147983号公報 特開2002−148273号公報 特開平11−169592号公報 特開平9−229729号公報 特開平8−327416号公報 特開平4−127027号公報 特開平2−268230号公報 特開昭64−54225号公報
The piezoelectric material plate has the characteristic of sensitively outputting electrical signals due to the piezoelectric effect caused by the load, so that a force is applied from the vertical direction to the larger surface of the piezoelectric material plate to distort the piezoelectric material plate. Development of a sensor that detects a charge signal generated by measuring the pressure of a liquid, gas, or solid is progressing (for example, FIG. 1 and [0026] of Patent Document 1, FIG. 1 of Patent Document 2, and Patent Document 4). 3, FIG. 2 and [0018] of Patent Document 5, FIG. 1 and FIG. 2 of Patent Document 6, FIG. 1, FIG. 2, [0008] and [0009] of Patent Document 7, FIG. 9, FIG. 5 and [0009] of Patent Document 9, FIGS. 1 and 3 of Patent Document 10, FIGS. 1 and 4 of Patent Document 11, FIG. 1 of Patent Document 12, FIG. 1 and FIG. 3 of Patent Document 13, Patent (See FIG. 1 of reference 14).
JP 2006-340944 A JP 2006-226858 A JP 2006-194669 A JP 2006-38710 A JP 2005-221339 A JP 2005-147991 A Japanese Patent Laying-Open No. 2005-147983 JP 2002-148273 A JP-A-11-169592 JP-A-9-229729 JP-A-8-327416 Japanese Patent Laid-Open No. 4-127027 JP-A-2-268230 JP-A 64-54225

上記特許文献では、全て圧電材料板の面積の大きい方の面に対して垂直方向から圧力を加え、圧電材料板を撓ませて圧力を計測しているものであり、圧電材料板の端面から力を加えて圧力を計測しているものはない。   In all of the above patent documents, pressure is measured from the direction perpendicular to the larger surface of the piezoelectric material plate, the pressure is measured by bending the piezoelectric material plate, and force is applied from the end surface of the piezoelectric material plate. There is no one that measures pressure by adding.

圧電材料板は高分子からなる圧電材料を延伸して製造されるものであり、主として延伸方向に歪ませた場合に大きな電荷信号が流れる。上記特許文献のように圧電材料板の面に垂直に力を加える場合、同心円状に力が伝わるが、圧電材料板面に垂直に加わった力から延伸方向に歪ませる力は一部だけである。このため、加えた力の一部のみが圧電材料板を歪ませるに過ぎない。したがって、感度が鈍く、微小圧力の計測が困難という課題を有する。そして、増幅器の増幅率を非常に高くしなければならず、ドリフトが大きくなり正確な圧力を検出することができない。   The piezoelectric material plate is manufactured by stretching a piezoelectric material made of a polymer, and a large charge signal flows mainly when strained in the stretching direction. When a force is applied perpendicularly to the surface of the piezoelectric material plate as in the above-mentioned patent document, the force is transmitted concentrically, but only a part of the force that is distorted in the stretching direction from the force applied perpendicularly to the piezoelectric material plate surface . For this reason, only a part of the applied force only distorts the piezoelectric material plate. Therefore, there is a problem that the sensitivity is low and it is difficult to measure a minute pressure. And the amplification factor of an amplifier must be made very high, drift becomes large, and an accurate pressure cannot be detected.

更に、このような構成で微小圧力を測定するには、圧電材料板を薄く、大面積にしなければならない。圧電材料板を薄くすれば撓みが大きくなり、微小圧力を検出することが出来るが、薄くした場合、1kPa程度の微小圧力を測定できるものとなると、上限値を超える圧力により、容易に圧力センサが壊れてしまうという問題がある。例えば、1kPa程度の微小圧力を測定する圧力センサでは、およそ10倍の圧力10kPaが加わると壊れてしまう。   Furthermore, in order to measure a minute pressure with such a configuration, the piezoelectric material plate must be thin and have a large area. If the piezoelectric material plate is made thinner, the deflection becomes larger and a minute pressure can be detected. However, if the piezoelectric material plate is made thinner, if a minute pressure of about 1 kPa can be measured, the pressure sensor can easily be detected by the pressure exceeding the upper limit. There is a problem that it breaks. For example, a pressure sensor that measures a minute pressure of about 1 kPa breaks when a pressure of 10 kPa, which is approximately 10 times higher, is applied.

また、圧電材料板の面積を大きくすれば撓みやすくなるので微小圧力でも検出できるが、小型のセンサを作製できなくなるという課題を有する。このため、現在市販されている微小圧力測定用センサのほとんどは、直径9mm以上の円形のものである。   In addition, if the area of the piezoelectric material plate is increased, the piezoelectric material plate is easily bent, so that even a minute pressure can be detected, but there is a problem that a small sensor cannot be manufactured. For this reason, most of the sensors for measuring micro pressure currently on the market are circular with a diameter of 9 mm or more.

このような状況から、微小圧力を測定でき、且つ、許容圧力範囲が広く壊れにくい小型の圧力センサは現在のところ存在しない状況にある。   Under such circumstances, there is currently no small pressure sensor that can measure a minute pressure and has a wide allowable pressure range and is not easily broken.

本発明が解決しようとする課題は、圧力レベル1kPaの微小な圧力を測定でき、且つ、1kPa〜100kPaの広範囲の変動圧力を測定できるとともに、壊れにくい小型の圧力センサを提供することである。また、複数の圧力センサを直線上または二次元状に配置して、高密度に圧力分布を測定できる分布型圧力センサを提供することである。   The problem to be solved by the present invention is to provide a small pressure sensor that can measure a minute pressure of a pressure level of 1 kPa and can measure a wide range of fluctuating pressures of 1 kPa to 100 kPa and is not easily broken. Another object of the present invention is to provide a distributed pressure sensor capable of measuring a pressure distribution with high density by arranging a plurality of pressure sensors in a straight line or two-dimensionally.

本発明は、圧電材料からなる圧電薄板と、前記圧電薄板の端面に配置し、前記圧電薄板の端面の断面積よりも大きな面積を有する受圧板とを備え、前記受圧板で受けた圧力を前記圧電薄板の端面に垂直に加えて微小圧力を検出することを特徴とする。   The present invention includes a piezoelectric thin plate made of a piezoelectric material, and a pressure receiving plate disposed on an end surface of the piezoelectric thin plate and having an area larger than a cross-sectional area of the end surface of the piezoelectric thin plate, and the pressure received by the pressure receiving plate is It is characterized in that a minute pressure is detected in addition to being perpendicular to the end face of the piezoelectric thin plate.

また、本発明は、前記圧電薄板を挟持する弾性部材を設け、前記弾性部材の弾性率を前記圧電薄板の弾性率よりも小さくし、前記受圧板で受けた力を前記圧電薄板に集中させて加えることを特徴とする。   Further, the present invention provides an elastic member for sandwiching the piezoelectric thin plate, makes an elastic modulus of the elastic member smaller than an elastic modulus of the piezoelectric thin plate, and concentrates the force received by the pressure receiving plate on the piezoelectric thin plate. It is characterized by adding.

更に、本発明は、前記弾性部材の弾性率は前記圧電薄板の弾性率の1/100〜1/2000であることを特徴とする。   Furthermore, the present invention is characterized in that the elastic modulus of the elastic member is 1/100 to 1/2000 of the elastic modulus of the piezoelectric thin plate.

更に、本発明は、前記弾性部材は、天然ゴム、合成ゴム、シリコンゴム、スポンジゴム、スポンジ、発泡ゴム、又はコルクから選択されることを特徴とする。   Furthermore, the present invention is characterized in that the elastic member is selected from natural rubber, synthetic rubber, silicon rubber, sponge rubber, sponge, foam rubber, or cork.

更に、本発明は、前記圧電薄板は圧電材料を延伸して形成されてなり、前記圧電薄板の延伸方向の端面に前記受圧板を配置したことを特徴とする。   Furthermore, the present invention is characterized in that the piezoelectric thin plate is formed by stretching a piezoelectric material, and the pressure receiving plate is disposed on an end surface in the stretching direction of the piezoelectric thin plate.

更に、本発明は、前記圧電薄板はポリフッ化ビニリデン或いはシアン化ビニリデンからなる高分子圧電材料から形成されたことを特徴とする。   Furthermore, the present invention is characterized in that the piezoelectric thin plate is made of a polymer piezoelectric material made of polyvinylidene fluoride or vinylidene cyanide.

更に、本発明は、前記受圧板の面積を前記圧電薄板の端面の面積の20倍以上としたことを特徴とする。   Furthermore, the present invention is characterized in that an area of the pressure receiving plate is 20 times or more an end surface area of the piezoelectric thin plate.

更に、本発明は、前記圧電薄板を複数枚平行に配置したことを特徴とする。   Furthermore, the present invention is characterized in that a plurality of the piezoelectric thin plates are arranged in parallel.

更に、本発明は、前記圧電薄板及び前記弾性部材を1面に開口面を有する函体で覆い、前記受圧板を前記開口面に向けたことを特徴とする。   Furthermore, the present invention is characterized in that the piezoelectric thin plate and the elastic member are covered with a box having an opening surface on one surface, and the pressure receiving plate is directed to the opening surface.

更に、本発明は、前記受圧板が矩形状であることを特徴とする。   Furthermore, the present invention is characterized in that the pressure receiving plate is rectangular.

更に、本発明は、前記受圧板の表面が曲面からなることを特徴とする。   Furthermore, the present invention is characterized in that the pressure receiving plate has a curved surface.

更に、本発明は、請求項10に記載の圧力センサを複数用い、前記受圧板の表面を揃えて直線状或いは二次元状に隣接して配置したことを特徴とする。   Furthermore, the present invention is characterized in that a plurality of pressure sensors according to claim 10 are used, and the surfaces of the pressure receiving plates are aligned and adjacently arranged linearly or two-dimensionally.

本発明に依れば、圧電薄板の端面に受圧板を設置し、圧電薄板の端面の面積よりも受圧板の表面積を大きくして構成している。大きな表面積の受圧板で力を集め、この力を圧電薄板の小さな端面に集約させて圧電薄板を歪ませるので、感度が高く、微小な圧力を検出することができる。   According to the present invention, the pressure receiving plate is installed on the end face of the piezoelectric thin plate, and the surface area of the pressure receiving plate is made larger than the area of the end face of the piezoelectric thin plate. A force is collected by a pressure plate having a large surface area, and this force is concentrated on a small end face of the piezoelectric thin plate to distort the piezoelectric thin plate. Therefore, the sensitivity is high and a minute pressure can be detected.

また、本発明に依れば、弾性部材は圧電薄板よりも弾性率が小さいものから構成しているため、受圧板が受ける力のほとんどは弾性部材ではなく、圧電薄板にかかる。このため、受圧板の受ける力のほとんどが圧電薄板を延伸方向に歪ませることになり、感度が高い圧力センサを提供できる。   Further, according to the present invention, since the elastic member is made of a material having a smaller elastic modulus than the piezoelectric thin plate, most of the force received by the pressure receiving plate is applied to the piezoelectric thin plate, not the elastic member. For this reason, most of the force received by the pressure receiving plate distorts the piezoelectric thin plate in the stretching direction, and a highly sensitive pressure sensor can be provided.

更に、本発明に依れば、圧電薄板の両面は弾性部材で挟持されており、撓みを抑制している。圧電薄板を延伸方向にのみ歪ませるので、加わった力と歪み量が比例関係をなすため、撓みによる測定誤差がなく、正確な変動圧力を検出ができる利点がある。   Furthermore, according to the present invention, both surfaces of the piezoelectric thin plate are sandwiched between elastic members to suppress bending. Since the piezoelectric thin plate is distorted only in the stretching direction, the applied force and the amount of distortion are in a proportional relationship, so there is an advantage that there is no measurement error due to bending and that an accurate fluctuating pressure can be detected.

更に、本発明に依れば、圧電薄板の延伸方向に力を加えて圧力を検出している。圧電薄板は主として延伸方向の歪み量に応じて電荷信号を発生することから、加わる力が直接的に無駄なく圧電薄板を延伸方向に歪ませるため、1kPa(0.1g/mm)程度の微小な圧力でも感度良く検出できる利点を有する。 Furthermore, according to the present invention, the pressure is detected by applying a force in the extending direction of the piezoelectric thin plate. Since the piezoelectric thin plate mainly generates a charge signal according to the amount of strain in the stretching direction, the applied force directly distorts the piezoelectric thin plate in the stretching direction without waste, so that the piezoelectric thin plate is as small as 1 kPa (0.1 g / mm 2 ). This has the advantage that it can be detected with high sensitivity even at a low pressure.

更に、本発明に依れば、圧電薄板の両面を弾性部材で挟持していることから、圧電薄板が破けることがなく、強度の高い圧力センサを実現している。   Furthermore, according to the present invention, since both sides of the piezoelectric thin plate are sandwiched between elastic members, the piezoelectric thin plate is not broken and a high-pressure sensor is realized.

更に、本発明に依れば、外部に金属等、硬度の高い函体で覆っていることから、より強度を増した圧力センサを提供できる利点がある。   Furthermore, according to the present invention, since the outside is covered with a box having high hardness such as metal, there is an advantage that a pressure sensor with increased strength can be provided.

更に、複数の圧電薄板を配置しているため、受圧板が傾くことが無く、受圧板の受けた力が圧電薄板に伝達されるので、感度良く圧力を検出することができる。   Further, since the plurality of piezoelectric thin plates are arranged, the pressure receiving plate does not tilt, and the force received by the pressure receiving plate is transmitted to the piezoelectric thin plate, so that the pressure can be detected with high sensitivity.

更に、本発明に依れば、大きな圧電薄板を用いなくても高感度で圧力検出できるため、小型の圧力センサを提供できる。   Furthermore, according to the present invention, since a pressure can be detected with high sensitivity without using a large piezoelectric thin plate, a small pressure sensor can be provided.

更に、本発明に依れば、全てを固体物から構成しているため、取扱い易く、壊れにくいという利点がある。   Furthermore, according to the present invention, since all are made of a solid material, there is an advantage that it is easy to handle and hard to break.

更に、受圧板を矩形等、所望の形状にして用いることができ、受圧板を矩形形状にした圧力センサを複数個隣接して配置した分布型圧力センサとすることができる。これにより、各圧力センサ間に隙間ができないため、正確な圧力分布の計測を実現できる。   Furthermore, the pressure receiving plate can be used in a desired shape such as a rectangle, and a distributed pressure sensor in which a plurality of pressure sensors having a rectangular pressure receiving plate are arranged adjacent to each other can be obtained. Thereby, since there is no gap between the pressure sensors, accurate pressure distribution measurement can be realized.

更に、受圧板表面を曲面から構成することもできるため、船首等測定したい箇所が平面以外の形状であっても圧力の測定ができる。   Furthermore, since the pressure-receiving plate surface can be formed of a curved surface, the pressure can be measured even if the portion to be measured such as the bow has a shape other than the plane.

図1及び図2を参照して、本発明の圧力センサの概略構成を説明する。図1は、本発明による圧力センサの平面図(A)、及びA−A’部分の横断面図(B)である。また、図2は、圧力センサの主要部の斜視図である。   With reference to FIG.1 and FIG.2, schematic structure of the pressure sensor of this invention is demonstrated. FIG. 1 is a plan view (A) of a pressure sensor according to the present invention and a cross-sectional view (B) of an A-A ′ portion. FIG. 2 is a perspective view of the main part of the pressure sensor.

図1(A)、(B)及び図2に示すように、圧力センサは、表裏面に電極膜20を付けた圧電薄板10の端面に、圧電薄板10の端面の面積よりも大きな表面積を有する受圧板40を配置してなり、そして、圧電薄板10の両面の電極膜20を挟み込む形態に一対の柔軟な弾性部材30を接合した構成である。   As shown in FIGS. 1A, 1B, and 2, the pressure sensor has a surface area larger than the area of the end face of the piezoelectric thin plate 10 on the end face of the piezoelectric thin plate 10 with the electrode film 20 attached to the front and back surfaces. A pressure receiving plate 40 is arranged, and a pair of flexible elastic members 30 are joined in a form in which the electrode films 20 on both sides of the piezoelectric thin plate 10 are sandwiched.

弾性部材30及び圧電薄板10の一方の端面(T1)全体に受圧板40を接合し、これを剛性部材のケース60に収納している。受圧板40は剛性部材のケース60の開口部からわずかに突出し開口面と平行な面に配設し、弾性部材30及び圧電薄板10のもう一方の端面(T2)を剛性部材のケース60の底面に固定している。電極膜20には電気端子を介して配線(80A、80B)を接続している。   The pressure receiving plate 40 is joined to the entire one end surface (T1) of the elastic member 30 and the piezoelectric thin plate 10, and this is accommodated in a case 60 of a rigid member. The pressure receiving plate 40 protrudes slightly from the opening of the rigid member case 60 and is disposed on a plane parallel to the opening surface, and the other end surface (T2) of the elastic member 30 and the piezoelectric thin plate 10 is the bottom surface of the rigid member case 60. It is fixed to. Wirings (80A, 80B) are connected to the electrode film 20 via electrical terminals.

圧電薄板10は、受圧板40の面が受ける圧力を圧電薄板10の小さな端面に集中させて、微小な圧力の変動を計測するものである。このため、圧電薄板10の端面の断面積ができるだけ小さいほうが良いため、薄いものを用いるとよく、20μm〜200μmのものを使用することが好ましい。   The piezoelectric thin plate 10 measures a minute pressure fluctuation by concentrating the pressure received by the surface of the pressure receiving plate 40 on a small end surface of the piezoelectric thin plate 10. For this reason, since it is better that the cross-sectional area of the end face of the piezoelectric thin plate 10 is as small as possible, a thin one is preferably used, and one having a thickness of 20 μm to 200 μm is preferably used.

そして本発明では、圧電薄板10の伸縮歪みにより電荷信号を生じさせるものゆえ、ポリフッ化ビニリデンやシアン化ビニリデン等、弾性率が小さい高分子圧電材料を延伸して形成した圧電薄板10を使用すると良い。   In the present invention, the piezoelectric thin plate 10 formed by stretching a polymer piezoelectric material having a low elastic modulus, such as polyvinylidene fluoride or vinylidene cyanide, is preferably used because the charge signal is generated by the stretching strain of the piezoelectric thin plate 10. .

また、圧電薄板10の延伸方向の端面に受圧板40を設置すると良い。高分子圧電材料からなる圧電薄板10は、通常、一軸延伸法(たとえば、1)加重延伸法:ガラス転移温度まで加熱しながら高分子圧電材料に加重をかけて延伸する方法。2)自動延伸機を利用する方法:高分子圧電材料をガラス転移温度まで加熱しながらモーター駆動により一定延伸する方法。3)蒸気暴露延伸法:高分子圧電材料を沸騰水の蒸気に暴露しながら手延伸をする方法等がある。)によって延伸し、高電圧をかけて分極処理して形成される。この場合、圧電薄板10は、主として延伸方向の歪み量に応じて分極し、電気信号を発生するためである。   Further, the pressure receiving plate 40 may be installed on the end surface of the piezoelectric thin plate 10 in the extending direction. The piezoelectric thin plate 10 made of a polymer piezoelectric material is usually uniaxially stretched (for example, 1) weighted stretching: a method in which a polymer piezoelectric material is stretched while being heated to a glass transition temperature. 2) Method using an automatic stretching machine: A method in which a polymer piezoelectric material is stretched by a motor while being heated to a glass transition temperature. 3) Vapor exposure stretching method: There is a method of manually stretching a polymer piezoelectric material while exposing it to boiling water vapor. ) And polarized by applying a high voltage. In this case, the piezoelectric thin plate 10 is mainly polarized in accordance with the amount of strain in the stretching direction and generates an electrical signal.

圧電薄板10の表裏面には、蒸着、スパッタリングなどによって一対の電極膜20を設け、電極膜20に導電塗料、カシメなどで電気端子を取り付け、それぞれ配線(80A、80B)を接続している。なお、市販の両面に電極膜を付着させた圧電フィルムをそのまま使用してもよい。   A pair of electrode films 20 are provided on the front and back surfaces of the piezoelectric thin plate 10 by vapor deposition, sputtering, etc., and electrical terminals are attached to the electrode film 20 with conductive paint, caulking, etc., and wirings (80A, 80B) are connected to each. A commercially available piezoelectric film having electrode films attached to both sides may be used as it is.

圧電薄板10の両面の電極膜20を挟み込む形態に接合する一対の柔軟な弾性部材30には、厚さが0.5mm〜10mmで、弾性率が圧電薄板10より小さいものを用いる。   As the pair of flexible elastic members 30 to be joined in such a manner as to sandwich the electrode films 20 on both surfaces of the piezoelectric thin plate 10, those having a thickness of 0.5 mm to 10 mm and an elastic modulus smaller than that of the piezoelectric thin plate 10 are used.

弾性部材の弾性率が圧電薄板より小さいため、受圧板が受ける力のほとんどが圧電薄板に加わり、圧電薄板の伸縮歪みが促進させる。これにより、微小な力が受圧板に加わっても、その力が効率的に圧電薄板に加わるので、微小圧力でも検出することができる。   Since the elastic modulus of the elastic member is smaller than that of the piezoelectric thin plate, most of the force received by the pressure receiving plate is applied to the piezoelectric thin plate, and the expansion / contraction strain of the piezoelectric thin plate is promoted. Thereby, even if a minute force is applied to the pressure receiving plate, the force is efficiently applied to the piezoelectric thin plate, so that even a minute pressure can be detected.

圧電薄板10の弾性率の1/100〜1/2000の柔軟な弾性部材を用いると良く、このような弾性部材20として、天然ゴム、合成ゴム、シリコンゴム、スポンジゴム、スポンジ、発泡ゴムなどの各種ゴムまたはゴム系素材を好適に用いることができる。各種ゴムとゴム系素材を貼り合わせた素材、あるいは、各種ゴムにコルク板を貼り合わせた素材を用いても良い。   A flexible elastic member having a modulus of elasticity of 1/100 to 1/2000 of the piezoelectric thin plate 10 may be used, and examples of the elastic member 20 include natural rubber, synthetic rubber, silicon rubber, sponge rubber, sponge, and foam rubber. Various rubbers or rubber-based materials can be suitably used. You may use the material which bonded various rubber | gum and rubber-type material, or the material which bonded the cork board to various rubber | gum.

弾性部材30の弾性率が非常に小さい場合、弾性部材30が変形しやすくなり、特に左右不均衡に変形すると圧電薄板10の撓みが生じ、圧力に比例した電荷信号を出力できなるおそれがある。このような場合、圧電薄板10から離れた側に弾性率が大きめの弾性部材30を配置すると良く、弾性部材30の不均等な変形による圧電薄板10の撓みを抑制でき、圧力に比例した電荷信号を出力することになる。   When the elastic modulus of the elastic member 30 is very small, the elastic member 30 is likely to be deformed. In particular, when the elastic member 30 is deformed in a left-right imbalance, the piezoelectric thin plate 10 is bent, and there is a possibility that a charge signal proportional to the pressure cannot be output. In such a case, the elastic member 30 having a larger elastic modulus may be disposed on the side away from the piezoelectric thin plate 10, and the bending of the piezoelectric thin plate 10 due to the unequal deformation of the elastic member 30 can be suppressed, and the charge signal proportional to the pressure. Will be output.

一対の弾性部材30は同じ幅にして用い、略中心に圧電薄板10が配置されるようにする。圧電薄板10の位置が中心であれば、両方の弾性部材30が一様に変形するので、受圧板40が傾くことがなく、正確に圧力を検出できる。   The pair of elastic members 30 are used with the same width, and the piezoelectric thin plate 10 is disposed substantially at the center. If the position of the piezoelectric thin plate 10 is the center, both the elastic members 30 are uniformly deformed, so that the pressure receiving plate 40 does not tilt and the pressure can be detected accurately.

なお、圧電薄板10の表裏面の電極20と柔軟な弾性部材30の間は、硬化後の弾性率が前記柔軟な弾性部材30と略同じ弾性率の接着剤で接合して一体化する。   The electrodes 20 on the front and back surfaces of the piezoelectric thin plate 10 and the flexible elastic member 30 are integrated by bonding with an adhesive having an elastic modulus substantially equal to that of the flexible elastic member 30 after curing.

受圧板40は、金属板、樹脂板、複合材料の板など薄く剛性のある板を用いる。そして、受圧板40は受けた力を圧電薄板10の端面に集中させて加えるので、表面積が大きいものを用いるとよい。   The pressure receiving plate 40 is a thin and rigid plate such as a metal plate, a resin plate, or a composite material plate. And since the received pressure plate 40 concentrates and applies the received force to the end surface of the piezoelectric thin plate 10, it is good to use a thing with a large surface area.

本発明では受圧板40の表面積を小さくすることで小型の圧力センサを提供でき、例えば、一辺を2mm程度とし、4mmの正方形の受圧板40を用いて小型の圧力センサとすることもできる。この場合、使用する圧電薄板10の厚みが100μmとすると、圧電薄板10の端面は0.2mmとなるので、受圧板40の表面積は圧電薄板10の端面の20倍である。なお、受圧板40の表面積があまりに小さ過ぎると、圧電薄板10の端面に力を集められないことから、受圧板40の面積が圧電薄板10の端面の面積の20倍以上のものを用いることが好ましい。 In the present invention, a small pressure sensor can be provided by reducing the surface area of the pressure receiving plate 40. For example, a side pressure of about 2 mm can be provided, and a 4 mm 2 square pressure receiving plate 40 can be used as a small pressure sensor. In this case, if the thickness of the piezoelectric thin plate 10 to be used is 100 μm, the end face of the piezoelectric thin plate 10 is 0.2 mm 2 , so the surface area of the pressure receiving plate 40 is 20 times that of the end face of the piezoelectric thin plate 10. If the surface area of the pressure receiving plate 40 is too small, no force can be collected on the end face of the piezoelectric thin plate 10, so that the pressure receiving plate 40 has an area of 20 times or more that of the end face of the piezoelectric thin plate 10. preferable.

受圧板40の形状は一体化させた圧電薄板10及び弾性部材30の端面(T1)の形状と同じ形状にして用い、圧電薄板10と弾性部材30の一方の端面(T1)全体に受圧板40を接合する。   The pressure receiving plate 40 is used in the same shape as the shape of the integrated piezoelectric thin plate 10 and the end face (T1) of the elastic member 30, and the pressure receiving plate 40 is applied to one end face (T1) of the piezoelectric thin plate 10 and the elastic member 30 as a whole. Join.

なお、受圧板10の形状は円形或いは矩形等、様々な形状にして用いても良い。受圧板10を矩形にすれば、後述のように複数個の圧力センサを隙間無く隣接させることができ、容易に水圧等の分布の計測ができる。   The pressure receiving plate 10 may be formed in various shapes such as a circle or a rectangle. If the pressure receiving plate 10 is rectangular, a plurality of pressure sensors can be adjacent to each other without a gap as will be described later, and distribution of water pressure or the like can be easily measured.

剛性部材のケース60は金属、樹脂などの材料を加工して作製する。ケース60には受圧板40の寸法よりもわずかに大きい開口部と配線穴を加工し、それ以外のケース60周囲は密封した形態に作製する。   The rigid member case 60 is made by processing a material such as metal or resin. An opening and a wiring hole that are slightly larger than the dimensions of the pressure receiving plate 40 are processed in the case 60, and the other parts around the case 60 are manufactured in a sealed form.

剛性部材のケース60の開口部の表面付近と圧電薄板10及び弾性部材30の周囲とを開口部の表面付近で全周囲にわたってシール部材90でシールする。また、剛性部材のケース60の一部分に設けた配線穴から配線(80A、80B)を剛性部材のケース60外部に引き出して引き出し部分をシールする。   The vicinity of the surface of the opening of the rigid member case 60 and the periphery of the piezoelectric thin plate 10 and the elastic member 30 are sealed by the seal member 90 over the entire periphery near the surface of the opening. Further, the wiring (80A, 80B) is pulled out of the rigid member case 60 through a wiring hole provided in a part of the rigid member case 60, and the drawn portion is sealed.

圧電薄板10及び弾性部材30を剛性部材のケース60に収め、受圧板40の表面が剛性部材のケース60の開口部からわずかに突出し開口面と平行に位置する状態で、圧電薄板10及び弾性部材30のもう一方の端面(T2)を剛性部材のケース60の底面に接着剤などで固定する。   The piezoelectric thin plate 10 and the elastic member 30 are housed in a rigid member case 60, and the piezoelectric thin plate 10 and the elastic member are placed in a state where the surface of the pressure receiving plate 40 slightly protrudes from the opening of the rigid member case 60 and is parallel to the opening surface. The other end surface (T2) of 30 is fixed to the bottom surface of the rigid member case 60 with an adhesive or the like.

次に、剛性部材のケース60の開口部の表面付近と圧電薄板10及び弾性部材30の周囲を、開口部と略同一平面で全周囲にわたって薄いゴム膜などのシール部材90でシールして密封する。また、配線をケース60の外に引き出した後に配線穴もシール部材でシールして密封する。   Next, the vicinity of the surface of the opening of the rigid member case 60 and the periphery of the piezoelectric thin plate 10 and the elastic member 30 are sealed and sealed with a sealing member 90 such as a thin rubber film over the entire periphery in substantially the same plane as the opening. . Further, after the wiring is pulled out of the case 60, the wiring hole is also sealed with a sealing member to be sealed.

以上のように構成した圧力センサは、受圧面を除く剛性部材のケース60の一部分を対象物に固定して使用する。固定方法には、接着、粘着テープによる固定、ねじ止め固定等で行えばよい。   The pressure sensor configured as described above is used by fixing a part of the rigid member case 60 excluding the pressure receiving surface to an object. The fixing method may be bonding, fixing with an adhesive tape, screwing fixing, or the like.

このように、圧電薄板10の端面に受圧板40を配置し、圧電薄板10の強度が高い方向から力が加わる構成であること、また、圧電薄板10の両側から弾性部材30で支持した構成であるため、センサ本体が壊れたりすることがなく、強度に優れた圧力センサとなる。そして、同様の理由から広い許容圧力測定範囲を実現している。また、剛性部材からなるケース60で覆っているので、更に強度を高めた圧力センサとしている。   As described above, the pressure receiving plate 40 is disposed on the end face of the piezoelectric thin plate 10 so that force is applied from the direction in which the strength of the piezoelectric thin plate 10 is high, and the structure is supported by the elastic member 30 from both sides of the piezoelectric thin plate 10. For this reason, the sensor body is not broken, and the pressure sensor is excellent in strength. For the same reason, a wide allowable pressure measurement range is realized. Further, since it is covered with a case 60 made of a rigid member, the pressure sensor is further enhanced in strength.

次に、図3〜図5を用いて本発明の圧力センサの圧力の検出原理について説明する。   Next, the detection principle of the pressure of the pressure sensor of the present invention will be described with reference to FIGS.

図3及び図4は、図1の電極膜を付けた圧電薄板10の一方の端面に受圧板40を接合したものであり、図3は弾性部材を設けていないもの、図4は弾性部材を設けたものを示している。測定する圧力の方向は図3及び図4の矢印に示す方向である。   3 and 4 show a structure in which a pressure receiving plate 40 is joined to one end face of the piezoelectric thin plate 10 to which the electrode film of FIG. 1 is attached. FIG. 3 shows that the elastic member is not provided, and FIG. It shows what was provided. The direction of the pressure to be measured is the direction indicated by the arrows in FIGS.

圧電薄板10の厚さは20μm〜200μmと薄く、電極膜20も曲げ剛性にほとんど寄与しないナノメートルの厚さであるので、電極膜20を付けた圧電薄板10の曲げ剛性は極めて小さい。このため、図3に示すように、受圧板40に圧力が作用すると、微小な圧力であっても圧電薄板10が横方向に曲げ撓みが生じたり、圧電薄板10の長さLが長い場合には図3(B)に示すように途中で座屈変形が生じて圧力に比例する出力信号を得ることができない。   Since the thickness of the piezoelectric thin plate 10 is as thin as 20 μm to 200 μm, and the electrode film 20 has a nanometer thickness that hardly contributes to the bending rigidity, the bending rigidity of the piezoelectric thin plate 10 to which the electrode film 20 is attached is extremely small. For this reason, as shown in FIG. 3, when pressure is applied to the pressure receiving plate 40, the piezoelectric thin plate 10 is bent or bent in the lateral direction even when the pressure is very small, or when the length L of the piezoelectric thin plate 10 is long. As shown in FIG. 3B, buckling deformation occurs in the middle and an output signal proportional to the pressure cannot be obtained.

次に、図4(A)に示すように、電極膜20を付けた圧電薄板10の表裏面に0.5mm〜10mmの厚さの柔軟な弾性部材30を接合した場合には、柔軟な弾性部材30の弾性率は圧電薄板10の弾性率の1/100〜1/2000と格段に柔らかいが、柔軟な弾性部材30を接合することにより曲げ剛性を大幅に大きくすることができる。   Next, as shown in FIG. 4 (A), when a flexible elastic member 30 having a thickness of 0.5 mm to 10 mm is bonded to the front and back surfaces of the piezoelectric thin plate 10 with the electrode film 20 attached thereto, flexible elasticity is obtained. The elastic modulus of the member 30 is remarkably soft as 1/100 to 1/2000 of the elastic modulus of the piezoelectric thin plate 10, but the bending rigidity can be greatly increased by joining the flexible elastic member 30.

厚さ方向の曲げ剛性は、物体の弾性率と厚さ方向の断面二次モーメントの積として計算される。なお、物体の断面が矩形の場合、厚さ方向の断面二次モーメントは(物体の幅)×(物体の厚さ)×1/12として計算される。 The bending stiffness in the thickness direction is calculated as the product of the elastic modulus of the object and the cross-sectional second moment in the thickness direction. When the cross section of the object is rectangular, the cross-sectional secondary moment in the thickness direction is calculated as (object width) × (object thickness) 3 × 1/12.

図4(B)に、図4(A)のB−B´断面を示すが、ここで、電極膜20を付けた圧電薄板の弾性率Eが3000MPa、厚さhが0.1mm、幅B(図の紙面に垂直方向)が10mmの場合、電極を付けた圧電薄板10の曲げ剛性E(但しIは電極膜を付けた圧電薄板10の厚さ方向の断面二次モーメント)は、E=E×Bh /12=2.5MPa・mmである。 FIG. 4 (B) shows a BB ′ cross section of FIG. 4 (A). Here, the elastic modulus E 1 of the piezoelectric thin plate to which the electrode film 20 is attached is 3000 MPa, the thickness h 1 is 0.1 mm, When the width B (perpendicular to the drawing sheet) is 10 mm, the bending stiffness E 1 I 1 of the piezoelectric thin plate 10 with electrodes (where I 1 is the secondary cross-section in the thickness direction of the piezoelectric thin plate 10 with the electrode film) Moment) is E 1 I 1 = E 1 × Bh 1 3 /12=2.5 MPa · mm 4 .

これに対して、電極膜20を付けた圧電薄板10の両面に弾性率Eが1MPa、厚さhが2mmの柔軟な弾性部材30を接合した場合には、E+E=2.5MPa・mm+57.4MPa・mm=59.9MPa・mmになる。 On the other hand, when a flexible elastic member 30 having an elastic modulus E 2 of 1 MPa and a thickness h 2 of 2 mm is bonded to both surfaces of the piezoelectric thin plate 10 to which the electrode film 20 is attached, E 1 I 1 + E 2 I a 2 = 2.5MPa · mm 4 + 57.4MPa · mm 4 = 59.9MPa · mm 4 becomes.

すなわち、柔軟な弾性部材30が圧電薄板10の弾性率より格段に小さくても曲げ剛性は大幅に大きくなることがわかる。その結果、受圧板40に圧力が作用した場合に、圧電薄板10が横方向に曲げ撓みを生じたり座屈することが生じない。これにより、受圧板40にかかる力に応じて圧電薄板10は収縮するのみとなり、収縮による歪み量に応じた電気信号を発生させることができる。したがって、圧力の大きさに比例した変動圧力を、感度良く正確に検出することを実現している。   That is, it can be seen that even if the flexible elastic member 30 is much smaller than the elastic modulus of the piezoelectric thin plate 10, the bending rigidity is greatly increased. As a result, when pressure is applied to the pressure receiving plate 40, the piezoelectric thin plate 10 does not bend or buckle in the lateral direction. As a result, the piezoelectric thin plate 10 only contracts in accordance with the force applied to the pressure receiving plate 40, and an electrical signal corresponding to the amount of strain due to contraction can be generated. Therefore, the fluctuating pressure proportional to the magnitude of the pressure is accurately detected with high sensitivity.

続いて、図5を参照し、本発明の特徴である受圧板に受けた力を圧電薄板の端面に集中させて、微小圧力を検出することについて説明する。図5は受圧板、圧電薄板の端面、弾性部材のそれぞれの面積の関係について説明する分解斜視図である。   Next, with reference to FIG. 5, a description will be given of detecting a minute pressure by concentrating the force received by the pressure receiving plate, which is a feature of the present invention, on the end face of the piezoelectric thin plate. FIG. 5 is an exploded perspective view for explaining the relationship among the areas of the pressure receiving plate, the end face of the piezoelectric thin plate, and the elastic member.

受圧板40の表面に圧力が作用すると、圧電薄板10と柔軟な弾性部材30に圧縮力が作用して、電極膜20を付けた圧電薄板10と柔軟な弾性部材30はΔLだけ長さ方向に収縮する。このとき圧電薄板10に生じる電荷Qの大きさは、圧電薄板10の長さL方向に生じた圧縮歪みの総和に比例する。   When pressure acts on the surface of the pressure receiving plate 40, a compressive force acts on the piezoelectric thin plate 10 and the flexible elastic member 30, and the piezoelectric thin plate 10 with the electrode film 20 and the flexible elastic member 30 are moved in the length direction by ΔL. Shrink. At this time, the magnitude of the electric charge Q generated in the piezoelectric thin plate 10 is proportional to the total sum of the compressive strains generated in the length L direction of the piezoelectric thin plate 10.

いま、受圧板40の表面積をS(mm)、作用圧力をW(Mpa)、電極を付けた圧電薄板10の断面積をS、左右の柔軟な弾性部材の断面積をそれぞれSとすると、圧電薄板10の圧縮歪みεは、ε=ΔL/L=WS/(2S+S)となる。但しS=2S+Sである。 Now, the surface area of the pressure receiving plate 40 S (mm 2), the working pressure W (Mpa), the cross-sectional area of the piezoelectric sheet 10 carrying thereon an electrode S 1, the cross-sectional area of the right and left flexible resilient member and S 2, respectively Then, the compressive strain ε of the piezoelectric thin plate 10 is ε = ΔL / L = WS / (2S 2 E 2 + S 1 E 1 ). However, S = 2S 2 + S 1 .

このときの電極膜20を付けた圧電薄板10は全圧力のS/(2S+S)を分担し、柔軟な弾性部材30は全圧力の2S/(2S+S)を分担することになる。 The piezoelectric thin plate 10 to which the electrode film 20 is attached at this time shares S 1 E 1 / (2S 2 E 2 + S 1 E 1 ) of the total pressure, and the flexible elastic member 30 is 2S 2 E 2 / ( 2S 2 E 2 + S 1 E 1 ).

たとえば、前述の例で用いたE=3000MPa、S=h×B=0.1mm×10mm=1mm、E=1MPa、S=h×B=2mm×10mm=20mm、S=2S+S=41mmの場合について考えると、電極膜20を付けた圧電薄板10が約98.7%、柔軟な弾性部材30が約1.3%の圧力を分担することになる。つまり、圧力のほとんどを圧電薄板10が分担することになる。 For example, E 1 = 3000 MPa, S 1 = h 1 × B = 0.1 mm × 10 mm = 1 mm 2 , E 2 = 1 MPa, S 2 = h 2 × B = 2 mm × 10 mm = 20 mm 2 used in the above example, Considering the case of S = 2S 2 + S 1 = 41 mm 2 , the piezoelectric thin plate 10 provided with the electrode film 20 will share the pressure of about 98.7%, and the flexible elastic member 30 will share the pressure of about 1.3%. . That is, the piezoelectric thin plate 10 shares most of the pressure.

以上説明したように、本発明の圧力センサは、金属材料と比べてはるかに弾性率の小さい圧電薄板(圧電薄板の弾性率は例えばステンレス板の約1/70)を圧力検出に用い、圧電薄板10に面外の曲げ撓みや座屈を生じさせることなく、薄い圧電薄板10の切断面に圧力が作用する構成としている。すなわち、大きな表面積を有する受圧板40に加わった力のほとんどは、小さな断面積の圧電薄板10端面に集中して伝達される。そして、この圧電薄板10の端面に垂直に加わった力は、圧電薄板10が最も電荷を発生させる延伸方向に歪みを生じさせるように作用する。これにより、微小な変動圧力であっても、圧電薄板10全体に大きな歪みが生じ、圧電薄板10に生じた歪みの総和に比例する大きな電荷Qを発生させて高感度の圧力測定を実現している。   As described above, the pressure sensor of the present invention uses a piezoelectric thin plate having a much smaller elastic modulus than that of a metal material (the elastic modulus of the piezoelectric thin plate is, for example, about 1/70 of that of a stainless steel plate) for pressure detection. The structure is such that pressure acts on the cut surface of the thin piezoelectric thin plate 10 without causing out-of-plane bending or buckling of the plate 10. That is, most of the force applied to the pressure receiving plate 40 having a large surface area is concentrated and transmitted to the end surface of the piezoelectric thin plate 10 having a small cross-sectional area. The force applied perpendicularly to the end face of the piezoelectric thin plate 10 acts so as to cause distortion in the extending direction in which the piezoelectric thin plate 10 generates the most electric charge. As a result, even if the pressure fluctuates, a large strain is generated in the entire piezoelectric thin plate 10 and a large charge Q proportional to the total sum of the strains generated in the piezoelectric thin plate 10 is generated to realize a highly sensitive pressure measurement. Yes.

図6は、本発明の圧力センサを用いた圧力測定装置の回路図である。圧電薄板は電流源と圧電薄板自身のもつ静電容量Cでモデル化される。圧力測定装置は圧力センサと、圧力センサの配線に並列に接続する静電容量Cが10nF〜1μFのコンデンサと、前記コンデンサを介して圧力センサの信号を増幅する入力抵抗Rが10MΩまたはそれ以上の電圧増幅器700と、前記電圧増幅器700からの信号を測定記録する電圧記録計800とから構成される。 FIG. 6 is a circuit diagram of a pressure measuring device using the pressure sensor of the present invention. The piezoelectric thin plate is modeled by a capacitance C 1 of the current source and the piezoelectric thin plate itself. A pressure sensor is a pressure measuring device, a capacitor capacitance C 2 is 10nF~1μF connected in parallel to the pressure sensor wire, the input resistance R 0 for amplifying a signal of the pressure sensor via the capacitor 10MΩ or The voltage amplifier 700 described above and a voltage recorder 800 for measuring and recording a signal from the voltage amplifier 700 are configured.

また、後述する分布型圧力センサの場合には、センサ個数分のコンデンサと、必要チャンネル数の電圧増幅器700および必要チャンネル数の電圧記録計800で構成する。なお、コンデンサと電圧増幅器700は一体に製作しても良く、電圧記録計800はA/D変換器を介してパーソナルコンピュータに置き換えることもできる。   In the case of a distributed pressure sensor, which will be described later, it is composed of capacitors as many as the number of sensors, a voltage amplifier 700 having the required number of channels, and a voltage recorder 800 having the required number of channels. The capacitor and the voltage amplifier 700 may be manufactured integrally, and the voltage recorder 800 can be replaced with a personal computer via an A / D converter.

圧力センサに圧力が作用して圧電薄板に歪みが生じると、圧電薄板に接続する配線からは、圧電薄板に発生した電荷Qの時間微分に比例した電流i=dQ/dtが流れる。並列接続した静電容量Cが10nF〜1μFのコンデンサと電圧増幅器の入力抵抗Rを介することで、dQ/dtに比例する信号は積分されて、電圧増幅器700の入力抵抗部分の端子電圧は、電荷Qすなわち圧力の大きさに比例するようになる。圧力が微小である場合には圧電薄板に生じる電荷Qが小さいので、電圧増幅器700は50倍から1000倍の増幅率の電圧増幅器700を用いると好適である。 When pressure acts on the pressure sensor and the piezoelectric thin plate is distorted, a current i = dQ / dt proportional to the time differentiation of the charge Q generated in the piezoelectric thin plate flows from the wiring connected to the piezoelectric thin plate. The signal proportional to dQ / dt is integrated by passing the capacitor C 2 connected in parallel through a capacitor of 10 nF to 1 μF and the input resistance R 0 of the voltage amplifier, and the terminal voltage of the input resistance portion of the voltage amplifier 700 is , And becomes proportional to the charge Q, that is, the magnitude of the pressure. Since the electric charge Q generated in the piezoelectric thin plate is small when the pressure is very small, it is preferable to use the voltage amplifier 700 having an amplification factor of 50 to 1000 times.

図7は、一の受圧板に対して複数の圧電薄板を平行に配置した圧力センサの概略構成を示す平面図(A)及び、図7(A)のC−C´断面図(B)である。同一平面上に2つ配置した二対の圧電薄板10A,10B及び弾性部材30と、この圧電薄板10A,10B及び弾性部材30の面と直交する一方の端面全体に接合された受圧板40と、圧電薄板10A,10B及び弾性部材30全体を収納する剛性部材のケース60から構成する。   FIG. 7 is a plan view (A) showing a schematic configuration of a pressure sensor in which a plurality of piezoelectric thin plates are arranged in parallel with respect to one pressure receiving plate, and a cross-sectional view taken along line CC ′ in FIG. 7 (A). is there. Two pairs of piezoelectric thin plates 10A, 10B and two elastic members 30 arranged on the same plane, and a pressure receiving plate 40 bonded to the entire one end surface orthogonal to the surfaces of the piezoelectric thin plates 10A, 10B and the elastic member 30; The piezoelectric thin plates 10 </ b> A and 10 </ b> B and a rigid member case 60 that houses the entire elastic member 30 are configured.

受圧板40は剛性部材のケース60の開口部からわずかに突出し開口面と平行なる位置に配設し、二対の圧電薄板10A,10B及び弾性部材30のもう一方の端面全体を剛性部材のケース60の底面に固定する。次に、剛性部材のケース60の開口部の表面付近と圧電薄板10A,10B及び弾性部材30の周囲を開口部の表面付近で全周囲にわたってシール部材90でシールする。また、剛性部材のケース60の一部分に設けた配線穴から配線(81A、81B、82A、82B)を剛性部材のケース60外部に引き出して引き出し部分をシールする。   The pressure receiving plate 40 is disposed at a position slightly protruding from the opening of the rigid member case 60 and parallel to the opening surface, and the other pair of piezoelectric thin plates 10A and 10B and the other end surface of the elastic member 30 are entirely disposed on the rigid member case. Fix to the bottom of 60. Next, the vicinity of the surface of the opening of the rigid member case 60 and the periphery of the piezoelectric thin plates 10 </ b> A and 10 </ b> B and the elastic member 30 are sealed by the seal member 90 in the vicinity of the surface of the opening. Further, wiring (81A, 81B, 82A, 82B) is drawn out of the case 60 of the rigid member through a wiring hole provided in a part of the case 60 of the rigid member, and the drawn portion is sealed.

図7の圧力センサは、受圧板40に作用する圧力に比例する信号を、2つの圧電薄板10A,10Bの出力信号の和で測定する方式であるので、圧電薄板10Aの正極側の配線81Aと圧電薄板10Bの正極側の配線82Aを結線し、また、圧電薄板10Aの負極側の配線81Bと圧電薄板10Bの負極側の配線82Bを結線して2つの圧電薄板10A,10Bの出力信号の和を測定するようにする。結線する位置は剛性部材のケース60の外側であってもケース60の内側であっても良い。   Since the pressure sensor of FIG. 7 measures a signal proportional to the pressure acting on the pressure receiving plate 40 by the sum of the output signals of the two piezoelectric thin plates 10A, 10B, the wiring 81A on the positive electrode side of the piezoelectric thin plate 10A The wiring 82A on the positive electrode side of the piezoelectric thin plate 10B is connected, and the wiring 81B on the negative electrode side of the piezoelectric thin plate 10A and the wiring 82B on the negative electrode side of the piezoelectric thin plate 10B are connected, and the sum of output signals of the two piezoelectric thin plates 10A and 10B. To measure. The connecting position may be outside the rigid member case 60 or inside the case 60.

図7のように構成した圧力センサは、受圧板40の表面積を大きくすることができる。なお、二対の一体化させた圧電薄板10A,10B及び弾性部材30の間隔は密接して配置しても間隔を開けて配置しても良い。また、同一な一体化させた圧電薄板10及び弾性部材30を3つ以上平面に並べて、全体を覆う形態に受圧板を接合した構成とすることもできる。   The pressure sensor configured as shown in FIG. 7 can increase the surface area of the pressure receiving plate 40. It should be noted that the two pairs of integrated piezoelectric thin plates 10A and 10B and the elastic member 30 may be arranged close to each other or spaced apart. Moreover, it is also possible to adopt a configuration in which three or more identical piezoelectric thin plates 10 and elastic members 30 are arranged in a plane, and the pressure receiving plate is joined to cover the whole.

このように、複数の圧電薄板を配置すると、一方の弾性部材の変形により受圧板が傾くことが無く、圧電薄板の撓みを抑制できるので、感度良く圧力を検出することができる。   Thus, when a plurality of piezoelectric thin plates are arranged, the pressure receiving plate does not tilt due to deformation of one elastic member, and the bending of the piezoelectric thin plate can be suppressed, so that the pressure can be detected with high sensitivity.

図8を参照して、受圧板の表面を曲面とした場合の圧力センサの概略を説明する。図8(A)は圧力センサの断面、(B)は使用状況を示している。前述の図7に示す圧力センサの受圧板40を、表面が曲面からなる受圧板41に置き換えた構成である。本発明では、従来のように圧電薄板の面に垂直方向から力を加えるものではないため、平板の受圧板の代わりに、表面が凸に盛り上がった形状の受圧板41を設けることもできる。そして、受圧板41の表面を曲面とすることにより、図8(B)に示す、これまで計測できなかった航空機の翼先端部や船舶の船首部のような曲面部位の圧力測定にも利用することができる。   With reference to FIG. 8, the outline of the pressure sensor when the surface of the pressure receiving plate is a curved surface will be described. FIG. 8A shows a cross section of the pressure sensor, and FIG. The pressure receiving plate 40 of the pressure sensor shown in FIG. 7 is replaced with a pressure receiving plate 41 having a curved surface. In the present invention, since force is not applied to the surface of the piezoelectric thin plate from the vertical direction as in the prior art, a pressure receiving plate 41 having a convexly raised surface can be provided instead of the flat pressure receiving plate. Then, by making the surface of the pressure receiving plate 41 a curved surface, it is also used for pressure measurement of a curved surface portion such as the tip of an aircraft wing or the bow of a ship that could not be measured so far as shown in FIG. be able to.

図9は圧力センサを、5つ直線上に配置して一体化した分布型圧力センサの一実施例である。本発明の圧力センサは、受圧板の形状を矩形にして作製できるので、複数の圧力センサを高密度に並べて一体化させて、分布型の圧力センサを容易に構成することができる。例えば、図9のように剛性部材のケース5個を受圧板40の高さを揃え、一列に並べて一体化すれば、5つの連続配置された箇所の圧力分布を測定することができる。   FIG. 9 shows an embodiment of a distributed pressure sensor in which five pressure sensors are arranged and integrated on a straight line. Since the pressure sensor of the present invention can be manufactured by making the pressure receiving plate into a rectangular shape, a distributed pressure sensor can be easily configured by arranging a plurality of pressure sensors at high density and integrating them. For example, as shown in FIG. 9, if five cases of rigid members are aligned with the height of the pressure receiving plate 40 and integrated in a row, the pressure distribution at five consecutively arranged locations can be measured.

従来の円形状の受圧板では、例えば、流体の分布圧力測定では、隙間に入り込む流体によって、乱流等を生じて正確な分布圧力を測定できない。一方、本発明は隙間無く密接に圧力センサを配置した分布型圧力センサとなるため、乱流等が生じず、正確な分布圧力の測定ができる。   In the conventional circular pressure receiving plate, for example, in the distribution pressure measurement of fluid, turbulent flow or the like is caused by the fluid entering the gap, and the accurate distribution pressure cannot be measured. On the other hand, since the present invention is a distributed pressure sensor in which pressure sensors are closely arranged without a gap, turbulent flow or the like does not occur, and an accurate distributed pressure can be measured.

図10に示す圧力センサを作製し、加わる力に応じた圧力を検出ができるか否か、錘を用いて検証を行った。両面にアルミ蒸着の電極膜20を有する80μmの厚さのポリフッ化ビニリデンから形成された圧電薄板10A,10Bを使用した。この圧電薄板10A,10Bをゴム硬度50、厚さ1mmのシリコンゴムからなる第1の柔軟な弾性部材30でそれぞれ挟持した。これを並列に配置し、その外側に約1mm厚のコルク板からなる第2の柔軟な弾性部材31を貼り合わせて用いた。圧電薄板10及び弾性部材30の長さLは18mm、幅B(紙面に垂直方向)は6mmである。受圧板40は厚さ0.5mmのアルミ板を用いた。受圧板40の表面積は6mm×6mmである。剛性部材のケース60はアルミ板を加工して製作した。このようにして、同寸法の2つの圧力センサを作成し検証を行った。   The pressure sensor shown in FIG. 10 was produced, and it was verified using a weight whether or not the pressure according to the applied force could be detected. Piezoelectric thin plates 10A and 10B made of polyvinylidene fluoride having a thickness of 80 μm having electrode films 20 deposited on both sides with aluminum were used. The piezoelectric thin plates 10A and 10B were sandwiched between first flexible elastic members 30 made of silicon rubber having a rubber hardness of 50 and a thickness of 1 mm. These were arranged in parallel, and a second flexible elastic member 31 made of a cork plate having a thickness of about 1 mm was bonded to the outside. The piezoelectric thin plate 10 and the elastic member 30 have a length L of 18 mm and a width B (perpendicular to the paper surface) of 6 mm. As the pressure receiving plate 40, an aluminum plate having a thickness of 0.5 mm was used. The surface area of the pressure receiving plate 40 is 6 mm × 6 mm. The case 60 of the rigid member was manufactured by processing an aluminum plate. In this way, two pressure sensors of the same size were created and verified.

この圧力センサの受圧板の上に、種々の錘を載せて電圧信号を検出した。圧力測定装置には、静電容量Cが200nFのコンデンサを使用し、電圧増幅器には入力抵抗が10MΩまたはそれ以上のシグナルコンデイショナCDV−700A(共和電業)を使用した。また、電圧記録計にはオムニエースRA1300(NEC三栄)を用いた。電圧増幅器の増幅率は80倍である。 Various weights were placed on the pressure receiving plate of the pressure sensor to detect voltage signals. A capacitor having a capacitance C2 of 200 nF was used for the pressure measuring device, and a signal conditioner CDV-700A (Kyowa Denko) having an input resistance of 10 MΩ or more was used for the voltage amplifier. As a voltage recorder, Omniace RA1300 (NEC Sanei) was used. The amplification factor of the voltage amplifier is 80 times.

その結果を図11に示す。図からわかるように、いずれの圧力センサにおいても錘の荷重と出力電圧は比例関係にあることがわかる。したがって、加わる荷重に応じた変動圧力を正確に検出できることが確認できる。そして、5gの軽い錘についても検出できていることから、1.3kPa(0.13g/mm)程度の微小圧力の検出ができ、感度が良いことも確認できる。 The result is shown in FIG. As can be seen from the figure, the weight load and the output voltage are proportional to each other in any pressure sensor. Therefore, it can be confirmed that the fluctuating pressure corresponding to the applied load can be accurately detected. Since a light weight of 5 g can be detected, a minute pressure of about 1.3 kPa (0.13 g / mm 2 ) can be detected, and it can be confirmed that the sensitivity is good.

次に図12に示す圧力センサを作成し、水槽を用いて水の変動圧力を測定した。両面にアルミ蒸着の電極膜20を有する80μmの厚さのポリフッ化ビニリデンから形成された圧電薄板を使用した。柔軟な弾性部材には,ゴム硬度50,厚さ1mmのシリコンゴムからなる第1の柔軟な弾性部材30を貼り合わせ、その外側に1.3mm厚さのコルク板からなる第2の柔軟な弾性部材31を貼り合わせて用いた。圧電薄板10、第1の弾性部材30及び第2の弾性部材31の長さLは7mm、幅B(紙面に垂直方向)は10mmとした。受圧板43は厚さ0.5mmのアルミ板を用い表面積は5mm×10mmとした。   Next, the pressure sensor shown in FIG. 12 was created, and the fluctuating pressure of water was measured using a water tank. A piezoelectric thin plate made of polyvinylidene fluoride having a thickness of 80 μm having electrode films 20 deposited on both sides with aluminum was used. A first flexible elastic member 30 made of silicon rubber having a rubber hardness of 50 and a thickness of 1 mm is bonded to the flexible elastic member, and a second flexible elastic member made of a cork plate having a thickness of 1.3 mm is attached to the outside thereof. The member 31 was bonded and used. The piezoelectric thin plate 10, the first elastic member 30, and the second elastic member 31 have a length L of 7 mm and a width B (perpendicular to the paper surface) of 10 mm. The pressure receiving plate 43 was an aluminum plate having a thickness of 0.5 mm, and the surface area was 5 mm × 10 mm.

図13は、波の変動圧力の測定に使用した装置を示すもので、長さ50cm、幅30cmの水槽の側壁と底面の境界部分に上記圧力センサ500を設置し、深さ約5cmまで水を入れて、水槽を揺らした実験を説明する図である。   FIG. 13 shows the apparatus used to measure the fluctuating pressure of the wave. The pressure sensor 500 is installed at the boundary between the side wall and the bottom surface of a 50 cm long and 30 cm wide water tank, and water is supplied to a depth of about 5 cm. It is a figure explaining the experiment which put and rocked the water tank.

圧力測定装置には、静電容量Cが100nFのコンデンサ600を使用し、電圧増幅器700には入力抵抗が10MΩまたはそれ以上のシグナルコンデイショナCDV−700A(共和電業)を使用した。また、電圧記録計800にはオムニエースRA1300(NEC三栄)を用いた。電圧増幅器の増幅率は200倍である。 The pressure measuring device, the electrostatic capacitance C 2 is using capacitors 600 of 100 nF, the input resistance to the voltage amplifier 700 using 10MΩ or more signal conditioners CDV-700A (Kyowa Electronic Instruments). As the voltage recorder 800, Omniace RA1300 (NEC Sanei) was used. The amplification factor of the voltage amplifier is 200 times.

波がセンサに当たるように4回ゆっくり揺らした後に最後に大きく1回揺らしたときの波形の一例を、横軸に時間を、縦軸に電圧記録計の測定電圧をとって図14に示す。図には、最後に激しく当たった時の波形(図14(A)の波線で囲った部分)の拡大図も示している。図14より、小さなピークが4つ、そして大きなピークが1つ検出できており、波が当たった時の圧力波形を測定できることがわかる。   FIG. 14 shows an example of a waveform when the wave is shaken slowly four times so that the wave hits the sensor and then finally greatly shaken once. The horizontal axis represents time and the vertical axis represents the voltage measured by the voltage recorder. The figure also shows an enlarged view of the waveform (the portion surrounded by the wavy line in FIG. 14A) when it was last violently hit. As can be seen from FIG. 14, four small peaks and one large peak can be detected, and the pressure waveform when a wave hits can be measured.

例えば、タンカーでは波等に起因してスロッシングが起こるが、スロッシングにより原油漏れが生じないよう、原油室壁面に圧力センサを設置してスロッシングを検知し、原油を安全に運搬できるように制御している。本発明では、上述のように壁面に当たる波を高感度に測定できるので、船舶等、間断なく圧力変動が伴う箇所での使用にも適している。   For example, in tankers, sloshing occurs due to waves, etc., but in order to prevent crude oil leaks due to sloshing, a pressure sensor is installed on the wall of the crude oil chamber to detect sloshing and control so that crude oil can be transported safely. Yes. In this invention, since the wave which hits a wall surface can be measured with high sensitivity as mentioned above, it is suitable also for the use in a place with a pressure fluctuation without interruption, such as a ship.

次に、図10に示す圧力センサとほぼ同様な構成のセンサを試作して行った実験について説明する。圧力センサの構成は第2の柔軟な弾性部材31の厚さを0.65mmとし、長さLが20mm、幅B(紙面に垂直方向)が8mm、厚さは7mmである。受圧板40の表面積は8mm×7mmである。   Next, a description will be given of an experiment conducted by making a prototype of a sensor having substantially the same configuration as the pressure sensor shown in FIG. The configuration of the pressure sensor is such that the thickness of the second flexible elastic member 31 is 0.65 mm, the length L is 20 mm, the width B (perpendicular to the paper surface) is 8 mm, and the thickness is 7 mm. The surface area of the pressure receiving plate 40 is 8 mm × 7 mm.

実験は図13に示す装置を用い、実施例2と同様の方法で行った。圧力測定装置には、静電容量Cが200nFのコンデンサを使用し、電圧増幅器と電圧記録計は実施例1と同じものを用いた。電圧増幅器の増幅率は80倍とした。 The experiment was performed in the same manner as in Example 2 using the apparatus shown in FIG. As the pressure measuring device, a capacitor having a capacitance C2 of 200 nF was used, and the same voltage amplifier and voltage recorder as those in Example 1 were used. The amplification factor of the voltage amplifier was 80 times.

図15(A)に横軸に時間を、縦軸に電圧記録計の測定電圧をとって実験結果の一例を示す。図では正圧力を負側にとって示してある。図15(A)より、小さなピークが4つ、そして大きなピークを1つ検出しており波が当たった時の圧力波形が測定できることがわかる。   FIG. 15A shows an example of the experimental results with the horizontal axis representing time and the vertical axis representing the voltage measured by the voltage recorder. In the figure, positive pressure is shown on the negative side. From FIG. 15A, it can be seen that four small peaks and one large peak are detected, and the pressure waveform when the wave hits can be measured.

また、図15(B)に小さい波が当たったときの波形(図15(A)の波線で囲った部分)の拡大図を示す。図15(B)では、小さな波のピークに内在する更に小さな複数のピークをも検出していることから、微小な変動圧力でも感度良く検出できることを実証できた。   FIG. 15B shows an enlarged view of a waveform (a portion surrounded by a wavy line in FIG. 15A) when a small wave hits. In FIG. 15B, since a plurality of smaller peaks inherent in the peak of a small wave are also detected, it was demonstrated that even a minute fluctuation pressure can be detected with high sensitivity.

本発明の圧力センサの概略構成を示す平面図及び断面図である。It is the top view and sectional drawing which show schematic structure of the pressure sensor of this invention. 本発明の圧力センサの主要部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the principal part of the pressure sensor of this invention. 本発明の圧力センサの変形状態を説明する断面図である。It is sectional drawing explaining the deformation | transformation state of the pressure sensor of this invention. 本発明の圧力センサの変形状態を説明する断面図である。It is sectional drawing explaining the deformation | transformation state of the pressure sensor of this invention. 本発明の圧力センサの出力信号について説明する分解斜視図である。It is a disassembled perspective view explaining the output signal of the pressure sensor of this invention. 本発明の圧力センサを用いた圧力測定装置の構成を説明する回路図である。It is a circuit diagram explaining the structure of the pressure measuring apparatus using the pressure sensor of this invention. 本発明の他の形態の圧力センサの概略構成を示す平面図及び断面図である。It is the top view and sectional drawing which show schematic structure of the pressure sensor of the other form of this invention. 本発明の他の形態の圧力センサの概略構成を示す平面図及び断面図である。It is the top view and sectional drawing which show schematic structure of the pressure sensor of the other form of this invention. 本発明の分布型圧力センサの一実施例を説明する斜視図である。It is a perspective view explaining one Example of the distributed pressure sensor of this invention. 本発明の実施例に用いた圧力センサの概略構成を示す断面図であるIt is sectional drawing which shows schematic structure of the pressure sensor used for the Example of this invention. 本発明の圧力センサの測定結果を示すグラフである。It is a graph which shows the measurement result of the pressure sensor of the present invention. 本発明の実施例に用いた圧力センサの概略構成を示す断面図であるIt is sectional drawing which shows schematic structure of the pressure sensor used for the Example of this invention. 本発明の実施例に用いた装置を示す断面図である。It is sectional drawing which shows the apparatus used for the Example of this invention. 本発明の圧力センサによる変動水圧の測定結果を示すグラフである。It is a graph which shows the measurement result of the fluctuation | variation water pressure by the pressure sensor of this invention. 本発明の圧力センサによる変動水圧の測定結果を示すグラフである。It is a graph which shows the measurement result of the fluctuation | variation water pressure by the pressure sensor of this invention.

符号の説明Explanation of symbols

10 圧電薄板
10A 圧電薄板
10B 圧電薄板
20 電極膜
30,31 弾性部材
40,41 受圧板
60 ケース
80A,80B 配線
81A,81B 配線
82A,82B 配線
90 シール部材
700 電圧増幅器
800 電圧記録計
DESCRIPTION OF SYMBOLS 10 Piezoelectric thin plate 10A Piezoelectric thin plate 10B Piezoelectric thin plate 20 Electrode film | membrane 30, 31 Elastic member 40, 41 Pressure receiving plate 60 Case 80A, 80B Wiring 81A, 81B Wiring 82A, 82B Wiring 90 Seal member 700 Voltage amplifier 800 Voltage recorder

Claims (12)

圧電材料からなる圧電薄板と、
前記圧電薄板の端面に配置し、前記圧電薄板の端面の断面積よりも大きな面積を有する受圧板とを備え、
前記受圧板で受けた圧力を前記圧電薄板の端面に垂直に加えて微小圧力を検出することを特徴とする圧力センサ。
A piezoelectric thin plate made of a piezoelectric material;
A pressure receiving plate disposed on an end surface of the piezoelectric thin plate, and having a larger area than a cross-sectional area of the end surface of the piezoelectric thin plate;
A pressure sensor for detecting a minute pressure by applying a pressure received by the pressure receiving plate perpendicularly to an end face of the piezoelectric thin plate.
前記圧電薄板を挟持する弾性部材を設け、前記弾性部材の弾性率を前記圧電薄板の弾性率よりも小さくし、前記受圧板で受けた力を前記圧電薄板に集中させて加えることを特徴とする請求項1に記載の圧力センサ。   An elastic member for sandwiching the piezoelectric thin plate is provided, the elastic modulus of the elastic member is made smaller than the elastic modulus of the piezoelectric thin plate, and the force received by the pressure receiving plate is concentrated and applied to the piezoelectric thin plate. The pressure sensor according to claim 1. 前記弾性部材の弾性率は前記圧電薄板の弾性率の1/100〜1/2000であることを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein the elastic modulus of the elastic member is 1/100 to 1/2000 of the elastic modulus of the piezoelectric thin plate. 前記弾性部材は、天然ゴム、合成ゴム、シリコンゴム、スポンジゴム、スポンジ、発泡ゴム、又はコルクから選択されることを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein the elastic member is selected from natural rubber, synthetic rubber, silicon rubber, sponge rubber, sponge, foam rubber, or cork. 前記圧電薄板は圧電材料を延伸して形成されてなり、前記圧電薄板の延伸方向の端面に前記受圧板を配置したことを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein the piezoelectric thin plate is formed by stretching a piezoelectric material, and the pressure receiving plate is disposed on an end surface of the piezoelectric thin plate in a stretching direction. 前記圧電薄板はポリフッ化ビニリデン或いはシアン化ビニリデンからなる高分子圧電材料から形成されたことを特徴とする請求項5に記載の圧力センサ。   6. The pressure sensor according to claim 5, wherein the piezoelectric thin plate is made of a polymer piezoelectric material made of polyvinylidene fluoride or vinylidene cyanide. 前記受圧板の面積を前記圧電薄板の端面の面積の20倍以上としたことを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein an area of the pressure receiving plate is 20 times or more an end surface area of the piezoelectric thin plate. 前記圧電薄板を複数枚平行に配置したことを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein a plurality of the piezoelectric thin plates are arranged in parallel. 前記圧電薄板及び前記弾性部材を1面に開口面を有する函体で覆い、前記受圧板を前記開口面に向けたことを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein the piezoelectric thin plate and the elastic member are covered with a box having an opening surface on one surface, and the pressure receiving plate faces the opening surface. 前記受圧板が矩形状であることを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein the pressure receiving plate has a rectangular shape. 前記受圧板の表面が曲面からなることを特徴とする請求項2に記載の圧力センサ。   The pressure sensor according to claim 2, wherein a surface of the pressure receiving plate is a curved surface. 請求項10に記載の圧力センサを複数用い、前記受圧板の表面を揃えて直線状或いは二次元状に隣接して配置したことを特徴とする分布型圧力センサ。   A distributed pressure sensor using a plurality of pressure sensors according to claim 10, wherein the pressure receiving plates are aligned and arranged adjacent to each other in a linear or two-dimensional manner.
JP2007186545A 2007-07-18 2007-07-18 Pressure sensor and distributed pressure sensor using the same Pending JP2009025065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186545A JP2009025065A (en) 2007-07-18 2007-07-18 Pressure sensor and distributed pressure sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186545A JP2009025065A (en) 2007-07-18 2007-07-18 Pressure sensor and distributed pressure sensor using the same

Publications (1)

Publication Number Publication Date
JP2009025065A true JP2009025065A (en) 2009-02-05

Family

ID=40397017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186545A Pending JP2009025065A (en) 2007-07-18 2007-07-18 Pressure sensor and distributed pressure sensor using the same

Country Status (1)

Country Link
JP (1) JP2009025065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996309B2 (en) 2017-03-06 2022-01-17 セイコーエプソン株式会社 Sensor devices, force detectors and robots
CN114286929A (en) * 2020-02-27 2022-04-05 Tdk电子股份有限公司 Sensor and method for producing a sensor
EP3766537A4 (en) * 2018-03-13 2022-05-04 MEDRx Co., Ltd. Adhesion member and microneedle patch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283425A (en) * 1988-09-20 1990-03-23 Murata Mfg Co Ltd Piezoelectric type pressure distribution sensor
JPH02236131A (en) * 1989-03-08 1990-09-19 Murata Mfg Co Ltd Piezo-electric type pressure distribution sensor
JPH0629587A (en) * 1992-07-08 1994-02-04 Kureha Chem Ind Co Ltd Cylindrical or curved piezoelectric element
JP2003130739A (en) * 2001-08-02 2003-05-08 Kistler Holding Ag Crystal element for piezoelectric sensor
WO2006037145A1 (en) * 2004-10-07 2006-04-13 Piezocryst Advanced Sensorics Gmbh Sensor element having at least one measurement element with piezoelectric and pyroelectric properties
WO2006136182A1 (en) * 2005-06-20 2006-12-28 S.W.A.C. Schmitt-Walter Automation Consult Gmbh Pressure sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283425A (en) * 1988-09-20 1990-03-23 Murata Mfg Co Ltd Piezoelectric type pressure distribution sensor
JPH02236131A (en) * 1989-03-08 1990-09-19 Murata Mfg Co Ltd Piezo-electric type pressure distribution sensor
JPH0629587A (en) * 1992-07-08 1994-02-04 Kureha Chem Ind Co Ltd Cylindrical or curved piezoelectric element
JP2003130739A (en) * 2001-08-02 2003-05-08 Kistler Holding Ag Crystal element for piezoelectric sensor
WO2006037145A1 (en) * 2004-10-07 2006-04-13 Piezocryst Advanced Sensorics Gmbh Sensor element having at least one measurement element with piezoelectric and pyroelectric properties
WO2006136182A1 (en) * 2005-06-20 2006-12-28 S.W.A.C. Schmitt-Walter Automation Consult Gmbh Pressure sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996309B2 (en) 2017-03-06 2022-01-17 セイコーエプソン株式会社 Sensor devices, force detectors and robots
EP3766537A4 (en) * 2018-03-13 2022-05-04 MEDRx Co., Ltd. Adhesion member and microneedle patch
CN114286929A (en) * 2020-02-27 2022-04-05 Tdk电子股份有限公司 Sensor and method for producing a sensor

Similar Documents

Publication Publication Date Title
CN105934661B (en) Miniature reinforcing wafer-level MEMS force snesor
US7694552B2 (en) High quality factor resonators for liquid immersion biological and chemical sensors
CN112805096B (en) Vibration device
KR20110115125A (en) Acoustic energy transducer
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
CN105917202B (en) Piezoelectric transducer
JP7128506B2 (en) pressure sensor
JP2009025065A (en) Pressure sensor and distributed pressure sensor using the same
JP6287166B2 (en) Inspection method of piezoelectric sensor
JP6184006B2 (en) Pressure sensor
JP5408687B2 (en) Shear stress sensor and distributed shear stress sensor
WO2013027736A1 (en) Piezoelectric vibration sensor
JP2017198573A (en) Pressure detection device
JP2020169881A (en) Physical quantity sensor element, pressure sensor, microphone, ultrasonic sensor, and touch panel
JPH0692977B2 (en) Rotation sensor
Böse et al. Dielectric elastomer strain sensors with enhanced measuring sensitivity
US20110181433A1 (en) Acoustic wave probe
JP2699743B2 (en) Pressure sensor
JP2014153128A (en) Manometer, level meter, and alarm system
CN112534229B (en) Press sensor arrangement structure and electronic device
US20230012518A1 (en) Pressure Sensing Device
JP6737426B1 (en) Arrangement structure of pressure sensor and electronic device
Kymissis et al. Sheet-based flexible technologies for mechanical sensing
JPH032666A (en) Piezoelectric acceleration sensor
JP2005331269A (en) Magnetometric sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Effective date: 20120507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002