JP2007300700A - Noise reducing reactor and noise reducing device - Google Patents

Noise reducing reactor and noise reducing device Download PDF

Info

Publication number
JP2007300700A
JP2007300700A JP2006124192A JP2006124192A JP2007300700A JP 2007300700 A JP2007300700 A JP 2007300700A JP 2006124192 A JP2006124192 A JP 2006124192A JP 2006124192 A JP2006124192 A JP 2006124192A JP 2007300700 A JP2007300700 A JP 2007300700A
Authority
JP
Japan
Prior art keywords
magnetic core
winding
common mode
noise reduction
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124192A
Other languages
Japanese (ja)
Inventor
Seiichi Funakura
清一 舩倉
俊省 ▲裴▼
Joon Sung Bae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2006124192A priority Critical patent/JP2007300700A/en
Priority to PCT/JP2007/059049 priority patent/WO2007125989A1/en
Publication of JP2007300700A publication Critical patent/JP2007300700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/12Magnetic shunt paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/16Toroidal transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Power Conversion In General (AREA)
  • Filters And Equalizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noise reducing reactor which can reduce noise generated by an inverter device and a load, without causing an increase in the number of part items, which is inexpensive and can be reduced in size, and to provide a noise reducing device. <P>SOLUTION: The noise reducing reactor La is inserted into a power supply cable from a three-phase four-line type AC power supply 1, reduces the noise that propagates to the power supply cable, and comprises a first magnetic core 5a, having a penetration hole 51 at its center and forming a first closed magnetic passage; a first winding 10R, a second winding 10S, a third winding 10T and a fourth winding 10N, which are arranged so as to correspond to the power supply cable from the three-phase four-line type AC power supply 1, and wound to the first magnetic core 5a; a second magnetic core 6a, which is inserted into the penetration hole 51 of the first magnetic core 5a, passes a part of the first closed magnetic passage of the first magnetic core 5a at each winding, and forms a second closed magnetic passage; and an insulating body 7a, set up between the first magnetic core 5a and the second magnetic core 6a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、三相四線式交流電源からの電源線に挿入され、電源線に伝播するノイズを低減するノイズ低減用リアクトル及びノイズ低減装置に関する。   The present invention relates to a noise reduction reactor and a noise reduction device which are inserted into a power supply line from a three-phase four-wire AC power supply and reduce noise propagated to the power supply line.

図8に一般的なモータの接続図を示す。インバータ装置3は、三相交流電源1から供給された電力を所定の電力に変換してモータ4に供給する。   FIG. 8 shows a connection diagram of a general motor. The inverter device 3 converts the power supplied from the three-phase AC power source 1 into a predetermined power and supplies it to the motor 4.

この電力変換装置では、インバータ装置3がスイッチング素子(図示せず)をオン/オフすることにより電力を変換するため、スイッチング素子のスイッチングによるスイッチングノイズが発生する。このスイッチングノイズの周波数は、非常に高いため、広帯域で減衰特性の大きなフィルタ回路2を用いて、ノイズを他の周辺機器に悪影響を与えないレベルに抑えている。   In this power conversion device, the inverter device 3 converts power by turning on / off a switching element (not shown), so that switching noise is generated due to switching of the switching element. Since the frequency of the switching noise is very high, the noise is suppressed to a level that does not adversely affect other peripheral devices by using the filter circuit 2 having a wide band and a large attenuation characteristic.

また、インバータ装置3及びモータ4には、対地間の浮遊容量を含む静電容量が存在し、その静電容量を介してスイッチング素子のスイッチングによるスイッチングノイズが高周波の漏れ電流となって接地線に流れる。この漏れ電流が接地線に流れると、インバータ装置3のフレーム(筐体)の電圧レベルが変動する。この漏れ電流が大きい場合には、漏電ブレーカを遮断させることになる。   Further, the inverter device 3 and the motor 4 have a capacitance including a stray capacitance between the ground and switching noise due to switching of the switching element via the capacitance becomes a high-frequency leakage current to the ground line. Flowing. When this leakage current flows through the ground line, the voltage level of the frame (housing) of the inverter device 3 varies. When this leakage current is large, the leakage breaker is cut off.

このようなノイズを低減するため、通常、コンデンサ及びリアクトルで構成されたフィルタ回路が使用される。図9はコンデンサ及びリアクトルで構成された従来のフィルタ回路図である。図9に示すフィルタ回路2aは、三つの相電源11〜13からなる三相四線式の三相交流電源1とインバータ装置3の間に、ライン間コンデンサ21a〜21c、コモンモードコイル22a,22b、ライン・アース間コンデンサ23を有している。ライン間コンデンサ21a〜21cは、R,S,T,N相間を流れるノーマルモードノイズを低減するコンデンサC11〜C19からなる。ライン・アース間コンデンサ23は、R,S,T,N相と接地E(アース)間に流れるコモンモードノイズを低減するコンデンサC20〜C23からなる。   In order to reduce such noise, a filter circuit composed of a capacitor and a reactor is usually used. FIG. 9 is a conventional filter circuit composed of a capacitor and a reactor. A filter circuit 2a shown in FIG. 9 includes a line-to-line capacitor 21a to 21c and common mode coils 22a and 22b between a three-phase four-wire three-phase AC power source 1 including three phase power sources 11 to 13 and an inverter device 3. The line-to-ground capacitor 23 is provided. Inter-line capacitors 21a to 21c include capacitors C11 to C19 that reduce normal mode noise flowing between the R, S, T, and N phases. The line-to-earth capacitor 23 includes capacitors C20 to C23 that reduce common mode noise flowing between the R, S, T, and N phases and the ground E (earth).

図9に示すように、ライン間コンデンサ21a〜21c、ライン・アース間コンデンサ23及びコモンモードコイル22a,22bを設けて、ノイズ低減効果を確保している。しかし、この構成では、部品サイズの大きいライン間コンデンサ21a〜21c及びコモンモードコイル22a,22bを多数使用するため、回路が大型化してしまう。   As shown in FIG. 9, line-to-line capacitors 21a to 21c, line-to-ground capacitor 23 and common mode coils 22a and 22b are provided to ensure a noise reduction effect. However, this configuration uses a large number of line-to-line capacitors 21a to 21c and common mode coils 22a and 22b, resulting in a large circuit.

このため、能動素子を使用してコモンモードノイズを低減する装置が知られている(特許文献1、特許文献2)。図10はコモンモードノイズ電流検出器(以下、CTと略称する)及びコモンモードノイズ低減回路を備えた従来のフィルタ回路図である。   For this reason, devices that reduce common mode noise using active elements are known (Patent Documents 1 and 2). FIG. 10 is a conventional filter circuit diagram including a common mode noise current detector (hereinafter abbreviated as CT) and a common mode noise reduction circuit.

図10に示す回路は、図9に示す回路に対して、ライン間コンデンサ21c及びコモンモードコイル22bを削除し、CT24及びコモンモードノイズ低減回路25を追加している。CT24は、図11に示すように、コモンモードコイル22aと同様にフェライトコアからなる環状磁気コア26に、R、S、T、N相の電源線(入力線)WR、WS、WT、WNが同一巻数だけ巻回されるとともに、コモンモード電流検出用巻線(出力線)WOがR、S、T、N相と同様に環状磁気コア26に巻回されている。   In the circuit shown in FIG. 10, the inter-line capacitor 21c and the common mode coil 22b are deleted and a CT 24 and a common mode noise reduction circuit 25 are added to the circuit shown in FIG. As shown in FIG. 11, the CT 24 has an R, S, T, N-phase power supply line (input line) WR, WS, WT, WN connected to an annular magnetic core 26 made of a ferrite core like the common mode coil 22a. A common mode current detection winding (output line) WO is wound around the annular magnetic core 26 in the same manner as the R, S, T, and N phases.

R、S、T、N相の電源線WR、WS、WT、WNは、同じ方向に電流が流れた場合に、磁気コア26内の磁束が同じ向きに形成されるように巻回されることで、ノーマルモード成分はキャンセルされる。このため、コモンモード成分のみが磁気コア26内の磁束として現れ、磁束の変化がコモンモード電流検出用巻線WOにコモンモードノイズ電流として検出される。   The R, S, T, and N-phase power lines WR, WS, WT, and WN are wound so that the magnetic flux in the magnetic core 26 is formed in the same direction when current flows in the same direction. Thus, the normal mode component is canceled. Therefore, only the common mode component appears as a magnetic flux in the magnetic core 26, and a change in the magnetic flux is detected as a common mode noise current in the common mode current detection winding WO.

コモンモードノイズ低減回路25は、CT24で検出されたコモンモードノイズ電流が交流電源1側に流れないよう補償電流を流すように構成されている。   The common mode noise reduction circuit 25 is configured to flow a compensation current so that the common mode noise current detected by the CT 24 does not flow to the AC power supply 1 side.

図12は図10に示すコモンモードノイズ低減回路の構成図である。図12に示すコモンモード低減回路25には、抵抗r1〜r3、コンデンサC1〜C2、ダイオードD1〜D3及びPNPトランジスタQ1で構成される直流電圧生成回路が設けられている(特許文献3)。   FIG. 12 is a block diagram of the common mode noise reduction circuit shown in FIG. The common mode reduction circuit 25 shown in FIG. 12 is provided with a DC voltage generation circuit including resistors r1 to r3, capacitors C1 to C2, diodes D1 to D3, and a PNP transistor Q1 (Patent Document 3).

直流電圧生成回路は、例えば、T−N間の実効値230Vの交流電圧から約160Vの直流電圧を生成する。まず、交流電源電圧が印加された後、正の電圧の時にはr3→D1→C1→D2→C2の経路で電流が流れ、コンデンサC1、C2が充電される。交流電源電圧が正のピークから減少し始めると、
交流電源電圧<(C1の両端電圧+C2の両端電圧)
となり、ダイオードD1は逆バイアスされトランジスタQ1がオンとなる。この場合、C1→Q1→C2→D3の電流経路が形成される。いずれもコンデンサC2の両端電圧には交流電源電圧のピーク値の約1/2の電圧が常時充電される。コンデンサC2の両端電圧をコモンモードノイズ低減回路25の動作電源として利用することで、損失及び部品点数が少なく且つ簡易に直流電圧を得ることができる。
The DC voltage generation circuit generates a DC voltage of about 160 V from an AC voltage having an effective value of 230 V between TN, for example. First, after the AC power supply voltage is applied, when the voltage is positive, current flows through a path of r3 → D1 → C1 → D2 → C2, and the capacitors C1 and C2 are charged. When the AC power supply voltage starts to decrease from the positive peak,
AC power supply voltage <(voltage across C1 + voltage across C2)
Thus, the diode D1 is reverse-biased and the transistor Q1 is turned on. In this case, a current path of C1 → Q1 → C2 → D3 is formed. In either case, the voltage at both ends of the capacitor C2 is always charged with a voltage that is about ½ of the peak value of the AC power supply voltage. By using the voltage between both ends of the capacitor C2 as an operating power supply for the common mode noise reduction circuit 25, a direct current voltage can be easily obtained with little loss and the number of parts.

また、コモンモードノイズ低減回路25は、コンデンサC3〜C5、抵抗r4、r5、NPNトランジスタQ2、PNPトランジスタQ3、ダイオードD4、D5で構成される増幅回路が設けられている(特許文献4)。増幅回路は、CT24で検出されたコモンモードノイズ電流をコンデンサC5を通して接地線Eへ補償電流を供給する。   The common mode noise reduction circuit 25 is provided with an amplifier circuit including capacitors C3 to C5, resistors r4 and r5, an NPN transistor Q2, a PNP transistor Q3, and diodes D4 and D5 (Patent Document 4). The amplifier circuit supplies a compensation current for the common mode noise current detected by CT24 to the ground line E through the capacitor C5.

まず、コモンモードノイズ電流がCT24の出力線WOにP11からP12の方向に流れた場合には、トランジスタQ2にベース電流が流れて、C2→Q2→P11→P12→C5及びC3の経路で電流が流れる。コンデンサC5とコンデンサC3との分流比は、トランジスタQ2の電流増幅率hfeによって決まる。   First, when the common mode noise current flows to the output line WO of the CT 24 in the direction from P11 to P12, the base current flows to the transistor Q2, and the current flows through the path C2-> Q2-> P11-> P12-> C5 and C3. Flowing. The shunt ratio between the capacitor C5 and the capacitor C3 is determined by the current amplification factor hfe of the transistor Q2.

コンデンサC5に流れる電流:コンデンサC3に流れる電流=hfe:1
となり、hfe>>1の条件下では殆んどの電流がコンデンサC5に流れる。
Current flowing in the capacitor C5: Current flowing in the capacitor C3 = hfe: 1
Thus, most of the current flows through the capacitor C5 under the condition of hfe >> 1.

また、コモンモードノイズ電流がCT24の出力線WOにP12からP11の方向に流れた場合には、トランジスタQ3のベースに電流が流れて、接地線E→C5→P12→P11→Q3→N相及びC4の経路で電流が流れる。N相とコンデンサC4とに分流する割合はトランジスタQ3のhfeにより決まる。   Further, when the common mode noise current flows in the CT24 output line WO in the direction from P12 to P11, the current flows to the base of the transistor Q3, and the ground line E → C5 → P12 → P11 → Q3 → N phase and Current flows through the path C4. The ratio of splitting into N phase and capacitor C4 is determined by hfe of transistor Q3.

N相に流れる電流:C4に流れる電流=hfe:1
となり、hfe>>1の条件下では殆んどがN相に流れる。
Current flowing in N phase: Current flowing in C4 = hfe: 1
And almost all flows in the N phase under the condition of hfe >> 1.

このように、コモンモードノイズ電流が補償電流によりキャンセルされ、交流電源側に流れるコモンモードノイズ成分を低減できる。
特開平9−266677号公報 特開2003−174777号公報 特開2004−32885号公報 特開2003−250270号公報
Thus, the common mode noise current is canceled by the compensation current, and the common mode noise component flowing to the AC power supply side can be reduced.
Japanese Patent Laid-Open No. 9-266677 JP 2003-174777 A JP 2004-32885 A JP 2003-250270 A

しかしながら、従来の特許文献1乃至4に記載されたフィルタ回路では、コモンモードノイズを低減できるが、ノーマルモードノイズを低減できない。このため、ノーマルモード用コイルを追加しなければならない。   However, the conventional filter circuits described in Patent Documents 1 to 4 can reduce common mode noise, but cannot reduce normal mode noise. For this reason, a coil for normal mode must be added.

本発明は、スイッチング素子を有するインバータ装置及び負荷により発生するノイズを部品点数を増やすことなく低減し、安価且つ小型化を図ることができるノイズ低減用リアクトル及びノイズ低減装置を提供する。   The present invention provides an inverter device having a switching element and a noise reduction reactor and a noise reduction device that can reduce noise generated by a load without increasing the number of components and can be reduced in size and size.

前記課題を解決するために本発明は以下の手段を採用した。請求項1の発明の三相四線式交流電源からの電源線に挿入され、前記電源線に伝播するノイズを低減するノイズ低減用リアクトルであって、中央部に貫通穴を有し且つ第1閉磁路を形成する第1磁気コアと、前記三相四線式交流電源からの電源線に対応して設けられ且つ前記第1磁気コアに巻回される第1巻線、第2巻線、第3巻線及び第4巻線と、前記第1磁気コアの前記貫通穴に挿入され且つ前記各巻線毎に前記第1磁気コアの第1閉磁路の一部を通り第2閉磁路を形成する第2磁気コアと、前記第1磁気コアと前記第2磁気コアとの間に設けられた絶縁物とを備えることを特徴とする。   In order to solve the above problems, the present invention employs the following means. A noise reduction reactor which is inserted into a power supply line from a three-phase four-wire AC power supply according to the invention of claim 1 and reduces noise propagating to the power supply line. A first magnetic core that forms a closed magnetic path; a first winding that is provided corresponding to a power supply line from the three-phase four-wire AC power supply and is wound around the first magnetic core; a second winding; A third winding and a fourth winding are inserted into the through hole of the first magnetic core, and a second closed magnetic path is formed for each winding through a part of the first closed magnetic path of the first magnetic core. And a second magnetic core, and an insulator provided between the first magnetic core and the second magnetic core.

請求項2の発明は、請求項1記載のノイズ低減用リアクトルにおいて、前記第2磁気コアは、十字形状の磁気コアからなり、前記第1巻線、前記第2巻線、前記第3巻線及び前記第4巻線は、十字形状の前記第2磁気コアが前記第1磁気コアの貫通穴に挿入された際に形成される4つの空隙部を貫通するように前記第1磁気コアに巻回されることを特徴とする。   According to a second aspect of the present invention, in the noise reduction reactor according to the first aspect, the second magnetic core includes a cross-shaped magnetic core, and the first winding, the second winding, and the third winding. And the fourth winding is wound around the first magnetic core so as to pass through four gaps formed when the cross-shaped second magnetic core is inserted into the through hole of the first magnetic core. It is characterized by being turned.

請求項3の発明は、三相四線式交流電源からの電源線に挿入され、前記電源線に伝播するノイズを低減するノイズ低減装置であって、前記電源線から接地線に流れるコモンモードノイズ電流を検出するコモンモードノイズ電流検出器と、前記コモンモードノイズ電流検出器により検出された前記コモンモードノイズ電流を、前記接地線に、前記コモンモードノイズ電流を相殺する方向に供給するコモンモードノイズ低減回路と、請求項1又は請求項2記載の前記ノイズ低減用リアクトルとを備えることを特徴とする。   The invention of claim 3 is a noise reduction device for reducing noise that is inserted into a power line from a three-phase four-wire AC power source and propagates to the power line, and is a common mode noise that flows from the power line to a ground line. A common mode noise current detector for detecting a current, and a common mode noise for supplying the common mode noise current detected by the common mode noise current detector to the ground line in a direction to cancel the common mode noise current. A reduction circuit and the noise reduction reactor according to claim 1 or 2 are provided.

請求項4の発明は、請求項3記載のノイズ低減装置において、前記コモンモードノイズ低減回路は、前記コモンモードノイズ電流検出器よりも前記三相四線式交流電源側に配置され、前記ノイズ低減用リアクトルは、前記コモンモードノイズ低減回路よりも前記三相四線式交流電源側に配置されることを特徴とする。   According to a fourth aspect of the present invention, in the noise reduction device according to the third aspect, the common mode noise reduction circuit is disposed closer to the three-phase four-wire AC power source than the common mode noise current detector, and the noise reduction is performed. The reactor is arranged on the three-phase four-wire AC power supply side with respect to the common mode noise reduction circuit.

本発明のノイズ低減用リアクトルによれば、第1磁気コアの第1閉磁路にコモンモードノイズ電流による磁束が発生する。第2磁気コアでは、各巻線毎に、第1磁気コアの第1閉磁路の一部を通って第2閉磁路が形成され、各巻線毎に第2閉磁路にノーマルモードノイズ電流による磁束が発生する。第2磁気コアには、2相の電流により発生する磁束が通り、2相の電流は位相差が120度であるため、キャンセルされて0になることはない。このため、第2磁気コアには、主電流と同等のノーマルモードノイズ電流による磁束が発生する。従って、コモンモードノイズ及びノーマルモードノイズを部品点数を増やすことなく低減でき、安価且つ小型化を図ることができる。   According to the noise reduction reactor of the present invention, magnetic flux due to the common mode noise current is generated in the first closed magnetic circuit of the first magnetic core. In the second magnetic core, a second closed magnetic path is formed for each winding through a part of the first closed magnetic path of the first magnetic core, and a magnetic flux due to normal mode noise current is generated in the second closed magnetic path for each winding. appear. A magnetic flux generated by a two-phase current passes through the second magnetic core, and the two-phase current has a phase difference of 120 degrees. For this reason, the magnetic flux by the normal mode noise current equivalent to the main current is generated in the second magnetic core. Therefore, common mode noise and normal mode noise can be reduced without increasing the number of parts, and the cost and size can be reduced.

また、ノイズ低減用リアクトルを用いたノイズ低減装置を構成したので、ノイズ低減用リアクトルの効果と同様な効果が得られる。   Moreover, since the noise reduction apparatus using the noise reduction reactor is configured, the same effect as that of the noise reduction reactor can be obtained.

以下、本発明のノイズ低減用リアクトル及びノイズ低減装置の実施の形態を図面を参照しながら詳細に説明する。なお、以下の説明では、ノイズ低減用リアクトルをリアクトルと略称する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a noise reduction reactor and a noise reduction device of the present invention will be described in detail with reference to the drawings. In the following description, the noise reduction reactor is abbreviated as a reactor.

図1は実施例1の四角形状磁気コアを有するリアクトルの構造図である。図1に示すリアクトルLaは、フェライトなどの磁性体材料からなる四角形状磁気コア5aと、フェライトなどの磁性体材料からなる十字形状磁気コア6aと、4つの絶縁物7aと、4つの巻線10R,10S,10T,10Nとからなる。   FIG. 1 is a structural diagram of a reactor having a quadrangular magnetic core according to the first embodiment. A reactor La shown in FIG. 1 includes a rectangular magnetic core 5a made of a magnetic material such as ferrite, a cross-shaped magnetic core 6a made of a magnetic material such as ferrite, four insulators 7a, and four windings 10R. , 10S, 10T, 10N.

四角形状磁気コア5aは、本発明の第1磁気コアに対応し、ギャップのない磁気コアであり、中央部に四角形状の貫通穴51を有し且つ閉磁路が形成されている。巻線10R、巻線10S、巻線10T及び巻線10N(本発明の第1巻線、第2巻線、第3巻線及び第4巻線に対応)は、三相四線式交流電源1からの電源線(対称な三相交流R相、S相、T相及びそれらの中性点であるN相)に対応して設けられ且つ四角形状磁気コア5aに巻回されている。   The quadrangular magnetic core 5a corresponds to the first magnetic core of the present invention and is a magnetic core without a gap. The quadrangular magnetic core 5a has a quadrangular through hole 51 at the center and a closed magnetic circuit. The winding 10R, winding 10S, winding 10T and winding 10N (corresponding to the first winding, the second winding, the third winding and the fourth winding of the present invention) are three-phase four-wire AC power supplies. 1 is provided corresponding to the power lines 1 (symmetrical three-phase AC R-phase, S-phase, T-phase and N-phase which is the neutral point thereof) and is wound around the rectangular magnetic core 5a.

十字形状磁気コア6aは、本発明の第2磁気コアに対応し、四角形状磁気コア5aの貫通穴51に所定のギャップを持って挿入され且つ各巻線10R,10S,10T,10N毎に、四角形状磁気コア5aの第1閉磁路の一部を通り第2閉磁路を形成している。四角形状磁気コア5aと十字形状磁気コア6aの突起部9aとの所定のギャップには絶縁物7aが設けられている。   The cross-shaped magnetic core 6a corresponds to the second magnetic core of the present invention, and is inserted into the through hole 51 of the rectangular magnetic core 5a with a predetermined gap and is square for each of the windings 10R, 10S, 10T, and 10N. A second closed magnetic path is formed through a part of the first closed magnetic path of the shaped magnetic core 5a. An insulator 7a is provided in a predetermined gap between the quadrangular magnetic core 5a and the protrusion 9a of the cross-shaped magnetic core 6a.

巻線10R、巻線10S、巻線10T及び巻線10Nは、十字形状磁気コア6aが四角形状磁気コア5aの貫通穴51に挿入された際に形成される4つの空隙部8aを貫通するように四角形状磁気コア5aに、それぞれ同一巻数だけ巻回されている。   The winding 10R, the winding 10S, the winding 10T, and the winding 10N pass through the four gaps 8a formed when the cross-shaped magnetic core 6a is inserted into the through hole 51 of the quadrangular magnetic core 5a. The same number of turns are wound around the rectangular magnetic core 5a.

なお、巻線10Rは、ポートP1及びポートP2間に接続され、巻線10Sは、ポートP3及びポートP4間に接続され、巻線10Tは、ポートP5及びポートP6間に接続され、巻線10Nは、ポートP7及びポートP8間に接続されている。   The winding 10R is connected between the port P1 and the port P2, the winding 10S is connected between the port P3 and the port P4, the winding 10T is connected between the port P5 and the port P6, and the winding 10N. Are connected between the port P7 and the port P8.

図2は図1のリアクトルにおいてノーマルモード電流及びコモンモード電流による磁束を示す図である。三相四線式交流電源の場合、主電流である商用周波数における各電流の関係は、
Ir+Is+It+In=0 ………(1)
となる。
FIG. 2 is a diagram showing a magnetic flux generated by a normal mode current and a common mode current in the reactor of FIG. In the case of a three-phase four-wire AC power supply, the relationship of each current at the commercial frequency that is the main current is
Ir + Is + It + In = 0 (1)
It becomes.

ただし、IrはR相電流で、IsはS相電流で、ItはT相電流で、InはN相電流である。各電流Ir、Is、Itは、それぞれ120度の位相差となっているが、その振幅は同じではない。従って、In=−(Ir+Is+It)≠0である。これにより、いずれの瞬間でも商用周波数における各相電流により四角形状磁気コア5aに生成される磁束は、0となり、四角形状磁気コア5aが磁気飽和することはない。   However, Ir is an R-phase current, Is is an S-phase current, It is a T-phase current, and In is an N-phase current. Each of the currents Ir, Is, It has a phase difference of 120 degrees, but the amplitude is not the same. Therefore, In = − (Ir + Is + It) ≠ 0. As a result, the magnetic flux generated in the rectangular magnetic core 5a by the phase current at the commercial frequency at any moment becomes 0, and the rectangular magnetic core 5a is not magnetically saturated.

また、式(1)が成立せず、接地線Eに流れる高周波のコモンモードノイズ電流により発生する磁束は、R、S、T、N相の全ての電流により発生する磁束が加算され、図2の実線で示すように、Ir+Is+It+Inの合計値に比例したコモンモードノイズ電流による磁束φcが四角形状磁気コア5aに発生する。このコモンモードノイズ電流による磁束φcは、商用周波数となる主電流に比べ非常に小さくなるため、ギャップのない四角形状磁気コア5aを使用する。   In addition, the magnetic flux generated by the high-frequency common mode noise current flowing through the grounding line E without the expression (1) is added to the magnetic flux generated by all the currents in the R, S, T, and N phases. As shown by a solid line, a magnetic flux φc due to a common mode noise current proportional to the total value of Ir + Is + It + In is generated in the rectangular magnetic core 5a. Since the magnetic flux φc due to the common mode noise current is much smaller than the main current at the commercial frequency, the rectangular magnetic core 5a without a gap is used.

一方、十字形状磁気コア6aでは、図2の点線で示すように、各巻線10R,10S,10T,10N毎に、四角形状磁気コア5aの閉磁路(本発明の第1閉磁路に対応)の一部を通って形成された閉磁路(本発明の第2閉磁路に対応)に、ノーマルモードノイズ電流による4つの磁束φR,φS,φT,φNが発生する。各閉磁路には、ギャップが2箇所挿入されるため、四角形状磁気コア5aと比べて磁気抵抗は大きくなる。 On the other hand, in the cross-shaped magnetic core 6a, as shown by the dotted line in FIG. 2, the closed magnetic circuit (corresponding to the first closed magnetic circuit of the present invention) of the rectangular magnetic core 5a is provided for each of the windings 10R, 10S, 10T, and 10N. Four magnetic fluxes φ R , φ S , φ T , and φ N due to normal mode noise current are generated in the closed magnetic circuit formed through a part (corresponding to the second closed magnetic circuit of the present invention). Since two gaps are inserted in each closed magnetic path, the magnetic resistance is larger than that of the quadrangular magnetic core 5a.

また、十字形状磁気コア6aの4つの突起部9aの各々には、図2の点線で示すように、2相の電流によって発生する磁束が通る。この2相の電流は位相差が120度であるため、キャンセルされて0になることはない。このため、十字形状磁気コア6aには、大きな主電流と同等の大きなノーマルモードノイズ電流による磁束φR,φS,φT,φNが発生する。従って、十字形状磁気コア6aが磁気飽和することがないようにギャップGPを挿入する必要がある。 Further, a magnetic flux generated by a two-phase current passes through each of the four protrusions 9a of the cross-shaped magnetic core 6a, as shown by the dotted lines in FIG. Since the two-phase current has a phase difference of 120 degrees, it is not canceled out. Therefore, magnetic fluxes φ R , φ S , φ T , and φ N are generated in the cross-shaped magnetic core 6a due to a large normal mode noise current equivalent to a large main current. Therefore, it is necessary to insert the gap GP so that the cross-shaped magnetic core 6a is not magnetically saturated.

このギャップGPのギャップ長を調整することにより、十字形状磁気コア5aを通る磁束密度が調整でき、かつノーマルモードノイズ成分に有効となるインダクタンスを調整できる。また、4箇所のギャップGPは、各相のインダクタンス値が同一となるよう同じ間隔をとる。   By adjusting the gap length of the gap GP, the magnetic flux density passing through the cross-shaped magnetic core 5a can be adjusted, and the inductance effective for the normal mode noise component can be adjusted. The four gaps GP have the same interval so that the inductance values of the respective phases are the same.

また、リアクトルLaの四角形状磁気コア5aは、2個のU字形状磁気コアの各磁気コアの短片に予め巻線を巻回した2個のボビンをそれぞれ挿入し、2個のU字形状磁気コアを密着させることにより作製できる。一般的に使用されている四角形状磁気コア5aのように人手による線巻を行わずに、機械によりボビンへ線巻を行えるため、製造コストを低減することができる。   In addition, the rectangular magnetic core 5a of the reactor La has two U-shaped magnetic cores, each of which has two U-shaped magnetic cores by inserting two bobbins each having a pre-wound winding around each short piece of the two U-shaped magnetic cores. It can be produced by bringing the core into close contact. Unlike the generally used rectangular magnetic core 5a, the wire can be wound around the bobbin by a machine without manually winding the wire, so that the manufacturing cost can be reduced.

なお、十字形状磁気コア6aの代りに、十字形状磁気コア6aを均等に4分割した4つのL字形状磁気コア(図示せず)を用いても良い。この場合にも、図2の点線で示すように、各巻線10R,10S,10T,10N毎に、四角形状磁気コア5aの閉磁路の一部を通って形成された閉磁路に、ノーマルモードノイズ電流による4つの磁束φR,φS,φT,φNが発生する。 Instead of the cross-shaped magnetic core 6a, four L-shaped magnetic cores (not shown) obtained by equally dividing the cross-shaped magnetic core 6a into four parts may be used. Also in this case, as shown by the dotted lines in FIG. 2, normal mode noise is generated in the closed magnetic circuit formed through a part of the closed magnetic circuit of the rectangular magnetic core 5a for each winding 10R, 10S, 10T, 10N. Four magnetic fluxes φ R , φ S , φ T , and φ N are generated by the current.

なお、4つのL字形状磁気コアと十字形状磁気コア6aとを比較すると、十字形状磁気コア6aは、1個であり、製作しやい利点がある。また、十字形状磁気コア6aの2相の電流は位相差が120度であるため、キャンセルされて0になることはないという利点がある。   When the four L-shaped magnetic cores and the cross-shaped magnetic core 6a are compared, the number of the cross-shaped magnetic core 6a is one, which is advantageous in that it is easy to manufacture. Further, since the two-phase current of the cross-shaped magnetic core 6a has a phase difference of 120 degrees, there is an advantage that it is not canceled and becomes zero.

図3は実施例2の四角形状磁気コアを有するリアクトルの構造図である。図3に示す実施例2のリアクトルLbは、図1に示す実施例1のリアクトルLaに対して、絶縁物7bを、四角形状磁気コア5aの内周面全体にわたって配置したものである。その他の構成は実施例1の構成と同一構成であるので、同一部分には同一符号を付し、その詳細な説明は省略する。   FIG. 3 is a structural diagram of a reactor having a quadrangular magnetic core according to the second embodiment. The reactor Lb of Example 2 shown in FIG. 3 arrange | positions the insulator 7b over the whole internal peripheral surface of the square-shaped magnetic core 5a with respect to the reactor La of Example 1 shown in FIG. Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the same portions, and detailed descriptions thereof are omitted.

このような実施例2のリアクトルLbであっても、実施例1のリアクトルLaと同様な効果が得られる。   Even if it is the reactor Lb of such Example 2, the effect similar to the reactor La of Example 1 is acquired.

図4は実施例3の環状磁気コアを有するリアクトルの構造図である。図4に示すリアクトルLcは、フェライトなどの磁性体材料からなる環状磁気コア5cと、フェライトなどの磁性体材料からなる十字形状磁気コア6cと、環状絶縁物7cと、4つの巻線10R,10S,10T,10Nとからなる。   FIG. 4 is a structural diagram of a reactor having an annular magnetic core according to the third embodiment. A reactor Lc shown in FIG. 4 includes an annular magnetic core 5c made of a magnetic material such as ferrite, a cross-shaped magnetic core 6c made of a magnetic material such as ferrite, an annular insulator 7c, and four windings 10R and 10S. , 10T, 10N.

環状磁気コア5cの内周面には環状絶縁物7cが設けられ、この環状絶縁物7cの内周面には十字形状磁気コア6cが設けられている。環状絶縁物7cと十字形状磁気コア6cとの空隙部8cには、4つの巻線10R,10S,10T,10Nが巻回されている。   An annular insulator 7c is provided on the inner peripheral surface of the annular magnetic core 5c, and a cross-shaped magnetic core 6c is provided on the inner peripheral surface of the annular insulator 7c. Four windings 10R, 10S, 10T, and 10N are wound around the gap 8c between the annular insulator 7c and the cross-shaped magnetic core 6c.

このような実施例3のリアクトルLcであっても、実施例1のリアクトルLaと同様な効果が得られる。   Even if it is the reactor Lc of such Example 3, the effect similar to the reactor La of Example 1 is acquired.

図5は実施例4の四角形状磁気コアを有するリアクトルの構造図である。図5に示すリアクトルLdは、図1に示す実施例1のリアクトルLaに対して、四角形状磁気コア5dと、I字形状磁気コア6dとが異なる。   FIG. 5 is a structural diagram of a reactor having a quadrangular magnetic core according to the fourth embodiment. The reactor Ld shown in FIG. 5 differs from the reactor La of the first embodiment shown in FIG. 1 in a quadrangular magnetic core 5d and an I-shaped magnetic core 6d.

四角形状磁気コア5dは、磁気コアの対向する位置に2つの突起部9dが形成されている。I字形状磁気コア6dは、四角形状磁気コア5dの貫通穴51に所定のギャップを持って挿入され且つ各巻線10R,10S,10T,10N毎に、四角形状磁気コア5dの第1閉磁路の一部を通り第2閉磁路を形成している。四角形状磁気コア5dとI字形状磁気コア6dとの所定のギャップには絶縁物7aが設けられている。   The quadrangular magnetic core 5d has two protrusions 9d formed at positions facing the magnetic core. The I-shaped magnetic core 6d is inserted into the through hole 51 of the quadrangular magnetic core 5d with a predetermined gap, and the first closed magnetic circuit of the quadrangular magnetic core 5d is provided for each winding 10R, 10S, 10T, 10N. A second closed magnetic circuit is formed through a part. An insulator 7a is provided in a predetermined gap between the quadrangular magnetic core 5d and the I-shaped magnetic core 6d.

巻線10R、巻線10S、巻線10T及び巻線10Nは、I字形状磁気コア6dが四角形状磁気コア5dの貫通穴51に挿入された際に形成される4つの空隙部8dを貫通するように四角形状磁気コア5dに、それぞれ同一巻数だけ巻回されている。   The winding 10R, the winding 10S, the winding 10T, and the winding 10N pass through the four gaps 8d that are formed when the I-shaped magnetic core 6d is inserted into the through hole 51 of the quadrangular magnetic core 5d. Thus, the same number of turns are wound around the rectangular magnetic core 5d.

実施例4のリアクトルLdによれば、I字形状磁気コア6dでは、各巻線10R,10S,10T,10N毎に、四角形状磁気コア5dの閉磁路の一部を通って形成された閉磁路に、ノーマルモードノイズ電流による4つの磁束が発生する。各閉磁路には、ギャップが2箇所挿入されるため、四角形状磁気コア5dと比べて磁気抵抗は大きくなる。   According to the reactor Ld of the fourth embodiment, in the I-shaped magnetic core 6d, the windings 10R, 10S, 10T, and 10N have a closed magnetic circuit formed through a part of the closed magnetic circuit of the rectangular magnetic core 5d. Four magnetic fluxes are generated by the normal mode noise current. Since two gaps are inserted in each closed magnetic path, the magnetic resistance is larger than that of the quadrangular magnetic core 5d.

また、I字形状磁気コア6dには、2相の電流によって発生する磁束が通る。この2相の電流は位相差が120度であるため、キャンセルされて0になることはない。このため、I字形状磁気コア6dには、大きな主電流と同等の大きなノーマルモードノイズ電流による磁束が発生する。従って、I字形状磁気コア6dが磁気飽和することがないようにギャップGPを挿入する必要がある。   Further, the magnetic flux generated by the two-phase current passes through the I-shaped magnetic core 6d. Since the two-phase current has a phase difference of 120 degrees, it is not canceled out. For this reason, the I-shaped magnetic core 6d generates a magnetic flux due to a large normal mode noise current equivalent to a large main current. Therefore, it is necessary to insert the gap GP so that the I-shaped magnetic core 6d is not magnetically saturated.

このように実施例4のリアクトルLdであっても、実施例1のリアクトルLaと同様な効果が得られる。   Thus, even if it is the reactor Ld of Example 4, the effect similar to the reactor La of Example 1 is acquired.

図6は実施例5のノイズ低減装置の構成図である。図6に示す実施例5のノイズ低減装置であるフィルタ回路2cは、ライン間コンデンサ21a,21b、リアクトルL、ライン・アース間コンデンサ23、電源線から接地線Eに流れるコモンモードノイズ電流を検出するCT24と、CT24により検出されたコモンモードノイズ電流を、接地線Eにコモンモードノイズ電流を相殺する方向に供給するコモンモードノイズ低減回路25とを有している。   FIG. 6 is a configuration diagram of the noise reduction apparatus according to the fifth embodiment. The filter circuit 2c, which is the noise reduction device of the fifth embodiment shown in FIG. 6, detects the common mode noise current flowing from the power line to the ground line E, between the line capacitors 21a and 21b, the reactor L, the line-ground capacitor 23, and the ground line E. CT 24 and a common mode noise reduction circuit 25 that supplies the common mode noise current detected by CT 24 to the ground line E in a direction to cancel the common mode noise current.

即ち、図6に示す実施例5のノイズ低減装置は、図10に示すノイズ低減装置のコモンモードコイル22aを、リアクトルL(図1に示すリアクトルLa又は図3に示すリアクトルLb又は図4に示すリアクトルLc又は図5に示すリアクトルLd)に置き換えたことを特徴とする。また、ライン間コンデンサ21a,21bはCT24の前段に接続されている。   That is, in the noise reduction device of the fifth embodiment shown in FIG. 6, the common mode coil 22a of the noise reduction device shown in FIG. 10 is replaced with a reactor L (reactor La shown in FIG. 1, reactor Lb shown in FIG. 3, or shown in FIG. The reactor Lc is replaced with the reactor Ld) shown in FIG. The inter-line capacitors 21a and 21b are connected to the previous stage of the CT 24.

また、コモンモードノイズ低減回路25は、CT24よりも三相四線式交流電源1側に配置され、リアクトルLは、コモンモードノイズ低減回路25よりも三相四線式交流電源1側に配置される。   Further, the common mode noise reduction circuit 25 is arranged closer to the three-phase four-wire AC power supply 1 than the CT 24, and the reactor L is arranged closer to the three-phase four-wire AC power supply 1 than the common mode noise reduction circuit 25. The

このような構成によれば、ノイズ低減装置にノイズ低減用のリアクトルLを用いたので、実施例1乃至実施例4の効果と同様な効果が得られる。また、コモンモードノイズ低減回路25の増幅率を小さくでき、発振等がなくなるので、回路を安定化できる。   According to such a configuration, since the noise reduction reactor L is used in the noise reduction device, the same effects as those of the first to fourth embodiments can be obtained. In addition, since the amplification factor of the common mode noise reduction circuit 25 can be reduced and oscillation is eliminated, the circuit can be stabilized.

図7は実施例6のノイズ低減装置の構成図である。図7に示す実施例6のノイズ低減装置は、図6に示す実施例6のノイズ低減装置に対して、ライン間コンデンサ21bの接続位置をCT24の後段としたことを特徴とする。   FIG. 7 is a configuration diagram of the noise reduction apparatus according to the sixth embodiment. The noise reduction apparatus according to the sixth embodiment illustrated in FIG. 7 is characterized in that the connection position of the inter-line capacitor 21b is the latter stage of the CT 24 with respect to the noise reduction apparatus according to the sixth embodiment illustrated in FIG.

このような構成によれば、ノイズ低減装置にノイズ低減用のリアクトルLを用いたので、実施例1乃至実施例4の効果と同様な効果が得られる。また、コモンモードノイズ低減回路25の増幅率を小さくでき、発振等がなくなるので、回路を安定化できる。   According to such a configuration, since the noise reduction reactor L is used in the noise reduction device, the same effects as those of the first to fourth embodiments can be obtained. In addition, since the amplification factor of the common mode noise reduction circuit 25 can be reduced and oscillation is eliminated, the circuit can be stabilized.

本発明は、三相交流電源で駆動されるモータに適用可能である。   The present invention can be applied to a motor driven by a three-phase AC power source.

実施例1の四角形状磁気コアを有するリアクトルの構造図である。1 is a structural diagram of a reactor having a quadrangular magnetic core of Example 1. FIG. 図1のリアクトルにおいてノーマルモード電流及びコモンモード電流による磁束を示す図である。It is a figure which shows the magnetic flux by a normal mode electric current and a common mode electric current in the reactor of FIG. 実施例2の四角形状磁気コアを有するリアクトルの構造図である。6 is a structural diagram of a reactor having a quadrangular magnetic core of Example 2. FIG. 実施例3の環状磁気コアを有するリアクトルの構造図である。6 is a structural diagram of a reactor having an annular magnetic core according to Embodiment 3. FIG. 実施例4の四角形状磁気コアを有するリアクトルの構造図である。6 is a structural diagram of a reactor having a quadrangular magnetic core according to Embodiment 4. FIG. 実施例5のノイズ低減装置の構成図である。It is a block diagram of the noise reduction apparatus of Example 5. 実施例6のノイズ低減装置の構成図である。It is a block diagram of the noise reduction apparatus of Example 6. 従来のモータの接続図である。It is a connection diagram of a conventional motor. コンデンサ及びリアクトルで構成された従来のフィルタ回路図である。It is the conventional filter circuit diagram comprised with the capacitor | condenser and the reactor. コモンモードノイズ電流検出器(CT)及びコモンモードノイズ低減回路を備えた従来のフィルタ回路図である。It is the conventional filter circuit diagram provided with the common mode noise current detector (CT) and the common mode noise reduction circuit. 図10に示すコモンモードノイズ電流検出器の構成図である。It is a block diagram of the common mode noise current detector shown in FIG. 図10に示すコモンモードノイズ低減回路の構成図である。It is a block diagram of the common mode noise reduction circuit shown in FIG.

符号の説明Explanation of symbols

1 三相交流電源
2,2a〜2d フィルタ回路
3 インバータ装置
4 モータ
5a,5d 四角形状磁気コア
5c,26 環状磁気コア
6a,6c 十字形状磁気コア
6d I字形状磁気コア
7a,7b,7c 絶縁物
8a,8c,8d 空隙部
9a,9c,9d 突起部
21a,21b,21c ライン間コンデンサ
22a,22b コモンモードコイル
23 ライン・アース間コンデンサ
24 コモンモードノイズ電流検出器(CT)
25 コモンモードノイズ低減回路
50 側脚
51 貫通穴
L,La〜Ld リアクトル
C11〜C23 コンデンサ
L11〜L18 コイル
P1〜P8,P11〜P20 ポート
DESCRIPTION OF SYMBOLS 1 Three-phase alternating current power supply 2, 2a-2d Filter circuit 3 Inverter apparatus 4 Motor 5a, 5d Square-shaped magnetic core 5c, 26 Annular magnetic core 6a, 6c Cross-shaped magnetic core 6d I-shaped magnetic core 7a, 7b, 7c Insulator 8a, 8c, 8d Air gaps 9a, 9c, 9d Protrusions 21a, 21b, 21c Line-to-line capacitors 22a, 22b Common mode coil 23 Line-to-ground capacitor 24 Common mode noise current detector (CT)
25 Common mode noise reduction circuit 50 Side leg 51 Through hole L, La to Ld Reactor C11 to C23 Capacitor L11 to L18 Coil P1 to P8, P11 to P20 Port

Claims (4)

三相四線式交流電源からの電源線に挿入され、前記電源線に伝播するノイズを低減するノイズ低減用リアクトルであって、
中央部に貫通穴を有し且つ第1閉磁路を形成する第1磁気コアと、
前記三相四線式交流電源からの電源線に対応して設けられ且つ前記第1磁気コアに巻回される第1巻線、第2巻線、第3巻線及び第4巻線と、
前記第1磁気コアの前記貫通穴に挿入され且つ前記各巻線毎に前記第1磁気コアの第1閉磁路の一部を通り第2閉磁路を形成する第2磁気コアと、
前記第1磁気コアと前記第2磁気コアとの間に設けられた絶縁物と、
を備えることを特徴とするノイズ低減用リアクトル。
A noise reduction reactor that is inserted into a power line from a three-phase four-wire AC power source and reduces noise propagating to the power line,
A first magnetic core having a through hole in the center and forming a first closed magnetic path;
A first winding, a second winding, a third winding, and a fourth winding that are provided corresponding to a power supply line from the three-phase four-wire AC power supply and are wound around the first magnetic core;
A second magnetic core inserted into the through hole of the first magnetic core and forming a second closed magnetic path through a part of the first closed magnetic path of the first magnetic core for each winding;
An insulator provided between the first magnetic core and the second magnetic core;
The reactor for noise reduction characterized by comprising.
前記第2磁気コアは、十字形状の磁気コアからなり、
前記第1巻線、前記第2巻線、前記第3巻線及び前記第4巻線は、十字形状の前記第2磁気コアが前記第1磁気コアの貫通穴に挿入された際に形成される4つの空隙部を貫通するように前記第1磁気コアに巻回されることを特徴とする請求項1記載のノイズ低減用リアクトル。
The second magnetic core comprises a cross-shaped magnetic core,
The first winding, the second winding, the third winding, and the fourth winding are formed when the cross-shaped second magnetic core is inserted into a through hole of the first magnetic core. The noise reduction reactor according to claim 1, wherein the first magnetic core is wound so as to pass through the four gaps.
三相四線式交流電源からの電源線に挿入され、前記電源線に伝播するノイズを低減するノイズ低減装置であって、
前記電源線から接地線に流れるコモンモードノイズ電流を検出するコモンモードノイズ電流検出器と、
前記コモンモードノイズ電流検出器により検出された前記コモンモードノイズ電流を、前記接地線に、前記コモンモードノイズ電流を相殺する方向に供給するコモンモードノイズ低減回路と、
請求項1又は請求項2記載の前記ノイズ低減用リアクトルと、
を備えることを特徴とするノイズ低減装置。
A noise reduction device that is inserted into a power supply line from a three-phase four-wire AC power supply and reduces noise propagating to the power supply line,
A common mode noise current detector for detecting a common mode noise current flowing from the power line to the ground line;
A common mode noise reduction circuit that supplies the common mode noise current detected by the common mode noise current detector to the ground line in a direction that cancels the common mode noise current;
The noise-reducing reactor according to claim 1 or 2,
A noise reduction device comprising:
前記コモンモードノイズ低減回路は、前記コモンモードノイズ電流検出器よりも前記三相四線式交流電源側に配置され、
前記ノイズ低減用リアクトルは、前記コモンモードノイズ低減回路よりも前記三相四線式交流電源側に配置されることを特徴とする請求項3記載のノイズ低減装置。

The common mode noise reduction circuit is disposed on the three-phase four-wire AC power supply side than the common mode noise current detector,
The noise reduction device according to claim 3, wherein the noise reduction reactor is arranged closer to the three-phase four-wire AC power supply side than the common mode noise reduction circuit.

JP2006124192A 2006-04-27 2006-04-27 Noise reducing reactor and noise reducing device Pending JP2007300700A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006124192A JP2007300700A (en) 2006-04-27 2006-04-27 Noise reducing reactor and noise reducing device
PCT/JP2007/059049 WO2007125989A1 (en) 2006-04-27 2007-04-26 Noise reduction reactor and noise reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124192A JP2007300700A (en) 2006-04-27 2006-04-27 Noise reducing reactor and noise reducing device

Publications (1)

Publication Number Publication Date
JP2007300700A true JP2007300700A (en) 2007-11-15

Family

ID=38655514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124192A Pending JP2007300700A (en) 2006-04-27 2006-04-27 Noise reducing reactor and noise reducing device

Country Status (2)

Country Link
JP (1) JP2007300700A (en)
WO (1) WO2007125989A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194957A (en) * 2008-02-12 2009-08-27 Okuma Corp Three-phase common mode filter for motor driving machine
JP2011119477A (en) * 2009-12-03 2011-06-16 Fuji Electric Co Ltd Reactor, and noise filter
JP2013074084A (en) * 2011-09-28 2013-04-22 Mitsubishi Electric Corp Filter reactor and method for manufacturing the same
JP2013158085A (en) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp High frequency current reduction device and detection transformer
EP2779394A3 (en) * 2013-03-13 2014-12-10 Astec International Limited Power supply systems with filters
JP2016122830A (en) * 2014-10-29 2016-07-07 ゼネラル・エレクトリック・カンパニイ Filter assembly and method
JP2017103269A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
JP2017139438A (en) * 2016-01-28 2017-08-10 ファナック株式会社 Iron core part and three-phase reactor equipped with coil
JP2018157109A (en) * 2017-03-17 2018-10-04 ファナック株式会社 Iron core including first iron core block and second iron core block
WO2018189170A1 (en) * 2017-04-10 2018-10-18 Abb Schweiz Ag Magnetic adjustment member for multi-phase inductor
JP2019041119A (en) * 2018-11-08 2019-03-14 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
WO2019197556A1 (en) * 2018-04-12 2019-10-17 Sit S.P.A. Emi filter incuding overvoltage protection devices
CN111554472A (en) * 2020-05-26 2020-08-18 台达电子企业管理(上海)有限公司 Filter inductance and vehicle-mounted charger
US10748703B2 (en) 2016-01-28 2020-08-18 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
US10790084B2 (en) 2017-01-30 2020-09-29 Fanuc Corporation Multi-phase iron-core reactor having function of changing magnitude of inductance
JP2021077668A (en) * 2019-11-05 2021-05-20 パナソニックIpマネジメント株式会社 Magnetic component, electric power supply device and vehicle
JPWO2020144795A1 (en) * 2019-01-10 2021-09-09 三菱電機株式会社 Choke coil and noise filter using it
WO2022190550A1 (en) * 2021-03-08 2022-09-15 オムロン株式会社 Magnetic saturation detecting circuit, noise filter, motor driver, and magnetic saturation detecting method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031296A1 (en) * 2008-07-02 2009-08-20 Siemens Aktiengesellschaft Inductor device for e.g. output-sinusoidal filter of frequency converter, has three coils arranged on core from magnetic material, and another core arranged above three coils and forming single inductor acting as longitudinal inductance
DE102008046576A1 (en) * 2008-09-10 2010-03-18 Siemens Aktiengesellschaft Three-phase choke coil device for filter circuit utilized for output sinusoidal filter of frequency converter, has yokes that are linked with each other such that magnetic fluid flows into legs in leg direction
US8379417B2 (en) * 2011-07-06 2013-02-19 Rockwell Automation Technologies, Inc. Power converter and integrated DC choke therefor
JP6136886B2 (en) * 2013-11-25 2017-05-31 三菱電機株式会社 Electric railway reactor, electric railway power converter and electric railway drive
DE102014115782A1 (en) * 2014-10-30 2016-05-04 Sma Solar Technology Ag Inverter and choke to suppress common mode noise
CN104779035B (en) * 2015-05-05 2017-06-16 山东大学 A kind of shorter saturable reactor of transient response time
JP6626859B2 (en) * 2017-06-29 2019-12-25 矢崎総業株式会社 Noise filter
JP7009292B2 (en) * 2018-04-16 2022-01-25 サンデン・オートモーティブコンポーネント株式会社 Power converter
US10476381B1 (en) * 2018-11-13 2019-11-12 Rockwell Automation Technologies, Inc. Power conversion system and filter therefor
EP4102521A1 (en) * 2021-06-09 2022-12-14 MAHLE International GmbH Emi filter and an inverter comprising the emi filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512412Y2 (en) * 1974-11-11 1980-03-18
JPS5373352A (en) * 1976-12-13 1978-06-29 Fujitsu Ltd Multiiphase choke coil
JPS6130917A (en) * 1984-07-19 1986-02-13 富士電気化学株式会社 Noise filter for 3-phase 4-wires
JPH04355906A (en) * 1991-02-20 1992-12-09 Yokogawa Electric Corp Choke coil and noise-reducing device for switching power supply
JP2004032885A (en) * 2002-06-25 2004-01-29 Sanken Electric Co Ltd Rectifying circuit, noise reduction device, and power conversion device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194957A (en) * 2008-02-12 2009-08-27 Okuma Corp Three-phase common mode filter for motor driving machine
JP2011119477A (en) * 2009-12-03 2011-06-16 Fuji Electric Co Ltd Reactor, and noise filter
JP2013074084A (en) * 2011-09-28 2013-04-22 Mitsubishi Electric Corp Filter reactor and method for manufacturing the same
JP2013158085A (en) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp High frequency current reduction device and detection transformer
EP2779394A3 (en) * 2013-03-13 2014-12-10 Astec International Limited Power supply systems with filters
US9203296B2 (en) 2013-03-13 2015-12-01 Astec International Limited Power supply systems with filters
JP2016122830A (en) * 2014-10-29 2016-07-07 ゼネラル・エレクトリック・カンパニイ Filter assembly and method
JP2017103269A (en) * 2015-11-30 2017-06-08 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
US10373753B2 (en) 2015-11-30 2019-08-06 Fanuc Corporation Multi-phase reactor capable of obtaining constant inductance for each phase
JP2017139438A (en) * 2016-01-28 2017-08-10 ファナック株式会社 Iron core part and three-phase reactor equipped with coil
US11728091B2 (en) 2016-01-28 2023-08-15 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
US10748703B2 (en) 2016-01-28 2020-08-18 Fanuc Corporation Three-phase reactor comprising iron-core units and coils
US10790084B2 (en) 2017-01-30 2020-09-29 Fanuc Corporation Multi-phase iron-core reactor having function of changing magnitude of inductance
JP2018157109A (en) * 2017-03-17 2018-10-04 ファナック株式会社 Iron core including first iron core block and second iron core block
US10707008B2 (en) 2017-03-17 2020-07-07 Fanuc Corporation Iron core including first iron core block and second iron core block
CN110462758A (en) * 2017-04-10 2019-11-15 Abb瑞士股份有限公司 Magnetic adjustment component for multiphase inductor
CN110462758B (en) * 2017-04-10 2022-01-14 Abb瑞士股份有限公司 Magnetic tuning component for multiphase inductors
US11636968B2 (en) 2017-04-10 2023-04-25 Abb Schweiz Ag Magnetic adjustment member for multi-phase inductor
WO2018189170A1 (en) * 2017-04-10 2018-10-18 Abb Schweiz Ag Magnetic adjustment member for multi-phase inductor
WO2019197556A1 (en) * 2018-04-12 2019-10-17 Sit S.P.A. Emi filter incuding overvoltage protection devices
JP2019041119A (en) * 2018-11-08 2019-03-14 ファナック株式会社 Multiphase reactor capable of obtaining constant inductance in each phase
JPWO2020144795A1 (en) * 2019-01-10 2021-09-09 三菱電機株式会社 Choke coil and noise filter using it
JP7126567B2 (en) 2019-01-10 2022-08-26 三菱電機株式会社 Choke coil and noise filter using it
JP2021077668A (en) * 2019-11-05 2021-05-20 パナソニックIpマネジメント株式会社 Magnetic component, electric power supply device and vehicle
JP7382567B2 (en) 2019-11-05 2023-11-17 パナソニックIpマネジメント株式会社 Power supplies and vehicles
CN111554472A (en) * 2020-05-26 2020-08-18 台达电子企业管理(上海)有限公司 Filter inductance and vehicle-mounted charger
CN111554472B (en) * 2020-05-26 2022-03-25 台达电子企业管理(上海)有限公司 Filter inductance and vehicle-mounted charger
WO2022190550A1 (en) * 2021-03-08 2022-09-15 オムロン株式会社 Magnetic saturation detecting circuit, noise filter, motor driver, and magnetic saturation detecting method

Also Published As

Publication number Publication date
WO2007125989A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP2007300700A (en) Noise reducing reactor and noise reducing device
EP1914868B1 (en) Filtering choke arrangement for a frequency converter
US6856230B2 (en) Harmonic filtering circuit with special transformer
JP4404029B2 (en) Noise filter
JP6568743B2 (en) Conductive noise suppression circuit and inverter device
JP6485662B2 (en) Common mode filter device and electrical equipment
US20060034101A1 (en) Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
JP2005524248A (en) Power line high current inductive coupler and current transformer
JP4351916B2 (en) Noise filter
JP4626389B2 (en) Combined reactor
US7053505B2 (en) Amplifying circuit, noise reducing apparatus and power converting apparatus
JP2018191443A (en) Conducting noise suppression device, electric power conversion system, and motor device
US7378754B2 (en) Three-phase harmonic reduction filter for bidirectional power converters
JP2003087973A (en) Active filter
JP2585303Y2 (en) Noise prevention choke coil
JP5119824B2 (en) Active filter device and power conversion device
JP2020103029A (en) Motor drive with filter including three-phase differential mode reactor exhibiting common mode damping
JP2567363Y2 (en) Noise prevention choke coil
JP6210464B2 (en) electric circuit
JP3937869B2 (en) Amplifier circuit, noise reduction device, and power conversion device
JP2004288882A (en) Noise filter
JP6625904B2 (en) Filter device and inverter device
JP3159459B2 (en) Line filter to prevent electric shock in electrical equipment
JPH05121255A (en) Noise filter
JP2567381Y2 (en) Noise prevention choke coil

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204