JP2007288958A - Control method for direct power converter - Google Patents

Control method for direct power converter Download PDF

Info

Publication number
JP2007288958A
JP2007288958A JP2006115321A JP2006115321A JP2007288958A JP 2007288958 A JP2007288958 A JP 2007288958A JP 2006115321 A JP2006115321 A JP 2006115321A JP 2006115321 A JP2006115321 A JP 2006115321A JP 2007288958 A JP2007288958 A JP 2007288958A
Authority
JP
Japan
Prior art keywords
phase
voltage
switch
bidirectional
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115321A
Other languages
Japanese (ja)
Other versions
JP4839943B2 (en
Inventor
Akihiro Odaka
章弘 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2006115321A priority Critical patent/JP4839943B2/en
Publication of JP2007288958A publication Critical patent/JP2007288958A/en
Application granted granted Critical
Publication of JP4839943B2 publication Critical patent/JP4839943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for a direct power converter, capable of preventing commutation failures, without having to adopt a method of increasing the current rating of a semiconductor switch. <P>SOLUTION: This control method of a direct power converter determines the magnitude relation of a three-phase AC voltage in the inside of the control device. When switching on/off a bidirectional switch S<SB>1</SB>is on/off switched, between the maximum voltage phase and one output phase and a bidirectional switch S<SB>2</SB>between the middle voltage phase and the output phase for commutation, a unidirectional switch S<SB>12</SB>for flowing a current from the output phase to the maximum voltage phase inside the bidirectional switch S<SB>1</SB>; and a unidirectional switch S<SB>22</SB>for making a current flow from the output phase to the intermediate voltage phase inside the bidirectional switch S<SB>2</SB>, are turned on, as well as, via a unidirectional switch S<SB>32</SB>, that makes a current flow from the minimum voltage phase to the output phase in the inside of the bidirectional switch S<SB>3</SB>between the minimum voltage phase and the output phase is turned on, and the bidirectional switches S<SB>1</SB>, S<SB>2</SB>are switched on/off. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一方向に流れる電流を制御可能な半導体単方向スイッチを複数組み合わせてなる双方向スイッチを少なくとも3個用いて、三相交流電圧をその大きさ及び周波数が異なる多相交流電圧に直接変換する直接形電力変換器の制御方法に関する。   The present invention uses at least three bidirectional switches composed of a combination of a plurality of semiconductor unidirectional switches capable of controlling a current flowing in one direction, and directly converts a three-phase AC voltage into a multiphase AC voltage having a different magnitude and frequency. The present invention relates to a method for controlling a direct power converter to be converted.

図7は、この種の直接形電力変換器の代表例として、半導体単方向スイッチ(図では、逆阻止能力をもつ逆阻止IGBT)を2個組み合わせてなる双方向スイッチを9個用いて構成されたマトリクスコンバータを、周辺回路と共に示した図である。
図7において、20は三相交流電源、30はフィルタ、40は三相負荷、R,S,Tは入力端子(入力相)、U,V,Wは出力端子(出力相)であり、マトリクスコンバータ10は、フィルタ30の出力側の三相各相と前記出力端子U,V,Wとの間にそれぞれ接続された双方向スイッチS〜Sにより構成されている。
FIG. 7 shows a typical example of this type of direct power converter using nine bidirectional switches formed by combining two semiconductor unidirectional switches (in the figure, two reverse blocking IGBTs having reverse blocking capability). 2 is a diagram showing a matrix converter together with peripheral circuits. FIG.
In FIG. 7, 20 is a three-phase AC power source, 30 is a filter, 40 is a three-phase load, R, S, and T are input terminals (input phases), U, V, and W are output terminals (output phases). The converter 10 includes bidirectional switches S 1 to S 9 connected between the three phases on the output side of the filter 30 and the output terminals U, V, and W, respectively.

マトリクスコンバータ10は、双方向スイッチS〜Sのオンオフを繰り返すことにより、電源20側の三相交流電圧を任意の大きさ、周波数の三相交流電圧に変換することが可能であるが、その動作については周知であるため、ここでは説明を省略する。 The matrix converter 10 can convert the three-phase AC voltage on the power source 20 side into a three-phase AC voltage having an arbitrary magnitude and frequency by repeatedly turning on and off the bidirectional switches S 1 to S 9 . Since the operation is well known, the description is omitted here.

ところで、図8に示すように、入力側の最大電圧相(以下、最大相ともいう)、中間電圧相(以下、中間相ともいう)、最小電圧相(以下、最小相ともいう)と、出力側のU相との間に接続された3つの双方向スイッチS〜Sを1単位とした場合、通流している双方向スイッチを例えば双方向スイッチSからSへ切り替える際には(以下、このような動作を転流と呼ぶ)、各双方向スイッチS,Sを構成する単方向スイッチS11〜S22のオンオフタイミングを適切に調整し、電源短絡及び負荷端開放が生じないようにして双方向スイッチS,Sの破壊を防止している。 By the way, as shown in FIG. 8, the maximum voltage phase on the input side (hereinafter also referred to as the maximum phase), the intermediate voltage phase (hereinafter also referred to as the intermediate phase), the minimum voltage phase (hereinafter also referred to as the minimum phase), and the output When the three bidirectional switches S 1 to S 3 connected to the U phase on the side are set as one unit, when the bidirectional switch being passed is switched from the bidirectional switch S 1 to S 2 , for example. (Hereinafter, such an operation is referred to as commutation), the ON / OFF timing of the unidirectional switches S 11 to S 22 constituting each of the bidirectional switches S 1 and S 2 is appropriately adjusted, and the power supply short circuit and the load end opening are controlled. This prevents the bidirectional switches S 1 and S 2 from being destroyed.

このような技術は、下記の非特許文献1に記載されており、双方向スイッチSから双方向スイッチSに転流する場合であってR相の電圧がS相の電圧よりも大きい場合(図8のようにR相が最大相、S相が中間相である場合)には、図9に示すような転流シーケンスに従って単方向スイッチS11〜S22のオンオフタイミングを調整している。この間、最小相に接続された双方向スイッチSを構成する単方向スイッチS31,S32は、オフ状態を維持している。 Such a technique is described in Non-Patent Document 1 below, where the R phase voltage is larger than the S phase voltage when commutating from the bidirectional switch S 1 to the bidirectional switch S 2. When the R phase is the maximum phase and the S phase is the intermediate phase as shown in FIG. 8, the on / off timings of the unidirectional switches S 11 to S 22 are adjusted according to the commutation sequence as shown in FIG. . During this time, the unidirectional switches S 31 and S 32 constituting the bidirectional switch S 3 connected to the minimum phase are kept off.

図10は、図9の各期間a〜eにおける動作説明図であり、オン状態の単方向スイッチを太字で表してある。
すなわち、期間aでは単方向スイッチS11,S12をオン、期間bではS11,S12,S21をオン、期間cではS12,S21をオン、期間dではS12,S21,S22をオン、期間eではS21,S22をオンさせるシーケンスにより、双方向スイッチSから双方向スイッチSへの転流時における電源短絡及び負荷端開放を防止している。
なお、他の双方向スイッチ間の転流時や電圧の大小関係が異なる場合についても、基本的には同様な動作となる。
FIG. 10 is an operation explanatory diagram in each of the periods a to e in FIG. 9, and the unidirectional switch in the on state is shown in bold.
That is, in the period a, the unidirectional switches S 11 and S 12 are turned on, in the period b, S 11 , S 12 and S 21 are turned on, in the period c, S 12 and S 21 are turned on, and in the period d, S 12 , S 21 , on the S 22, the sequence of turning on the period in e S 21, S 22, to prevent the power short-circuit and the load end open during commutation from the bidirectional switch S 1 to the bidirectional switch S 2.
Note that the same operation is basically performed even when commutation between the other bidirectional switches or when the voltage magnitude relationship is different.

小山純,樋口剛,川崎雅史,山田英二,古賀高志,T.A.Lipo、「SIThを用いたPWMサイクロコンバータの点弧シーケンス」、平成2年電気学会全国大会論文集No.516、pp.5−76〜5−77Jun Koyama, Tsuyoshi Higuchi, Masafumi Kawasaki, Eiji Yamada, Takashi Koga, T.A. Lipo, “Sequence of PWM Cycloconverter Using SITh”, 1990 Annual Conference of the Institute of Electrical Engineers of Japan No.516, pp. 5-76-5-77

さて、先に説明した転流シーケンスにおいて、仮に実際のR相電圧がS相電圧より小さいにも関わらず、制御装置がR相電圧>S相電圧と誤検出してその大小関係を決定し、図9,図10に示すようなシーケンスで転流動作を行った場合、図9,図10の期間b〜dにおいて、単方向スイッチS21,S12を介して電源を短絡することとなり、S相からR相の向きに短絡電流が流れる(以下、このような状態を転流失敗と呼ぶ)。
このことから分かるように、電源の各相電圧の大小関係を正確に検出することは重要であるが、特に電源の2相の電圧値がほぼ等しい場合においては、検出誤差等によって電圧の大小関係を正確に決定することが非常に困難であり、その結果、転流失敗を招き、短絡電流が流れる場合があった。
このため従来では、短絡電流が半導体スイッチに及ぼす影響を軽減させるため、半導体スイッチの電流定格を必要以上に大きくする必要があり、これが装置全体の大形化や高価格化を招いていた。
Now, in the commutation sequence described above, even though the actual R-phase voltage is smaller than the S-phase voltage, the control device erroneously detects R-phase voltage> S-phase voltage and determines the magnitude relationship thereof. When the commutation operation is performed in the sequence shown in FIGS. 9 and 10, the power supply is short-circuited via the unidirectional switches S 21 and S 12 in the periods b to d of FIGS. A short-circuit current flows from the phase to the R-phase (hereinafter, such a state is referred to as commutation failure).
As can be seen from the above, it is important to accurately detect the magnitude relationship between the phase voltages of the power supply. However, especially when the voltage values of the two phases of the power supply are approximately equal, the magnitude relationship between the voltages due to detection errors and the like. As a result, commutation failure may occur and a short-circuit current may flow.
For this reason, conventionally, in order to reduce the influence of the short circuit current on the semiconductor switch, it is necessary to increase the current rating of the semiconductor switch more than necessary, which leads to an increase in size and cost of the entire device.

そこで本発明の解決課題は、半導体スイッチの電流定格を大きくするといった方法によらずに確実な転流を可能にした直接形電力変換器の制御方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a control method for a direct power converter that enables reliable commutation without increasing the current rating of a semiconductor switch.

上記課題を解決するため、請求項1に記載した発明は、第1の端子から第2の端子に流れる電流を制御可能な半導体単方向スイッチと第2の端子から第1の端子へ流れる電流を制御可能な半導体単方向スイッチとを組み合わせてなる双方向スイッチを少なくとも3個用いて、三相交流電圧をその大きさ及び周波数が異なる多相交流電圧に直接変換する直接形電力変換器の制御方法において、
制御装置内部で大小関係が決定された三相交流電圧のうち最大電圧相と一の出力相との間に接続された第1の双方向スイッチと、中間電圧相と前記出力相との間に接続された第2の双方向スイッチと、のオンオフを切り替えて転流させる際に、
第1の双方向スイッチ内の、前記出力相から前記最大電圧相に電流を流す単方向スイッチと、第2の双方向スイッチ内の、前記出力相から前記中間電圧相に電流を流す単方向スイッチと、をオンし、かつ、
三相交流電圧のうち最小電圧相と前記出力相との間に接続された第3の双方向スイッチ内の、前記最小電圧相から前記出力相に電流を流す単方向スイッチをオンする状態を介して、
第1,第2の双方向スイッチのオンオフを切り替えるものである。
In order to solve the above problems, the invention described in claim 1 is a semiconductor unidirectional switch capable of controlling a current flowing from the first terminal to the second terminal and a current flowing from the second terminal to the first terminal. Control method for direct power converter using at least three bidirectional switches combined with controllable semiconductor unidirectional switch, and directly converting three-phase AC voltage into multi-phase AC voltage of different magnitude and frequency In
A first bidirectional switch connected between the maximum voltage phase and one output phase of the three-phase AC voltage whose magnitude relationship is determined inside the control device, and between the intermediate voltage phase and the output phase When commutating by switching on and off with the connected second bidirectional switch,
A unidirectional switch for flowing current from the output phase to the maximum voltage phase in the first bidirectional switch, and a unidirectional switch for flowing current from the output phase to the intermediate voltage phase in the second bidirectional switch And, and
Via a state in which a unidirectional switch for passing a current from the minimum voltage phase to the output phase in a third bidirectional switch connected between the minimum voltage phase and the output phase of the three-phase AC voltage is turned on. And
The first and second bidirectional switches are switched on and off.

請求項2に記載した発明は、第1の端子から第2の端子に流れる電流を制御可能な半導体単方向スイッチと第2の端子から第1の端子へ流れる電流を制御可能な半導体単方向スイッチとを組み合わせてなる双方向スイッチを少なくとも3個用いて、三相交流電圧をその大きさ及び周波数が異なる多相交流電圧に直接変換する直接形電力変換器の制御方法において、
制御装置内部で大小関係が決定された三相交流電圧のうち中間電圧相と一の出力相との間に接続された第2の双方向スイッチと、最小電圧相と前記出力相との間に接続された第3の双方向スイッチと、のオンオフを切り替えて転流させる際に、
第2の双方向スイッチ内の、前記中間電圧相から前記出力相に電流を流す単方向スイッチと、第3の双方向スイッチ内の、前記最小電圧相から前記出力相に電流を流す単方向スイッチと、をオンし、かつ、
三相交流電圧のうち最大電圧相と前記出力相との間に接続された第1の双方向スイッチ内の、前記出力相から前記最大電圧相に電流を流す単方向スイッチをオンする状態を介して、
第2,第3の双方向スイッチのオンオフを切り替えるものである。
The invention described in claim 2 is a semiconductor unidirectional switch capable of controlling a current flowing from the first terminal to the second terminal, and a semiconductor unidirectional switch capable of controlling a current flowing from the second terminal to the first terminal. In a direct power converter control method for directly converting a three-phase AC voltage into a multi-phase AC voltage having a different magnitude and frequency using at least three bidirectional switches in combination with
The second bidirectional switch connected between the intermediate voltage phase and the one output phase among the three-phase AC voltages whose magnitude relationship is determined inside the control device, and between the minimum voltage phase and the output phase. When commutating by switching on and off with the connected third bidirectional switch,
A unidirectional switch for flowing current from the intermediate voltage phase to the output phase in the second bidirectional switch, and a unidirectional switch for flowing current from the minimum voltage phase to the output phase in the third bidirectional switch And, and
In a first bidirectional switch connected between the maximum voltage phase and the output phase of the three-phase AC voltage, through a state of turning on a unidirectional switch for passing a current from the output phase to the maximum voltage phase And
The second and third bidirectional switches are switched on and off.

請求項3に記載した発明は、請求項1に記載した制御方法において、最大電圧相の電圧と中間電圧相の電圧との差が所定値以下である場合に第1,第2の双方向スイッチのオンオフを切り替えて転流させるものである。   According to a third aspect of the present invention, in the control method according to the first aspect, when the difference between the maximum voltage phase voltage and the intermediate voltage phase voltage is not more than a predetermined value, the first and second bidirectional switches Is switched on and off.

請求項4に記載した発明は、請求項2に記載した制御方法において、中間電圧相の電圧と最小電圧相の電圧との差が所定値以下である場合に第2,第3の双方向スイッチのオンオフを切り替えて転流させるものである。   According to a fourth aspect of the present invention, in the control method according to the second aspect, when the difference between the voltage of the intermediate voltage phase and the voltage of the minimum voltage phase is a predetermined value or less, the second and third bidirectional switches Is switched on and off.

本発明によれば、転流に関与する二つの双方向スイッチ以外の双方向スイッチを構成する所定の単方向スイッチを転流期間中にオンさせることにより、電源の各相電圧の大小関係の誤判別による転流失敗を防止することができる。これにより、半導体スイッチの電流定格を必要以上に大きくする必要がなくなり、装置の小形化、低価格化が可能となる。   According to the present invention, by turning on a predetermined unidirectional switch constituting a bidirectional switch other than the two bidirectional switches involved in commutation during the commutation period, a misjudgment of the magnitude relationship of each phase voltage of the power supply. A commutation failure due to another can be prevented. As a result, the current rating of the semiconductor switch need not be increased more than necessary, and the apparatus can be reduced in size and cost.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の第1実施形態に係る転流シーケンスであり、請求項1に係る発明に相当する。すなわち、図7に示したようなマトリクスコンバータ10の制御装置が、2相の電源電圧(例えばR相電圧V及びS相電圧V)の大小関係として、2相の電圧の大きさが等しい場合を含めてR相電圧Vが最大、S相電圧Vが中間である(各相電圧波形を示す図5における期間Aに相当する)と判断し、R相と出力側のU相との間に接続された双方向スイッチ(図7,図8におけるS)から、S相とU相との間に接続された双方向スイッチ(同じくS)へ転流する場合の転流シーケンスである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 shows a commutation sequence according to the first embodiment of the present invention, which corresponds to the invention according to claim 1. That is, the control device of the matrix converter 10 as shown in FIG. 7 has the same magnitude of the two-phase voltages as the magnitude relationship between the two-phase power supply voltages (for example, the R-phase voltage V R and the S-phase voltage V S ). maximum R-phase voltage V R, including a case, it is determined that the S-phase voltage V S is an intermediate (which corresponds to a period a in FIG. 5 showing a phase voltage waveform), and U-phase of the R-phase and the output side The commutation sequence in the case of commutation from the bidirectional switch (S 1 in FIGS. 7 and 8) connected between the two to the bidirectional switch (also S 2 ) connected between the S phase and the U phase. It is.

また、図2は、図1の各期間a〜gにおける動作説明図であり、図10と同様にオン状態の単方向スイッチを太字で表してある。
つまり、期間aでは単方向スイッチS11,S12をオン、期間bではS11,S12,S32をオン、期間cではS12,S32をオン、期間dではS12,S22,S32をオン、期間eではS22,S32をオン、期間fではS21,S22,S32をオン、期間gではS21,S22をオンさせるシーケンスにより、双方向スイッチSから双方向スイッチSへ転流時する場合の電源短絡及び負荷端開放を防止している。
2 is an operation explanatory diagram in each of the periods a to g in FIG. 1, and the unidirectional switch in the on state is shown in bold as in FIG.
That is, in the period a, the unidirectional switches S 11 and S 12 are turned on, in the period b, S 11 , S 12 and S 32 are turned on, in the period c, S 12 and S 32 are turned on, and in the period d, S 12 , S 22 , on the S 32, S 22 in the period e, S 32 oN, on the time at f S 21, S 22, S 32, the sequence of turning on the S 21, S 22 in the period g, the bidirectional switch S 1 thereby preventing the power short-circuit and the load end opening of the case of when the commutation to the bidirectional switch S 2.

図1,図2から明らかなように、従来技術である図9,図10と大きく異なる点は、双方向スイッチSから双方向スイッチSへの転流にも関わらず、転流に関与しない双方向スイッチSの単方向スイッチS32を一時的にオンさせる点である。 Figure 1, as is clear from FIG. 2, FIG. 9 is a prior art, significantly different from that of FIG. 10, despite the commutation from the bidirectional switch S 1 to the bidirectional switch S 2, involved in the commutation temporarily unidirectional switches S 32 of the bidirectional switch S 3 not to a point to be turned on.

以下、上記転流シーケンスについて詳述する。
図5の期間Aにおいて、制御装置内部では、各相電圧の検出値から、R相電圧VがS相電圧Vよりも大きいと判断して大小関係を決定した上で転流を実行する。
この場合、本実施形態では、図1,図2の転流期間における期間dのように、出力側のU相から電源側のR相へ電流を流す単方向スイッチS12(U相から制御装置内部で決定された最大相に電流を流す単方向スイッチ)をオンし、U相から電源側のS相へ電流を流す単方向スイッチS22(U相から制御装置内部で決定された中間相に電流を流す単方向スイッチ)をオンし、電源側のT相からU相へ電流を流す単方向スイッチS32(制御装置内部で決定された最小相からU相に電流を流す単方向スイッチ)をオンする状態を設けている。
Hereinafter, the commutation sequence will be described in detail.
In the period A of FIG. 5, the internal control unit, the detection value of each phase voltage, R-phase voltage V R to perform commutation over the designated decision to magnitude relationship greater than the S-phase voltage V S .
In this case, in the present embodiment, as in the period d in the commutation period of FIGS. 1 and 2, a unidirectional switch S 12 that flows current from the U phase on the output side to the R phase on the power supply side (from the U phase to the control device) The unidirectional switch S 22 (current flow from the U phase to the S phase on the power supply side) is turned on, and the unidirectional switch S 22 (current phase from the U phase to the intermediate phase determined inside the controller) is turned on. The unidirectional switch S 32 (unidirectional switch for supplying current from the minimum phase determined in the control device to the U phase) for turning on current and turning the current from the T phase to the U phase on the power supply side. An on state is provided.

転流期間中にこのような状態を設けることにより、図5の時刻II付近のようにR相電圧VとS相電圧Vとの大きさがほぼ等しく、制御装置内部が決定した大小関係(V>V)に対して実際の大小関係(V<V)が異なるような場合であっても、転流失敗を防止することができる。
例えば、図2の期間dにおいて、S相電圧VがR相電圧Vより大きいとしても、S相からR相またはT相への短絡経路は存在しないと共に、負荷電流の通流経路は負荷電流の極性に関わらずオン状態の単方向スイッチS12,S22,S32によって確保されるため、電源電圧の大小関係に関わらず、短絡経路の生成や負荷端の開放を防止することができる。
By providing such a state during the commutation period, approximately equal in magnitude to the R-phase voltage V R and S-phase voltage V S as around the time II in Fig. 5, the magnitude relation of the control apparatus inside was determined Even if the actual magnitude relationship (V R <V S ) is different from (V R > V S ), commutation failure can be prevented.
For example, even if the S-phase voltage V S is larger than the R-phase voltage V R during the period d in FIG. 2, there is no short-circuit path from the S-phase to the R-phase or T-phase, and the load current flow path is the load Since it is secured by the unidirectional switches S 12 , S 22 , S 32 in the on state regardless of the polarity of the current, it is possible to prevent the generation of a short circuit path and the opening of the load end regardless of the magnitude relationship of the power supply voltage. .

なお、図1,図2では、期間dを中心として前後の期間b,c,e,fについても単方向スイッチS32をオンさせており、これらの期間についても同様の作用によって電源短絡及び負荷端開放を防止することが可能である。 Incidentally, FIG. 1, 2, before and after the period b around the period d, c, e, and turns on the unidirectional switch S 32 also f, the power supply short-circuit and load the same action also these periods It is possible to prevent the end opening.

次に、図3は本発明の第2実施形態に係る転流シーケンスであり、請求項2に係る発明に相当する。
この実施形態は、制御装置が、例えばS相電圧V及びT相電圧Vの大小関係として、2相の電圧の大きさが等しい場合を含めてS相電圧Vが中間、T相電圧Vが最小である(図5における期間Aに相当する)と判断し、S相とU相との間に接続された双方向スイッチSから、T相とU相との間に接続された双方向スイッチSへ転流する場合の転流シーケンスである。
Next, FIG. 3 shows a commutation sequence according to the second embodiment of the present invention, which corresponds to the invention according to claim 2.
In this embodiment, the control device has an intermediate S-phase voltage V S including a case where the magnitudes of the two-phase voltages are equal, for example, as a magnitude relationship between the S-phase voltage V S and the T-phase voltage V T. It is determined that V T is the minimum (corresponding to the period A in FIG. 5), and the bidirectional switch S 2 connected between the S phase and the U phase is connected between the T phase and the U phase. and a commutation sequence for commutating the bidirectional switch S 3.

図4は、図3の各期間a〜gの動作説明図であり、前記同様にオン状態の単方向スイッチを太字で表してある。
この実施形態において、期間aでは単方向スイッチS21,S22をオン、期間bではS12,S21,S22をオン、期間cではS12,S21をオン、期間dではS12,S21,S32をオン、期間eではS12,S32をオン、期間fではS12,S31,S32をオン、期間gではS31,S32をオンさせるシーケンスにより、双方向スイッチSから双方向スイッチSへの転流時における電源短絡及び負荷端開放を防止している。
このシーケンスが図9,図10と大きく異なる点は、双方向スイッチSから双方向スイッチSへの転流にも関わらず、転流に関与しない双方向スイッチSを構成する単方向スイッチS12を一時的にオンさせる点である。
FIG. 4 is an operation explanatory diagram for each period a to g in FIG. 3, and the unidirectional switch in the on state is represented in bold as in the above case.
In this embodiment, the period a in unidirectional switches S 21, on the S 22, the period in b S 12, S 21, S 22 on-period on the S 12, S 21 in c, the period in d S 12, on the S 21, S 32, on the time the e S 12, S 32, the period in f S 12, S 31, S 32 oN, the sequence to turn on the S 31, S 32 in the period g, the bidirectional switch thereby preventing the power short-circuit and the load end open during commutation from S 2 to the bidirectional switch S 3.
The sequence differs greatly from that in FIGS. 9 and 10 in that the unidirectional switch constituting the bidirectional switch S 1 that does not participate in commutation despite the commutation from the bidirectional switch S 2 to the bidirectional switch S 3 . is the point to temporarily turn on the S 12.

以下、上記転流シーケンスについて詳述する。
図5の期間Aにおいて、制御装置内部では、S相電圧VがT相電圧Vよりも大きいと判断して転流を実行する。
本実施形態では、図3,図4の転流期間における期間dのように、U相からR相へ電流を流す単方向スイッチS12(U相から制御装置内部で決定された最大相に電流を流す単方向スイッチ)をオンし、S相からU相へ電流を流す単方向スイッチS21(制御装置内部で決定された中間相からU相に電流を流す単方向スイッチ)をオンし、T相からU相へ電流を流す単方向スイッチS32(制御装置内部で決定された最小相からU相に電流を流す単方向スイッチ)をオンする状態を設けている。
Hereinafter, the commutation sequence will be described in detail.
In the period A in FIG. 5, commutation is executed in the control device by determining that the S-phase voltage V S is larger than the T-phase voltage V T.
In this embodiment, as in the period d in the commutation period of FIGS. 3 and 4, the unidirectional switch S 12 that flows current from the U phase to the R phase (current from the U phase to the maximum phase determined inside the controller). the flow turns the unidirectional switch), and turns on the unidirectional switch) supplying a current to the U phase from the intermediate phase, which is determined by the internal unidirectional switch S 21 (controller supplying a current to the U phase from the S-phase, T A state is provided in which a unidirectional switch S 32 (unidirectional switch for flowing current from the minimum phase determined in the control device to the U phase) that flows current from phase to U phase is turned on.

転流期間中に上記の状態を設けることにより、図5の時刻I付近のようにS相電圧VとT相電圧Vとの大きさがほぼ等しく、制御装置内部で決定された大小関係(V>V)に対して実際の大小関係(V<V)が異なるような場合であっても、転流失敗を防止することができる。
つまり、図4の期間dにおいて、S相電圧VがT相電圧Vより小さいとしても、T相からS相、またはR相からS相への短絡経路は存在しないと共に、負荷電流の通流経路は負荷電流の極性に関わらずオン状態の単方向スイッチS12,S21,S32によって確保されるため、電源電圧の大小関係に関係なく短絡経路の生成や負荷端の開放を防止することができる。
By providing the above state during the commutation period, the magnitudes of the S-phase voltage V S and the T-phase voltage V T are substantially equal as in the vicinity of time I in FIG. Even if the actual magnitude relationship (V S <V T ) differs from (V S > V T ), commutation failure can be prevented.
In other words, even if the S phase voltage V S is smaller than the T phase voltage V T during the period d in FIG. 4, there is no short circuit path from the T phase to the S phase, or from the R phase to the S phase. Since the current path is secured by the unidirectional switches S 12 , S 21 , S 32 in the on state regardless of the polarity of the load current, the generation of a short circuit path and the opening of the load end are prevented regardless of the magnitude of the power supply voltage. be able to.

なお、第1実施形態と同様に、図3,図4に示す如く期間dを中心として前後の期間b,c,e,fについても単方向スイッチS12をオンさせているが、これらの期間についても同様の作用によって電源短絡及び負荷端開放を防止することが可能である。 As in the first embodiment, FIG. 3, the period before and after about a period d as shown in FIG. 4 b, c, e, but also to turn on the unidirectional switch S 12 for f, these periods For the above, it is possible to prevent the power supply short circuit and the load end opening by the same action.

次に、請求項3,4に相当する本発明の第3,第4実施形態を説明する。
前記第1実施形態の転流シーケンスでは、図5の期間Aにおいて、図2の期間dのようにU相からR相に電流を流す単方向スイッチS12と、U相からS相に電流を流す単方向スイッチS22と、T相からU相に電流を流す単方向スイッチS32とをオンする状態を設けている。
Next, third and fourth embodiments of the present invention corresponding to claims 3 and 4 will be described.
In the commutation sequence of the first embodiment, in the period A in FIG. 5, the unidirectional switch S 12 that flows current from the U phase to the R phase as in the period d in FIG. 2, and the current from the U phase to the S phase. flow unidirectional switch S 22, are provided a condition for turning on the unidirectional switches S 32 to flow a current to the U phase from the T phase.

しかしながら、実際に転流失敗が生じる可能性があるのは、例えば図5の時刻IIのように、R相電圧Vの大きさとS相電圧Vの大きさとがほぼ等しく、制御装置により決定された電源電圧の大小関係と実際の大小関係とが異なる場合であって、R相、U相間に接続された双方向スイッチSとS相、U相間に接続された双方向スイッチSとの間で転流させる場合である。 However, actually there is a possibility that commutation failure occurs, for example, as time II in Fig. 5, the magnitude of the size and the S-phase voltage V S of the R-phase voltage V R and is approximately equal, determined by the control device in a case where the actual size relationship between magnitude of supply voltage is different, R-phase, connected bidirectional switches S 1 and S phase between U-phase, the bidirectional switch S 2 connected between the U-phase It is a case where it is made to commutate between.

ここで、前述の図1,図2に示した転流シーケンスでは、期間b〜fにわたってT相からU相に電流を流す単方向スイッチS32をオンさせているが、負荷電流の極性が正の場合(図2における矢印の向きの電流極性を正とする)、図1の転流シーケンス中では本来的にR相またはS相をU相に接続しなくてはならないにも関わらず、期間b〜fにわたってT相がU相に接続されることになり、これによって大きな誤差電圧を生じ、出力電圧歪みを発生させることになる。 Here, FIG. 1 described above, in the commutation sequence shown in FIG. 2, although turns on the unidirectional switches S 32 to flow a current to the U phase from the T phase over a period b to f, the polarity of the load current is positive In the case of (the current polarity in the direction of the arrow in FIG. 2 is positive), in the commutation sequence of FIG. 1, the R phase or S phase must be connected to the U phase in spite of the period. The T phase is connected to the U phase over b to f, thereby generating a large error voltage and causing output voltage distortion.

そこで、本発明の第3実施形態では、三相交流電源の最大相電圧と中間相電圧との差が所定値以下であって、最大相と出力相との間に接続された双方向スイッチSと、中間相と出力相との間に接続された双方向スイッチSとの間で転流させる場合に、第1実施形態による図1,図2の制御シーケンスを実行することとした。 Therefore, in the third embodiment of the present invention, the bidirectional switch S connected between the maximum phase and the output phase, in which the difference between the maximum phase voltage and the intermediate phase voltage of the three-phase AC power supply is not more than a predetermined value. 1 and the control sequence of FIG. 1 and FIG. 2 according to the first embodiment is executed when commutation is performed between the intermediate switch 1 and the bidirectional switch S 2 connected between the intermediate phase and the output phase.

同様にして、本発明の第4実施形態では、三相交流電源の中間相電圧と最小相電圧との差が所定値以下であって、中間相と出力相とを接続する双方向スイッチSと、最小相と出力相とを接続する双方向スイッチSとの間で転流させる場合に、第2実施形態による図3,図4の転流シーケンスを実行するようにした。 Similarly, in the fourth embodiment of the present invention, the bidirectional switch S 2 that connects the intermediate phase and the output phase when the difference between the intermediate phase voltage and the minimum phase voltage of the three-phase AC power supply is not more than a predetermined value. If, when the commutated between the bidirectional switch S 3 which connects the minimum phase and the output phase, FIG. 3 according to the second embodiment, so as to perform the commutation sequence of Figure 4.

つまり、図6に示す期間Bのごとく、最大相から中間相への転流時または中間相から最小相への転流時であって、転流元の相の電源電圧と転流先の相の電源電圧との差が所定値以下である場合にのみ第1実施形態または第2実施形態の転流シーケンスを実行することにより、誤差電圧が発生する頻度を低減して出力電圧歪みの低減を図ることが可能になる。   That is, as in the period B shown in FIG. 6, at the time of commutation from the maximum phase to the intermediate phase or from the intermediate phase to the minimum phase, the power source voltage of the commutation source phase and the phase of the commutation destination By executing the commutation sequence of the first embodiment or the second embodiment only when the difference from the power supply voltage is equal to or less than a predetermined value, the frequency of occurrence of error voltage is reduced and the output voltage distortion is reduced. It becomes possible to plan.

本発明の第1実施形態を示す転流シーケンスである。It is a commutation sequence which shows 1st Embodiment of this invention. 図1の各期間における動作説明図である。It is operation | movement explanatory drawing in each period of FIG. 本発明の第2実施形態を示す転流シーケンスである。It is a commutation sequence which shows 2nd Embodiment of this invention. 図3の各期間における動作説明図である。It is operation | movement explanatory drawing in each period of FIG. 各相電源電圧の波形図である。It is a wave form diagram of each phase power supply voltage. 各相電源電圧の波形図である。It is a wave form diagram of each phase power supply voltage. マトリクスコンバータ及び周辺回路の構成図である。It is a block diagram of a matrix converter and a peripheral circuit. 図7における主要部の構成図である。It is a block diagram of the principal part in FIG. 図8における転流シーケンスの一例を示す図である。It is a figure which shows an example of the commutation sequence in FIG. 図9の各期間における動作説明図である。It is operation | movement explanatory drawing in each period of FIG.

符号の説明Explanation of symbols

10:マトリクスコンバータ
20:三相交流電源
30:フィルタ
40:三相負荷
R,S,T:入力端子(入力相)
U,V,W:出力端子(出力相)
〜S:双方向スイッチ
11〜S32:単方向スイッチ
10: Matrix converter 20: Three-phase AC power supply 30: Filter 40: Three-phase load R, S, T: Input terminal (input phase)
U, V, W: Output terminal (output phase)
S 1 to S 9: bidirectional switch S 11 to S 32: unidirectional switch

Claims (4)

第1の端子から第2の端子に流れる電流を制御可能な半導体単方向スイッチと第2の端子から第1の端子へ流れる電流を制御可能な半導体単方向スイッチとを組み合わせてなる双方向スイッチを少なくとも3個用いて、三相交流電圧をその大きさ及び周波数が異なる多相交流電圧に直接変換する直接形電力変換器の制御方法において、
制御装置内部で大小関係が決定された三相交流電圧のうち最大電圧相と一の出力相との間に接続された第1の双方向スイッチと、中間電圧相と前記出力相との間に接続された第2の双方向スイッチと、のオンオフを切り替えて転流させる際に、
第1の双方向スイッチ内の、前記出力相から前記最大電圧相に電流を流す単方向スイッチと、第2の双方向スイッチ内の、前記出力相から前記中間電圧相に電流を流す単方向スイッチと、をオンし、かつ、
三相交流電圧のうち最小電圧相と前記出力相との間に接続された第3の双方向スイッチ内の、前記最小電圧相から前記出力相に電流を流す単方向スイッチをオンする状態を介して、
第1,第2の双方向スイッチのオンオフを切り替えることを特徴とする直接形電力変換器の制御方法。
A bidirectional switch comprising a combination of a semiconductor unidirectional switch capable of controlling a current flowing from the first terminal to the second terminal and a semiconductor unidirectional switch capable of controlling a current flowing from the second terminal to the first terminal. In a control method for a direct power converter that uses at least three and directly converts a three-phase AC voltage into a multi-phase AC voltage of different magnitude and frequency,
A first bidirectional switch connected between the maximum voltage phase and one output phase of the three-phase AC voltage whose magnitude relationship is determined inside the control device, and between the intermediate voltage phase and the output phase When commutating by switching on and off with the connected second bidirectional switch,
A unidirectional switch for flowing current from the output phase to the maximum voltage phase in the first bidirectional switch, and a unidirectional switch for flowing current from the output phase to the intermediate voltage phase in the second bidirectional switch And, and
Via a state in which a unidirectional switch for passing a current from the minimum voltage phase to the output phase in a third bidirectional switch connected between the minimum voltage phase and the output phase of the three-phase AC voltage is turned on. And
A control method for a direct power converter, wherein the first and second bidirectional switches are switched on and off.
第1の端子から第2の端子に流れる電流を制御可能な半導体単方向スイッチと第2の端子から第1の端子へ流れる電流を制御可能な半導体単方向スイッチとを組み合わせてなる双方向スイッチを少なくとも3個用いて、三相交流電圧をその大きさ及び周波数が異なる多相交流電圧に直接変換する直接形電力変換器の制御方法において、
制御装置内部で大小関係が決定された三相交流電圧のうち中間電圧相と一の出力相との間に接続された第2の双方向スイッチと、最小電圧相と前記出力相との間に接続された第3の双方向スイッチと、のオンオフを切り替えて転流させる際に、
第2の双方向スイッチ内の、前記中間電圧相から前記出力相に電流を流す単方向スイッチと、第3の双方向スイッチ内の、前記最小電圧相から前記出力相に電流を流す単方向スイッチと、をオンし、かつ、
三相交流電圧のうち最大電圧相と前記出力相との間に接続された第1の双方向スイッチ内の、前記出力相から前記最大電圧相に電流を流す単方向スイッチをオンする状態を介して、
第2,第3の双方向スイッチのオンオフを切り替えることを特徴とする直接形電力変換器の制御方法。
A bidirectional switch comprising a combination of a semiconductor unidirectional switch capable of controlling a current flowing from the first terminal to the second terminal and a semiconductor unidirectional switch capable of controlling a current flowing from the second terminal to the first terminal. In a control method for a direct power converter that uses at least three and directly converts a three-phase AC voltage into a multi-phase AC voltage of different magnitude and frequency,
The second bidirectional switch connected between the intermediate voltage phase and the one output phase among the three-phase AC voltages whose magnitude relationship is determined inside the control device, and between the minimum voltage phase and the output phase. When commutating by switching on and off with the connected third bidirectional switch,
A unidirectional switch for flowing current from the intermediate voltage phase to the output phase in the second bidirectional switch, and a unidirectional switch for flowing current from the minimum voltage phase to the output phase in the third bidirectional switch And, and
In a first bidirectional switch connected between the maximum voltage phase and the output phase of the three-phase AC voltage, through a state of turning on a unidirectional switch for passing a current from the output phase to the maximum voltage phase And
A control method for a direct power converter, wherein the second and third bidirectional switches are switched on and off.
請求項1に記載した制御方法において、
前記最大電圧相の電圧と前記中間電圧相の電圧との差が所定値以下である場合に第1,第2の双方向スイッチのオンオフを切り替えて転流させることを特徴とする直接形電力変換器の制御方法。
The control method according to claim 1,
Direct power conversion characterized in that when the difference between the voltage of the maximum voltage phase and the voltage of the intermediate voltage phase is equal to or less than a predetermined value, the first and second bidirectional switches are switched on and off for commutation. Control method.
請求項2に記載した制御方法において、
前記中間電圧相の電圧と前記最小電圧相の電圧との差が所定値以下である場合に第2,第3の双方向スイッチのオンオフを切り替えて転流させることを特徴とする直接形電力変換器の制御方法。
In the control method according to claim 2,
Direct power conversion characterized in that when the difference between the voltage of the intermediate voltage phase and the voltage of the minimum voltage phase is equal to or less than a predetermined value, the second and third bidirectional switches are switched on and off for commutation. Control method.
JP2006115321A 2006-04-19 2006-04-19 Control method of direct power converter Expired - Fee Related JP4839943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115321A JP4839943B2 (en) 2006-04-19 2006-04-19 Control method of direct power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115321A JP4839943B2 (en) 2006-04-19 2006-04-19 Control method of direct power converter

Publications (2)

Publication Number Publication Date
JP2007288958A true JP2007288958A (en) 2007-11-01
JP4839943B2 JP4839943B2 (en) 2011-12-21

Family

ID=38760221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115321A Expired - Fee Related JP4839943B2 (en) 2006-04-19 2006-04-19 Control method of direct power converter

Country Status (1)

Country Link
JP (1) JP4839943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145854A1 (en) 2012-03-30 2013-10-03 富士電機株式会社 Electrical power conversion apparatus
JP2015080292A (en) * 2013-10-15 2015-04-23 株式会社安川電機 Matrix converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312912A (en) * 2003-04-09 2004-11-04 Fuji Electric Holdings Co Ltd Ac-ac direct conversion power converter
JP2004364477A (en) * 2003-06-09 2004-12-24 Fuji Electric Holdings Co Ltd Ac-ac direct conversion type power conversion apparatus
JP2005020828A (en) * 2003-06-24 2005-01-20 Fuji Electric Holdings Co Ltd Controller of ac-ac direct conversion power converter
JP2005210805A (en) * 2004-01-21 2005-08-04 Fuji Electric Holdings Co Ltd Ac/ac direct conversion device
JP2007135260A (en) * 2005-11-08 2007-05-31 Fuji Electric Holdings Co Ltd Controller for ac-ac direct converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312912A (en) * 2003-04-09 2004-11-04 Fuji Electric Holdings Co Ltd Ac-ac direct conversion power converter
JP2004364477A (en) * 2003-06-09 2004-12-24 Fuji Electric Holdings Co Ltd Ac-ac direct conversion type power conversion apparatus
JP2005020828A (en) * 2003-06-24 2005-01-20 Fuji Electric Holdings Co Ltd Controller of ac-ac direct conversion power converter
JP2005210805A (en) * 2004-01-21 2005-08-04 Fuji Electric Holdings Co Ltd Ac/ac direct conversion device
JP2007135260A (en) * 2005-11-08 2007-05-31 Fuji Electric Holdings Co Ltd Controller for ac-ac direct converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145854A1 (en) 2012-03-30 2013-10-03 富士電機株式会社 Electrical power conversion apparatus
US9496801B2 (en) 2012-03-30 2016-11-15 Fuji Electric Co., Ltd. Power conversion device including bidirectional switch having reverse-blocking insulated gate bipolar transistors
JP2015080292A (en) * 2013-10-15 2015-04-23 株式会社安川電機 Matrix converter

Also Published As

Publication number Publication date
JP4839943B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US9787213B2 (en) Power cell bypass method and apparatus for multilevel inverter
JP6062132B1 (en) Power converter and power system
JP6403918B2 (en) Converter device
JP6275352B1 (en) Power converter
US11139733B2 (en) Modular multilevel converter sub-module having DC fault current blocking function and method of controlling the same
JP2008172925A (en) Backup operation device of matrix converter
WO2019021416A1 (en) Ac switch, uninterrupted power supply device equipped with same, and instantaneous voltage drop compensator
JP5739734B2 (en) Power converter
JP4839943B2 (en) Control method of direct power converter
JP2003333851A (en) Commutation method for direct power converter
JP2007166749A (en) Controller of ac-ac direct converter
JP2006340410A (en) Ac direct converter unit
JP5287013B2 (en) AC-AC direct conversion device and commutation control method for AC-AC direct conversion device
JP5444774B2 (en) Uninterruptible power supply system
JP6455938B2 (en) Power conversion apparatus and control method thereof
JP4491718B2 (en) 3-level converter
JP4466830B2 (en) AC / AC direct conversion device
JP2009254102A (en) Uninterruptible power supply device
JP6246013B2 (en) Switching circuit for three-phase AC power supply
JP2007329980A (en) Controller of rectifier circuit
JP4529525B2 (en) Direct converter controller
JP4872122B2 (en) AC direct converter control device
JP7266373B2 (en) power converter
JP4688021B2 (en) AC-AC direct conversion power converter
JP4665561B2 (en) Series connection of voltage-driven semiconductor elements

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees