JP2006271099A - Series resonance converter - Google Patents

Series resonance converter Download PDF

Info

Publication number
JP2006271099A
JP2006271099A JP2005085225A JP2005085225A JP2006271099A JP 2006271099 A JP2006271099 A JP 2006271099A JP 2005085225 A JP2005085225 A JP 2005085225A JP 2005085225 A JP2005085225 A JP 2005085225A JP 2006271099 A JP2006271099 A JP 2006271099A
Authority
JP
Japan
Prior art keywords
resonance
circuit
transformer
series
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005085225A
Other languages
Japanese (ja)
Other versions
JP4640783B2 (en
Inventor
Yoshiaki Matsuda
善秋 松田
Hagumu Oba
育 大葉
Hiroshi Nakayama
宏 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2005085225A priority Critical patent/JP4640783B2/en
Publication of JP2006271099A publication Critical patent/JP2006271099A/en
Application granted granted Critical
Publication of JP4640783B2 publication Critical patent/JP4640783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P80/112

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel DC series resonance converter which can control the output even under a light load. <P>SOLUTION: The DC series resonance converter having a DC power supply Vin as an input, insulating the primary and the secondary by a transformer T and provided with a bridge circuit 1 equipped with semiconductor switch elements Q1-Q4 on the primary, comprises a first resonance circuit 2 provided with a series circuit of an inductor Lr and a capacitor Cr at one end of the primary winding of the transformer T, and a second resonance circuit 3 comprising a series circuit of a second inductor Lr1 and a second capacitor Cr1 connected in parallel with the primary winding of the transformer T. Predetermined numbers of second inductors and second capacitors are set such that a second resonance frequency generated from the second resonance circuit becomes higher than a first resonance frequency generated from the first resonance circuit, and the switching frequency of the semiconductor switch elements is controlled to come between first resonance frequency and the second resonance frequency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータに関する。   The present invention relates to a series resonance type converter in which a DC power source is used as an input, a primary circuit and a secondary circuit are insulated by a transformer, and a bridge circuit including a semiconductor switch element is provided on the primary side.

従来の直列共振コンバータを図6に示す。図6に示す直列共振コンバータは、直流電源Vinを入力とし、一次・二次間をトランスTで絶縁し、一次側に半導体スイッチ素子Q1,Q2,Q3,Q4を備えたフルブリッジ型のブリッジ回路1Aを備え、二次側に整流ダイオードD5,D6,D7,D8を備えた整流回路11を備えてある。ブリッジ回路1Aはスイッチ素子Q1,Q2とで構成する基準インバータ5とスイッチ素子Q3,Q4とで構成する制御インバータ6とを有する。   A conventional series resonant converter is shown in FIG. The series resonant converter shown in FIG. 6 has a DC power supply Vin as an input, a primary bridge and a secondary secondary are insulated by a transformer T, and a full bridge type bridge circuit including semiconductor switch elements Q1, Q2, Q3, and Q4 on the primary side. 1A and a rectifier circuit 11 having rectifier diodes D5, D6, D7, and D8 on the secondary side. The bridge circuit 1A has a reference inverter 5 composed of switch elements Q1 and Q2 and a control inverter 6 composed of switch elements Q3 and Q4.

トランスTの一次巻線の一端にインダクタLrとコンデンサCrとの直列回路を備えた第一の共振回路2を接続してある。また、周波数を上げる方法(以下「周波数制御」という。)や位相シフトにより半導体スイッチQ1,Q2,Q3,Q4のオン、オフを制御する方法(以下「位相シフト制御」という。)による制御回路(図示しない)を備えてある(位相シフトについては、例えば特許文献1を参照)。
特開平9−117156号公報
A first resonance circuit 2 having a series circuit of an inductor Lr and a capacitor Cr is connected to one end of the primary winding of the transformer T. In addition, a control circuit (hereinafter referred to as “phase shift control”) by a method of increasing the frequency (hereinafter referred to as “frequency control”) or a method of controlling ON / OFF of the semiconductor switches Q1, Q2, Q3, Q4 by phase shift (hereinafter referred to as “phase shift control”). (For example, refer to Patent Document 1 for the phase shift).
JP-A-9-117156

従来の直列共振型コンバータは、周波数制御が一般的であった。周波数制御は、軽負荷になるとスイッチング周波数が高く成る為、スイッチング素子の動作スピードにより動作周波数の上限が決り、制御しきれない言う問題が発生したり、また、位相シフト制御似よっても制御は可能だが、スイッチング素子の零電圧スイッチングし難く、効率低下を招くと言う問題点に加え、ソフトスイッチング範囲にも問題点があった。   Conventional series resonance type converters generally use frequency control. In frequency control, the switching frequency becomes higher at light loads, so the upper limit of the operating frequency is determined by the operating speed of the switching element, and there is a problem that it cannot be controlled, and control is possible even if it is similar to phase shift control However, there is a problem in the soft switching range in addition to the problem that the switching element is difficult to switch to zero voltage and the efficiency is lowered.

本発明は、上記問題に鑑みてなされたものであり、軽負荷時においても出力を制御できる新規の直列共振型コンバータを提供する。   The present invention has been made in view of the above problems, and provides a novel series resonance type converter capable of controlling the output even at a light load.

上記課題を解決するため、本発明に係る直列共振型コンバータは、直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの一次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする。   In order to solve the above-described problems, a series resonance converter according to the present invention is a series circuit in which a DC power supply is input, a primary and a secondary are insulated by a transformer, and a bridge circuit including a semiconductor switch element is provided on the primary side. In the resonant converter, a first resonant circuit including a series circuit of an inductor and a capacitor at one end of the primary winding of the transformer, a second inductor and a second capacitor in parallel with the primary winding of the transformer, A second resonance circuit composed of a series circuit of the second resonance circuit, wherein the second resonance frequency generated from the second resonance circuit is higher than the first resonance frequency generated from the first resonance circuit. A constant is set for the second inductor and the second capacitor, and the switching frequency at which the semiconductor switch element switches is the first resonance frequency and the second resonance frequency. Characterized in that are controlled to come between.

また、直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの二次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする。   Further, in a series resonance type converter in which a DC power source is input, a primary and a secondary are insulated by a transformer, and a bridge circuit having a semiconductor switch element on the primary side is provided, an inductor is provided at one end of the primary winding of the transformer. A first resonance circuit including a series circuit of a capacitor and a capacitor, and a second resonance circuit including a series circuit of a second inductor and a second capacitor in parallel with the secondary winding of the transformer, The second inductor and the second capacitor are set to be constant so that the second resonance frequency generated from the second resonance circuit is higher than the first resonance frequency generated from the first resonance circuit, Control is performed so that a switching frequency at which the semiconductor switch element switches is between the first resonance frequency and the second resonance frequency.

また、直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの一次巻線と磁気的に結合された補助巻線を備え、この補助巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする。   Further, in a series resonance type converter in which a DC power source is input, a primary and a secondary are insulated by a transformer, and a bridge circuit having a semiconductor switch element on the primary side is provided, an inductor is provided at one end of the primary winding of the transformer. And a first resonance circuit including a series circuit of a capacitor and an auxiliary winding magnetically coupled to the primary winding of the transformer, and a second inductor and a second in parallel with the auxiliary winding. A second resonance circuit comprising a series circuit with a capacitor, so that a second resonance frequency generated from the second resonance circuit is higher than a first resonance frequency generated from the first resonance circuit. A constant is set for the second inductor and the second capacitor, and a switching frequency at which the semiconductor switch element switches is between the first resonance frequency and the second resonance frequency. Characterized in that are controlled to so that.

本発明によれば、トランスの一次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路を備え、この第二の共振回路から発生する第二の共振周波数が第一の共振回路から発生する第一の共振周波数より高くなるように定数設定したことにより、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御できる効果がある。   According to the present invention, a second resonance circuit comprising a series circuit of a second inductor and a second capacitor is provided in parallel with the primary winding of the transformer, and the second resonance generated from the second resonance circuit. By setting the constant so that the frequency is higher than the first resonance frequency generated from the first resonance circuit, the output can be controlled at the maximum load, and even when the load is light, series resonance occurs, Since both ends approach the direction in which they are short-circuited, energy is hardly transmitted to the secondary side, and as a result, there is an effect that the output can be controlled at a light load.

発明を実施するための最良の形態の回路図を図1に示す。図1図示の直列共振型コンバータは、直流電源Vinを入力とし、一次・二次間をトランスTで絶縁し、一次側に半導体スイッチ素子Q1,Q2,Q3,Q4を備えたフルブリッジ型のブリッジ回路1Aを備え、二次側に整流ダイオードD5,D6,D7,D8を備えた整流回路11を備えてある。ブリッジ回路1Aはスイッチ素子Q1,Q2とで構成する基準インバータ5とスイッチ素子Q3,Q4とで構成する制御インバータ6とを有する。トランスTの一次巻線の一端にインダクタLrとコンデンサCrとの直列回路を備えた第一の共振回路2を接続してある。   A circuit diagram of the best mode for carrying out the invention is shown in FIG. The series resonance type converter shown in FIG. 1 is a full bridge type bridge having DC power supply Vin as an input, primary and secondary are insulated by a transformer T, and semiconductor switching elements Q1, Q2, Q3, and Q4 are provided on the primary side. A rectifier circuit 11 having a circuit 1A and rectifier diodes D5, D6, D7, and D8 on the secondary side is provided. The bridge circuit 1A has a reference inverter 5 composed of switch elements Q1 and Q2 and a control inverter 6 composed of switch elements Q3 and Q4. A first resonance circuit 2 having a series circuit of an inductor Lr and a capacitor Cr is connected to one end of the primary winding of the transformer T.

本発明に係る直列共振型コンバータは、トランスTの一次巻線と並列に第二のインダクタLr1と第二のコンデンサCr1との直列回路からなる第二の共振回路3とを備えてあることに特徴を有する。また、第二の共振回路3から発生する第二の共振周波数fr2が前記第一の共振回路から発生する第一の共振周波数fr1より高くなるように、第二のインダクタLr1及び第二のコンデンサCr1を定数設定してある。また、半導体スイッチ素子Q1,Q2,Q3,Q4がスイッチングするスイッチング周波数fsは、第一の共振周波数fr1と第二の共振周波数fr2との間に来るように制御する。なお、スイッチング周波数fsの制御手段については、例えば、従来から公知であるコンバータの出力部と半導体スイッチ素子Q1,Q2,Q3,Q4のゲート端子との間に制御回路(図示しない)を設ける手段などがあるが、本発明においては、制御手段は限定しない。   The series resonance type converter according to the present invention includes a second resonance circuit 3 formed of a series circuit of a second inductor Lr1 and a second capacitor Cr1 in parallel with the primary winding of the transformer T. Have Further, the second inductor Lr1 and the second capacitor Cr1 are set so that the second resonance frequency fr2 generated from the second resonance circuit 3 is higher than the first resonance frequency fr1 generated from the first resonance circuit. Is set as a constant. Further, the switching frequency fs at which the semiconductor switch elements Q1, Q2, Q3, and Q4 are switched is controlled to be between the first resonance frequency fr1 and the second resonance frequency fr2. As for the control means for the switching frequency fs, for example, means for providing a control circuit (not shown) between the conventionally known converter output section and the gate terminals of the semiconductor switch elements Q1, Q2, Q3, Q4, etc. However, the control means is not limited in the present invention.

以上のように構成してある直列共振型コンバータは、以下のように作用する。先ず、最大負荷時、即ち定格出力時における動作について説明する。この場合においては、第一の共振回路2の共振周波数fr1がスイッチング周波数fsとなるため、第二の共振回路3の影響はほとんど受けない状態となる。よって、従来の直列共振型コンバータと同様の動作になる。   The series resonance type converter configured as described above operates as follows. First, the operation at the maximum load, that is, at the rated output will be described. In this case, since the resonance frequency fr1 of the first resonance circuit 2 becomes the switching frequency fs, the second resonance circuit 3 is hardly affected. Therefore, the operation is the same as that of a conventional series resonance type converter.

図1を用いて詳細に説明すると、先ず、半導体スイッチQ2,Q3がオンしている状態から半導体スイッチQ2,Q3のゲート信号がオフすると、第一のインダクタLrに逆起電力が発生するため、半導体スイッチQ2,Q3の内部コンデンサC2,C3は入力電源Vinまで充電され、半導体スイッチQ2,Q3は、ゼロ電圧スイッチング動作を行なう。第一のインダクタLrに蓄積されたエネルギーは、入力電源Vinに回生されながらトランスTを介して二次側にも電流が流れて、負荷側にもエネルギーを供給する。その後、半導体スイッチQ1,Q4の内部ダイオードD1,D4に電流が流れている状態で半導体スイッチQ1,Q4のゲート信号がオンするためゼロ電流スイッチング動作を行う。その後、第一の共振回路2で共振作用が起こり、第一の共振回路2には正弦波状の電流が流れ、負荷にエネルギーを供給する。   Describing in detail with reference to FIG. 1, first, when the gate signals of the semiconductor switches Q2 and Q3 are turned off from the state where the semiconductor switches Q2 and Q3 are turned on, a back electromotive force is generated in the first inductor Lr. The internal capacitors C2 and C3 of the semiconductor switches Q2 and Q3 are charged up to the input power source Vin, and the semiconductor switches Q2 and Q3 perform a zero voltage switching operation. The energy accumulated in the first inductor Lr flows to the secondary side via the transformer T while being regenerated to the input power source Vin, and supplies energy to the load side. Thereafter, a zero current switching operation is performed because the gate signals of the semiconductor switches Q1 and Q4 are turned on in a state where current flows through the internal diodes D1 and D4 of the semiconductor switches Q1 and Q4. Thereafter, a resonance action occurs in the first resonance circuit 2, and a sinusoidal current flows in the first resonance circuit 2 to supply energy to the load.

その後、半導体スイッチ素子Q1,Q4はターンオフし、第一のインダクタLrに蓄積されたエネルギー(共振電流)で半導体スイッチ素子Q1,Q4の内部コンデンサC1,C4の電荷を十分充電し、半導体スイッチ素子Q2,Q3の内部コンデンサC2,C3の電荷を0Vまで放電する。内部コンデンサC1,C2,C3,C4への充放電が完了すると第一のインダクタLrに蓄積されているエネルギーは半導体スイッチ素子Q2,Q3の内部ダイオードD2,D3を通って電源へ回生される。その後、半導体スイッチ素子Q2,Q3のゲート信号がオンになり、半導体スイッチ素子Q1,Q4のゲート信号がオンになった時と同様の動作をする。   Thereafter, the semiconductor switch elements Q1 and Q4 are turned off, and the charges of the internal capacitors C1 and C4 of the semiconductor switch elements Q1 and Q4 are sufficiently charged by the energy (resonant current) accumulated in the first inductor Lr, and the semiconductor switch element Q2 , Q3, the internal capacitors C2 and C3 are discharged to 0V. When the charging / discharging of the internal capacitors C1, C2, C3, and C4 is completed, the energy stored in the first inductor Lr is regenerated to the power source through the internal diodes D2 and D3 of the semiconductor switch elements Q2 and Q3. Thereafter, the gate signals of the semiconductor switch elements Q2 and Q3 are turned on, and the same operation as when the gate signals of the semiconductor switch elements Q1 and Q4 are turned on is performed.

続いて、軽負荷時における動作について説明する。この場合においては、スイッチング周波数fsが第二の共振周波数fr2に近づき、第二の共振回路3が直列共振を起こす。そのため、トランスTの両端が短絡される方向に近づき、二次側にエネルギーが伝達されにくくなり、負荷には電圧が発生しなくなり、負荷に流れる電流が減少する。   Subsequently, an operation at a light load will be described. In this case, the switching frequency fs approaches the second resonance frequency fr2, and the second resonance circuit 3 causes series resonance. For this reason, both ends of the transformer T approach the direction in which the two ends are short-circuited, energy is not easily transmitted to the secondary side, voltage is not generated in the load, and current flowing through the load is reduced.

詳細に説明すると、第一の共振周波数fr1より高い周波数で半導体スイッチQ1,Q2,Q3,Q4がオン・オフすることにより第一の共振回路には正弦波状電流が流れ、トランスTの両端にはスイッチング周波数に同期した矩形波電圧が発生する。この矩形波電圧が第二の共振回路3の共振周波数fr2に近ずくと、第二の共振回路3で直列共振が起こり、第二の共振回路3に電流が流れるようになり、トランスTの両端が短絡される方向に近づく。これにより、二次側にエネルギーが伝達されにくくなり、負荷の電圧が発生しなくなり、負荷に流れる電流が減少する。   More specifically, when the semiconductor switches Q1, Q2, Q3, and Q4 are turned on / off at a frequency higher than the first resonance frequency fr1, a sinusoidal current flows in the first resonance circuit, and both ends of the transformer T A rectangular wave voltage synchronized with the switching frequency is generated. When this rectangular wave voltage approaches the resonance frequency fr2 of the second resonance circuit 3, series resonance occurs in the second resonance circuit 3, current flows in the second resonance circuit 3, and both ends of the transformer T Approaches the direction of short circuit. As a result, energy is hardly transmitted to the secondary side, load voltage is not generated, and current flowing through the load is reduced.

以上の作用より、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御することができる。   With the above action, the output can be controlled at the maximum load, and even at light loads, by causing series resonance, the both ends of the transformer approach the direction in which they are short-circuited, making it difficult for energy to be transmitted to the secondary side. As a result, the output can be controlled at a light load.

発明を実施した第一実施例の回路図を図2に示す。図2に示す直列共振型コンバータは、一次側に半導体スイッチ素子Q1,Q2を備えたハーフブリッジ型のブリッジ回路1Bを備えてあることに特徴を有する。   A circuit diagram of the first embodiment of the invention is shown in FIG. The series resonant converter shown in FIG. 2 is characterized in that a half-bridge type bridge circuit 1B including semiconductor switch elements Q1 and Q2 is provided on the primary side.

本実施例の構成は前記実施形態に半導体スイッチ素子Q3,Q4を省いた形になるが、半導体スイッチ素子Q1と半導体スイッチ素子Q2とが同時にオンすることは有り得ないため、作用については、前記実施形態とほぼ同様になる。そのため、動作説明については省略する。よって、本実施例においても前記実施形態と同様に、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御することができる。   The configuration of this example is a form in which the semiconductor switch elements Q3 and Q4 are omitted from the above embodiment, but the semiconductor switch element Q1 and the semiconductor switch element Q2 cannot be turned on at the same time. It is almost the same as the form. Therefore, explanation of the operation is omitted. Therefore, in the present embodiment as well as in the above embodiment, the output can be controlled at the maximum load, and even at the light load, by causing a series resonance, both ends of the transformer approach the direction in which the both ends are short-circuited. As a result, the output can be controlled at light load.

発明を実施した第二実施例の回路図を図3に示す。図3に示す直列共振型コンバータは、直流電源Vinを入力とし、一次・二次間をトランスTで絶縁し、一次側に半導体スイッチ素子Q1,Q2を備えたブリッジ回路1Cを備え、トランスTの一次巻線にセンタータップを設け、このセンタータップの一端に直流電源Vinを接続してなるプッシュプル型のコンバータであることを特徴とする。インダクタLrとコンデンサCrとの直列回路を備えた第一の共振回路2を前記センタータップに設けてある。また、本実施例に係る直列共振型コンバータは、トランスTの一次巻線と並列に第二のインダクタLr1と第二のコンデンサCr1との直列回路からなる第二の共振回路3とを備えてある。   A circuit diagram of the second embodiment of the invention is shown in FIG. The series resonant converter shown in FIG. 3 has a DC power supply Vin as an input, a primary / secondary circuit is insulated by a transformer T, and a bridge circuit 1C having semiconductor switch elements Q1 and Q2 on the primary side is provided. It is a push-pull type converter in which a center tap is provided in the primary winding and a DC power source Vin is connected to one end of the center tap. A first resonance circuit 2 having a series circuit of an inductor Lr and a capacitor Cr is provided in the center tap. In addition, the series resonance type converter according to the present embodiment includes a second resonance circuit 3 formed of a series circuit of a second inductor Lr1 and a second capacitor Cr1 in parallel with the primary winding of the transformer T. .

本実施例に係る直列共振型コンバータは、プッシュプル型のコンバータであるが、作用については、図1に示したフルブリッジ型のコンバータとほぼ同様になる。そのため、動作説明については省略する。よって、本実施例においても前記実施例と同様に、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御することができる。   The series resonance type converter according to the present embodiment is a push-pull type converter, but the operation is almost the same as that of the full bridge type converter shown in FIG. Therefore, explanation of the operation is omitted. Therefore, in this embodiment as well as in the previous embodiment, the output can be controlled at the maximum load, and even at the light load, by causing series resonance, both ends of the transformer approach the direction in which the both ends are short-circuited. As a result, the output can be controlled at light load.

発明を実施した第三実施例の回路図を図4に示す。図4に示す直列共振型コンバータは、図1図示実施形態と同様に、一次側に半導体スイッチ素子Q1,Q2,Q3,Q4を備えたフルブリッジ型のブリッジ回路1Aを備えてあり、二次側に整流ダイオードD5,D6,D7,D8を備えた整流回路11を備えてある。また、トランスTの一次巻線の一端にインダクタLrとコンデンサCrとの直列回路を備えた第一の共振回路2を接続してある。   A circuit diagram of the third embodiment of the invention is shown in FIG. The series resonant converter shown in FIG. 4 includes a full-bridge type bridge circuit 1A including semiconductor switch elements Q1, Q2, Q3, and Q4 on the primary side as in the embodiment shown in FIG. The rectifier circuit 11 includes rectifier diodes D5, D6, D7, and D8. A first resonance circuit 2 having a series circuit of an inductor Lr and a capacitor Cr is connected to one end of the primary winding of the transformer T.

本実施例に係る直列共振型コンバータは、トランスTの二次巻線と並列に第二のインダクタLr1と第二のコンデンサCr1との直列回路からなる第二の共振回路13とを備えてあることに特徴を有する。また、前記実施例と同様に、第二の共振回路13から発生する第二の共振周波数fr2が前記第一の共振回路から発生する第一の共振周波数fr1より大きくなるように、第二のインダクタLr1及び第二のコンデンサCr1を定数設定してある。また、半導体スイッチ素子Q1,Q2,Q3,Q4がスイッチングするスイッチング周波数fsが第一の共振周波数fr1と第二の共振周波数fr2との間に来るように制御する。   The series resonance type converter according to the present embodiment includes a second resonance circuit 13 formed of a series circuit of a second inductor Lr1 and a second capacitor Cr1 in parallel with the secondary winding of the transformer T. It has the characteristics. Similarly to the embodiment, the second inductor is set so that the second resonance frequency fr2 generated from the second resonance circuit 13 is higher than the first resonance frequency fr1 generated from the first resonance circuit. Lr1 and the second capacitor Cr1 are set as constants. Further, the switching frequency fs at which the semiconductor switch elements Q1, Q2, Q3, and Q4 are switched is controlled to be between the first resonance frequency fr1 and the second resonance frequency fr2.

以上のように構成してある直列共振型コンバータは、以下のように作用する。先ず、最大負荷時においては、第一の共振回路2の共振周波数fr1がスイッチング周波数fsとなるため、第二の共振回路13の影響はほとんど受けない状態となる。よって、前記実施例と同様の動作をする。   The series resonance type converter configured as described above operates as follows. First, at the maximum load, the resonance frequency fr1 of the first resonance circuit 2 becomes the switching frequency fs, so that the second resonance circuit 13 is hardly affected. Therefore, the same operation as in the above embodiment is performed.

続いて、軽負荷時における動作について説明する。この場合においては、スイッチング周波数fsが第二の共振周波数fr2に近づき、第一の共振回路2と第二の共振回路13との間で直列共振を起こす。本実施例においては、トランスTの一次巻線及び二次巻線には電流が流れるが、二次巻線に接続されている整流ダイオード11以降には電流はほとんど流れず、二次巻線と並列に接続してある第二の共振回路13に電流が流れるようになる。そのため、トランスTの二次巻線の両端が短絡される方向に近づき、出力側にエネルギーが伝達されにくくなり、負荷の電圧が発生しなくなり、負荷に流れる電流が減少する。なお、以上の点で図1図示実施形態とは動作が異なるが、図1図示実施形態と同様の結果になる。   Subsequently, an operation at a light load will be described. In this case, the switching frequency fs approaches the second resonance frequency fr2, and series resonance occurs between the first resonance circuit 2 and the second resonance circuit 13. In the present embodiment, current flows through the primary winding and the secondary winding of the transformer T, but almost no current flows after the rectifier diode 11 connected to the secondary winding. A current flows through the second resonance circuit 13 connected in parallel. As a result, both ends of the secondary winding of the transformer T approach the direction in which they are short-circuited, making it difficult for energy to be transmitted to the output side, no load voltage is generated, and the current flowing through the load decreases. Although the operation is different from the embodiment shown in FIG. 1 in the above points, the result is the same as that of the embodiment shown in FIG.

以上より、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御することができる。   As described above, the output can be controlled at the maximum load, and even when the load is light, the resonance of the transformer approaches the direction where both ends of the transformer are short-circuited. The output can be controlled at light load.

発明を実施した第四実施例の回路図を図5に示す。図5に示す直列共振型コンバータは、図1図示実施形態と同様に、一次側に半導体スイッチ素子Q1,Q2,Q3,Q4を備えたフルブリッジ型のブリッジ回路1Aを備えてあり、二次側に整流ダイオードD5,D6,D7,D8を備えた整流回路11を備えてある。また、トランスTの一次巻線の一端にインダクタLrとコンデンサCrとの直列回路を備えた第一の共振回路2を接続してある。   A circuit diagram of the fourth embodiment of the invention is shown in FIG. The series resonance type converter shown in FIG. 5 includes a full-bridge type bridge circuit 1A having semiconductor switch elements Q1, Q2, Q3, and Q4 on the primary side, as in the embodiment shown in FIG. The rectifier circuit 11 includes rectifier diodes D5, D6, D7, and D8. A first resonance circuit 2 having a series circuit of an inductor Lr and a capacitor Cr is connected to one end of the primary winding of the transformer T.

本実施例に係る直列共振型コンバータは、トランスTの一次巻線と磁気的に結合された補助巻線を備え、この補助巻線と並列に第二のインダクタLr1と第二のコンデンサCr1との直列回路からなる第二の共振回路23とを備えてあることに特徴を有する。また、前記実施例と同様に、第二の共振回路23から発生する第二の共振周波数fr2が前記第一の共振回路から発生する第一の共振周波数fr1より大きくなるように、第二のインダクタLr1及び第二のコンデンサCr1を定数設定してある。   The series resonance type converter according to the present embodiment includes an auxiliary winding magnetically coupled to the primary winding of the transformer T. In parallel with the auxiliary winding, a second inductor Lr1 and a second capacitor Cr1 are provided. A second resonance circuit 23 formed of a series circuit is provided. Similarly to the embodiment, the second inductor is set so that the second resonance frequency fr2 generated from the second resonance circuit 23 is higher than the first resonance frequency fr1 generated from the first resonance circuit. Lr1 and the second capacitor Cr1 are set as constants.

以上のように構成してある直列共振型コンバータは、以下のように作用する。先ず、最大負荷時においては、第一の共振回路2の共振周波数fr1がスイッチング周波数fsとなるため、第二の共振回路13の影響はほとんど受けない状態となる。よって、前記実施例と同様の動作をする。   The series resonance type converter configured as described above operates as follows. First, at the maximum load, the resonance frequency fr1 of the first resonance circuit 2 becomes the switching frequency fs, so that the second resonance circuit 13 is hardly affected. Therefore, the same operation as in the above embodiment is performed.

続いて、軽負荷時における動作について説明する。この場合においては、スイッチング周波数fsが第二の共振周波数fr2に近づき、第二の共振回路23が直列共振を起こす。この場合、図1図示実施形態と同様に第二の共振回路23に電流が流れ、トランスTの補助巻線の両端が短絡される方向に近づき、磁気的に結合されたトランスTの一次巻線が短絡されたのと同じ作用になり二次側にエネルギーが伝達されにくく、負荷の電圧が発生しなくなり、負荷に流れる電流が減少する。よって、前記実施形態と同様の動作をする。   Subsequently, an operation at a light load will be described. In this case, the switching frequency fs approaches the second resonance frequency fr2, and the second resonance circuit 23 causes series resonance. In this case, as in the embodiment shown in FIG. 1, a current flows through the second resonance circuit 23, and both ends of the auxiliary winding of the transformer T approach the direction in which they are short-circuited. As a result, the energy is hardly transmitted to the secondary side, the load voltage is not generated, and the current flowing through the load is reduced. Therefore, the same operation as in the above embodiment is performed.

なお、本発明に係る直列共振型コンバータにおける全ての実施例において、二次側に整流ダイオードD5,D6,D7,D8を備えた整流回路11を備えてあるが、二次側の構成についてはこれに限定されず、例えば、二次側をセンタータップ方式にしてもよい。また、実施例3および実施例4はフルブリッジ型のコンバータを用いているが、ハーフブリッジ型のコンバータやプッシュプル型のコンバータにも応用することができる。   In all the embodiments of the series resonance converter according to the present invention, the rectifier circuit 11 including the rectifier diodes D5, D6, D7, and D8 is provided on the secondary side. For example, the secondary side may be a center tap system. Further, although the full bridge type converter is used in the third and fourth embodiments, it can be applied to a half bridge type converter and a push-pull type converter.

本発明によれば、トランスの一次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路を備え、この第二の共振回路から発生する第二の共振周波数が第一の共振回路から発生する第一の共振周波数より大きくなるように定数設定したことにより、最大負荷時に出力を制御できるとともに、軽負荷時においても、直列共振を起こすことにより、トランスの両端が短絡される方向に近づくため、二次側にエネルギーが伝達されにくくなり、その結果、軽負荷時に出力を制御でき、産業上利用可能である。   According to the present invention, a second resonance circuit comprising a series circuit of a second inductor and a second capacitor is provided in parallel with the primary winding of the transformer, and the second resonance generated from the second resonance circuit. By setting the constant so that the frequency is higher than the first resonance frequency generated from the first resonance circuit, the output can be controlled at the maximum load, and even when the load is light, series resonance occurs, Since both ends approach the direction in which they are short-circuited, energy is not easily transmitted to the secondary side, and as a result, the output can be controlled at light loads and can be used industrially.

本発明の最良の実施形態を示す回路図である。1 is a circuit diagram showing the best embodiment of the present invention. 本発明に係る第一実施例を示す回路図である。It is a circuit diagram which shows the 1st Example which concerns on this invention. 本発明に係る第二実施例を示す回路図である。It is a circuit diagram which shows the 2nd Example which concerns on this invention. 本発明に係る第三実施例を示す回路図である。It is a circuit diagram which shows the 3rd Example which concerns on this invention. 本発明に係る第四実施例を示す回路図である。It is a circuit diagram which shows the 4th Example which concerns on this invention. 従来例を示した回路図である。It is the circuit diagram which showed the prior art example.

符号の説明Explanation of symbols

Vin 入力電源
RL 負荷
T トランス
Co 出力コンデンサ
Cr,Cr1 共振コンデンサ
C1,C2,C3,C4 コンデンサ
Lr,Lr1 共振インダクタ
D5,D6,D7,D8 整流ダイオード
Q1,Q2,Q3,Q4 半導体スイッチ素子
1A,1B,1C ブリッジ回路
2 第一の共振回路
3,13,23 第二の共振回路
5 基準インバータ
6 制御インバータ
11 整流回路
Vin Input power source RL Load T Transformer Co Output capacitor Cr, Cr1 Resonant capacitors C1, C2, C3, C4 Capacitors Lr, Lr1 Resonant inductors D5, D6, D7, D8 Rectifier diodes Q1, Q2, Q3, Q4 Semiconductor switch elements 1A, 1B , 1C Bridge circuit 2 First resonance circuit 3, 13, 23 Second resonance circuit 5 Reference inverter 6 Control inverter 11 Rectifier circuit

Claims (3)

直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの一次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする直列共振型コンバータ。 In a series resonance type converter in which a DC power source is input, a primary and a secondary are insulated by a transformer, and a bridge circuit having a semiconductor switch element on the primary side is provided, an inductor and a capacitor at one end of the primary winding of the transformer And a second resonant circuit comprising a series circuit of a second inductor and a second capacitor in parallel with the primary winding of the transformer, and the second resonant circuit. The second inductor and the second capacitor are set constant so that the second resonance frequency generated from the first resonance circuit is higher than the first resonance frequency generated from the first resonance circuit, and the semiconductor switch A series resonance type converter characterized in that the switching frequency at which the element switches is controlled to be between the first resonance frequency and the second resonance frequency. Data. 直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの二次巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする直列共振型コンバータ。 In a series resonance type converter in which a DC power source is input, a primary and a secondary are insulated by a transformer, and a bridge circuit having a semiconductor switch element on the primary side is provided, an inductor and a capacitor at one end of the primary winding of the transformer And a second resonant circuit comprising a series circuit of a second inductor and a second capacitor in parallel with the secondary winding of the transformer, and A constant value is set for the second inductor and the second capacitor so that a second resonance frequency generated from the second resonance circuit is higher than a first resonance frequency generated from the first resonance circuit; A series resonance type converter characterized in that the switching frequency at which the switching element switches is controlled to be between the first resonance frequency and the second resonance frequency. Data. 直流電源を入力とし、一次・二次間をトランスで絶縁し、一次側に半導体スイッチ素子を備えたブリッジ回路を設けてある直列共振型コンバータにおいて、前記トランスの一次巻線の一端にインダクタとコンデンサとの直列回路を備えた第一の共振回路と、前記トランスの一次巻線と磁気的に結合された補助巻線を備え、この補助巻線と並列に第二のインダクタと第二のコンデンサとの直列回路からなる第二の共振回路とを備え、前記第二の共振回路から発生する第二の共振周波数が前記第一の共振回路から発生する第一の共振周波数より高くなるように、前記第二のインダクタ及び第二のコンデンサを定数設定し、前記半導体スイッチ素子がスイッチングするスイッチング周波数が前記第一の共振周波数と第二の共振周波数との間に来るように制御してあることを特徴とする直列共振型コンバータ。 In a series resonance type converter in which a DC power source is input, a primary and a secondary are insulated by a transformer, and a bridge circuit having a semiconductor switch element on the primary side is provided, an inductor and a capacitor at one end of the primary winding of the transformer A first resonance circuit including a series circuit of the transformer, an auxiliary winding magnetically coupled to the primary winding of the transformer, and a second inductor and a second capacitor in parallel with the auxiliary winding. A second resonance circuit composed of a series circuit of the second resonance circuit, wherein the second resonance frequency generated from the second resonance circuit is higher than the first resonance frequency generated from the first resonance circuit. A constant is set for the second inductor and the second capacitor, and the switching frequency at which the semiconductor switch element switches is between the first resonance frequency and the second resonance frequency. Series resonant converter, characterized in that are controlled to.
JP2005085225A 2005-03-24 2005-03-24 Series resonant converter Active JP4640783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085225A JP4640783B2 (en) 2005-03-24 2005-03-24 Series resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085225A JP4640783B2 (en) 2005-03-24 2005-03-24 Series resonant converter

Publications (2)

Publication Number Publication Date
JP2006271099A true JP2006271099A (en) 2006-10-05
JP4640783B2 JP4640783B2 (en) 2011-03-02

Family

ID=37206464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085225A Active JP4640783B2 (en) 2005-03-24 2005-03-24 Series resonant converter

Country Status (1)

Country Link
JP (1) JP4640783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000561B1 (en) 2010-07-21 2010-12-14 주식회사 코디에스 Series resonant converter
JP2011167033A (en) * 2010-02-15 2011-08-25 Shindengen Electric Mfg Co Ltd Resonant type converter
JP2011167034A (en) * 2010-02-15 2011-08-25 Shindengen Electric Mfg Co Ltd Resonant type converter
JP2016039709A (en) * 2014-08-08 2016-03-22 株式会社島津製作所 High voltage power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113255A (en) * 1997-09-30 1999-04-23 Futaba Kogyosho:Kk Method for automatically expanding control range of resonant converter of frequency control
JP2001359279A (en) * 2000-06-12 2001-12-26 Sony Corp Bridge-type dc-dc converter
JP2003111406A (en) * 2001-09-27 2003-04-11 Sony Corp Switching power circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113255A (en) * 1997-09-30 1999-04-23 Futaba Kogyosho:Kk Method for automatically expanding control range of resonant converter of frequency control
JP2001359279A (en) * 2000-06-12 2001-12-26 Sony Corp Bridge-type dc-dc converter
JP2003111406A (en) * 2001-09-27 2003-04-11 Sony Corp Switching power circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167033A (en) * 2010-02-15 2011-08-25 Shindengen Electric Mfg Co Ltd Resonant type converter
JP2011167034A (en) * 2010-02-15 2011-08-25 Shindengen Electric Mfg Co Ltd Resonant type converter
KR101000561B1 (en) 2010-07-21 2010-12-14 주식회사 코디에스 Series resonant converter
JP2016039709A (en) * 2014-08-08 2016-03-22 株式会社島津製作所 High voltage power supply

Also Published As

Publication number Publication date
JP4640783B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US11011980B2 (en) Switched-capacitor converter with multi-tapped autotransformer
JP6942852B2 (en) Insulated DC / DC converter for wide output voltage range and its control method
CN110168896B (en) DC-to-DC converter and control method
EP3565100B1 (en) Llc resonant converter
RU2467459C2 (en) Conversion circuit and system with such conversion circuit
US6310785B1 (en) Zero voltage switching DC-DC converter
US8441812B2 (en) Series resonant converter having a circuit configuration that prevents leading current
JP5903427B2 (en) Resonant converter
JP4910078B1 (en) DC / DC converter and AC / DC converter
JP5591666B2 (en) DC-DC converter
JP2007020391A (en) Highly efficient half-bridge dc/dc converter and its control method
RU2705090C9 (en) Double-bridge dc-to-dc power converter
JP6241334B2 (en) Current resonance type DCDC converter
JP6107848B2 (en) Bidirectional DC / DC converter
JP4640783B2 (en) Series resonant converter
JP2006197711A (en) Switching power supply
JP2009060747A (en) Dc-dc converter
KR100649517B1 (en) Discharge lamp lighting apparatus
JP2017005861A (en) Resonance type bidirectional dc/dc converter
JP2007097320A (en) Power conversion circuit
JP4110477B2 (en) DC-DC converter
US11527963B2 (en) Control unit for improving conversion efficiency
CN111869076A (en) DC voltage conversion circuit and power supply device
JP4657062B2 (en) Resonant type converter
JP4635584B2 (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

R150 Certificate of patent or registration of utility model

Ref document number: 4640783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250