JP2006191743A - Three-level pwm power converter - Google Patents

Three-level pwm power converter Download PDF

Info

Publication number
JP2006191743A
JP2006191743A JP2005001476A JP2005001476A JP2006191743A JP 2006191743 A JP2006191743 A JP 2006191743A JP 2005001476 A JP2005001476 A JP 2005001476A JP 2005001476 A JP2005001476 A JP 2005001476A JP 2006191743 A JP2006191743 A JP 2006191743A
Authority
JP
Japan
Prior art keywords
voltage
input current
input
smoothing capacitor
potential control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005001476A
Other languages
Japanese (ja)
Inventor
Noriyuki Kobayashi
宣之 小林
Yasushi Matsumoto
康 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005001476A priority Critical patent/JP2006191743A/en
Publication of JP2006191743A publication Critical patent/JP2006191743A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably conduct neutral-point potential control without being influenced by the ripple of an input current, a detection delay or the like even if the input current is small. <P>SOLUTION: This three-level PWM power converter performs polarity switching on the basis of the operation command (power running/regeneration) of an inverter in place of an input current detection value, by paying attention to the fact that a power factor at the input side of an AC electric vehicle is operated so as to be 1.0 or -1.0 in the AC electric vehicle, and conducts the neutral-point potential control. Thus, the balance of voltages of smoothing capacitors 6, 7 can be kept without being influenced by the ripple of the input current, the detection delay or the like even if the input current is small. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は3レベルの電圧を出力する電力変換装置に関し、特に中性点電位制御方式に関するものである。   The present invention relates to a power converter that outputs three-level voltage, and more particularly to a neutral point potential control system.

図6に3レベル電力変換装置の従来例を示す。これは交流電気車に適用した例であり、特許文献1に記載されているものである。
図6において、4はその交流側がトランス2およびリアクトル3を介して単相交流電源1に接続された3レベルPWM整流器であり、その直流側に接続された平滑コンデンサ6と平滑コンデンサ7の電圧の和が規定電圧となるように、整流動作または回生動作をする。5はその直流側が平滑コンデンサ6、7に接続された3レベルインバータであり、力行時においてインバータ動作し、平滑コンデンサ6、7の直流電力を交流電力に変換して誘導機8に電力を供給する。また、ブレーキ時(回生時)において回生動作し、誘導機8の回転エネルギーを直流電力に変換し、平滑コンデンサ6、7に供給している。
平滑コンデンサ6、7の端子電圧Edp、Ednは理想的には等しくなるが、電力変換器を構成している半導体スイッチ素子の特性のバラツキなどにより、平滑コンデンサ電圧Edp、Ednに不均衡が生じる。これにより、インバータ5の出力電圧の正負にアンバランスが生じ、所望の電圧を出力できなくなるだけでなく、平滑コンデンサ6、7のどちらか一方が過電圧となり、装置の破損に至る恐れがある。そこで、平滑コンデンサ電圧Edp、Ednを均等にする中性点電位制御を行っている。以下に、中性点電位制御を行っている3レベルPWM整流器4の回路構成および制御装置について述べる。
FIG. 6 shows a conventional example of a three-level power converter. This is an example applied to an AC electric vehicle, and is described in Patent Document 1.
In FIG. 6, 4 is a three-level PWM rectifier whose AC side is connected to the single-phase AC power supply 1 via the transformer 2 and the reactor 3, and the voltage of the smoothing capacitor 6 and the smoothing capacitor 7 connected to the DC side thereof. Rectification or regenerative operation is performed so that the sum becomes the specified voltage. Reference numeral 5 denotes a three-level inverter whose DC side is connected to the smoothing capacitors 6, 7. The inverter operates during powering, converts the DC power of the smoothing capacitors 6, 7 into AC power, and supplies the induction machine 8 with power. . Further, a regenerative operation is performed during braking (regeneration), and the rotational energy of the induction machine 8 is converted into DC power and supplied to the smoothing capacitors 6 and 7.
Although the terminal voltages Edp and Edn of the smoothing capacitors 6 and 7 are ideally equal, the smoothing capacitor voltages Edp and Edn are unbalanced due to variations in characteristics of the semiconductor switch elements constituting the power converter. As a result, the output voltage of the inverter 5 is unbalanced between positive and negative, so that a desired voltage cannot be output, and either one of the smoothing capacitors 6 and 7 becomes an overvoltage, which may damage the device. Therefore, neutral point potential control is performed to equalize the smoothing capacitor voltages Edp and Edn. The circuit configuration and control device of the three-level PWM rectifier 4 performing neutral point potential control will be described below.

3レベルPWM整流器4は図7に示すように、U相レグ100、V相レグ200で構成されている。U相レグは半導体スイッチ101a、101b、101c、101dと、これらと逆並列に接続されたダイオード102a、102b、102c、102dと、平滑コンデンサ6、7の接続点(以下、中性点と称する)z1とダイオード102bのカソード側との間に接続されたダイオード103aと、中性点z1とダイオード102cのアノード側に接続されたダイオード103bからなり、V相レグも同様に、半導体スイッチ201a、201b、201c、201dと、これらと逆並列に接続されたダイオード202a、202b、202c、202dと、中性点z1とダイオード202bのカソード側との間に接続されたダイオード203aと、中性点z1とダイオード202cのアノード側に接続されたダイオード203bからなる。半導体スイッチ101a、101b、101c、101d、および201a、201b、201c、201dは、制御装置20から出力される各相のゲート信号PWMU、PWMVに基づきオン・オフ動作し、入力電圧への対向電圧Vcを出力することで、平滑コンデンサ電圧Edp、Ednの和を規定電圧に維持する。   As shown in FIG. 7, the three-level PWM rectifier 4 includes a U-phase leg 100 and a V-phase leg 200. The U-phase leg is a connection point between the semiconductor switches 101a, 101b, 101c, and 101d, and the diodes 102a, 102b, 102c, and 102d connected in reverse parallel to the smoothing capacitors 6 and 7 (hereinafter referred to as neutral points). It consists of a diode 103a connected between z1 and the cathode side of the diode 102b, and a diode 103b connected to the neutral point z1 and the anode side of the diode 102c, and the V-phase leg is similarly switched to the semiconductor switches 201a, 201b, 201c, 201d, diodes 202a, 202b, 202c, 202d connected in antiparallel to these, diode 203a connected between neutral point z1 and the cathode side of diode 202b, neutral point z1 and diode It consists of a diode 203b connected to the anode side of 202c. The semiconductor switches 101a, 101b, 101c, 101d, and 201a, 201b, 201c, 201d are turned on / off based on the gate signals PWMU, PWMV of each phase output from the control device 20, and are opposed to the input voltage Vc Is output to maintain the sum of the smoothing capacitor voltages Edp and Edn at a specified voltage.

制御装置20は電圧指令演算部21、加算器22、減算器23、24、極性反転器25、ゲート信号生成部26、および中性点電位制御部30で構成されている。加算器22では、電圧検出器12、13で検出した平滑コンデンサ6、7の端子電圧EdpとEdnを加算し、その結果を一括の直流電圧Edとして電圧指令演算部21に出力する。電圧指令演算部21は、電圧検出器10で検出した入力電圧Vs、電流検出器11で検出した入力電流Is、および直流電圧Edに基づき、直流電圧Edを規定電圧に一致させる出力電圧指令vcsolを出力する。そして、出力電圧指令vcsolに対し、減算器24にて中性点電位制御による補正処理を行い、これをU相電圧指令vusolとすると共に、極性反転器25にて出力電圧指令vcsolの極性を反転し、これをV相電圧指令vvsolとしている。ゲート信号生成部26U、26Vでは、U相、V相電圧指令vusol、vvsolに基づき、PWM整流器4に対し、ゲート信号PWMU、PWMVを出力し、各半導体スイッチをオン・オフさせている。   The control device 20 includes a voltage command calculation unit 21, an adder 22, subtracters 23 and 24, a polarity inverter 25, a gate signal generation unit 26, and a neutral point potential control unit 30. The adder 22 adds the terminal voltages Edp and Edn of the smoothing capacitors 6 and 7 detected by the voltage detectors 12 and 13 and outputs the result to the voltage command calculation unit 21 as a collective DC voltage Ed. Based on the input voltage Vs detected by the voltage detector 10, the input current Is detected by the current detector 11, and the DC voltage Ed, the voltage command calculation unit 21 outputs an output voltage command vcsol that matches the DC voltage Ed with a specified voltage. Output. Then, the subtractor 24 performs a correction process by neutral point potential control on the output voltage command vcsol, which is used as a U-phase voltage command vusol, and the polarity inverter 25 reverses the polarity of the output voltage command vcsol This is the V-phase voltage command vvsol. The gate signal generators 26U and 26V output gate signals PWMU and PWMV to the PWM rectifier 4 based on the U-phase and V-phase voltage commands vusol and vvsol, and turn on / off each semiconductor switch.

中性点電位制御部30は、電圧指令補正量演算部31、極性判定器32、および乗算器33で構成されている。電圧指令補正量演算部31は比例調節器などであり、減算器23で算出した平滑コンデンサ電圧EdpとEdnの差電圧△Edに応じた電圧指令補正量vccmpを出力する。極性判定器32は、入力電流検出値Isに基づき、その極性が正である場合(単相交流電源からPWM整流器に流れる方向を正)、電流極性信号Issignとして「1」を出力し、その極性が負である場合、「-1」を出力する。そして、乗算器33により電圧指令補正量vccmpと電流極性信号Issignを乗算し、その結果を電圧指令補正量vccmp1として減算器24に出力する。減算器24は出力電圧指令vcsolから電圧補正量vccmp1を減算し、その結果をU相電圧指令vusolとして出力する。
これにより、例えば、力行時において平滑コンデンサ6、7の差電圧△Edが正(Edp>Edn)で、かつ入力電流が正の場合、電圧指令補正量vccmp1は正の値となり、U相電圧指令は負側にバイアスされ、U相の上アームがオンする期間は短くなる。その結果、平滑コンデンサ6の充電期間が短くなり、その端子電圧Edpは低下し、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。また、差電圧△Edが正(Edp>Edn)でかつ入力電流が負の場合は、U相電圧指令を正側にバイアスすることにより、差電圧△Edが負(Edp<Edn)でかつ入力電流が正の場合は、U相電圧指令を正側にバイアスすることにより、差電圧△Edが負(Edp<Edn)でかつ入力電流が負の場合は、U相電圧指令を負側にバイアスすることにより、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。なお、回生時における中性点電位制御の動作は、力行時と逆の動作となる。
再公表WO97/25766(第1図)
The neutral point potential controller 30 includes a voltage command correction amount calculator 31, a polarity determiner 32, and a multiplier 33. The voltage command correction amount calculation unit 31 is a proportional controller or the like, and outputs a voltage command correction amount vccmp corresponding to the difference voltage ΔEd between the smoothing capacitor voltage Edp and Edn calculated by the subtracter 23. The polarity determiner 32 outputs `` 1 '' as the current polarity signal Issign when the polarity is positive based on the input current detection value Is (positive direction from the single-phase AC power supply to the PWM rectifier). If is negative, "-1" is output. The multiplier 33 multiplies the voltage command correction amount vccmp and the current polarity signal Issign, and outputs the result to the subtracter 24 as the voltage command correction amount vccmp1. The subtracter 24 subtracts the voltage correction amount vccmp1 from the output voltage command vcsol, and outputs the result as a U-phase voltage command vusol.
Thus, for example, when the differential voltage ΔEd between the smoothing capacitors 6 and 7 is positive (Edp> Edn) and the input current is positive during powering, the voltage command correction amount vccmp1 becomes a positive value, and the U-phase voltage command Is biased to the negative side, and the period during which the upper arm of the U phase is turned on becomes shorter. As a result, the charging period of the smoothing capacitor 6 is shortened, the terminal voltage Edp is reduced, and the smoothing capacitor voltages Edp and Edn can be balanced. If the differential voltage △ Ed is positive (Edp> Edn) and the input current is negative, the differential voltage △ Ed is negative (Edp <Edn) and input by biasing the U-phase voltage command to the positive side. When the current is positive, bias the U-phase voltage command to the positive side.When the differential voltage △ Ed is negative (Edp <Edn) and the input current is negative, the U-phase voltage command is biased to the negative side. As a result, the smoothing capacitor voltages Edp and Edn can be balanced. The operation of neutral point potential control during regeneration is the reverse of that during powering.
Republished WO97 / 25766 (Fig. 1)

従来例では、入力電流検出値Isの極性に基づいて中性点電位制御を行っているため、入力電流のリプル、検出遅れ等の影響により、実際の電流値と検出値にずれが生じた場合、中性点電位制御が逆の動作をし、平滑コンデンサ6、7の電圧差をさらに拡大させてしまう恐れがある。また、入力電流が小さく、その極性の判定ができない場合、制御不能状態となり、平滑コンデンサ6、7の電圧の均衡を図ることができない恐れがある。   In the conventional example, neutral point potential control is performed based on the polarity of the input current detection value Is, and therefore there is a difference between the actual current value and the detection value due to input current ripple, detection delay, etc. There is a possibility that the neutral point potential control is reversed and the voltage difference between the smoothing capacitors 6 and 7 is further increased. Further, when the input current is small and the polarity cannot be determined, the control becomes impossible, and there is a possibility that the voltages of the smoothing capacitors 6 and 7 cannot be balanced.

中性点電位制御が本来とは逆の動作をして、平滑コンデンサ6、7の電圧差を拡大させたり、制御不能状態に陥る原因は、入力電流の検出値に基づき極性を判定し、制御を行っているためである。
本発明は、交流電気車においては、その入力側の力率が1.0または-1.0となるように運転されることに着目し、入力電流検出値に代えて、変換器の運転指令(力行/回生)に基づき極性切替えを行い、中性点電位制御を行うことで、入力電流のリプル、検出遅れ等の影響を受けることなく、また入力電流が小さい場合でも、平滑コンデンサ6、7の電圧の均衡を図ることができるようにしたものである。
The reason why neutral point potential control is the reverse of the original operation and the voltage difference between the smoothing capacitors 6 and 7 is increased or becomes uncontrollable is determined by determining the polarity based on the detected value of the input current. It is because it is doing.
The present invention focuses on the fact that an AC electric vehicle is operated so that its power factor on the input side is 1.0 or -1.0. Instead of an input current detection value, an operation command (power running / regeneration) of the converter is used. ), Switching the polarity and performing neutral point potential control, without being affected by input current ripple, detection delay, etc., and even when the input current is small, the voltage balance of the smoothing capacitors 6 and 7 is balanced. It is intended to be able to plan.

本発明によれば、入力電流のリプル、検出遅れ等の影響を受けることなく、また、入力電流が小さい場合においても、安定に中性点電位制御を行うことができる。   According to the present invention, neutral point potential control can be performed stably without being affected by input current ripple, detection delay, and the like, and even when the input current is small.

力行時(力率1.0運転)で、かつ差電圧△Edが正(Edp>Edn)の場合、U相電圧指令を負側にバイアスすることで、入力電圧、電流が共に正の期間においては、図1に示す経路(交流入力U→ダイオード102b→ダイオード102a→平滑コンデンサ6→ダイオード203a→半導体スイッチ201b→交流入力V)で平滑コンデンサ6を充電する期間が短くなり、入力電圧、電流が共に負の期間においては、図2に示す経路(交流入力V→半導体スイッチ201c→ダイオード203b→平滑コンデンサ7→ダイオード102d→ダイオード102c→交流入力U)で平滑コンデンサ7を充電する期間が長くなり、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。差電圧△Edが負(Edp<Edn)の場合は、U相電圧指令を正側にバイアスすることで、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。
また、回生時(力率-1.0)で、かつ差電圧△Edが正(Edp>Edn)の場合、U相電圧指令を正側にバイアスすることで、入力電圧が正で、電流が負の期間においては、図3に示す経路(交流入力V→半導体スイッチ201c→ダイード203b→平滑コンデンサ6→半導体スイッチ101a→半導体スイッチ101b→交流入力U)で平滑コンデンサ6を放電する期間が長くなり、入力電圧が負で、電流が正の期間においては、図4に示す経路(交流入力U→半導体スイッチ101c→半導体スイッチ101d→平滑コンデンサ7→ダイオード203a→半導体スイッチ201b→交流入力V)で平滑コンデンサ7を放電する期間が短くなり、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。差電圧△Edが負(Edp<Edn)の場合は、U相電圧指令を負側にバイアスすることで、平滑コンデンサ電圧EdpとEdnの均衡を図ることができる。このように、差電圧△Edと運転モードにより、中性点電位制御を行うことができる。
When powering (power factor 1.0 operation) and the differential voltage △ Ed is positive (Edp> Edn), by biasing the U-phase voltage command to the negative side, both the input voltage and current are positive. The charging period of the smoothing capacitor 6 is shortened by the path shown in FIG. 1 (AC input U → diode 102b → diode 102a → smoothing capacitor 6 → diode 203a → semiconductor switch 201b → AC input V), and both the input voltage and current are negative. In this period, the period for charging the smoothing capacitor 7 in the path shown in FIG. 2 (AC input V → semiconductor switch 201c → diode 203b → smoothing capacitor 7 → diode 102d → diode 102c → AC input U) becomes longer. The voltage Edp and Edn can be balanced. When the differential voltage ΔEd is negative (Edp <Edn), the smoothing capacitor voltages Edp and Edn can be balanced by biasing the U-phase voltage command to the positive side.
Also, when regenerating (power factor -1.0) and the differential voltage △ Ed is positive (Edp> Edn), the input voltage is positive and the current is negative by biasing the U-phase voltage command to the positive side. In the period, the period during which the smoothing capacitor 6 is discharged becomes longer by the path shown in FIG. 3 (AC input V → semiconductor switch 201c → diode 203b → smoothing capacitor 6 → semiconductor switch 101a → semiconductor switch 101b → AC input U). In the period in which the voltage is negative and the current is positive, the smoothing capacitor 7 in the path (AC input U → semiconductor switch 101c → semiconductor switch 101d → smoothing capacitor 7 → diode 203a → semiconductor switch 201b → AC input V) shown in FIG. The period during which is discharged becomes shorter, and the smoothing capacitor voltages Edp and Edn can be balanced. When the differential voltage ΔEd is negative (Edp <Edn), the smoothing capacitor voltages Edp and Edn can be balanced by biasing the U-phase voltage command to the negative side. Thus, neutral point potential control can be performed by the differential voltage ΔEd and the operation mode.

図5に第1の実施例を示す。これは本発明を交流電気車の3レベル電力変換装置に適用し
た例である。本発明と図6に示す従来の3レベル電力変換装置の構成で異なる点は、図6に示す中性点電位制御部30に代えて、図5に示す中性点電位制御部40により中性点電位制御を行う点である。中性点電位制御部40内で、図6と同一部品は同一符号を付して、その説明を省略する。
中性点電位制御部40は、電圧指令補正量演算部31、乗算器33、および切替スイッチ41で構成されている。切替スイッチ41は、運転指令が力行である場合は運転モードフラグrmodeとして「1」を出力し、運転指令が回生である場合は「-1」を出力する。そして、乗算器33により電圧指令補正量vccmpと運転モードフラグrmodeを乗算し、その結果を電圧指令補正量vccmp1として減算器24に出力する。このように、入力電流検出値に代えて、運転指令(力行/回生)に基づき極性を切替えることにより、中性点電位制御を行うことができる。
FIG. 5 shows a first embodiment. This is an example in which the present invention is applied to a three-level power converter for an AC electric vehicle. The difference between the present invention and the configuration of the conventional three-level power converter shown in FIG. 6 is that a neutral point potential control unit 40 shown in FIG. This is the point where point potential control is performed. In the neutral point potential control unit 40, the same components as those in FIG.
The neutral point potential control unit 40 includes a voltage command correction amount calculation unit 31, a multiplier 33, and a changeover switch 41. The changeover switch 41 outputs “1” as the operation mode flag rmode when the operation command is power running, and outputs “−1” when the operation command is regeneration. The multiplier 33 multiplies the voltage command correction amount vccmp by the operation mode flag rmode, and outputs the result to the subtractor 24 as the voltage command correction amount vccmp1. Thus, neutral point potential control can be performed by switching the polarity based on the operation command (power running / regeneration) instead of the input current detection value.

マルチレベルコンバータ/インバータシステムにおいては、中性点電圧を確実に制御することは装置の出力性能の確保や素子への印加電圧の均等化の課題解決には重要である。特に従来のように電流の零点を検知して極性判別する方式に比べ、確実に中性点電圧を制御できるので、車両搭載用変換器の他、産業用のインバータなどに適用可能である。   In a multilevel converter / inverter system, it is important to reliably control the neutral point voltage in order to solve the problems of ensuring the output performance of the apparatus and equalizing the voltage applied to the elements. In particular, the neutral point voltage can be reliably controlled as compared with the conventional method in which the polarity of the current is detected by detecting the zero point of the current, so that the present invention can be applied to an industrial inverter as well as a vehicle-mounted converter.

力行時、入力電圧/入力電流が正極性の時の電流Isの経路を示す図である。It is a figure which shows the path | route of electric current Is when input voltage / input current is positive polarity at the time of power running. 力行時、入力電圧/入力電流が負極性の時の電流Isの経路を示す図である。It is a figure which shows the path | route of electric current Is when input voltage / input current is negative polarity at the time of power running. 回生時、入力電圧が正極性/入力電流が負極性の時の電流Isの経路を示す図である。It is a figure which shows the path | route of electric current Is when input voltage is positive polarity / input current is negative polarity at the time of regeneration. 回生時、入力電圧が負極性/入力電流が正極性の時の電流Isの経路を示す図である。It is a figure which shows the path | route of electric current Is when input voltage is negative polarity / input current is positive polarity at the time of regeneration. 本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 3レベル電力変換装置の従来例を示す回路図である。It is a circuit diagram which shows the prior art example of a 3 level power converter device. 3レベルPWM整流器4の詳細である。3 shows details of the three-level PWM rectifier 4.

符号の説明Explanation of symbols

1・・・単相交流電源 2・・・トランス 3・・・リアクトル
4・・・PWM整流器 5・・・3レベルインバータ
6、7・・・平滑コンデンサ 8・・・誘導機 10・・・電圧検出器
11・・・電流検出器 12、13・・・電圧検出器 20・・・制御装置
21・・・電圧指令演算器 22・・・加算器 23、24・・・減算器
25・・・極性反転器 26・・・ゲート信号生成部
30・・・中性点電位制御部 31・・・電圧指令補正量演算部
32・・・極性判定器 33・・・乗算器 40・・・中性点電位制御部
41・・・切替スイッチ
100・・・U相レグ 200・・・V相レグ
101a、101b、101c、101d、201a、201b、201c、201d・・・半導体スイッチ
102a、102b、102c、102d、202a、202b、202c、202d、103a、103b、203a、203b・・・ダイオード
DESCRIPTION OF SYMBOLS 1 ... Single phase alternating current power supply 2 ... Transformer 3 ... Reactor 4 ... PWM rectifier 5 ... 3 level inverter 6, 7 ... Smoothing capacitor 8 ... Induction machine 10 ... Voltage Detector 11 ... Current detector 12, 13 ... Voltage detector 20 ... Control device 21 ... Voltage command calculator 22 ... Adder 23, 24 ... Subtractor 25 ... Polarity inverter 26... Gate signal generator
DESCRIPTION OF SYMBOLS 30 ... Neutral point electric potential control part 31 ... Voltage command correction amount calculating part 32 ... Polarity determination device 33 ... Multiplier 40 ... Neutral point electric potential control part 41 ... Changeover switch 100・ ・ ・ U phase leg 200 ・ ・ ・ V phase leg
101a, 101b, 101c, 101d, 201a, 201b, 201c, 201d ... Semiconductor switches 102a, 102b, 102c, 102d, 202a, 202b, 202c, 202d, 103a, 103b, 203a, 203b ... Diodes

Claims (2)

直流側に、第1の直流平滑コンデンサと第2の直流平滑コンデンサの直列回路が、交流側
にリアクトルを介して交流電源が、それぞれ接続された3レベル電力変換装置において、
前記2つの直流平滑コンデンサ電圧の差電圧と運転状態指令とに基づき、前記3レベル電力変換装置の出力電圧指令を補正する手段を備えたことを特徴とする3レベル電力変換装置。
In a three-level power converter in which a series circuit of a first DC smoothing capacitor and a second DC smoothing capacitor is connected to the DC side, and an AC power source is connected to the AC side via a reactor.
A three-level power conversion device comprising means for correcting an output voltage command of the three-level power conversion device based on a difference voltage between the two DC smoothing capacitor voltages and an operating state command.
請求項1に記載の3レベル電力変換装置において、運転状態指令として、力行指令または回生指令を用いることを特徴とする3レベル電力変換装置。
The three-level power converter according to claim 1, wherein a power running command or a regenerative command is used as the operation state command.
JP2005001476A 2005-01-06 2005-01-06 Three-level pwm power converter Withdrawn JP2006191743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001476A JP2006191743A (en) 2005-01-06 2005-01-06 Three-level pwm power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001476A JP2006191743A (en) 2005-01-06 2005-01-06 Three-level pwm power converter

Publications (1)

Publication Number Publication Date
JP2006191743A true JP2006191743A (en) 2006-07-20

Family

ID=36798300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001476A Withdrawn JP2006191743A (en) 2005-01-06 2005-01-06 Three-level pwm power converter

Country Status (1)

Country Link
JP (1) JP2006191743A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080465A1 (en) * 2011-11-30 2013-06-06 パナソニック 株式会社 Control method for inverter device, and inverter device
JP2013236491A (en) * 2012-05-09 2013-11-21 Sharp Corp Inverter device, power conversion device, and distribution power-supply system
CN103427474A (en) * 2012-05-24 2013-12-04 株式会社日立制作所 Uninterruptible power supply device control method, the uninterruptible power supply unit
CN105406746A (en) * 2014-09-16 2016-03-16 上海三菱电梯有限公司 Three-level power converter midpoint potential balance control method
JP2016039738A (en) * 2014-08-11 2016-03-22 株式会社明電舎 Parallel connection system of three-level power conversion device
JP2018019492A (en) * 2016-07-27 2018-02-01 東芝三菱電機産業システム株式会社 Power conversion device and control method for the same
JP2018068083A (en) * 2016-10-21 2018-04-26 富士電機株式会社 Three-level power conversion device and rectifier
JP2020184811A (en) * 2019-04-26 2020-11-12 株式会社日立製作所 Power conversion equipment and abnormality detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025766A1 (en) * 1996-01-10 1997-07-17 Hitachi, Ltd. Multilevel power converting apparatus
JPH09331683A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Controller of power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025766A1 (en) * 1996-01-10 1997-07-17 Hitachi, Ltd. Multilevel power converting apparatus
JPH09331683A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Controller of power converter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080465A1 (en) * 2011-11-30 2013-06-06 パナソニック 株式会社 Control method for inverter device, and inverter device
JPWO2013080465A1 (en) * 2011-11-30 2015-04-27 パナソニックIpマネジメント株式会社 INVERTER DEVICE CONTROL METHOD AND INVERTER DEVICE
US9479079B2 (en) 2011-11-30 2016-10-25 Panasonic Intellectual Property Management Co., Ltd. Control method for inverter device, and inverter device
JP2013236491A (en) * 2012-05-09 2013-11-21 Sharp Corp Inverter device, power conversion device, and distribution power-supply system
CN103427474A (en) * 2012-05-24 2013-12-04 株式会社日立制作所 Uninterruptible power supply device control method, the uninterruptible power supply unit
JP2016039738A (en) * 2014-08-11 2016-03-22 株式会社明電舎 Parallel connection system of three-level power conversion device
CN105406746A (en) * 2014-09-16 2016-03-16 上海三菱电梯有限公司 Three-level power converter midpoint potential balance control method
CN105406746B (en) * 2014-09-16 2018-08-14 上海三菱电梯有限公司 Three level power converter neutral-point potential balance control methods
JP2018019492A (en) * 2016-07-27 2018-02-01 東芝三菱電機産業システム株式会社 Power conversion device and control method for the same
JP2018068083A (en) * 2016-10-21 2018-04-26 富士電機株式会社 Three-level power conversion device and rectifier
JP2020184811A (en) * 2019-04-26 2020-11-12 株式会社日立製作所 Power conversion equipment and abnormality detection method
JP7219665B2 (en) 2019-04-26 2023-02-08 株式会社日立製作所 POWER CONVERSION DEVICE AND ABNORMALITY DETECTION METHOD

Similar Documents

Publication Publication Date Title
JP6735827B2 (en) Power converter
JP5223711B2 (en) Uninterruptible power system
JP2006191743A (en) Three-level pwm power converter
JP5465652B2 (en) Uninterruptible power system
JP4431604B2 (en) Converter device
JPWO2013145248A1 (en) Power supply
WO1997025766A1 (en) Multilevel power converting apparatus
JP2017077061A (en) Controller and ac motor driver
JP4340843B2 (en) AC / DC combined power supply
JP4365376B2 (en) Power converter
JP2007221902A (en) Power conversion device
JP2006238621A (en) Uninterruptible power supply
JP2010017058A (en) Voltage controller of power conversion device
JP3028268B2 (en) Power converter
JP2006020384A (en) Controller of power converter
JP2001197757A (en) Power converter
JP5045020B2 (en) Inverter controller for motor drive
JP2006262573A (en) Control device of ac-ac power converter
JP6480290B2 (en) Power converter
JP2020014326A (en) Electric power conversion device
CN114600337A (en) Uninterruptible power supply device
JP3660255B2 (en) Method and apparatus for controlling power converter
JP2010226806A (en) Power conversion device
JP5169060B2 (en) Power failure detection device for power regeneration inverter device
JP4797371B2 (en) Power converter control method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100720