JP2006014549A - Driving power supply circuit for bidirectional switch - Google Patents

Driving power supply circuit for bidirectional switch Download PDF

Info

Publication number
JP2006014549A
JP2006014549A JP2004191253A JP2004191253A JP2006014549A JP 2006014549 A JP2006014549 A JP 2006014549A JP 2004191253 A JP2004191253 A JP 2004191253A JP 2004191253 A JP2004191253 A JP 2004191253A JP 2006014549 A JP2006014549 A JP 2006014549A
Authority
JP
Japan
Prior art keywords
power supply
switch
drive power
semiconductor switch
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004191253A
Other languages
Japanese (ja)
Other versions
JP4470616B2 (en
Inventor
Akihiro Odaka
章弘 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004191253A priority Critical patent/JP4470616B2/en
Publication of JP2006014549A publication Critical patent/JP2006014549A/en
Application granted granted Critical
Publication of JP4470616B2 publication Critical patent/JP4470616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving power supply circuit of a bidirectional switch for reducing the number of insulated power supplies, the total weight of the apparatus and a cost, and miniaturizing the apparatus. <P>SOLUTION: The driving power supply circuit of the bidirectional switch supplies power to driving circuits of IGBT 1, 2 so as to drive the bidirectional switch to which the reverse blocking IGBT 1, 2 are reversely connected in parallel. The circuit comprises a DC power supply 19 for supplying power to the driving circuit 23 of the reverse blocking IGBT 1, a capacitor 22 for supplying power to the driving circuit 24 of the reverse blocking IGBT 2, and a p-channel MOSFET 20 as a semiconductor switch for the driving power supply connected between the DC power supply 19 and the capacitor 22 in series and charging the capacitor 22 by the DC power supply 19 through the reverse blocking IGBT 1 during an on-state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばIGBT等の電力用半導体スイッチング素子を逆並列に接続して構成される双方向スイッチに駆動用の電源を供給するための駆動電源回路に関するものである。   The present invention relates to a drive power supply circuit for supplying drive power to a bidirectional switch configured by connecting power semiconductor switching elements such as IGBTs in antiparallel.

図6は、電力用半導体スイッチング素子として逆耐圧を有するIGBT(以下、逆阻止IGBTという)1,2を逆並列に接続して構成した双方向性の電力用半導体スイッチ(以下、単に双方向スイッチと言う)を示している。また、図7は、図6に示した双方向スイッチを9個用いて構成した三相のマトリクスコンバータの回路構成図であり、R,S,Tは三相電源に接続される三相入力端子、U,V,Wは三相負荷に接続される三相出力端子を示す。   FIG. 6 shows a bidirectional power semiconductor switch (hereinafter simply referred to as a bidirectional switch) configured by connecting IGBTs (hereinafter referred to as reverse blocking IGBTs) 1 and 2 having reverse breakdown voltages as power semiconductor switching elements in reverse parallel. Say). FIG. 7 is a circuit configuration diagram of a three-phase matrix converter configured using nine bidirectional switches shown in FIG. 6. R, S, and T are three-phase input terminals connected to a three-phase power source. , U, V, W denote three-phase output terminals connected to a three-phase load.

従来、この種の双方向スイッチをマトリクスコンバータに適用した場合、逆阻止IGBTを駆動するための絶縁電源は、下記の非特許文献1の表4.1に記載されているように6個必要であることが知られている。
図7を例に挙げれば、エミッタ同士が同電位となる逆阻止IGBTの駆動電源に各々絶縁電源を設ける必要があるため、逆阻止IGBT1,3,5、同7,9,11、同13,15,17、同2,8,14、同4,10,16、同6,12,18の6つの逆阻止IGBT群に対して、それぞれ絶縁電源が設けられることになる。
Conventionally, when this type of bidirectional switch is applied to a matrix converter, six insulated power supplies for driving a reverse blocking IGBT are required as described in Table 4.1 of Non-Patent Document 1 below. It is known that there is.
Taking FIG. 7 as an example, since it is necessary to provide an insulating power source for each drive power source of reverse blocking IGBTs whose emitters have the same potential, reverse blocking IGBTs 1, 3, 5, 7, 9, 11, 13, Insulated power supplies are respectively provided for the six reverse blocking IGBT groups 15, 17, 2, 8, 14, 4, 10, 16, 6, 12, 18.

原 英則 他5名、「マトリクスコンバータドライブの性能改善」、平成14年電気学会産業応用部門大会論文集、社団法人電気学会、pp.931−pp.934、図4.1、表4.1Hidenori Hara and five others, “Improvement of Matrix Converter Drive Performance”, Proceedings of the Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, pp. 931-pp. 934, FIG. 4.1, Table 4.1

一般に、絶縁電源を確保するためには、変圧器を用いたDC/DCコンバータが用いられる。前述したマトリクスコンバータの例では、絶縁電源の個数に相当する6個のDC/DCコンバータが必要になり、これらのDC/DCコンバータの構成部品である変圧器等が装置全体の小型化を妨げ、また、コストを上昇させる原因となっている。
そこで本発明の解決課題は、絶縁電源の個数を減少させて装置全体の小型軽量化、低コスト化を可能にした電力用半導体スイッチの駆動電源回路を提供することにある。
In general, a DC / DC converter using a transformer is used to secure an insulated power supply. In the example of the matrix converter described above, six DC / DC converters corresponding to the number of insulated power supplies are required, and transformers and the like that are components of these DC / DC converters prevent miniaturization of the entire apparatus. Moreover, it becomes a cause which raises cost.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a drive power supply circuit for a power semiconductor switch in which the number of insulated power supplies is reduced so that the entire apparatus can be reduced in size and weight and cost.

上記課題を解決するため、請求項1に記載した発明は、第1の半導体スイッチと第2の半導体スイッチとが逆並列接続されてなる双方向スイッチを駆動するために、第1の半導体スイッチの駆動回路及び第2の半導体スイッチの駆動回路に電源を供給する双方向スイッチの駆動電源回路において、
第1の半導体スイッチの駆動回路に電源を供給する直流電源と、第2の半導体スイッチの駆動回路に電源を供給するコンデンサと、前記直流電源と前記コンデンサとの間に直列に接続され、かつ、そのオン時に第1または第2の半導体スイッチを介して前記直流電源により前記コンデンサを充電するための駆動電源用半導体スイッチと、を備えたものである。
In order to solve the above-described problem, the invention described in claim 1 is directed to a first semiconductor switch for driving a bidirectional switch in which a first semiconductor switch and a second semiconductor switch are connected in antiparallel. In the drive power supply circuit of the bidirectional switch for supplying power to the drive circuit and the drive circuit of the second semiconductor switch,
A DC power source for supplying power to the drive circuit for the first semiconductor switch; a capacitor for supplying power to the drive circuit for the second semiconductor switch; and the DC power source and the capacitor connected in series; and And a driving power supply semiconductor switch for charging the capacitor with the DC power supply via the first or second semiconductor switch when the switch is turned on.

請求項2に記載した発明は、請求項1において、第1の半導体スイッチ及び第2の半導体スイッチを、逆耐圧を有する半導体スイッチング素子により構成したものである。   According to a second aspect of the present invention, in the first aspect, the first semiconductor switch and the second semiconductor switch are constituted by semiconductor switching elements having a reverse breakdown voltage.

請求項3に記載した発明は、請求項1において、第1の半導体スイッチ及び第2の半導体スイッチを、逆耐圧を有しない半導体スイッチング素子と、この半導体スイッチング素子に順接続されたダイオードとによって構成したものである。   According to a third aspect of the present invention, in the first aspect, the first semiconductor switch and the second semiconductor switch are configured by a semiconductor switching element having no reverse breakdown voltage and a diode connected in order to the semiconductor switching element. It is a thing.

請求項4に記載した発明は、請求項1〜3の何れか1項において、前記駆動電源用半導体スイッチを、逆耐圧を有する半導体スイッチング素子により構成したものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the drive power supply semiconductor switch is configured by a semiconductor switching element having a reverse breakdown voltage.

請求項5に記載した発明は、請求項1〜3の何れか1項において、前記駆動電源用半導体スイッチを、逆耐圧を有しない半導体スイッチング素子と、この半導体スイッチング素子に順接続されたダイオードとによって構成したものである。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the driving power supply semiconductor switch includes a semiconductor switching element having no reverse breakdown voltage, and a diode connected in order to the semiconductor switching element. It is constituted by.

請求項6に記載した発明は、請求項5において、前記駆動電源用半導体スイッチを構成する半導体スイッチング素子が、PチャンネルMOSFETまたはPチャンネルIGBTもしくはPNPトランジスタであることを特徴とする。   The invention described in claim 6 is characterized in that, in claim 5, the semiconductor switching element constituting the semiconductor switch for driving power supply is a P-channel MOSFET, a P-channel IGBT or a PNP transistor.

請求項7に記載した発明は、請求項1〜6の何れか1項において、第1の半導体スイッチ、第2の半導体スイッチ及び前記駆動電源用半導体スイッチを、同時にオンオフさせるものである。   A seventh aspect of the present invention is the device according to any one of the first to sixth aspects, wherein the first semiconductor switch, the second semiconductor switch, and the semiconductor switch for driving power supply are simultaneously turned on and off.

請求項8に記載した発明は、請求項1〜6の何れか1項において、前記駆動電源用半導体スイッチを、第1の半導体スイッチ及び第2の半導体スイッチの両方または一方がオンしているときにオンさせるものである。   The invention described in claim 8 is the driving power supply semiconductor switch according to any one of claims 1 to 6, wherein both or one of the first semiconductor switch and the second semiconductor switch is turned on. To turn on.

請求項9に記載した発明は、請求項1〜6の何れか1項において、前記駆動電源用半導体スイッチを、第1の半導体スイッチ及び第2の半導体スイッチの両方がオンしてから一定時間経過後にオンさせるものである。   According to a ninth aspect of the present invention, in any one of the first to sixth aspects, the driving power supply semiconductor switch is turned on for a certain period of time after both the first semiconductor switch and the second semiconductor switch are turned on. It will be turned on later.

本発明は、双方向スイッチを構成する一方の半導体スイッチを、直流電源が接続される駆動回路により駆動し、他方の半導体スイッチについては、前記直流電源に駆動電源用半導体スイッチを介して接続されたコンデンサを駆動電圧源とする駆動回路により駆動するものである。
このため、DC/DCコンバータ等を有する絶縁電源の数を従来に比べて低減することができ、例えば三相のマトリクスコンバータに本発明を適用した場合には、絶縁電源の数を半減することが可能であり、装置全体の小型軽量化、低価格化を図ることができる。
In the present invention, one semiconductor switch constituting the bidirectional switch is driven by a drive circuit to which a DC power supply is connected, and the other semiconductor switch is connected to the DC power supply via the drive power supply semiconductor switch. It is driven by a drive circuit using a capacitor as a drive voltage source.
For this reason, the number of insulated power supplies having a DC / DC converter or the like can be reduced as compared with the prior art. For example, when the present invention is applied to a three-phase matrix converter, the number of insulated power supplies can be halved. It is possible to reduce the size and weight of the entire device and to reduce the price.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の第1実施形態を示す構成図であり、半導体スイッチング素子としての逆阻止IGBT1と逆阻止IGBT2とを逆並列に接続して構成した双方向スイッチに本発明の駆動電源回路100(点線により囲まれた部分)を適用した例である。この実施形態は、請求項1〜6の発明に相当している。
なお、上記逆阻止IGBT1,2は、請求項における第1の半導体スイッチ、第2の半導体スイッチにそれぞれ相当する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a first embodiment of the present invention, and a drive power supply circuit according to the present invention is connected to a bidirectional switch configured by connecting reverse blocking IGBT 1 and reverse blocking IGBT 2 as semiconductor switching elements in antiparallel. This is an example in which 100 (a part surrounded by a dotted line) is applied. This embodiment corresponds to the inventions of claims 1 to 6.
The reverse blocking IGBTs 1 and 2 correspond to the first semiconductor switch and the second semiconductor switch in the claims, respectively.

図1において、23は逆阻止IGBT1の駆動回路、24は逆阻止IGBT2の駆動回路であり、これらの駆動回路23,24の出力端子は逆阻止IGBT1,2のゲートにそれぞれ接続されている。また、19は逆阻止IGBT1を駆動するための直流電源であり、その正極は駆動回路23及び後述の駆動回路25の各一方の電源端子に接続され、負極は駆動回路23,25の各他方の電源端子及び逆阻止IGBT1のエミッタ(逆阻止IGBT2のコレクタ)に接続されている。更に、22は逆阻止IGBT2の駆動電圧源となるコンデンサであり、その一端は駆動回路24の一方の電源端子に接続され、他端は駆動回路24の他方の電源端子及び逆阻止IGBT2のエミッタ(逆阻止IGBT1のコレクタ)に接続されている。   In FIG. 1, reference numeral 23 denotes a drive circuit for the reverse blocking IGBT 1, and 24 denotes a drive circuit for the reverse blocking IGBT 2. The output terminals of these driving circuits 23 and 24 are connected to the gates of the reverse blocking IGBTs 1 and 2, respectively. Reference numeral 19 denotes a DC power supply for driving the reverse blocking IGBT 1, the positive electrode of which is connected to one power supply terminal of the drive circuit 23 and a drive circuit 25 described later, and the negative electrode is connected to the other of the drive circuits 23 and 25. The power supply terminal and the emitter of reverse blocking IGBT 1 (the collector of reverse blocking IGBT 2) are connected. Further, reference numeral 22 denotes a capacitor serving as a drive voltage source for the reverse blocking IGBT 2, one end of which is connected to one power supply terminal of the drive circuit 24, and the other end of the other power supply terminal of the drive circuit 24 and the emitter of the reverse blocking IGBT 2 ( Reverse collector IGBT 1 collector).

20は駆動電源用半導体スイッチとしてのPチャンネルMOSFETであり、そのソースは直流電源19の正極に接続されていると共に、ドレインはダイオード21を介して前記コンデンサ22の一端に接続されている。
また、25はMOSFET20の駆動回路であり、その出力端子はMOSFET20のゲートに接続されており、この駆動回路25及び前記駆動回路23,24には、外部の制御回路から駆動信号が入力されるように構成されている。
上記構成において、直流電源19、コンデンサ22、駆動回路25、PチャンネルMOSFET20及びダイオード21によって本実施形態に係る駆動電源回路100が構成される。
Reference numeral 20 denotes a P-channel MOSFET as a driving power supply semiconductor switch, the source of which is connected to the positive electrode of a DC power supply 19 and the drain of which is connected to one end of the capacitor 22 via a diode 21.
Reference numeral 25 denotes a drive circuit for the MOSFET 20, and its output terminal is connected to the gate of the MOSFET 20. A drive signal is input to the drive circuit 25 and the drive circuits 23 and 24 from an external control circuit. It is configured.
In the above configuration, the DC power supply 19, the capacitor 22, the drive circuit 25, the P-channel MOSFET 20 and the diode 21 constitute the drive power supply circuit 100 according to the present embodiment.

以下、図1及び図2を参照しながら本実施形態の動作について説明する。
図1に示した双方向スイッチにおいて、逆阻止IGBT1と逆阻止IGBT2とは、基本的に同時にオンオフされるが、本実施形態では、PチャンネルMOSFET20も逆阻止IGBT1,2と同時にオンオフさせる。
すなわち、直流電源19により電源が供給されている駆動回路23,25と、MOSFET20及びダイオード21を介して直流電源19により充電されているコンデンサ22を駆動電圧源とする駆動回路24とには、外部から駆動信号がそれぞれ入力され、逆阻止IGBT1、MOSFET20、逆阻止IGBT2を同時にオン、及び同時にオフさせるものである。
The operation of this embodiment will be described below with reference to FIGS.
In the bidirectional switch shown in FIG. 1, the reverse blocking IGBT 1 and the reverse blocking IGBT 2 are basically turned on and off at the same time. In this embodiment, the P-channel MOSFET 20 is also turned on and off simultaneously with the reverse blocking IGBTs 1 and 2.
That is, the drive circuits 23 and 25 to which power is supplied from the DC power supply 19 and the drive circuit 24 using the capacitor 22 charged by the DC power supply 19 via the MOSFET 20 and the diode 21 as a drive voltage source are externally connected. Are respectively turned on, and the reverse blocking IGBT 1, the MOSFET 20, and the reverse blocking IGBT 2 are simultaneously turned on and turned off simultaneously.

ここで、逆阻止IGBT1の駆動電源としての直流電源19は、安定した電源電圧を出力するものであるとする。また、PチャンネルMOSFET20は、ソースの電位に対してゲート端子の電位が低くなるとオンする特性を持つため、PチャンネルMOSFET20は、逆阻止IGBT1,2の駆動信号と反転した信号を駆動回路25から入力することにより駆動するものとする。   Here, it is assumed that the DC power supply 19 as a drive power supply for the reverse blocking IGBT 1 outputs a stable power supply voltage. Further, since the P-channel MOSFET 20 has a characteristic of being turned on when the potential of the gate terminal becomes lower than the source potential, the P-channel MOSFET 20 inputs a signal obtained by inverting the drive signal of the reverse blocking IGBTs 1 and 2 from the drive circuit 25. It shall drive by doing.

図2は、逆阻止IGBT2の駆動電圧源としてのコンデンサ22の充電電流が流れる経路を示している。逆阻止IGBT1がオンしている状態でPチャンネルMOSFET20をオンすると、逆阻止IGBT1のエミッタと逆阻止IGBT2のエミッタとが同電位となるため、図中の矢印で示した経路で電流が流れ、コンデンサ22が図示の極性で直流電源19の電圧とほぼ等しい電圧に充電される。   FIG. 2 shows a path through which a charging current of the capacitor 22 as a drive voltage source of the reverse blocking IGBT 2 flows. When the P-channel MOSFET 20 is turned on while the reverse blocking IGBT 1 is on, the emitter of the reverse blocking IGBT 1 and the emitter of the reverse blocking IGBT 2 have the same potential, so that a current flows along the path indicated by the arrow in the figure, and the capacitor 22 is charged to a voltage substantially equal to the voltage of the DC power supply 19 with the polarity shown.

また、逆阻止IGBT1,2がオフしていて、逆阻止IGBT1のエミッタに対してコレクタ側に正の電圧が印加されている場合は、ダイオード21が電圧を担い、主回路電流が駆動電源回路100を介して流れるのを防ぐ。また、逆阻止IGBT1,2がオフしているときはPチャンネルMOSFET20もオフしているため、逆阻止IGBT1のエミッタに対してコレクタ側に負の電圧が印加されている場合は、MOSFET20が電圧を担い、主回路電流が駆動電源回路100を介して流れるのを防いでいる。   Further, when the reverse blocking IGBTs 1 and 2 are turned off and a positive voltage is applied to the collector side with respect to the emitter of the reverse blocking IGBT 1, the diode 21 bears the voltage, and the main circuit current is the drive power supply circuit 100. Prevent flow through. Further, since the P-channel MOSFET 20 is also turned off when the reverse blocking IGBTs 1 and 2 are turned off, when a negative voltage is applied to the collector side with respect to the emitter of the reverse blocking IGBT 1, the MOSFET 20 reduces the voltage. The main circuit current is prevented from flowing through the drive power supply circuit 100.

本実施形態において、逆阻止IGBT1,2がオフしている期間はコンデンサ22を充電することができず、その期間中にコンデンサ22の電圧が低下する恐れがあるが、コンデンサ22の容量を必要に応じて大きくしておけば、実用上問題はなく、上述した逆阻止IGBT1,2及びPチャンネルMOSFET20のオン動作により、コンデンサ22の電圧を直流電源19の電圧とほぼ等しい一定の電圧値に保つことができる。   In the present embodiment, the capacitor 22 cannot be charged during the period when the reverse blocking IGBTs 1 and 2 are off, and the voltage of the capacitor 22 may decrease during the period, but the capacity of the capacitor 22 is required. If it is increased accordingly, there is no practical problem, and the voltage of the capacitor 22 is maintained at a constant voltage value substantially equal to the voltage of the DC power supply 19 by the ON operation of the reverse blocking IGBTs 1 and 2 and the P-channel MOSFET 20 described above. Can do.

なお、請求項4に記載するように、駆動電源用半導体スイッチとしてのPチャンネルMOSFET20が逆耐圧を有するのであれば、ダイオード21は不要となる。また、請求項6に記載する如く、PチャンネルMOSFET20の代わりに、PチャンネルIGBTやPNP形トランジスタを用いても同様な効果が得られる。
更に、PチャンネルMOSFET20の代わりに、例えば、NチャンネルMOSFETを用いても、同様な動作をさせることが可能であるが、この場合、NチャンネルMOSFET用の駆動電源を別途用意する必要がある。
If the P-channel MOSFET 20 as the drive power supply semiconductor switch has a reverse breakdown voltage, the diode 21 is not necessary. Further, as described in the sixth aspect, the same effect can be obtained by using a P-channel IGBT or a PNP transistor instead of the P-channel MOSFET 20.
Further, for example, an N-channel MOSFET can be used instead of the P-channel MOSFET 20, and the same operation can be performed. In this case, however, it is necessary to separately prepare a drive power source for the N-channel MOSFET.

次に、図3は本発明の第2実施形態の主要部を示したものであり、請求項7〜9の発明に相当する。
先の第1実施形態では、逆阻止IGBT1及び逆阻止IGBT2を基本的に同時にオンオフさせるものとし、また、PチャンネルMOSFET20もこれらの逆阻止IGBT1,2と同時にオンオフさせるものとした。しかし、用途によっては、逆阻止IGBT1と逆阻止IGBT2とのオンオフタイミングを意図的にずらすことがある。
Next, FIG. 3 shows a main part of the second embodiment of the present invention, and corresponds to the inventions of claims 7 to 9.
In the first embodiment, the reverse blocking IGBT 1 and the reverse blocking IGBT 2 are basically turned on and off at the same time, and the P-channel MOSFET 20 is also turned on and off simultaneously with the reverse blocking IGBTs 1 and 2. However, depending on the application, the on / off timing of the reverse blocking IGBT 1 and the reverse blocking IGBT 2 may be intentionally shifted.

また、PチャンネルMOSFET20は、逆阻止IGBT1,2の電流定格に比べて非常に小さい電流定格で十分であるが、一般に定格電流が小さいほどスイッチング速度が速いため、逆阻止IGBT1,2よりも先にPチャンネルMOSFET20がオンする可能性がある。このため、逆阻止IGBT1,2の何れか一方と同じタイミングのオンオフ信号をMOSFET20に入力しても、逆阻止IGBT1または逆阻止IGBT2よりも先にMOSFET20がオンしてしまい、本来であれば逆阻止IGBT1,2の何れか一方を流れるべき主回路電流がMOSFET20を流れてしまう結果、MOSFET20を破壊する恐れがある。   The P-channel MOSFET 20 may have a current rating that is much smaller than the current ratings of the reverse blocking IGBTs 1 and 2, but generally the smaller the rated current, the faster the switching speed. There is a possibility that the P-channel MOSFET 20 is turned on. For this reason, even if an ON / OFF signal having the same timing as that of either one of the reverse blocking IGBTs 1 and 2 is input to the MOSFET 20, the MOSFET 20 is turned on before the reverse blocking IGBT1 or the reverse blocking IGBT2, and reverse blocking is normally performed. As a result of the main circuit current that should flow through either one of the IGBTs 1 and 2 flowing through the MOSFET 20, the MOSFET 20 may be destroyed.

そこで、第2実施形態は上記問題点を解決するためのものであり、図3はPチャンネルMOSFET20の駆動信号を発生する駆動回路25Aを示している。
図示するように、この駆動回路25Aは、逆阻止IGBT1,2の駆動信号が入力されるアンド回路26と、その出力信号を遅延させてPチャンネルMOSFET20がオンするタイミングを遅らせるオンディレイ回路27とから構成されている。
Therefore, the second embodiment is for solving the above problems, and FIG. 3 shows a drive circuit 25A that generates a drive signal for the P-channel MOSFET 20.
As shown in the figure, the drive circuit 25A includes an AND circuit 26 to which the drive signals of the reverse blocking IGBTs 1 and 2 are input, and an on-delay circuit 27 that delays the output signal to delay the timing at which the P-channel MOSFET 20 is turned on. It is configured.

図4は、この第2実施形態における逆阻止IGBT1,2及びPチャンネルMOSFET20の駆動信号のタイミングチャートである。
時刻t1で逆阻止IGBT1,2の両方がオン状態となり、アンド回路26の出力信号がオンディレイ回路27に加えられてから一定の時間が経過した時刻t2でPチャンネルMOSFET20をオンさせる。
FIG. 4 is a timing chart of drive signals for the reverse blocking IGBTs 1 and 2 and the P-channel MOSFET 20 in the second embodiment.
At time t1, both of the reverse blocking IGBTs 1 and 2 are turned on, and the P-channel MOSFET 20 is turned on at time t2 when a predetermined time has elapsed after the output signal of the AND circuit 26 is applied to the on-delay circuit 27.

また、MOSFET20をオフする信号のタイミングは、逆阻止IGBT1,2のうち、先にオフする信号と同じタイミングとするものとし、図示例では逆阻止IGBT1のオフ時刻t3に一致させている。前述した如く、PチャンネルMOSFET20は逆阻止IGBTに比べてスイッチング速度が速いため、オフ信号のタイミングがPチャンネルMOSFET20と逆阻止IGBT1,2の何れかと同じタイミングでも特に問題はない。
図3の制御回路25Aによって上記のタイミングでPチャンネルMOSFET20をオンオフすることにより、MOSFET20への主回路電流の流入による破壊を防止することができる。
In addition, the timing of the signal for turning off the MOSFET 20 is the same timing as the signal that is turned off first in the reverse blocking IGBTs 1 and 2, and in the illustrated example, the timing is set to coincide with the off time t3 of the reverse blocking IGBT1. As described above, since the switching speed of the P-channel MOSFET 20 is faster than that of the reverse blocking IGBT, there is no particular problem even if the timing of the off signal is the same as that of the P-channel MOSFET 20 and the reverse blocking IGBTs 1 and 2.
By turning on / off the P-channel MOSFET 20 at the above timing by the control circuit 25A of FIG. 3, it is possible to prevent the breakdown due to the inflow of the main circuit current to the MOSFET 20.

なお、逆阻止IGBT1,2がオフするより前の時刻で、PチャンネルMOSFET20を意図的にオフさせてもよい。
また、逆阻止IGBT1,2の何れか一方がオンしているときにPチャンネルMOSFET20をオフさせてもよい。
Note that the P-channel MOSFET 20 may be intentionally turned off at a time before the reverse blocking IGBTs 1 and 2 are turned off.
Further, the P-channel MOSFET 20 may be turned off when any one of the reverse blocking IGBTs 1 and 2 is turned on.

更に、上記第1実施形態及び第2実施形態は、例えば図5に示すように、逆耐圧を有さないIGBT28,29と、これらにそれぞれ順接続されるダイオード30,31とを用いて構成した双方向スイッチにも適用することができる。
なお、この構成は請求項3の発明に相当するものである。
この場合、IGBT28とダイオード30との直列回路が各請求項における第1の半導体スイッチに相当し、IGBT29とダイオード31との直列回路が各請求項における第2の半導体スイッチに相当する。
Furthermore, the first embodiment and the second embodiment are configured by using IGBTs 28 and 29 having no reverse breakdown voltage and diodes 30 and 31 respectively connected in order to each other as shown in FIG. It can also be applied to a bidirectional switch.
This configuration corresponds to the invention of claim 3.
In this case, a series circuit of the IGBT 28 and the diode 30 corresponds to the first semiconductor switch in each claim, and a series circuit of the IGBT 29 and the diode 31 corresponds to the second semiconductor switch in each claim.

前述したように、従来では、図7に示したようなマトリクスコンバータにおいて、絶縁電源を確保するためにDC/DCコンバータが6個必要であったのに対し、本発明の実施形態では、例えば、逆阻止IGBT1,3,5、同7,9,11、同13,15,17という3つの逆阻止IGBT群にそれぞれ絶縁電源を設ければよいことになり、絶縁電源の個数の削減によって装置全体の小型軽量化、低価格化に寄与するものである。   As described above, conventionally, in the matrix converter as shown in FIG. 7, six DC / DC converters are required to secure an insulated power supply, whereas in the embodiment of the present invention, for example, It is only necessary to provide an isolated power source for each of the three reverse blocking IGBT groups of reverse blocking IGBTs 1, 3, 5, 7, 9, 11, 13, 15, and 17. This contributes to the reduction in size and weight and price.

本発明の第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of this invention. 第1実施形態におけるコンデンサの充電経路を示す図である。It is a figure which shows the charge path | route of the capacitor | condenser in 1st Embodiment. 本発明の第2実施形態の主要部を示す構成図である。It is a block diagram which shows the principal part of 2nd Embodiment of this invention. 第2実施形態における各スイッチの駆動信号のタイミングチャートである。It is a timing chart of the drive signal of each switch in a 2nd embodiment. IGBT及びダイオードを用いた双方向スイッチの構成図である。It is a block diagram of the bidirectional | two-way switch using IGBT and a diode. 逆阻止IGBTを用いた双方向スイッチの構成図である。It is a block diagram of the bidirectional | two-way switch using reverse blocking IGBT. マトリクスコンバータの回路構成図である。It is a circuit block diagram of a matrix converter.

符号の説明Explanation of symbols

1〜18:逆阻止IGBT
19:直流電源
20:PチャンネルMOSFET
21:ダイオード
22:コンデンサ
23〜25,25A:駆動回路
26:アンド回路
27:オンディレイ回路
28,29:IGBT
30,31:ダイオード
100:駆動電源回路
1-18: Reverse blocking IGBT
19: DC power supply 20: P-channel MOSFET
21: Diode 22: Capacitor 23-25, 25A: Drive circuit 26: AND circuit 27: On-delay circuit 28, 29: IGBT
30, 31: Diode 100: Drive power supply circuit

Claims (9)

第1の半導体スイッチと第2の半導体スイッチとが逆並列接続されてなる双方向スイッチを駆動するために、第1の半導体スイッチの駆動回路及び第2の半導体スイッチの駆動回路に電源を供給する双方向スイッチの駆動電源回路において、
第1の半導体スイッチの駆動回路に電源を供給する直流電源と、
第2の半導体スイッチの駆動回路に電源を供給するコンデンサと、
前記直流電源と前記コンデンサとの間に直列に接続され、かつ、そのオン時に第1または第2の半導体スイッチを介して前記直流電源により前記コンデンサを充電するための駆動電源用半導体スイッチと、
を備えたことを特徴とする双方向スイッチの駆動電源回路。
Power is supplied to the drive circuit of the first semiconductor switch and the drive circuit of the second semiconductor switch in order to drive the bidirectional switch in which the first semiconductor switch and the second semiconductor switch are connected in antiparallel. In the drive power supply circuit of the bidirectional switch,
A DC power supply for supplying power to the drive circuit of the first semiconductor switch;
A capacitor for supplying power to the drive circuit of the second semiconductor switch;
A drive power supply semiconductor switch connected in series between the DC power supply and the capacitor and charging the capacitor with the DC power supply via the first or second semiconductor switch when turned on;
A drive power supply circuit for a bidirectional switch, comprising:
請求項1に記載した双方向スイッチの駆動電源回路において、
第1の半導体スイッチ及び第2の半導体スイッチを、逆耐圧を有する半導体スイッチング素子により構成したことを特徴とする双方向スイッチの駆動電源回路。
In the bidirectional switch drive power supply circuit according to claim 1,
A drive power supply circuit for a bidirectional switch, wherein the first semiconductor switch and the second semiconductor switch are constituted by semiconductor switching elements having a reverse breakdown voltage.
請求項1に記載した双方向スイッチの駆動電源回路において、
第1の半導体スイッチ及び第2の半導体スイッチを、逆耐圧を有しない半導体スイッチング素子と、この半導体スイッチング素子に順接続されたダイオードとによって構成したことを特徴とする双方向スイッチの駆動電源回路。
In the bidirectional switch drive power supply circuit according to claim 1,
A drive power supply circuit for a bidirectional switch, wherein the first semiconductor switch and the second semiconductor switch are configured by a semiconductor switching element having no reverse withstand voltage and a diode connected in order to the semiconductor switching element.
請求項1〜3の何れか1項に記載した双方向スイッチの駆動電源回路において、
前記駆動電源用半導体スイッチを、逆耐圧を有する半導体スイッチング素子により構成したことを特徴とする双方向スイッチの駆動電源回路。
In the bidirectional switch drive power supply circuit according to any one of claims 1 to 3,
A drive power supply circuit for a bidirectional switch, wherein the drive power supply semiconductor switch is constituted by a semiconductor switching element having a reverse breakdown voltage.
請求項1〜3の何れか1項に記載した双方向スイッチの駆動電源回路において、
前記駆動電源用半導体スイッチを、逆耐圧を有しない半導体スイッチング素子と、この半導体スイッチング素子に順接続されたダイオードとによって構成したことを特徴とする双方向スイッチの駆動電源回路。
In the bidirectional switch drive power supply circuit according to any one of claims 1 to 3,
A drive power supply circuit for a bidirectional switch, characterized in that the drive power supply semiconductor switch is constituted by a semiconductor switching element having no reverse breakdown voltage and a diode sequentially connected to the semiconductor switching element.
請求項5に記載した双方向スイッチの駆動電源回路において、
前記駆動電源用半導体スイッチを構成する半導体スイッチング素子が、PチャンネルMOSFETまたはPチャンネルIGBTもしくはPNPトランジスタであることを特徴とする双方向スイッチの駆動電源回路。
In the bidirectional switch drive power supply circuit according to claim 5,
A bidirectional switching drive power supply circuit, wherein the semiconductor switching element constituting the drive power supply semiconductor switch is a P-channel MOSFET, a P-channel IGBT, or a PNP transistor.
請求項1〜6の何れか1項に記載した双方向スイッチの駆動電源回路において、
第1の半導体スイッチ、第2の半導体スイッチ及び前記駆動電源用半導体スイッチを、同時にオンオフさせることを特徴とする双方向スイッチの駆動電源回路。
In the drive power supply circuit of the bidirectional switch according to any one of claims 1 to 6,
A bidirectional switch drive power supply circuit, wherein the first semiconductor switch, the second semiconductor switch, and the drive power supply semiconductor switch are simultaneously turned on and off.
請求項1〜6の何れか1項に記載した双方向スイッチの駆動電源回路において、
前記駆動電源用半導体スイッチを、第1の半導体スイッチ及び第2の半導体スイッチの両方または一方がオンしているときにオンさせることを特徴とする双方向スイッチの駆動電源回路。
In the drive power supply circuit of the bidirectional switch according to any one of claims 1 to 6,
A drive power supply circuit for a bidirectional switch, wherein the drive power supply semiconductor switch is turned on when both or one of the first semiconductor switch and the second semiconductor switch is turned on.
請求項1〜6の何れか1項に記載した双方向スイッチの駆動電源回路において、
前記駆動電源用半導体スイッチを、第1の半導体スイッチ及び第2の半導体スイッチの両方がオンしてから一定時間経過後にオンさせることを特徴とする双方向スイッチの駆動電源回路。
In the drive power supply circuit of the bidirectional switch according to any one of claims 1 to 6,
A bidirectional switch drive power supply circuit, wherein the drive power supply semiconductor switch is turned on after a lapse of a predetermined time since both the first semiconductor switch and the second semiconductor switch are turned on.
JP2004191253A 2004-06-29 2004-06-29 Bidirectional switch drive power supply circuit Active JP4470616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191253A JP4470616B2 (en) 2004-06-29 2004-06-29 Bidirectional switch drive power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191253A JP4470616B2 (en) 2004-06-29 2004-06-29 Bidirectional switch drive power supply circuit

Publications (2)

Publication Number Publication Date
JP2006014549A true JP2006014549A (en) 2006-01-12
JP4470616B2 JP4470616B2 (en) 2010-06-02

Family

ID=35781103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191253A Active JP4470616B2 (en) 2004-06-29 2004-06-29 Bidirectional switch drive power supply circuit

Country Status (1)

Country Link
JP (1) JP4470616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108427A1 (en) * 2006-03-23 2007-09-27 Kagoshima University Voltage regulator
JP2007267486A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Converter
JP2007312480A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Three-phase inverter circuit
JP2010259241A (en) * 2009-04-27 2010-11-11 Nissan Motor Co Ltd Switching control circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108427A1 (en) * 2006-03-23 2007-09-27 Kagoshima University Voltage regulator
JP4872090B2 (en) * 2006-03-23 2012-02-08 国立大学法人 鹿児島大学 Voltage regulator
JP2007267486A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Converter
JP2007312480A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Three-phase inverter circuit
JP4689530B2 (en) * 2006-05-17 2011-05-25 三菱電機株式会社 Three-phase inverter circuit
JP2010259241A (en) * 2009-04-27 2010-11-11 Nissan Motor Co Ltd Switching control circuit

Also Published As

Publication number Publication date
JP4470616B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US9019000B2 (en) Driver circuit having a storage device for driving switching device
JP4456569B2 (en) Power switching element drive circuit
US7782098B2 (en) Drive circuit and inverter for voltage driving type semiconductor device
JP5975833B2 (en) Power converter
US7911192B2 (en) High voltage power regulation using two power switches with low voltage transistors
US20120033474A1 (en) Highly efficient half-bridge dc-ac converter
JP2006314154A (en) Power converter
CN104067495A (en) Driver circuit
US8106635B2 (en) Power converter
JP2010035389A (en) Inverter circuit
JP6065808B2 (en) Semiconductor device and semiconductor module
JP6512193B2 (en) Transistor drive circuit
JP2010200560A (en) Gate driver circuit
JP2017188977A (en) Semiconductor device
JP4470616B2 (en) Bidirectional switch drive power supply circuit
US9219412B2 (en) Buck converter with reverse current protection, and a photovoltaic system
CN110752739B (en) Power equipment driving device
JP7052757B2 (en) Switch drive
JP2014150654A (en) Gate Drive circuit
JP2006223032A (en) Switching device
JP5810973B2 (en) Switching element drive circuit
JP4455090B2 (en) Capacitor discharge circuit
JP6939087B2 (en) Integrated circuit equipment
JP2005091136A (en) Switching circuit and voltage measuring circuit
JP6642074B2 (en) Driving device for switching element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250