JP2005307011A - pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR - Google Patents

pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2005307011A
JP2005307011A JP2004126231A JP2004126231A JP2005307011A JP 2005307011 A JP2005307011 A JP 2005307011A JP 2004126231 A JP2004126231 A JP 2004126231A JP 2004126231 A JP2004126231 A JP 2004126231A JP 2005307011 A JP2005307011 A JP 2005307011A
Authority
JP
Japan
Prior art keywords
fine particles
conjugated
polymer composite
conjugated polymer
composite fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004126231A
Other languages
Japanese (ja)
Inventor
Yuji Hirose
有志 広瀬
Genji Imai
玄児 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2004126231A priority Critical patent/JP2005307011A/en
Publication of JP2005307011A publication Critical patent/JP2005307011A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite particulate between an electroconductive polymer and a non-conductive inorganic particulate, which has a high whiteness and can be easily produced without leaving a polymerizing and oxidizing agent in a system. <P>SOLUTION: In the subject π-conjugated macromolecular composite particulate, the surface of the inorganic particulate (I) is coated with a composite (II) of the polymer (b) having a conjugated π electron and an inorganic oxide (c). The π-conjugated macromolecular composite particulate is produced by adding a monomer capable of forming the polymer (b) having the conjugated π electron and an aqueous peroxotitanic acid solution to an aqueous medium wherein the inorganic particulate (I) is dispersed and subsequently polymerizing the monomer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性を有するπ共役系高分子複合微粒子及びその製造方法に関する。   The present invention relates to a conductive π-conjugated polymer composite fine particle and a method for producing the same.

プラスチックなどの絶縁性基材表面に電気導電性を付与する手法としては、例えば金属の無電解めっき、金属箔の蒸着、導電性塗料の塗装などが挙げられる。金属の無電解めっきでは、適用できる基材は限定される場合が多く、また工程が複雑で、重金属イオンやシアン化合物等を含む有害な廃液が大量に排出される不具合がある。また金属の蒸着は、真空下で行われるので、大型の設備が必要となる。これらに対して導電性塗料の塗装は、施工が非常に容易であるが、塗料中に導電成分が必須となる。   Examples of techniques for imparting electrical conductivity to the surface of an insulating base material such as plastic include electroless plating of metal, vapor deposition of metal foil, and coating of conductive paint. In electroless plating of metals, applicable substrates are often limited, and the process is complicated, and there is a problem that a large amount of harmful waste liquid containing heavy metal ions, cyanide compounds, and the like is discharged. In addition, since metal deposition is performed under vacuum, a large facility is required. On the other hand, the application of the conductive paint is very easy to construct, but a conductive component is essential in the paint.

従来、導電成分としては、無機系の導電性顔料や金属微粒子などが使用されている。錫やアンチモン系の酸化物である導電性顔料は、淡色又は透明であるが、非常に高価である。またアルミ粉などの金属微粒子は、比較的安価であるが、耐食性に問題があった。一方、ポリアニリンなどの導電性高分子と非導電性の無機微粒子との複合体についても種々提案されている(例えば特許文献1〜3参照)。   Conventionally, inorganic conductive pigments and metal fine particles have been used as the conductive component. Conductive pigments that are tin or antimony oxides are light or transparent, but are very expensive. Metal fine particles such as aluminum powder are relatively inexpensive, but have a problem with corrosion resistance. On the other hand, various composites of conductive polymers such as polyaniline and nonconductive inorganic fine particles have been proposed (see, for example, Patent Documents 1 to 3).

特公平6−62887号公報Japanese Examined Patent Publication No. 6-62887 特開平8−297295号公報JP-A-8-297295 特開平11−241021号公報JP-A-11-2441021

上記複合体である微粒子は、白色度が低く、また無機微粒子の水分散液中にアニリンなどのモノマーと有機過酸物や重金属塩などの重合酸化剤を添加し、モノマーを重合させて得られるものであり、系中に重合酸化剤が残留するため、塗料などに配合した際に悪影響を及ぼす場合があった。   The fine particles which are the above composite have low whiteness, and are obtained by adding a monomer such as aniline and a polymerization oxidizing agent such as an organic peroxide or heavy metal salt to an aqueous dispersion of inorganic fine particles and polymerizing the monomer. Since the polymerization oxidant remains in the system, it may have an adverse effect when blended with paints.

本発明の目的は、白色度が高く、且つ系中に重合酸化剤が残留することなく容易に製造可能な、導電性高分子と非導電性の無機微粒子との複合微粒子を提供することにある。   An object of the present invention is to provide composite fine particles of a conductive polymer and non-conductive inorganic fine particles that have high whiteness and can be easily produced without any polymerization oxidant remaining in the system. .

本発明者らは、上記した課題を解決するにあたって、無機微粒子の表面を、共役π電子を有するポリマーと無機酸化物との複合体によって被覆することにより、白色度の比較的高い複合微粒子が得られることを見出し、特に重合酸化剤としてペルオキソチタン酸水溶液を使用することにより、該重合酸化剤が系中に残留することなく容易に非導電性の無機微粒子が導電性高分子と酸化チタンとの複合体によって被覆された複合微粒子が得られることを見出して、本発明を完成させるに至った。   In solving the above-mentioned problems, the present inventors obtained composite fine particles having a relatively high whiteness by covering the surface of the inorganic fine particles with a complex of a polymer having conjugated π electrons and an inorganic oxide. In particular, by using a peroxotitanic acid aqueous solution as a polymerization oxidant, non-conductive inorganic fine particles can easily be formed between a conductive polymer and titanium oxide without the polymerization oxidant remaining in the system. The inventors have found that composite fine particles coated with the composite can be obtained, and have completed the present invention.

すなわち本発明は、無機微粒子(I)の表面が、共役π電子を有するポリマー(b)と無機酸化物(c)との複合体(II)によって被覆されていることを特徴とするπ共役系高分子複合微粒子、無機微粒子(I)を分散してなる水系媒体中に、共役π電子を有するポリマー(b)を形成し得るモノマー及びペルオキソチタン酸水溶液を添加した後、該モノマーを重合させることによって製造される上記π共役系高分子複合微粒子の製造方法、該π共役系高分子複合微粒子を含有する成形体、該π共役系高分子複合微粒子を含有する防食剤、該π共役系高分子複合微粒子を含有するコーティング剤、及び該コーティング剤が塗布された塗装物品に関する。   That is, in the present invention, the surface of the inorganic fine particles (I) is covered with a complex (II) of a polymer (b) having a conjugated π electron and an inorganic oxide (c). A monomer capable of forming a polymer (b) having a conjugated π electron and an aqueous peroxotitanic acid solution are added to an aqueous medium in which polymer composite fine particles and inorganic fine particles (I) are dispersed, and then the monomers are polymerized. Method for producing the above-mentioned π-conjugated polymer composite fine particles produced by the method, a molded product containing the π-conjugated polymer composite fine particles, an anticorrosive containing the π-conjugated polymer composite fine particles, and the π-conjugated polymer The present invention relates to a coating agent containing composite fine particles and a coated article to which the coating agent is applied.

本発明によれば、酸化チタン、酸化珪素などの無機微粒子の表面を、共役π電子を有するポリマーと無機酸化物との複合体によって被覆することにより、白色度の比較的高い複合微粒子を得ることが可能である。特に重合酸化剤としてペルオキソチタン酸水溶液を使用することにより、非導電性の無機微粒子が導電性高分子と酸化チタンとの複合体によって被覆された複合微粒子を、系中に重合酸化剤が残留する等の不具合なく、容易に製造することができる。本発明のπ共役系高分子複合微粒子は、導電付与剤、防食付与剤として有用である。   According to the present invention, composite fine particles having relatively high whiteness can be obtained by coating the surface of inorganic fine particles such as titanium oxide and silicon oxide with a composite of a polymer having conjugated π electrons and an inorganic oxide. Is possible. In particular, by using a peroxotitanic acid aqueous solution as a polymerization oxidant, the polymerization oxidant remains in the system of composite fine particles in which non-conductive inorganic fine particles are coated with a composite of a conductive polymer and titanium oxide. It can be manufactured easily without any problems such as. The π-conjugated polymer composite fine particles of the present invention are useful as a conductivity imparting agent and an anticorrosion imparting agent.

本発明のπ共役系高分子複合微粒子は、無機微粒子(I)の表面が、共役π電子を有するポリマー(b)と無機酸化物(c)との複合体(II)によって被覆されるものである。   In the π-conjugated polymer composite fine particle of the present invention, the surface of the inorganic fine particle (I) is coated with a complex (II) of a polymer (b) having a conjugated π electron and an inorganic oxide (c). is there.

上記無機微粒子(I)としては、例えば銅、鉄、ニッケル、アルミニウム、亜鉛などの金属微粉末;無定形炭素、コークス、黒鉛、難黒鉛化炭素などの炭素微粉末;酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化珪素、珪酸リチウム、酸化チタン、酸化ゲルマニウム、酸化マグネシウム、酸化バナジウム、酸化マンガンなどの無機酸化物微粒子;リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の燐酸塩や亜燐酸塩などの無機燐酸塩微粒子などが挙げられ、これらのうち特に無機酸化物(a)の微粒子であることが望ましい。   Examples of the inorganic fine particles (I) include fine metal powders such as copper, iron, nickel, aluminum and zinc; fine carbon powders such as amorphous carbon, coke, graphite and non-graphitizable carbon; magnesium oxide, calcium oxide and oxidation. Inorganic oxide fine particles such as aluminum, silicon oxide, lithium silicate, titanium oxide, germanium oxide, magnesium oxide, vanadium oxide and manganese oxide; phosphates and phosphites such as lithium, sodium, potassium, magnesium, calcium and aluminum Examples thereof include inorganic phosphate fine particles. Among these, inorganic oxide (a) fine particles are particularly desirable.

無機酸化物(a)としては、特に酸化チタン、酸化珪素であることが望ましく、さらに共役π電子を有するポリマー(b)の付着性や物理的安定性の点からは、酸化チタンであることが好適である。   The inorganic oxide (a) is particularly preferably titanium oxide or silicon oxide. Further, from the viewpoint of the adhesion and physical stability of the polymer (b) having conjugated π electrons, it is preferably titanium oxide. Is preferred.

上記無機微粒子(I)は、その平均粒子径が30nm〜5μm、好ましくは50nm〜3μmの範囲内であることが、安定性と導電性の点から望ましい。   The inorganic fine particles (I) preferably have an average particle diameter in the range of 30 nm to 5 μm, preferably 50 nm to 3 μm from the viewpoint of stability and conductivity.

共役π電子を有するポリマー(b)は、該ポリマーを形成し得るモノマー、例えば、アセチレン、ベンゼン、アニリン、ピロール、チオフェン、フラン、もしくはこれらの置換誘導体等のモノマーを単独で、又は2種以上選択して重合してなる重合体又は共重合体である。これらのうち、特にアニリン、ピロール、チオフェン、及びこれらの置換誘導体からなる群より選ばれる少なくとも1種以上のモノマーを重合してなる重合体又は共重合体が好適であり、さらに好ましくはアニリンをモノマーとして重合してなる重合体又は共重合体が、安定性や反応性の点から好適である。上記モノマーの置換基としては、例えば炭素数1〜30のアルキル基、アルコキシル基、アルキレンオキシド基、スルホン酸基、アルキレンスルホン酸基などが挙げられる。   As the polymer (b) having a conjugated π electron, a monomer capable of forming the polymer, for example, a monomer such as acetylene, benzene, aniline, pyrrole, thiophene, furan, or a substituted derivative thereof is selected alone or in combination of two or more. A polymer or copolymer obtained by polymerization. Among these, in particular, a polymer or copolymer obtained by polymerizing at least one monomer selected from the group consisting of aniline, pyrrole, thiophene, and substituted derivatives thereof is preferable, and more preferably aniline is a monomer. From the viewpoint of stability and reactivity, a polymer or copolymer obtained by polymerization as is preferred. Examples of the substituent of the monomer include an alkyl group having 1 to 30 carbon atoms, an alkoxyl group, an alkylene oxide group, a sulfonic acid group, and an alkylene sulfonic acid group.

無機酸化物(c)は、上記共役π電子を有するポリマー(b)と複合体を形成し得るものであれば特に制限されるものではないが、製法上、特に酸化チタンが好適である。   The inorganic oxide (c) is not particularly limited as long as it can form a complex with the polymer (b) having the conjugated π electron, but titanium oxide is particularly preferable in terms of the production method.

上記複合体(II)における共役π電子を有するポリマー(b)及び無機酸化物(c)の存在比は、重量比で1/99〜99/1、好ましくは30/70〜70/30の範囲内であることが、導電性や微粒子粒子径の均一性等の点から望ましい。   The abundance ratio of the polymer (b) having a conjugated π electron and the inorganic oxide (c) in the complex (II) is in the range of 1/99 to 99/1, preferably 30/70 to 70/30 by weight. It is desirable from the viewpoint of conductivity and uniformity of the particle size of the fine particles.

本発明の複合微粒子においては、上記無機微粒子(I)及び複合体(II)の存在比が、重量比で10/90〜99/1、好ましくは30/70〜70/30の範囲内であることが、導電性や微粒子粒子径の均一性等の点から望ましい。   In the composite fine particles of the present invention, the abundance ratio of the inorganic fine particles (I) and the composite (II) is in the range of 10/90 to 99/1, preferably 30/70 to 70/30, by weight. It is desirable from the viewpoints of conductivity and uniformity of fine particle diameter.

本発明の複合微粒子は、上記無機微粒子(I)上において、共役π電子を有するポリマー(b)を形成し得るモノマーの重合、及び形成されるポリマー(b)と無機酸化物(c)との複合体による被覆をなし得る方法であれば、特に制限なく製造可能であり、特に本発明では、上記無機微粒子(I)を分散してなる水系媒体中に、共役π電子を有するポリマー(b)を形成し得るモノマー及びペルオキソチタン酸水溶液を添加した後、該モノマーを重合させることによって、共役π電子を有するポリマー(b)及び酸化チタンの複合体であるπ共役系高分子複合微粒子を好適に製造できる。   The composite fine particles of the present invention are obtained by polymerizing monomers capable of forming a polymer (b) having conjugated π electrons on the inorganic fine particles (I), and the formed polymer (b) and the inorganic oxide (c). Any method that can be coated with a composite can be produced without any particular limitation. In particular, in the present invention, a polymer (b) having conjugated π electrons in an aqueous medium in which the inorganic fine particles (I) are dispersed. After the addition of the monomer capable of forming an aqueous solution and a peroxotitanic acid aqueous solution, the monomer is polymerized, whereby the polymer (b) having a conjugated π electron and the π-conjugated polymer composite fine particle, which is a composite of titanium oxide, are suitably obtained. Can be manufactured.

本発明においてペルオキソチタン酸水溶液は、重合酸化剤として使用されるものであり、通常、金属チタン、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、メタチタン酸、水酸化チタン、及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られる。上記チタン化合物のうち、特に加水分解性チタン化合物が反応性の点から好ましい。   In the present invention, the peroxotitanic acid aqueous solution is used as a polymerization oxidizing agent, and is usually metal titanium, hydrolyzable titanium compound, low condensate of hydrolyzable titanium compound, metatitanic acid, titanium hydroxide, and water. It can be obtained by mixing at least one titanium compound selected from the group consisting of low condensation products of titanium oxide with hydrogen peroxide. Among the titanium compounds, hydrolyzable titanium compounds are particularly preferable from the viewpoint of reactivity.

上記加水分解性チタン化合物としては、特に一般式(1)
Ti(OR) (1)
(式中、Rは同一又は異なって、炭素数1〜5のアルキル基を示す。)で表されるテトラアルコキシチタンが好ましく、特にテトライソプロポキシチタン、テトラエトキシチタンなどが好適である。また水酸化チタン化合物もしくは加水分解性チタン化合物の低縮合物としては、縮合度2〜30程度のものが好ましい。
As the hydrolyzable titanium compound, in particular, the general formula (1)
Ti (OR) 4 (1)
(In the formula, R is the same or different and represents an alkyl group having 1 to 5 carbon atoms). Moreover, as a low-condensate of a titanium hydroxide compound or a hydrolyzable titanium compound, a thing with a condensation degree of about 2-30 is preferable.

上記ペルオキソチタン酸水溶液において、上記チタン化合物と過酸化水素水とは、前者が100重量部に対して、後者が過酸化水素換算で1〜1,000重量部、好ましくは10〜200重量部の割合で混合することが好適である。後者が過酸化水素換算で1重量部未満になると安定で均一な水溶液が得られず、また長期貯蔵が困難となり、一方1,000重量部を越えると酸素分圧が高くなり、発泡性が強くなって貯蔵不安定になるなので好ましくない。   In the aqueous peroxotitanic acid solution, the titanium compound and the hydrogen peroxide solution are used in an amount of 1 to 1,000 parts by weight, preferably 10 to 200 parts by weight in terms of hydrogen peroxide, with respect to the former being 100 parts by weight. Mixing in proportions is preferred. If the latter is less than 1 part by weight in terms of hydrogen peroxide, a stable and uniform aqueous solution cannot be obtained, and long-term storage becomes difficult. On the other hand, if it exceeds 1,000 parts by weight, the oxygen partial pressure becomes high and the foamability is strong. Since it becomes unstable storage, it is not preferable.

過酸化水素水の過酸化水素濃度は、特に限定されないが、3〜30重量%の範囲内であることが取り扱い易さの点から好ましい。   The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but is preferably in the range of 3 to 30% by weight from the viewpoint of ease of handling.

上記チタン化合物と過酸化水素水との混合は、通常、1〜70℃程度で10分〜20時間程度攪拌下に行なうことが望ましく、混合の際には必要に応じて、例えば、メタノール、エタノール、n−プロパノール、iso−イソプロパノールなどのアルコール系;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのアルコールエーテル系等の水可溶性有機溶剤を使用することもできる。   The mixing of the titanium compound and the hydrogen peroxide solution is usually preferably performed at about 1 to 70 ° C. with stirring for about 10 minutes to 20 hours. When mixing, for example, methanol or ethanol is used as necessary. Water-soluble organic solvents such as alcohols such as n-propanol and iso-isopropanol; alcohol ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether can also be used.

上記ペルオキソチタン酸水溶液は、上記チタン化合物を過酸化水素水と混合させることにより、前者が水で加水分解されて水酸基含有チタン化合物を生成し、次いでこの水酸基含有チタン化合物に過酸化水素が直ちに配位してペルオキソチタン酸を形成することにより得られるものと推察される。このペルオキソチタン酸水溶液は、室温域で安定性が高く長期の保存に耐える。   In the peroxotitanic acid aqueous solution, by mixing the titanium compound with hydrogen peroxide solution, the former is hydrolyzed with water to form a hydroxyl group-containing titanium compound, and then hydrogen peroxide is immediately distributed to the hydroxyl group-containing titanium compound. It is inferred that it is obtained by forming peroxotitanic acid at the same position. This aqueous solution of peroxotitanic acid is highly stable at room temperature and can withstand long-term storage.

水性媒体中に分散させる無機微粒子(I)は、水性媒体100重量部に対して1〜40重量部、好ましくは5〜20重量部の範囲内で添加されることが好適である。   The inorganic fine particles (I) to be dispersed in the aqueous medium are preferably added in the range of 1 to 40 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the aqueous medium.

水性媒体中に添加するモノマーは、水性媒体100重量部に対して1〜20重量部、好ましくは5〜10重量部の範囲内で添加されることが好適である。該モノマーの添加時には、必要に応じて硫酸、塩酸、硝酸、過塩素酸、リン酸などの無機酸やカルボン酸やスルホン酸などの有機酸性化合物などを、安定性の点から適宜配合するのが望ましい。   The monomer to be added to the aqueous medium is preferably added in the range of 1 to 20 parts by weight, preferably 5 to 10 parts by weight with respect to 100 parts by weight of the aqueous medium. When the monomer is added, an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, or an organic acidic compound such as carboxylic acid or sulfonic acid may be appropriately added from the viewpoint of stability. desirable.

ペルオキソチタン酸水溶液は、モノマー1モルに対してペルオキソチタン酸が0.1モル以上、好ましくは0.5〜5モルとなるように添加されることが、モノマーの反応性等の点から好適である。   The aqueous peroxotitanic acid solution is preferably added so that the amount of peroxotitanic acid is 0.1 mol or more, preferably 0.5 to 5 mol per mol of the monomer, from the viewpoint of the reactivity of the monomer. is there.

上記水性媒体は、水以外に必要に応じて、アルコールやケトンなどの有機溶剤を適宜含有することができる。また上記ペルオキソチタン酸水溶液以外に公知の重合酸化剤、例えば過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;硫酸第二鉄、三塩化鉄、塩化第二銅などを、水性媒体中に適宜添加しても良い。   The aqueous medium can appropriately contain an organic solvent such as alcohol or ketone, if necessary, in addition to water. In addition to the peroxotitanic acid aqueous solution, a known polymerization oxidant, for example, persulfate such as ammonium persulfate or potassium persulfate; ferric sulfate, iron trichloride, cupric chloride, etc. may be appropriately added to the aqueous medium. May be.

モノマーの重合反応は、攪拌下、常温で容易に進行するが、必要に応じて約−20〜35℃、好ましくは−5〜30℃に制御することが望ましく、反応時間は約1〜10時間、好ましくは2〜5時間が適当である。   The monomer polymerization reaction proceeds easily at room temperature with stirring, but it is desirable to control the polymerization to about -20 to 35 ° C, preferably -5 to 30 ° C as necessary, and the reaction time is about 1 to 10 hours. Preferably, 2 to 5 hours is appropriate.

本発明のπ共役系高分子複合微粒子は、水性媒体中に分散した状態で得られ、必要に応じて、ろ過などによって水性媒体から分離し、洗浄後、湿潤状態で取り出したり、或いは乾燥して粉末とすることができる。   The π-conjugated polymer composite fine particles of the present invention are obtained in a state of being dispersed in an aqueous medium. If necessary, the π-conjugated polymer composite fine particles are separated from the aqueous medium by filtration or the like, washed, then taken out in a wet state, or dried. It can be a powder.

本発明のπ共役系高分子複合微粒子は、導電剤や帯電防止剤として、また防食剤として使用することができ、例えば熱可塑性樹脂等と混練して、成形物、フィルム、シート、繊維などの成形体に加工して用いることができ、他の樹脂や添加剤と併用してあるいは併用せずに、水や有機溶剤などの溶媒に分散させて、塗料、接着剤、処理剤などのコーティング剤として用いることができる。   The π-conjugated polymer composite fine particles of the present invention can be used as a conductive agent, an antistatic agent, and an anticorrosive agent. For example, the π-conjugated polymer composite fine particles are kneaded with a thermoplastic resin, etc. Can be processed into a molded product and used in coatings such as paints, adhesives, and processing agents by dispersing in water or organic solvents with or without other resins and additives. Can be used as

成形体における本発明のπ共役系高分子複合微粒子の含有量は、その形状や目的によって適宜選択可能であるが、通常、成形体中に30〜90重量%、好ましくは50〜80重量%の範囲内であることが適当である。またコーティング剤における本発明のπ共役系高分子複合微粒子の含有量は、その目的によって適宜選択可能であるが、通常、コーティング剤固形分中に5〜50重量%、好ましくは10〜30重量%の範囲内であることが適当である。   The content of the π-conjugated polymer composite fine particles of the present invention in the molded product can be appropriately selected depending on the shape and purpose, but is usually 30 to 90% by weight, preferably 50 to 80% by weight in the molded product. It is appropriate to be within the range. The content of the π-conjugated polymer composite fine particles of the present invention in the coating agent can be appropriately selected depending on the purpose, but is usually 5 to 50% by weight, preferably 10 to 30% by weight in the solid content of the coating agent. It is appropriate to be within the range.

以下、実施例により本発明をさらに説明する。   Hereinafter, the present invention will be further described by examples.

実施例1
30%過酸化水素水213gと純水233gを内容積2リットルのフラスコに入れて、液温を0〜5℃に保ち、激しく撹拌しながら、チタンテトライソプロポキシド54gを1時間かけてフラスコ内へゆっくりと滴下した。添加終了後、液温を0〜5℃に保ちながら約3時間撹拌し、黄褐色のペルオキソチタン酸水溶液(T−1)を得た。
Example 1
Put 213 g of 30% hydrogen peroxide and 233 g of pure water in a 2 liter flask, keep the liquid temperature at 0-5 ° C. It was dripped slowly. After completion of the addition, the mixture was stirred for about 3 hours while maintaining the liquid temperature at 0 to 5 ° C. to obtain a yellowish brown peroxotitanic acid aqueous solution (T-1).

次に、内容積200ccのフラスコ内に、純水90gと酸化チタン微粒子(石原産業社製、「酸化チタンCR−95」)10gとを入れ、さらに上記ペルオキソチタン酸水溶液(T−1)を100g入れて、液温を0〜5℃に保ちながら、激しく撹拌した。次に、アニリン5.0gと98%硫酸5.4gを同時に添加し、激しく撹拌しながら20℃以下の温度で5時間保持すると、薄緑色微粒子を含む分散液が得られた。この微粒子の平均粒子径は、動的光散乱法による測定で約1.5μmであった。   Next, 90 g of pure water and 10 g of titanium oxide fine particles (“Titanium oxide CR-95” manufactured by Ishihara Sangyo Co., Ltd.) are placed in a 200 cc flask, and 100 g of the peroxotitanic acid aqueous solution (T-1) is further added. The mixture was vigorously stirred while maintaining the liquid temperature at 0 to 5 ° C. Next, 5.0 g of aniline and 5.4 g of 98% sulfuric acid were added simultaneously and kept at a temperature of 20 ° C. or lower with vigorous stirring for 5 hours to obtain a dispersion containing light green fine particles. The average particle diameter of the fine particles was about 1.5 μm as measured by a dynamic light scattering method.

上記分散液を静置して、微粒子を沈降させ、上澄液を除去し、この微粒子についてメタノールと純水で洗浄し、80℃で数時間加熱して、約16gの緑色の粉末を得た。   The dispersion was allowed to stand to precipitate fine particles, and the supernatant was removed. The fine particles were washed with methanol and pure water and heated at 80 ° C. for several hours to obtain about 16 g of green powder. .

得られた粉末を、20MPa下、約10分間圧縮成型し、錠剤ペレットを作成した。四端子法(JIS K 7194に定められている導電性の低いフィルムなどの抵抗値を測る方法で、4つの端子を用いて接触抵抗の寄与を除去して測る方法)によりペレットの電導度を測定したところ、1.1×10−3S/cmであった。 The obtained powder was compression molded under 20 MPa for about 10 minutes to prepare tablet pellets. Measures the conductivity of the pellets by the four-terminal method (a method of measuring the resistance value of a low-conductivity film, etc. defined in JIS K 7194, by removing the contribution of contact resistance using four terminals). As a result, it was 1.1 × 10 −3 S / cm.

実施例2
上記実施例1において、ペルオキソチタン酸水溶液(T−1)量を233g、アニリン量を3.0g、98%硫酸量を3.2gとする以外は実施例1と同様の方法で、約20gの緑色の粉末を得た。実施例1同様に、錠剤ペレットを作成し、電導度を測定したところ、4.0×10−4S/cmであった。
Example 2
In Example 1, the amount of peroxotitanic acid aqueous solution (T-1) was 233 g, the aniline amount was 3.0 g, and the 98% sulfuric acid amount was 3.2 g. A green powder was obtained. In the same manner as in Example 1, tablet pellets were prepared and the conductivity was measured. As a result, it was 4.0 × 10 −4 S / cm.

実施例3
上記実施例1において、ペルオキソチタン酸水溶液(T−1)量を100g、アニリン量を7.0g、98%硫酸量を7.5gとする以外は実施例1とに同様の方法で、約12gの暗緑色の粉末を得た。実施例1同様に、錠剤ペレットを作成し、電導度を測定したところ、3.3×10−3S/cmであった。
Example 3
In Example 1, the amount of peroxotitanic acid aqueous solution (T-1) was 100 g, the amount of aniline was 7.0 g, and the amount of 98% sulfuric acid was 7.5 g. Of dark green powder. In the same manner as in Example 1, tablet pellets were prepared and the electrical conductivity was measured. As a result, it was 3.3 × 10 −3 S / cm.

実施例4
上記実施例1において、ペルオキソチタン酸水溶液(T−1)量を100g、酸化チタン微粒子量を14g、アニリン量を3.0g、98%硫酸量を3.2gとする以外は実施例1と同様の方法で、約21gの緑色の粉末を得た。実施例1同様に、錠剤ペレットを作成し、電導度を測定したところ、1.0×10−4S/cmであった。
Example 4
In Example 1, the same amount as in Example 1 except that the amount of aqueous peroxotitanic acid (T-1) was 100 g, the amount of fine titanium oxide particles was 14 g, the amount of aniline was 3.0 g, and the 98% sulfuric acid amount was 3.2 g. In this way, about 21 g of green powder was obtained. It was 1.0 * 10 < -4 > S / cm when the tablet pellet was created similarly to Example 1 and the electrical conductivity was measured.

比較例1
内容積200ccのフラスコ内に、純水147gと酸化チタン微粒子(石原産業社製、「酸化チタンCR−95」)10gとを入れ、さらに35%過酸化水素水を43g入れて、液温を0〜5℃に保ちながら、激しく撹拌した。次に、アニリン5.0gと98%硫酸5.4gを同時に添加したが、反応せず、モノマーと酸化チタン微粒子が回収された。

Comparative Example 1
In a flask with an internal volume of 200 cc, 147 g of pure water and 10 g of titanium oxide fine particles (“Titanium oxide CR-95” manufactured by Ishihara Sangyo Co., Ltd.) are added, and 43 g of 35% hydrogen peroxide water is further added to bring the liquid temperature to 0. Stir vigorously while maintaining ˜5 ° C. Next, 5.0 g of aniline and 5.4 g of 98% sulfuric acid were added at the same time, but they did not react and the monomer and titanium oxide fine particles were recovered.

Claims (14)

無機微粒子(I)の表面が、共役π電子を有するポリマー(b)と無機酸化物(c)との複合体(II)によって被覆されていることを特徴とするπ共役系高分子複合微粒子。 A π-conjugated polymer composite fine particle, wherein the surface of the inorganic fine particle (I) is coated with a complex (II) of a polymer (b) having a conjugated π electron and an inorganic oxide (c). 無機微粒子(I)が、無機酸化物(a)の微粒子である請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite fine particles according to claim 1, wherein the inorganic fine particles (I) are fine particles of an inorganic oxide (a). 無機酸化物(a)が、酸化チタン、酸化珪素である請求項2記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite fine particles according to claim 2, wherein the inorganic oxide (a) is titanium oxide or silicon oxide. 共役π電子を有するポリマー(b)が、アニリン、ピロール、チオフェン、及びこれらの置換誘導体からなる群より選ばれる少なくとも1種以上のモノマーを重合してなる重合体又は共重合体である請求項1記載のπ共役系高分子複合微粒子。 2. The polymer (b) having conjugated π electrons is a polymer or copolymer obtained by polymerizing at least one monomer selected from the group consisting of aniline, pyrrole, thiophene, and substituted derivatives thereof. The π-conjugated polymer composite fine particle as described. 無機酸化物(c)が、酸化チタンである請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite fine particle according to claim 1, wherein the inorganic oxide (c) is titanium oxide. 複合体(II)における共役π電子を有するポリマー(b)及び金属酸化物(c)の存在比が、重量比で1/99〜99/1である請求項1記載のπ共役系高分子複合微粒子。 2. The π-conjugated polymer composite according to claim 1, wherein the abundance ratio of the polymer (b) having a conjugated π electron and the metal oxide (c) in the composite (II) is 1/99 to 99/1 by weight. Fine particles. 無機微粒子(I)及び複合体(II)の存在比が、重量比で10/90〜99/1である請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite fine particles according to claim 1, wherein the abundance ratio of the inorganic fine particles (I) and the composites (II) is 10/90 to 99/1 by weight. 請求項1ないし7のいずれか1項記載のπ共役系高分子複合微粒子が、無機微粒子(I)を分散してなる水系媒体中に、共役π電子を有するポリマー(b)を形成し得るモノマー及びペルオキソチタン酸水溶液を添加した後、該モノマーを重合させることによって製造されるπ共役系高分子複合微粒子の製造方法。 A monomer capable of forming a polymer (b) having conjugated π electrons in an aqueous medium in which the π-conjugated polymer composite fine particles according to claim 1 are dispersed in inorganic fine particles (I). And a method for producing π-conjugated polymer composite fine particles produced by polymerizing the monomer after adding a peroxotitanic acid aqueous solution. ペルオキソチタン酸水溶液が、金属チタン、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、メタチタン酸、水酸化チタン及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるものである請求項8記載のπ共役系高分子複合微粒子の製造方法。 The peroxotitanic acid aqueous solution is at least one titanium selected from the group consisting of metallic titanium, hydrolyzable titanium compounds, low-condensates of hydrolysable titanium compounds, metatitanic acid, titanium hydroxide, and low-condensates of titanium hydroxide. The method for producing π-conjugated polymer composite fine particles according to claim 8, wherein the compound is obtained by mixing a compound with hydrogen peroxide. ペルオキソチタン酸水溶液を、ポリマー(b)を形成し得るモノマー1モルに対してペルオキソチタン酸が0.1モル以上となるように添加してなる請求項8記載のπ共役系高分子複合微粒子の製造方法。 The π-conjugated polymer composite fine particle according to claim 8, wherein the aqueous solution of peroxotitanic acid is added so that the amount of peroxotitanic acid is 0.1 mol or more with respect to 1 mol of the monomer capable of forming the polymer (b). Production method. 請求項1ないし7のいずれか1項記載のπ共役系高分子複合微粒子を含有する成形体。 A shaped product containing the π-conjugated polymer composite fine particles according to any one of claims 1 to 7. 請求項1ないし7のいずれか1項記載のπ共役系高分子複合微粒子を含有する防食剤。 An anticorrosive containing the π-conjugated polymer composite fine particle according to any one of claims 1 to 7. 請求項1ないし7のいずれか1項記載のπ共役系高分子複合微粒子を含有するコーティング剤。 A coating agent comprising the π-conjugated polymer composite fine particles according to any one of claims 1 to 7. 請求項13記載のコーティング剤が塗布された塗装物品。

A coated article to which the coating agent according to claim 13 is applied.

JP2004126231A 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR Pending JP2005307011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126231A JP2005307011A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126231A JP2005307011A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2005307011A true JP2005307011A (en) 2005-11-04

Family

ID=35436142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126231A Pending JP2005307011A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2005307011A (en)

Similar Documents

Publication Publication Date Title
US4567250A (en) Preparation of finely divided electrically conductive pyrrole polymers
Tian et al. Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings
US4566955A (en) Preparation of finely divided electrically conductive pyrrole polymers
CN101407575B (en) High dispersibility nano-scale poly (3,4-ehtylene dioxythiophene), preparation and use thereof
CN107814378B (en) Lignin functional modification graphene and preparation method thereof
JPS59168010A (en) Manufacture of electroconductive powdery pyrrole polymer
JP2016536427A (en) Method for preparing conductive polymer composite
KR100906450B1 (en) Polyaniline/metal oxides composite and method for manufacturing thereof, and surface treatment agent with corrosion prevention property comprising the same and metal product using the same
JP2007005724A (en) Carbonaceous/conductive polymer compound material and manufacturing method thereof
CN103642365B (en) A kind of marine aluminium alloy corrosion selfreparing smart coat and preparation method thereof
Doğan et al. A novel shape-controlled synthesis of bifunctional organic polymeric nanoparticles
JP3222990B2 (en) Polymerization method in the presence of soluble polymer compound
JPH11241021A (en) Conductive polymer composite microparticle and its production
JP4385254B2 (en) Conductive fine particles and method for producing the same
JP2005307011A (en) pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR
KR101890308B1 (en) Multi-layered conductive nano particles and preparation method of the same
JP2005307010A (en) pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE
JP4415341B2 (en) Polypyrrole conductive paint
Fujii et al. One-pot synthesis of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant
JP3896350B2 (en) Conductive composition
US20040232390A1 (en) Highly conductive carbon/inherently conductive polymer composites
CN113072830A (en) Preparation method and application of polyaniline carbon nanotube core-shell composite material
JP4470175B2 (en) Conductive fine particle aqueous dispersion and process for producing the same
JP2008074894A (en) Method for producing nano-particle of conductive polymer using ionic liquid and method for producing conductive polymer composite material using the same
JPH11292957A (en) Production of electroconductive fine particle