JP2005307010A - pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE - Google Patents

pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE Download PDF

Info

Publication number
JP2005307010A
JP2005307010A JP2004126230A JP2004126230A JP2005307010A JP 2005307010 A JP2005307010 A JP 2005307010A JP 2004126230 A JP2004126230 A JP 2004126230A JP 2004126230 A JP2004126230 A JP 2004126230A JP 2005307010 A JP2005307010 A JP 2005307010A
Authority
JP
Japan
Prior art keywords
conjugated
fine particles
monomer
titanium
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004126230A
Other languages
Japanese (ja)
Inventor
Yuji Hirose
有志 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2004126230A priority Critical patent/JP2005307010A/en
Publication of JP2005307010A publication Critical patent/JP2005307010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide composite microparticles of an electrically conductive polymer and electrically nonconductive inorganic microparticles. <P>SOLUTION: The π-conjugated macromolecular composite microparticles are characterized by consisting of a composite of a conjugated π-electron-bearing polymer and a titanium oxide, being obtained by adding a monomer(A) capable of forming the π-electron-bearing polymer to an aqueous peroxotitanic acid solution(B) followed by polymerizing the monomer(A). The aqueous peroxotitanic acid solution(B) is prepared by mixing an aqueous hydrogen peroxide solution with at least one titanium compound selected from the group consisting of metallic titanium, hydrolyzable titanium compound, its oligomeric condensate, metatitanic acid, titanium hydroxide and its oligomeric condensate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性を有するπ共役系高分子複合微粒子に関する。   The present invention relates to a conductive π-conjugated polymer composite fine particle.

プラスチックなどの絶縁性基材表面に電気導電性を付与する手法としては、例えば金属の無電解めっき、金属箔の蒸着、導電性塗料の塗装などが挙げられる。金属の無電解めっきでは、適用できる基材は限定される場合が多く、また工程が複雑で、重金属イオンやシアン化合物等を含む有害な廃液が大量に排出される不具合がある。また金属の蒸着は、真空下で行われるので、大型の設備が必要となる。これらに対して導電性塗料の塗装は、施工が非常に容易であるが、塗料中に導電成分が必須となる。   Examples of techniques for imparting electrical conductivity to the surface of an insulating base material such as plastic include electroless plating of metal, vapor deposition of metal foil, and coating of conductive paint. In electroless plating of metals, applicable substrates are often limited, and the process is complicated, and there is a problem that a large amount of harmful waste liquid containing heavy metal ions, cyanide compounds, and the like is discharged. In addition, since metal deposition is performed under vacuum, a large facility is required. On the other hand, the application of the conductive paint is very easy to construct, but a conductive component is essential in the paint.

従来、導電成分としては、無機系の導電性顔料や金属微粒子などが使用されている。錫やアンチモン系の酸化物である導電性顔料は、淡色又は透明であるが、非常に高価である。またアルミ粉などの金属微粒子は、比較的安価であるが、耐食性に問題があった。一方、ポリアニリンなどの導電性高分子と非導電性の無機微粒子との複合体についても種々提案されている(例えば特許文献1〜3参照)。   Conventionally, inorganic conductive pigments and metal fine particles have been used as the conductive component. Conductive pigments that are tin or antimony oxides are light or transparent, but are very expensive. Metal fine particles such as aluminum powder are relatively inexpensive, but have a problem with corrosion resistance. On the other hand, various composites of conductive polymers such as polyaniline and nonconductive inorganic fine particles have been proposed (see, for example, Patent Documents 1 to 3).

特公平6−62887号公報Japanese Examined Patent Publication No. 6-62887 特開平8−297295号公報JP-A-8-297295 特開平11−241021号公報JP-A-11-2441021

上記複合体である微粒子は、無機微粒子の水分散液中にアニリンなどのモノマーと有機過酸物や重金属塩などの重合酸化剤を添加し、モノマーを重合させて得られるものであり、系中に重合酸化剤が残留するため、塗料などに配合した際に悪影響を及ぼす場合があった。   The fine particles as a composite are obtained by adding a monomer such as aniline and a polymerization oxidizing agent such as an organic peroxide or heavy metal salt to an aqueous dispersion of inorganic fine particles, and polymerizing the monomer. In some cases, the polymerization oxidant remains on the surface, which may have an adverse effect when blended with paints.

本発明の目的は、製造が容易であり、且つ系中に重合酸化剤が残留することなく、導電性高分子と非導電性の無機微粒子との複合微粒子を提供することにある。   An object of the present invention is to provide composite fine particles of a conductive polymer and non-conductive inorganic fine particles that are easy to manufacture and do not leave a polymerization oxidizing agent in the system.

本発明者らは、上記した課題を解決するにあたって、重合酸化剤としてペルオキソチタン酸水溶液を使用することにより、該重合酸化剤が系中に残留することなく容易に導電性高分子と酸化チタンとの複合微粒子が得られることを見出し本発明を完成させるに至った。   In solving the above-mentioned problems, the present inventors can easily use a peroxotitanic acid aqueous solution as a polymerization oxidant, so that the conductive polymer and titanium oxide can be easily combined with the polymerization oxidant without remaining in the system. The present inventors have found that composite fine particles can be obtained and completed the present invention.

すなわち本発明は、共役π電子を有するポリマーを形成し得るモノマー(A)をペルオキソチタン酸水溶液(B)に添加した後、該モノマー(A)を重合させることによって得られる、共役π電子を有するポリマー及び酸化チタンの複合体であることを特徴とするπ共役系高分子複合微粒子、該π共役系高分子複合微粒子を含有する成形体、該π共役系高分子複合微粒子を含有する防食剤、該π共役系高分子複合微粒子を含有するコーティング剤、及び該コーティング剤が塗布された塗装物品に関する。   That is, the present invention has a conjugated π electron obtained by polymerizing the monomer (A) after adding the monomer (A) capable of forming a polymer having a conjugated π electron to the peroxotitanic acid aqueous solution (B). A π-conjugated polymer composite fine particle characterized by being a composite of a polymer and titanium oxide, a molded product containing the π-conjugated polymer composite fine particle, an anticorrosive containing the π-conjugated polymer composite fine particle, The present invention relates to a coating agent containing the π-conjugated polymer composite fine particles and a coated article to which the coating agent is applied.

本発明によれば、重合酸化剤としてペルオキソチタン酸水溶液を使用することにより、導電性高分子と酸化チタンとの複合微粒子を、系中に重合酸化剤が残留する等の不具合なく、容易に製造することができる。本発明のπ共役系高分子複合微粒子は、導電付与剤、防食付与剤として有用である。   According to the present invention, by using a peroxotitanic acid aqueous solution as a polymerization oxidant, composite fine particles of a conductive polymer and titanium oxide can be easily produced without any inconvenience such as a polymerization oxidant remaining in the system. can do. The π-conjugated polymer composite fine particles of the present invention are useful as a conductivity imparting agent and an anticorrosion imparting agent.

本発明において共役π電子を有するポリマーを形成し得るモノマー(A)としては、例えば、アセチレン、ベンゼン、アニリン、ピロール、チオフェン、フラン、もしくはこれらの置換誘導体等が挙げられ、これらは単独で、又は2種以上選択して共重合することができる。これらのうち、特にアニリン、ピロール、チオフェン、及びこれらの置換誘導体からなる群より選ばれる少なくとも1種以上が好適であり、さらに好ましくはアニリンが、安定性や反応性の点から好適である。   Examples of the monomer (A) capable of forming a polymer having a conjugated π electron in the present invention include acetylene, benzene, aniline, pyrrole, thiophene, furan, and substituted derivatives thereof, and these are used alone or Two or more types can be selected and copolymerized. Among these, at least one selected from the group consisting of aniline, pyrrole, thiophene, and substituted derivatives thereof is particularly preferable, and aniline is more preferable from the viewpoint of stability and reactivity.

上記モノマーの置換基としては、例えば炭素数1〜30のアルキル基、アルコキシル基、アルキレンオキシド基、スルホン酸基、アルキレンスルホン酸基などが挙げられる。   Examples of the substituent of the monomer include an alkyl group having 1 to 30 carbon atoms, an alkoxyl group, an alkylene oxide group, a sulfonic acid group, and an alkylene sulfonic acid group.

本発明においてペルオキソチタン酸水溶液(B)は、重合酸化剤として使用されるものであり、通常、金属チタン、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、メタチタン酸、水酸化チタン、及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られる。上記チタン化合物のうち、特に加水分解性チタン化合物が反応性の点から好ましい。   In the present invention, the peroxotitanic acid aqueous solution (B) is used as a polymerization oxidizing agent, and is usually metal titanium, hydrolyzable titanium compound, low condensate of hydrolyzable titanium compound, metatitanic acid, titanium hydroxide. And at least one titanium compound selected from the group consisting of low condensation products of titanium hydroxide and mixed with hydrogen peroxide. Among the titanium compounds, hydrolyzable titanium compounds are particularly preferable from the viewpoint of reactivity.

上記加水分解性チタン化合物としては、特に一般式(I)
Ti(OR) (I)
(式中、Rは同一又は異なって、炭素数1〜5のアルキル基を示す。)で表されるテトラアルコキシチタンが好ましく、特にテトライソプロポキシチタン、テトラエトキシチタンなどが好適である。また水酸化チタン化合物もしくは加水分解性チタン化合物の低縮合物としては、縮合度2〜30程度のものが好ましい。
As the hydrolyzable titanium compound, in particular, the general formula (I)
Ti (OR) 4 (I)
(In the formula, R is the same or different and represents an alkyl group having 1 to 5 carbon atoms). Moreover, as a low-condensate of a titanium hydroxide compound or a hydrolyzable titanium compound, a thing with a condensation degree of about 2-30 is preferable.

上記ペルオキソチタン酸水溶液(B)において、上記チタン化合物と過酸化水素水とは、前者が100重量部に対して、後者が過酸化水素換算で1〜1,000重量部、好ましくは10〜200重量部の割合で混合することが好適である。後者が過酸化水素換算で1重量部未満になると安定で均一な水溶液が得られず、また長期貯蔵が困難となり、一方1,000重量部を越えると酸素分圧が高くなり、発泡性が強くなって貯蔵不安定になるなので好ましくない。   In the peroxotitanic acid aqueous solution (B), the titanium compound and the hydrogen peroxide solution are 100 parts by weight of the former and 1 to 1,000 parts by weight in terms of hydrogen peroxide, preferably 10 to 200 parts by weight. It is preferable to mix at a weight part ratio. If the latter is less than 1 part by weight in terms of hydrogen peroxide, a stable and uniform aqueous solution cannot be obtained, and long-term storage becomes difficult. On the other hand, if it exceeds 1,000 parts by weight, the oxygen partial pressure becomes high and the foamability is strong. Since it becomes unstable storage, it is not preferable.

過酸化水素水の過酸化水素濃度は、特に限定されないが、3〜30重量%の範囲内であることが取り扱い易さの点から好ましい。   The hydrogen peroxide concentration of the hydrogen peroxide solution is not particularly limited, but is preferably in the range of 3 to 30% by weight from the viewpoint of ease of handling.

上記チタン化合物と過酸化水素水との混合は、通常、1〜70℃程度で10分〜20時間程度攪拌下に行なうことが望ましく、混合の際には必要に応じて、例えば、メタノール、エタノール、n−プロパノール、iso−イソプロパノールなどのアルコール系;エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのアルコールエーテル系等の水可溶性有機溶剤を使用することもできる。   The mixing of the titanium compound and the hydrogen peroxide solution is usually preferably performed at about 1 to 70 ° C. with stirring for about 10 minutes to 20 hours. When mixing, for example, methanol or ethanol is used as necessary. Water-soluble organic solvents such as alcohols such as n-propanol and iso-isopropanol; alcohol ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether can also be used.

上記ペルオキソチタン酸水溶液(B)は、上記チタン化合物を過酸化水素水と混合させることにより、前者が水で加水分解されて水酸基含有チタン化合物を生成し、次いでこの水酸基含有チタン化合物に過酸化水素が直ちに配位してペルオキソチタン酸を形成することにより得られるものと推察される。このペルオキソチタン酸水溶液(B)は、室温域で安定性が高く長期の保存に耐える。   The aqueous solution of peroxotitanic acid (B) is obtained by mixing the titanium compound with hydrogen peroxide solution, whereby the former is hydrolyzed with water to produce a hydroxyl group-containing titanium compound. It is assumed that is obtained by coordinating immediately to form peroxotitanic acid. This aqueous peroxotitanic acid solution (B) is highly stable at room temperature and can withstand long-term storage.

本発明では、上記共役π電子を有するポリマーを形成し得るモノマー(A)をペルオキソチタン酸水溶液(B)に添加した後、該モノマー(A)を重合させることによって、共役π電子を有するポリマー及び酸化チタンの複合体であるπ共役系高分子複合微粒子が得られる。   In the present invention, after adding the monomer (A) capable of forming a polymer having the conjugated π electron to the aqueous peroxotitanic acid solution (B), the monomer (A) is polymerized to obtain a polymer having a conjugated π electron and Π-conjugated polymer composite fine particles, which are titanium oxide composites, are obtained.

モノマー(A)の添加時には、必要に応じて硫酸、塩酸、硝酸、過塩素酸、リン酸などの無機酸やカルボン酸やスルホン酸などの有機酸性化合物などを、安定性と反応効率の点から適宜配合するのが望ましい。   When adding monomer (A), if necessary, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, perchloric acid and phosphoric acid, and organic acidic compounds such as carboxylic acid and sulfonic acid are used from the viewpoint of stability and reaction efficiency. It is desirable to mix appropriately.

モノマー(A)とペルオキソチタン酸水溶液(B)は、モノマー(A)1モルに対してペルオキソチタン酸が0.1モル以上、好ましくは0.5〜5モルとなるように添加されることが、モノマー(A)の反応性等の点から好適である。   The monomer (A) and the peroxotitanic acid aqueous solution (B) may be added so that the amount of peroxotitanic acid is 0.1 mol or more, preferably 0.5 to 5 mol, relative to 1 mol of the monomer (A). From the viewpoint of the reactivity of the monomer (A) and the like.

また上記ペルオキソチタン酸水溶液(B)以外に公知の重合酸化剤、例えば過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;硫酸第二鉄、三塩化鉄、塩化第二銅などを、水性媒体中に適宜添加しても良い。   In addition to the peroxotitanic acid aqueous solution (B), a known polymerization oxidizing agent such as persulfate such as ammonium persulfate and potassium persulfate; ferric sulfate, iron trichloride, cupric chloride and the like may be added to the aqueous medium. You may add suitably.

モノマー(A)の重合反応は、攪拌下、常温で容易に進行するが、必要に応じて約−20〜35℃、好ましくは−5〜30℃に制御することが望ましく、反応時間は約1〜10時間、好ましくは2〜5時間が適当である。   The polymerization reaction of the monomer (A) easily proceeds at room temperature with stirring, but is desirably controlled to about −20 to 35 ° C., preferably −5 to 30 ° C. if necessary, and the reaction time is about 1 -10 hours, preferably 2-5 hours is appropriate.

本発明のπ共役系高分子複合微粒子は、水性媒体中に分散した状態で得られ、必要に応じて、ろ過などによって水性媒体から分離し、洗浄後、湿潤状態で取り出したり、或いは乾燥して粉末とすることができる。   The π-conjugated polymer composite fine particles of the present invention are obtained in a state of being dispersed in an aqueous medium. If necessary, the π-conjugated polymer composite fine particles are separated from the aqueous medium by filtration or the like, washed, then taken out in a wet state, or dried. It can be a powder.

上記の通り製造される本発明のπ共役系高分子複合微粒子は、共役π電子を有するポリマー及び酸化チタンの存在比が、重量比で1/99〜99/1、好ましくは30/70〜70/30の範囲内であることが、導電性や微粒子粒子径の均一性等の点から望ましい。   In the π-conjugated polymer composite fine particles of the present invention produced as described above, the abundance ratio of the polymer having conjugated π electrons and titanium oxide is 1/99 to 99/1 by weight, preferably 30/70 to 70. / 30 is desirable from the viewpoint of conductivity, uniformity of fine particle diameter, and the like.

本発明のπ共役系高分子複合微粒子は、その平均粒子径が50nm〜2μm、好ましくは200nm〜1μmの範囲内であることが、安定性の点から望ましい。該平均粒子径は、動的光散乱法によって測定することができる。   The average particle diameter of the π-conjugated polymer composite fine particles of the present invention is desirably in the range of 50 nm to 2 μm, preferably 200 nm to 1 μm from the viewpoint of stability. The average particle diameter can be measured by a dynamic light scattering method.

本発明のπ共役系高分子複合微粒子は、導電剤や帯電防止剤として、また防食剤として使用することができ、例えば熱可塑性樹脂等と混練して、成形物、フィルム、シート、繊維などの成形体に加工して用いることができ、他の樹脂や添加剤と併用してあるいは併用せずに、水や有機溶剤などの溶媒に分散させて、塗料、接着剤、処理剤などのコーティング剤として用いることができる。   The π-conjugated polymer composite fine particles of the present invention can be used as a conductive agent, an antistatic agent, and an anticorrosive agent. For example, the π-conjugated polymer composite fine particles are kneaded with a thermoplastic resin, etc. Can be processed into a molded product and used in coatings such as paints, adhesives, and processing agents by dispersing in water or organic solvents with or without other resins and additives. Can be used as

成形体における本発明のπ共役系高分子複合微粒子の含有量は、その形状や目的によって適宜選択可能であるが、通常、成形体中に30〜90重量%、好ましくは50〜80重量%の範囲内であることが適当である。またコーティング剤における本発明のπ共役系高分子複合微粒子の含有量は、その目的によって適宜選択可能であるが、通常、コーティング剤固形分中に5〜50重量%、好ましくは10〜30重量%の範囲内であることが適当である。   The content of the π-conjugated polymer composite fine particles of the present invention in the molded product can be appropriately selected depending on the shape and purpose, but is usually 30 to 90% by weight, preferably 50 to 80% by weight in the molded product. It is appropriate to be within the range. The content of the π-conjugated polymer composite fine particles of the present invention in the coating agent can be appropriately selected depending on the purpose, but is usually 5 to 50% by weight, preferably 10 to 30% by weight in the solid content of the coating agent. It is appropriate to be within the range.

以下、実施例により本発明をさらに説明する。   Hereinafter, the present invention will be further described by examples.

実施例1
30%過酸化水素水213gと純水233gを内容積2リットルのフラスコに入れて、液温を0〜5℃に保ち、激しく撹拌しながら、チタンテトライソプロポキシド54gを1時間かけてフラスコ内へゆっくりと滴下した。添加終了後、液温を0〜5℃に保ちながら約3時間撹拌し、黄褐色のペルオキシチタン酸水溶液(B−1)を得た。
Example 1
Put 213 g of 30% hydrogen peroxide and 233 g of pure water in a 2 liter flask, keep the liquid temperature at 0-5 ° C. It was dripped slowly. After completion of the addition, the mixture was stirred for about 3 hours while maintaining the liquid temperature at 0 to 5 ° C. to obtain a yellowish brown peroxytitanic acid aqueous solution (B-1).

次に、内容積200ccのフラスコ内に、上記ペルオキシチタン酸水溶液(B−1)を100g入れ、液温を0〜5℃に保ちながら、アニリン1.3gと98%硫酸1.4gを同時に添加し、激しく撹拌した。添加終了後、液温を10〜20℃に保ちながら5時間撹拌した後、得られた混合液を30℃まで上昇させると、暗緑色の粒子を含んだ分散液が得られた。該分散液を静置して粒子を沈降させ、上澄液を除去し、この粒子についてメタノールと純水で洗浄し、80℃で数時間加熱して、約4.1gの暗緑色の複合微粒子の粉末を得た。   Next, 100 g of the above-mentioned peroxytitanic acid aqueous solution (B-1) was placed in a 200 cc internal flask, and 1.3 g of aniline and 1.4 g of 98% sulfuric acid were added simultaneously while maintaining the liquid temperature at 0 to 5 ° C. And stirred vigorously. After completion of the addition, the mixture was stirred for 5 hours while maintaining the liquid temperature at 10 to 20 ° C., and then the resulting mixture was raised to 30 ° C. to obtain a dispersion containing dark green particles. The dispersion is allowed to settle to settle the particles, and the supernatant is removed. The particles are washed with methanol and pure water, heated at 80 ° C. for several hours, and about 4.1 g of dark green composite fine particles. Of powder was obtained.

得られた粉末を、20MPa下、約10分間圧縮成型し、錠剤ペレットを作成した。四端子法(JIS K 7194に定められている導電性の低いフィルムなどの抵抗値を測る方法で、4つの端子を用いて接触抵抗の寄与を除去して測る方法)によりペレットの電導度を測定したところ、4.0×10−3S/cmであった。 The obtained powder was compression molded under 20 MPa for about 10 minutes to prepare tablet pellets. Measures the electrical conductivity of the pellets by the four-terminal method (a method of measuring resistance values of films with low electrical conductivity, etc. defined in JIS K 7194, using four terminals to remove the contribution of contact resistance) As a result, it was 4.0 × 10 −3 S / cm.

実施例2
上記実施例1において、アニリンを3.0g、98%硫酸3.3gとする以外は実施例1と同様の方法で、約6.0gの複合微粒子を得た。実施例1同様に錠剤ペレットを作成し、ペレットの電導度を測定したところ、2.0×10−3S/cmであった。
Example 2
About 6.0 g of composite fine particles were obtained in the same manner as in Example 1, except that 3.0 g of aniline and 3.3 g of 98% sulfuric acid were used. When tablet pellets were prepared in the same manner as in Example 1 and the conductivity of the pellets was measured, it was 2.0 × 10 −3 S / cm.

実施例3
上記実施例1において、アニリンを7.0g、98%硫酸を7.5gとする以外は実施例1と同様の方法で、約13.7gの複合微粒子を得た。実施例1同様に錠剤ペレットを作成し、ペレットの電導度を測定したところ、1.2×10−3S/cmであった。
Example 3
In the same manner as in Example 1, except that 7.0 g of aniline and 7.5 g of 98% sulfuric acid were used, about 13.7 g of composite fine particles were obtained. When tablet pellets were prepared in the same manner as in Example 1 and the conductivity of the pellets was measured, it was 1.2 × 10 −3 S / cm.

実施例4
上記実施例1において、アニリンの替わりにピロールを3.0g、98%硫酸の替わりに36%塩酸を3.0gとする以外は実施例1と同様の方法で、約7.0gの複合微粒子を得た。実施例1同様に錠剤ペレットを作成し、ペレットの電導度を測定したところ、7.5×10−3S/cmであった。
Example 4
In the above Example 1, about 7.0 g of composite fine particles were prepared in the same manner as in Example 1 except that 3.0 g of pyrrole was used instead of aniline and 3.0 g of 36% hydrochloric acid was used instead of 98% sulfuric acid. Obtained. When tablet pellets were prepared in the same manner as in Example 1 and the conductivity of the pellets was measured, it was 7.5 × 10 −3 S / cm.

比較例1
内容積200ccのフラスコ内に、30%過酸化水素水43gと純水57gを入れて、液温を0〜5℃に保ちながら、アニリン1.3gと98%硫酸1.4gを同時に添加し、激しく撹拌した。添加終了後、加温、撹拌してもアニリンの重合体を得ることはできず、アニリンモノマーと褐色の副生成物が回収された。

Comparative Example 1
Into a flask with an internal volume of 200 cc, 43 g of 30% hydrogen peroxide water and 57 g of pure water were added, and 1.3 g of aniline and 1.4 g of 98% sulfuric acid were added simultaneously while keeping the liquid temperature at 0 to 5 ° C. Stir vigorously. After completion of the addition, the aniline polymer could not be obtained by heating and stirring, and the aniline monomer and brown by-product were recovered.

Claims (9)

共役π電子を有するポリマーを形成し得るモノマー(A)をペルオキソチタン酸水溶液(B)に添加した後、該モノマー(A)を重合させることによって得られる、共役π電子を有するポリマー及び酸化チタンの複合体であることを特徴とするπ共役系高分子複合微粒子。 A polymer having a conjugated π electron and a titanium oxide obtained by polymerizing the monomer (A) after adding the monomer (A) capable of forming a polymer having a conjugated π electron to the peroxotitanic acid aqueous solution (B) A π-conjugated polymer composite fine particle characterized by being a composite. 共役π電子を有するポリマーを形成し得るモノマー(A)が、アニリン、ピロール、チオフェン、及びこれらの置換誘導体からなる群より選ばれる少なくとも1種以上である請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite according to claim 1, wherein the monomer (A) capable of forming a polymer having a conjugated π electron is at least one selected from the group consisting of aniline, pyrrole, thiophene, and substituted derivatives thereof. Fine particles. ペルオキソチタン酸水溶液(B)が、金属チタン、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、メタチタン酸、水酸化チタン及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるものである請求項1記載のπ共役系高分子複合微粒子。 The peroxotitanic acid aqueous solution (B) is at least one selected from the group consisting of metal titanium, hydrolyzable titanium compounds, hydrolyzable titanium compound low condensates, metatitanic acid, titanium hydroxide and titanium hydroxide low condensates. The π-conjugated polymer composite fine particles according to claim 1, which are obtained by mixing a seed titanium compound with aqueous hydrogen peroxide. モノマー(A)とペルオキソチタン酸水溶液(B)が、モノマー(A)1モルに対してペルオキソチタン酸が0.1モル以上となるように添加される請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite according to claim 1, wherein the monomer (A) and the peroxotitanic acid aqueous solution (B) are added so that the amount of peroxotitanic acid is 0.1 mol or more with respect to 1 mol of the monomer (A). Fine particles. 複合微粒子における共役π電子を有するポリマー及び酸化チタンの存在比が、重量比で1/99〜99/1である請求項1記載のπ共役系高分子複合微粒子。 The π-conjugated polymer composite fine particle according to claim 1, wherein the abundance ratio of the polymer having conjugated π electrons and titanium oxide in the composite fine particle is 1/99 to 99/1 by weight ratio. 請求項1ないし5のいずれか1項記載のπ共役系高分子複合微粒子を含有する成形体。 A molded body containing the π-conjugated polymer composite fine particles according to any one of claims 1 to 5. 請求項1ないし5のいずれか1項記載のπ共役系高分子複合微粒子を含有する防食剤。 An anticorrosive containing the π-conjugated polymer composite fine particles according to any one of claims 1 to 5. 請求項1ないし5のいずれか1項記載のπ共役系高分子複合微粒子を含有するコーティング剤。 A coating agent comprising the π-conjugated polymer composite fine particles according to any one of claims 1 to 5. 請求項8記載のコーティング剤が塗布された塗装物品。

A coated article to which the coating agent according to claim 8 is applied.

JP2004126230A 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE Pending JP2005307010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126230A JP2005307010A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126230A JP2005307010A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE

Publications (1)

Publication Number Publication Date
JP2005307010A true JP2005307010A (en) 2005-11-04

Family

ID=35436141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126230A Pending JP2005307010A (en) 2004-04-22 2004-04-22 pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE

Country Status (1)

Country Link
JP (1) JP2005307010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655744B1 (en) * 2015-03-19 2016-09-08 경일대학교산학협력단 Double chain conducting polymer and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655744B1 (en) * 2015-03-19 2016-09-08 경일대학교산학협력단 Double chain conducting polymer and method for preparing the same

Similar Documents

Publication Publication Date Title
Tian et al. Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings
CN107814378B (en) Lignin functional modification graphene and preparation method thereof
Vankayala et al. Enhanced electrical conductivity of nylon 6 composite using polyaniline-coated multi-walled carbon nanotubes as additives
Perrin et al. Polyaniline thermoset blends and composites
JPS59168010A (en) Manufacture of electroconductive powdery pyrrole polymer
CN111004391A (en) Preparation method of size-controllable nano poly dopamine
KR100906450B1 (en) Polyaniline/metal oxides composite and method for manufacturing thereof, and surface treatment agent with corrosion prevention property comprising the same and metal product using the same
Yuan et al. Corrosion protection of aluminum alloy by epoxy coatings containing polyaniline modified graphene additives
Deng et al. Preparation of water-dispersible corrosion inhibitors for composite lacquer coatings with excellent properties
CN110564266B (en) Anticorrosive composite coating material with self-repairing function and coating preparation method
CN103642365B (en) A kind of marine aluminium alloy corrosion selfreparing smart coat and preparation method thereof
CN101717608B (en) Conductive anti-corrosion coating of electric power grounding grid and preparation method thereof
Wang et al. Concurrent alkylation and crosslinking of polyaniline for enhanced anticorrosive performance of waterborne alkyd coating
JP2005307010A (en) pi-CONJUGATED MACROMOLECULAR COMPOSITE MICROPARTICLE
JPH0710973A (en) Polymerization in the presence of soluble polymer compound
JP4385254B2 (en) Conductive fine particles and method for producing the same
JPH11241021A (en) Conductive polymer composite microparticle and its production
JP2005307011A (en) pi-CONJUGATED MACROMOLECULAR COMPOSITE PARTICULATE AND PRODUCTION METHOD THEREFOR
Niu Electromagnetic interference shielding with polyaniline nanofibers composite coatings
CN113077924B (en) Quick-drying silver paste for graphene heating film and preparation method thereof
JP4415341B2 (en) Polypyrrole conductive paint
CN115216206A (en) Water-based zinc-rich paint for outdoor corrosion prevention and preparation method thereof
Fujii et al. One-pot synthesis of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant
JP3896350B2 (en) Conductive composition
CN113072830A (en) Preparation method and application of polyaniline carbon nanotube core-shell composite material