JP2005295707A - Operation method of distributed power supply - Google Patents

Operation method of distributed power supply Download PDF

Info

Publication number
JP2005295707A
JP2005295707A JP2004108233A JP2004108233A JP2005295707A JP 2005295707 A JP2005295707 A JP 2005295707A JP 2004108233 A JP2004108233 A JP 2004108233A JP 2004108233 A JP2004108233 A JP 2004108233A JP 2005295707 A JP2005295707 A JP 2005295707A
Authority
JP
Japan
Prior art keywords
power
distributed power
source
distributed
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108233A
Other languages
Japanese (ja)
Other versions
JP4101201B2 (en
Inventor
Takashi Kobayashi
小林  隆
Norio Tazawa
則男 田澤
Minoru Yanagisawa
実 柳沢
Hirofumi Mitsuoka
浩文 光岡
Satoshi Sakai
智 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sharp Corp
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sharp Corp
Priority to JP2004108233A priority Critical patent/JP4101201B2/en
Publication of JP2005295707A publication Critical patent/JP2005295707A/en
Application granted granted Critical
Publication of JP4101201B2 publication Critical patent/JP4101201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a distributed power supply that allows the distributed power supply to be extended to an arbitrary place of a system. <P>SOLUTION: As a plurality of the distributed power supplies that are operated in a manner of current control, there are used first kinds of the distributed power supplies A2 to An each having power accumulation equipment, and second kinds of the distributed power supplies B1 to Bn each having a solar battery 1 as generation equipment and not having the power accumulation equipment. A power converter 6 of the second kind of the distributed power supply is operated in a manner of current control so as to follow the maximum power point of the generation equipment such as the solar battery. The second kind of the distributed power supply can be added or extended to the arbitrary place of the system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電力系統から解列された複数台の分散型電源の並列運転方法に関するものである。   The present invention relates to a parallel operation method for a plurality of distributed power sources disconnected from a power system.

特開平11−89096号公報(特許文献1)には、太陽電池と、インバータ(電力変換装置)と蓄電装置とを備えた分散型電源を複数台電力系統に接続し、電力系統から各分散型電源が解列されたときに、1台の分散型電源を電圧制御運転し、この1台の分散型電源を交流電圧源として残りの分散型電源を交流電流源として、各分散型電源間で出力電力や出力電流等の情報をやりとりして同期をとることなく各分散型電源を並列同期運転する方法が開示されている。
特開平11−89096号公報 図1 特許請求の範囲
In JP-A-11-89096 (Patent Document 1), a distributed power source including a solar cell, an inverter (power conversion device), and a power storage device is connected to a plurality of power systems, and each distributed type is connected to the power system. When the power source is disconnected, one distributed power source is voltage-controlled, and this single distributed power source is used as an AC voltage source, and the remaining distributed power source is used as an AC current source. There is disclosed a method of performing parallel synchronous operation of each distributed power source without exchanging information such as output power and output current.
Japanese Patent Laid-Open No. 11-89096 FIG. 1 Claims

従来の方法では、各分散型電源の太陽電池が蓄電設備に直結されていて、負荷に応じた電力を出力するので、太陽電池の動作点は蓄電池電圧で決定されることになり、電力変換装置を太陽電池の最大電力点を追従するように電流運転制御することができなかった。また従来の方法では、既設の電力系統に分散型電源を増設した場合に、仮に系統配線のインピーダンスが大きい個所が存在すると、特定の分散型電源に偏ってしまう可能性があった。そのため系統の任意の箇所に分散型電源を増設することができなかった。   In the conventional method, since the solar cells of each distributed power source are directly connected to the power storage facility and output electric power according to the load, the operating point of the solar cell is determined by the storage battery voltage, and the power conversion device The current operation could not be controlled to follow the maximum power point of the solar cell. In addition, in the conventional method, when a distributed power source is added to an existing power system, if there is a part where the impedance of the system wiring is large, there is a possibility that it is biased to a specific distributed power source. For this reason, it was not possible to add a distributed power source to any part of the system.

本発明の目的は、系統の任意の個所への分散型電源の増設が可能な分散型電源の運転方法を提供することにある。   An object of the present invention is to provide a method of operating a distributed power source that can add a distributed power source to an arbitrary part of a system.

本発明の他の目的は、交流電圧源として使用可能な分散型電源が備える蓄電設備の使用率の平準化を図ることができる分散型電源の運転方法を提供することにある。   Another object of the present invention is to provide a method of operating a distributed power source that can achieve leveling of the usage rate of power storage equipment included in the distributed power source that can be used as an AC voltage source.

本発明の目的は、交流電流源として用いられる分散型電源から出力される余剰電力を有効に活用することができる分散型電源の運転方法を提供することにある。   An object of the present invention is to provide a method of operating a distributed power source that can effectively utilize surplus power output from the distributed power source used as an alternating current source.

本発明の更に他の目的は、交流電圧源として使用されている分散型電源が故障した場合でも他の分散型電源を交流電圧源として用いて負荷への給電の停止を極力避けることができる分散型電源の運転方法を提供することにある。   Still another object of the present invention is to provide a distributed power source that can avoid stopping power supply to a load as much as possible by using another distributed power source as an AC voltage source even when the distributed power source used as an AC voltage source fails. The object is to provide a method of operating a mold power source.

本発明が改良の対象とする分散型電源の運転方法では、直流電力を交流電力に変換する電力変換装置を備えて、電力系統から解列された複数台の分散型電源を運転するために、まず1台の分散型電源の電力変換装置を電圧制御運転して、この1台の分散型電源を自立運転の交流電圧源とする。そして残りの複数台の分散型電源の電力変換装置を前述の交流電圧源の出力電圧に同期させてそれぞれ電流制御運転することによりこれら残りの複数台の分散型電源を交流電圧源に同期した交流電流源として連系運転する。ここまでは従来の運転方法と同様である。   In the operation method of the distributed power source to be improved by the present invention, in order to operate a plurality of distributed power sources separated from the power system, including a power conversion device that converts DC power into AC power, First, the power converter of one distributed power source is voltage-controlled, and this one distributed power source is used as an AC voltage source for independent operation. Then, the remaining multiple distributed power sources are synchronized with the output voltage of the AC voltage source, and each of the remaining multiple distributed power sources is synchronized with the AC voltage source. Connected operation as a current source. Up to here, it is the same as the conventional driving method.

本発明の方法では、電流制御運転される複数台の分散型電源として、蓄電設備を有する第1の種類の分散型電源と、発電設備として太陽電池、風水力発電設備等の自然エネルギを利用して発電する自然エネルギ利用発電設備を含むすべての発電設備を備え且つ蓄電設備を有しない第2の種類の分散型電源とを用いる。そして第2の種類の分散型電源の電力変換装置を発電設備の最大電力点を追従するように電流制御運転する。このような第2の種類の分散型電源は、蓄電設備の蓄電電圧の影響を受けることなく電力変換装置を電流制御運転することができる。そのため第2の種類の分散型電源は、系統の任意の個所に付設または増設することが可能であり、安定した負荷分担を図って複数の分散型電源の並列運転を実現することができる。   In the method of the present invention, a first type of distributed power source having a power storage facility is used as a plurality of distributed power sources that are operated under current control, and natural energy such as a solar cell or a wind-hydraulic power generation facility is used as a power generation facility. A second type of distributed power source that includes all power generation facilities including a natural energy generation power generation facility that generates power and does not have power storage facilities is used. Then, the power converter of the second type of distributed power source is operated in a current control manner so as to follow the maximum power point of the power generation facility. Such a second type of distributed power supply is capable of current-controlling the power conversion device without being affected by the storage voltage of the storage facility. Therefore, the second type of distributed power supply can be attached to or added to any part of the system, and a stable load sharing can be achieved to realize parallel operation of a plurality of distributed power supplies.

なお交流電圧源となる分散型電源に余剰電力蓄積用蓄電設備を設け且つこの分散型電源の電力変換装置として交流電力を直流電力に変換する機能を併せ持った双方向変換型の電力変換装置を用いてもよい。このようにした場合には、系統電力を計測して余剰電力が発生していることを判別したり、またはすでに公知の技術を用いて系統電力を計測することなく余剰電力の発生を自動判別した場合には、交流電圧源となる分散型電源の電力変換装置により余剰電力を回生して余剰電力蓄積用蓄電設備に充電することができる。したがって余剰電力を有効に活用することができる。なお系統電力の計測や充電の制御に関しては、所定の制御装置を系統に対して設ければ簡単に実現することができる。   It is to be noted that a bi-directional conversion type power converter having a function of converting AC power into DC power is provided as a power converter of the distributed power source provided with a storage device for storing surplus power in a distributed power source serving as an AC voltage source. May be. In this case, the system power is measured to determine that surplus power is generated, or the generation of surplus power is automatically determined without measuring the system power using a known technique. In this case, the surplus power can be regenerated by the power conversion device of the distributed power source serving as the AC voltage source to charge the surplus power storage power storage facility. Therefore, surplus power can be used effectively. Note that grid power measurement and charging control can be easily realized by providing a predetermined control device for the grid.

なお使用する複数台の分散型電源として、交流電力を直流電力に変換し且つ直流電力を交流電力に変換する双方向変換機能を有する電力変換装置と蓄電設備とを備えた複数台の第1の種類の分散型電源と、発電設備として太陽電池を備え且つ蓄電設備を有しない1台以上の第2の種類の分散型電源とを用いるようにしてもよい。この場合の第1の種類の分散型電源は、いずれの分散型電源も交流電圧源となり得る。したがって交流電圧源として用いている第1の種類の分散型電源が故障したときには、故障した第1の種類の分散型電源の運転を停止し、他の1台の第1の種類の分散型電源を交流電圧源として用いる切換動作を行って、運転を継続することが可能である。このようにすれば負荷への給電が停止される可能性が低くなり、分散型電源を安定して運転することができる。またこの場合には、複数台の第1の種類の分散型電源から適当な時期に交代で選択した1台の分散型電源を交流電圧源とし、残りの第1の種類の分散型電源と第2の種類の分散型電源を電流制御運転により連系運転するようにしてもよい。このように交流電圧源として用いる分散型電圧源を交代で使用すると、複数台の第1の種類の分散型電源の蓄電設備の使用率の平準化を図ることができ、蓄電設備の蓄電池の寿命を延ばすことができる。   In addition, as a plurality of distributed power sources to be used, a plurality of first power converters including a power conversion device having a bidirectional conversion function for converting AC power into DC power and converting DC power into AC power and a power storage facility are used. You may make it use a kind of distributed power supply and one or more 2nd types of distributed power supplies which are equipped with a solar cell as a power generation equipment, and do not have an electrical storage equipment. In this case, the first type of distributed power supply can be any AC voltage source. Therefore, when the first type of distributed power source used as the AC voltage source fails, the operation of the first type of distributed power source that has failed is stopped and the other first type of distributed power source is stopped. It is possible to continue operation by performing a switching operation using as an AC voltage source. In this way, the possibility of power supply to the load being stopped is reduced, and the distributed power source can be operated stably. Also, in this case, one distributed power source selected alternately from a plurality of first type distributed power sources at an appropriate time is used as an AC voltage source, and the remaining first type distributed power sources and Two types of distributed power sources may be interconnected by current control operation. Thus, when the distributed voltage source used as the AC voltage source is used alternately, it is possible to level the usage rate of the power storage equipment of a plurality of first type distributed power supplies, and the life of the storage battery of the power storage equipment Can be extended.

なお第1の種類の分散型電源が自然エネルギ利用発電設備を含む発電設備を備えていてもよいのは勿論である。   Of course, the first type of distributed power source may include a power generation facility including a natural energy utilization power generation facility.

本発明によれば、系統の任意の個所に分散型電源を付設または増設することが可能であり、安定した負荷分担を図って分散型電源の並列運転を実現することができる。また交流電圧源として使用可能な分散型電源が備える蓄電設備の使用率の平準化を図ることができる利点が得られる。さらに交流電流源として用いられる分散型電源から出力される余剰電力を有効に活用することができる。また交流電圧源として使用されている分散型電源が故障した場合でも他の分散型電源を交流電圧源として用いて負荷への給電の停止を極力避けることができる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to attach or add a distributed power supply to any part of the system, and it is possible to realize a parallel operation of distributed power supplies with stable load sharing. Further, there is an advantage that the usage rate of the power storage equipment provided in the distributed power source that can be used as an AC voltage source can be leveled. Furthermore, surplus power output from a distributed power source used as an alternating current source can be effectively utilized. Further, even when a distributed power source used as an AC voltage source fails, it is possible to avoid stopping power supply to the load as much as possible by using another distributed power source as an AC voltage source.

以下、図面を参照して本発明の分散型電源の運転方法の実施の形態の一例を詳細に説明する。図1は、本発明の方法を実施するための系統の構成の一例を示す単線系統図である。図1において符号ACで示したものは商用電源であり、Lで示したブロックは系統に接続されている負荷を代表的に示すものである。この例において、系統に連結される分散型電源は、第1の種類の分散型電源A1〜Anと第2の種類の分散型電源B1〜Bnとに分けられる。   Hereinafter, an example of an embodiment of an operation method of a distributed power source according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a single-line system diagram showing an example of a system configuration for carrying out the method of the present invention. In FIG. 1, what is indicated by a symbol AC is a commercial power source, and blocks indicated by L are representative of loads connected to the system. In this example, the distributed power sources connected to the system are divided into a first type of distributed power sources A1 to An and a second type of distributed power sources B1 to Bn.

まず第1の種類の分散型電源A1〜Anは、それぞれ太陽電池1と、切換スイッチ回路3と、直流電力を交流電力に変換し且つ交流電力を直流電力に変換する双方向変換機能を有する電力変換装置5と蓄電池等の蓄電手段を備えた蓄電設備7とを備えている。PVパネル等からなる太陽電池1は、工場や建物の屋根または専用の設置台に設置されている。第1の種類の分散型電源A1〜Anは、1箇所に集中して配置されている場合もあれば、ある程度距離を離して分散して配置されている場合もある。切換スイッチ回路3は、太陽電池1が発電をしている場合には、太陽電池1と蓄電設備7を電力変換装置5に接続し、太陽電池1が発電をしていない場合には、蓄電設備7を電力変換装置5に接続する。電力変換装置5は、系統が正常時だけでなく、商用電源または系統電源ACが停電しているときや、系統の一部で断線が発生しているときに、太陽電池1または蓄電設備7から得た直流電力を交流電力に変換して系統に出力するインバータとして機能する。また太陽電池1が発電をしていないとき、蓄電設備7の蓄電手段の蓄電量が少なくなっているとき、また後述する回生電力で蓄電設備7の蓄電手段を充電するときには、系統側の交流電力を直流電力に変換するコンバータとして機能する。   First, the first type of distributed power sources A1 to An each have a solar cell 1, a changeover switch circuit 3, and a power having a bidirectional conversion function for converting DC power into AC power and converting AC power into DC power. The converter 5 and the electrical storage equipment 7 provided with electrical storage means, such as a storage battery, are provided. A solar cell 1 made of a PV panel or the like is installed on a factory or building roof or a dedicated installation stand. The first type of distributed power sources A1 to An may be concentrated at one place, or may be distributed at some distance from each other. The changeover switch circuit 3 connects the solar cell 1 and the power storage facility 7 to the power converter 5 when the solar cell 1 is generating power, and stores the power storage facility when the solar cell 1 is not generating power. 7 is connected to the power converter 5. The power conversion device 5 is not only used when the system is normal, but also when the commercial power supply or the system power supply AC is out of power, or when a disconnection occurs in a part of the system, from the solar cell 1 or the power storage facility 7. It functions as an inverter that converts the obtained DC power into AC power and outputs it to the system. When the solar cell 1 is not generating power, when the amount of power stored in the power storage means of the power storage facility 7 is low, or when charging the power storage means of the power storage facility 7 with regenerative power described later, AC power on the system side Functions as a converter that converts DC power to DC power.

図2に示すように、この電力変換装置5は、電力用半導体スイッチング素子のブリッジ回路から構成されたスイッチング回路5Aと、マイクロコンピュータ等を内蔵して構成された制御手段5Bと、系統側の電流iを計測する計器用変流器5Cと系統側の電圧を検出する計器用変圧器5Dとから構成される。制御手段5Bは、計器用変流器5C及び計器用変圧器5Dの出力並びに各種の接点信号等に基づいて、予め定めた複数の運転モードから選択した運転モードに従ってスイッチング回路5Aを構成する複数の半導体スイッチング素子に導通制御信号を出力する。なおこの複数の運転モードの中には、電力変換装置5を電圧制御運転して分散型電源を交流電圧源とする運転モードと、電力変換装置5を電流制御運転して分散型電源を交流電流源とする運転モードと、交流電圧源として動作している1台の分散型電源が故障した場合には、残りの第1の種類の分散型電源のうちの1台の分散型電源が電流制御運転から電圧制御運転に代わって交流電圧源となる運転モード、さらに複数台の第1の種類の分散型電源において、予め定めた順番で交流電圧源となる分散型電源が変わるようにして各分散型電源が運転される運転モード、また系統に余剰電力が発生すると電力変換装置5をコンバータとして蓄電設備7の蓄電手段を充電する機能を実行する運転モード等が含まれている。   As shown in FIG. 2, the power converter 5 includes a switching circuit 5A composed of a bridge circuit of power semiconductor switching elements, a control means 5B composed of a microcomputer and the like, and a current on the system side. It comprises an instrument current transformer 5C that measures i and an instrument transformer 5D that detects the voltage on the system side. The control means 5B includes a plurality of switching circuits 5A that constitute the switching circuit 5A according to an operation mode selected from a plurality of predetermined operation modes based on outputs of the instrument current transformer 5C and the instrument transformer 5D and various contact signals. A conduction control signal is output to the semiconductor switching element. Among the plurality of operation modes, there are an operation mode in which the power converter 5 is voltage-controlled and the distributed power source is an AC voltage source, and the power converter 5 is current-controlled and the distributed power source is an AC current. If one of the distributed power sources operating as an AC voltage source and one distributed power source operating as an AC voltage source fails, one of the remaining distributed power sources of the first type is controlled by current control. In the operation mode in which an AC voltage source is used instead of the voltage control operation, and in the plurality of first type distributed power sources, each distributed power source that is an AC voltage source is changed in a predetermined order. The operation mode in which the power source is operated, and the operation mode for executing the function of charging the power storage means of the power storage facility 7 using the power conversion device 5 as a converter when surplus power is generated in the system are included.

これに対して第2の種類の分散型電源B1〜Bnは、それぞれ太陽電池1と直流電力を交流電力に変換する機能のみを有する電力変換装置6とを備えている。第2の種類の分散型電源B1〜Bnは、第1の種類の分散型電源A1〜Anと異なって、蓄電設備を備えていない。またこれら第2の種類の分散型電源B1〜Bnの電力変換装置は、太陽電池1の最大電力点を追従するように電流制御運転される点で第1の種類の分散型電源A1〜Anとは異なっている。第2の種類の分散型電源B1〜Bnは、蓄電設備の蓄電電圧の影響を受けることなく電力変換装置6を電流制御運転することができる。そのため第2の種類の分散型電源B1〜Bnは、系統の任意の個所に付設または増設することが可能である。なお第2の種類の分散型電源B1〜Bnで使用する電力変換装置の構成は、逆変換できな点を除いては,実質的に第1の種類の分散型電源A1〜Anの電力変換装置と同様の構成を有している。   On the other hand, the second type of distributed power sources B1 to Bn each include a solar cell 1 and a power conversion device 6 having only a function of converting DC power into AC power. Unlike the first type of distributed power sources A1 to An, the second type of distributed power sources B1 to Bn do not include a power storage facility. The power converters of these second types of distributed power sources B1 to Bn are operated in a current controlled manner so as to follow the maximum power point of the solar cell 1, and the first type of distributed power sources A1 to An and Is different. The second type of distributed power sources B1 to Bn can perform the current control operation of the power converter 6 without being affected by the storage voltage of the storage facility. Therefore, the second type of distributed power sources B1 to Bn can be attached to or added to any part of the system. The configuration of the power converter used in the second type of distributed power sources B1 to Bn is substantially the same as that of the first type of distributed power sources A1 to An, except that reverse conversion cannot be performed. It has the same composition as.

制御装置9は、系統電圧Voutと系統電流または負荷電流ILに基づいて系統の状態を判断し、また特に第1の種類の分散型電源A1〜Anの運転状態(故障の有無)を監視する機能、そして各分散型電源A1〜An及びB1〜Bnに運転開始や運転停止の指令を出力する機能を有している。すなわち制御装置9は、各分散型電源の動きを取りまとめる機能を有している。なお制御装置9と各分散型電源とは、有線または無線で接続されている。系統の配電線を利用して両者の通信を行うことも可能である。   The control device 9 determines a system state based on the system voltage Vout and the system current or the load current IL, and particularly monitors the operation state (presence or absence of failure) of the first type of distributed power sources A1 to An. And, it has a function of outputting operation start and operation stop commands to each of the distributed power sources A1 to An and B1 to Bn. That is, the control device 9 has a function of coordinating the movement of each distributed power source. The control device 9 and each distributed power source are connected by wire or wirelessly. It is also possible to communicate with each other using a distribution line of the system.

電力系統の系統電源ACが負荷Lに給電を行っている系統正常時には、主に太陽電池1が電力を発生する日中において、各分散型電源A1〜Bnの太陽電池1の出力が電力変換装置5及び6の連系運転モードの制御により電力系統に連系運転されて並列運転され、各太陽電池1からの直流電力が電力変換装置5及び6により交流電力に変換されて負荷Lに並列給電される。このとき、各分散型電源A1〜Bnは、いずれも電流制御運転されてそれぞれの出力電流が系統電源ACの電圧と同相になり、系統電源ACに同期して運転される。何らかの理由で系統電源ACが停電すると、各分散型電源はいわゆる単独運転による感電等を防止するため、電力系統から解列される。図1の×印が解列点である。   When the system in which the system power supply AC of the power system supplies power to the load L is normal, the outputs of the solar cells 1 of the distributed power sources A1 to Bn are mainly converted into power converters during the day when the solar cell 1 generates power. The system is operated in parallel with the power system by controlling the interconnection operation modes 5 and 6, and the DC power from each solar cell 1 is converted into AC power by the power converters 5 and 6 and supplied to the load L in parallel. Is done. At this time, each of the distributed power sources A1 to Bn is operated by current control, and each output current is in phase with the voltage of the system power source AC, and is operated in synchronization with the system power source AC. When the system power supply AC fails for some reason, each distributed power supply is disconnected from the power system in order to prevent electric shock or the like due to so-called single operation. A cross mark in FIG. 1 is a separation point.

分散型電源だけから負荷Lに電力を供給する場合には、制御装置9からの指令で、各分散型電源A1〜Bnはそれぞれの運転モードに従って運転を開始する。この例では第1の種類の分散型電源A1を電圧制御運転することにより自立運転させて交流電圧源とする。そしてこの交流電圧源の出力電圧と同期させてその他の分散型電源A2〜An及びB1〜Bnを電流制御運転することにより、これらを交流電流源として連系運転する。もし夜間であれば、第1の種類の分散型電源A1〜Anだけの並列運転が行われる。   When power is supplied to the load L only from the distributed power source, each distributed power source A1 to Bn starts operation according to the respective operation mode in response to a command from the control device 9. In this example, the first type of distributed power source A1 is operated by voltage control so as to be operated independently to be an AC voltage source. Then, the other distributed power sources A2 to An and B1 to Bn are subjected to current control operation in synchronism with the output voltage of the AC voltage source, whereby these are operated as an AC current source. If it is night, only the first type of distributed power sources A1 to An are operated in parallel.

このとき第1の種類の分散型電源A1〜Anにおいては、図3に示すようなモードで運転を行う。電流制御運転を行うすなわち連系運転される分散型電源A2〜Anでは系統電力の計測結果を得て図3に示す運転モードに従った運転を行う。そして第2の種類の分散型電源B1〜Bnは、最大出力追従制御により太陽電池1の最大出力を得ながら負荷系統に給電を行う。ここで最大出力追従制御とは、太陽電池1等の発電設備が出力している最大出力をすべて交流電力に変換して出力するように電力変換装置6を電流運転制御することを意味する。図3の運転モードにおいては、負荷の急変時には系統電力を計測している分、電流運転制御をしている分散型電源の応答は遅れる。これに対して電圧制御運転を行っている分散型電源A1がこの遅れをカバーする。例えば、0kW→50kWの負荷急変直後には、自立運転の分散型電源A1が50kWを出力する。そして計測の時間分遅れて、その他の電流制御運転されている分散型電源A2〜Bnの負担が増加し、分散型電源A1とその他の分散型電源とは25kWと25kWずつ分担するようになる。また100kW→50kWの負荷急変直後には、自立運転の分散型電源A1の出力が0kWとなり、その他の電流制御運転されている分散型電源がすべてを負担する。その後、計測の時間分遅れて分散型電源とその他の電流制御運転される分散型電源との負担割合が25kWずつとなる。この運転の間、電流制御運転される分散型電源A2〜Anは、電流運転制御だけを行うので、各分散型電源どうしの出力電圧の位相や振幅を制御する必要はない。   At this time, the first type of distributed power sources A1 to An operate in a mode as shown in FIG. The distributed power sources A2 to An that perform the current control operation, that is, the grid operation, obtain the measurement result of the system power and perform the operation according to the operation mode shown in FIG. Then, the second type of distributed power sources B1 to Bn supply power to the load system while obtaining the maximum output of the solar cell 1 by the maximum output tracking control. Here, the maximum output follow-up control means that the power conversion device 6 is current-operated controlled so that all the maximum outputs output by the power generation equipment such as the solar cell 1 are converted into AC power and output. In the operation mode of FIG. 3, the response of the distributed power source that controls the current operation is delayed by the amount of the system power measured when the load suddenly changes. On the other hand, the distributed power source A1 performing the voltage control operation covers this delay. For example, immediately after a sudden load change from 0 kW to 50 kW, the distributed power supply A1 for autonomous operation outputs 50 kW. Then, the load of the distributed power sources A2 to Bn that are operated by other current control increases with a delay of the measurement time, and the distributed power source A1 and the other distributed power sources share 25 kW and 25 kW, respectively. Immediately after a sudden load change of 100 kW to 50 kW, the output of the distributed power supply A1 in the self-sustained operation becomes 0 kW, and the other distributed power supplies that are operated by current control bear all of the load. After that, the burden ratio between the distributed power source and the other distributed power source operated by current control becomes 25 kW at a delay of the measurement time. During this operation, the distributed power sources A2 to An that are current-controlled operate only for current operation control, so there is no need to control the phase or amplitude of the output voltage between the distributed power sources.

本実施の形態によれば、負荷給電の電圧が交流電圧源となる分散型電源の出力電圧で決まり、残りの分散型電源の電力変換装置の出力電流が交流電圧源となる分散型電源の出力電圧と同相になるため、これらの残りの分散型電源の出力は基準の交流電圧源となる分散型電源の出力に同期し、分散型電源間で出力に関連した情報のやりとり等を行うことなく、各分散型電源を並列同期運転することができる。よって分散型電源間に通信線を敷設したりすることなく、安価な構成で複数の分散型電源を並列同期運転することができる。   According to this embodiment, the voltage of the load power supply is determined by the output voltage of the distributed power source serving as the AC voltage source, and the output current of the power converter of the remaining distributed power source is the output of the distributed power source serving as the AC voltage source. The output of these remaining distributed power supplies is synchronized with the output of the distributed power supply serving as the reference AC voltage source, so that no information related to the output is exchanged between the distributed power supplies. Each distributed power source can be operated in parallel synchronously. Therefore, a plurality of distributed power sources can be operated in parallel and synchronous with an inexpensive configuration without laying communication lines between the distributed power sources.

最大出力追従制御により第2の種類の分散型電源B1〜Bnからも負荷系統への給電が行われるため、当然にして余剰電力が発生する場合がある。このような場合には、自立運転している分散型電源A1が回生動作を行って、分散型電源A1の蓄電設備7の蓄電手段を充電する。余剰電力の発生は系統電力を計測することにより検出してもよいが、公知の技術に基づいて余剰電力の発生を決定して自動で連続的な動作により余剰電力を回生するようにしてもよい。本実施の形態では、後者の自動で連続的に余剰電力を回生する技術を採用している。このようにすれば電力を有効に利用することができる。なお分散型電源A1の蓄電設備7の蓄電手段が満充電状態になるようであれば、そのことを制御装置9で監視し、第2の種類の分散型電源B1〜Bnの運転を停止させるようにすればよい。   Since power is supplied to the load system also from the second type of distributed power sources B1 to Bn by the maximum output tracking control, naturally, surplus power may be generated. In such a case, the distributed power source A1 that is operating independently performs a regenerative operation to charge the power storage means of the power storage facility 7 of the distributed power source A1. The generation of surplus power may be detected by measuring system power, but the generation of surplus power may be determined based on a known technique, and the surplus power may be regenerated automatically and continuously. . In the present embodiment, the latter technique of automatically regenerating surplus power continuously is employed. In this way, power can be used effectively. If the power storage means of the power storage facility 7 of the distributed power source A1 is in a fully charged state, this is monitored by the control device 9 so as to stop the operation of the second type of distributed power sources B1 to Bn. You can do it.

なお使用する第1の種類の分散型電源A1〜Anにおいては、いずれの分散型電源も交流電圧源となり得る。したがって交流電圧源として用いている第1の種類の分散型電源が故障したときには、故障した第1の種類の分散型電源の運転を停止し、他の1台の第1の種類の分散型電源を交流電圧源として用いる切換動作を行って、運転を継続することが可能である。このようにすれば負荷への給電が停止される可能性が低くなり、分散型電源を安定して運転することができる。またこの場合には、複数台の第1の種類の分散型電源A1〜Anから適当な時期に交代で選択した1台の分散型電源を交流電圧源とし、残りの第1の種類の分散型電源と第2の種類の分散型電源を電流制御運転により連系運転するようにしてもよい。このように交流電圧源として用いる分散型電圧源を交代で使用すると、複数台の第1の種類の分散型電源の蓄電設備の使用率の平準化を図ることができ、蓄電設備の蓄電池の寿命を延ばすことができる。   In the first type of distributed power sources A1 to An used, any of the distributed power sources can be an AC voltage source. Therefore, when the first type of distributed power source used as the AC voltage source fails, the operation of the first type of distributed power source that has failed is stopped and the other first type of distributed power source is stopped. It is possible to continue operation by performing a switching operation using as an AC voltage source. In this way, the possibility of power supply to the load being stopped is reduced, and the distributed power source can be operated stably. Further, in this case, one distributed power source selected alternately at a suitable time from the plurality of first type distributed power sources A1 to An is used as an AC voltage source, and the remaining first type distributed power sources are used. The power source and the second type of distributed power source may be interconnected by current control operation. Thus, when the distributed voltage source used as the AC voltage source is used alternately, it is possible to level the usage rate of the power storage equipment of a plurality of first type distributed power supplies, and the life of the storage battery of the power storage equipment Can be extended.

なお本発明を実施するにあたっては、必ずしも第1の種類の分散型電源に蓄電設備を設ける必要はない。また第1の種類の分散型電源で太陽電池を直流電源として用いる必要もない。   In carrying out the present invention, it is not always necessary to provide power storage equipment in the first type of distributed power source. Further, it is not necessary to use a solar cell as a direct current power source in the first type of distributed power source.

上記の実施の形態では、第1及び第2の種類の分散型電源の発電設備として、太陽電池を用いている。しかしながら本発明においては、いずれの種類の分散型電源の発電設備でも、太陽電池、風水力発電設備等の自然エネルギを利用した自然エネルギ利用発電設備を含む各種の発電設備を用いることができるのは勿論である。   In the above embodiment, solar cells are used as the power generation facilities of the first and second types of distributed power sources. However, in the present invention, it is possible to use various types of power generation facilities including a natural energy generation power generation facility using natural energy, such as a solar cell and a wind-hydraulic power generation facility, in any type of power generation facility of a distributed power source. Of course.

本発明の方法を実施するための系統の構成の一例を示す単線系統図である。It is a single track | line system diagram which shows an example of the structure of the system | strain for implementing the method of this invention. 電力変換装置の構成を示す図である。It is a figure which shows the structure of a power converter device. 実施の形態の運転モードの一例を説明するために用いる図である。It is a figure used in order to demonstrate an example of the operation mode of an embodiment.

符号の説明Explanation of symbols

1 太陽電池
3 切換スイッチ回路
5,6 電力変換装置
7 蓄電設備
9 制御装置
A1〜An 第1の分散型電源
B1〜Bn 第2の分散型電源
DESCRIPTION OF SYMBOLS 1 Solar cell 3 Changeover switch circuit 5,6 Power converter 7 Power storage equipment 9 Control apparatus A1-An 1st distributed power supply B1-Bn 2nd distributed power supply

Claims (7)

直流電力を交流電力に変換する電力変換装置を備えて、電力系統から解列された複数台の分散型電源のうち、
1台の前記分散型電源の前記電力変換装置を電圧制御運転して該1台の分散型電源を自立運転の交流電圧源とし、
残りの複数台の前記分散型電源の前記電力変換装置を前記交流電圧源の出力電圧に同期させてそれぞれ電流制御運転することにより前記残りの複数台の分散型電源を前記交流電圧源に同期した交流電流源として連系運転する分散型電源の運転方法であって、
電流制御運転される前記複数台の分散型電源として、蓄電設備を有する第1の種類の分散型電源と、発電設備を有するが蓄電設備を有しない第2の種類の分散型電源とを用い、
前記第2の種類の分散型電源の前記電力変換装置を前記発電設備の最大電力点を追従するように電流制御運転することを特徴とする分散型電源の運転方法。
A power conversion device that converts direct current power into alternating current power, and among a plurality of distributed power sources separated from the power system,
Voltage-controlled operation of the power conversion device of one of the distributed power sources to make the one distributed power source an AC voltage source for independent operation,
The power converters of the remaining plurality of distributed power supplies are synchronized with the output voltage of the AC voltage source, and the current control operation is performed to synchronize the remaining plurality of distributed power supplies with the AC voltage source. A method of operating a distributed power source that operates in an interconnected manner as an alternating current source,
As the plurality of distributed power sources operated in current control, a first type distributed power source having a power storage facility and a second type distributed power source having a power generation facility but not a power storage facility are used.
A method of operating a distributed power source, wherein the power conversion device of the second type of distributed power source is operated in a current control manner so as to follow the maximum power point of the power generation facility.
前記発電設備が、太陽電池、風水力発電設備等の自然エネルギを利用して発電する自然エネルギ利用発電設備を含んでいることを特徴とする請求項1に記載の分散型電源の運転方法。   The method of operating a distributed power source according to claim 1, wherein the power generation facility includes a natural energy generation power generation facility that generates power using natural energy, such as a solar battery or a wind-hydraulic power generation facility. 直流電力を交流電力に変換する電力変換装置を備えて、電力系統から解列された複数台の分散型電源のうち、
1台の前記分散型電源の前記電力変換装置を電圧制御運転して該1台の分散型電源を自立運転の交流電圧源とし、
残りの複数台の前記分散型電源の前記電力変換装置を前記交流電圧源の出力電圧に同期させてそれぞれ電流制御運転することにより前記残りの複数台の分散型電源を前記交流電圧源に同期した交流電流源として連系運転する分散型電源の運転方法であって、
電流制御運転される前記複数台の分散型電源として、蓄電設備を有する第1の種類の分散型電源と、発電設備として自然エネルギを利用して発電する自然エネルギ利用発電設備を備え且つ蓄電設備を有しない第2の種類の分散型電源とを用い、
前記第2の種類の分散型電源の前記電力変換装置を前記発電設備の最大電力点を追従するように電流制御運転し、
前記交流電圧源となる前記分散型電源に余剰電力蓄積用蓄電設備を設け且つ該分散型電源の前記電力変換装置として交流電力を直流電力に変換する機能を併せ持った双方向変換型の電力変換装置を用い、
余剰電力が発生していることを判別したときには、前記交流電圧源となる前記分散型電源の前記電力変換装置により前記余剰電力を回生して前記余剰電力蓄積用蓄電設備に充電することを特徴とする分散型電源の運転方法。
A power conversion device that converts direct current power into alternating current power, and among a plurality of distributed power sources separated from the power system,
Voltage-controlled operation of the power conversion device of one of the distributed power sources to make the one distributed power source an AC voltage source for independent operation,
The power converters of the remaining plurality of distributed power supplies are synchronized with the output voltage of the AC voltage source, and the current control operation is performed to synchronize the remaining plurality of distributed power supplies with the AC voltage source. A method of operating a distributed power source that operates in an interconnected manner as an alternating current source,
As the plurality of distributed power sources that are operated under current control, the first type distributed power source having a power storage facility, and a power generation facility using a natural energy generation power generation facility that generates power using natural energy are provided. Using a second type of distributed power supply that does not have
The current conversion operation of the power conversion device of the second type of distributed power supply so as to follow the maximum power point of the power generation facility,
Bidirectional conversion type power conversion device having a power storage device for storing surplus power in the distributed power source serving as the AC voltage source and having a function of converting AC power to DC power as the power conversion device of the distributed power source Use
When it is determined that surplus power is generated, the surplus power is regenerated by the power conversion device of the distributed power source serving as the AC voltage source to charge the surplus power storage power storage facility. To operate a distributed power supply.
直流電力を交流電力に変換する電力変換装置を備えて、電力系統か解列された複数台の分散型電源のうち、
1台の前記分散型電源の前記電力変換装置を電圧制御運転して該1台の分散型電源を自立運転の交流電圧源とし、
残りの複数台の前記分散型電源の前記電力変換装置を前記交流電圧源の出力電圧に同期させてそれぞれ電流制御運転することにより前記残りの複数の分散型電源を前記交流電圧源に同期した交流電流源として連系運転する分散型電源の運転方法であって、
前記複数台の分散型電源として、交流電力を直流電力に変換し且つ直流電力を交流電力に変換する双方向変換機能を有する電力変換装置と蓄電設備とを備えた複数台の第1の種類の分散型電源と、発電設備として太陽電池、風水力発電設備等の自然エネルギを利用して発電する自然エネルギ利用発電設備を備え且つ蓄電設備を有しない1台以上の第2の種類の分散型電源とを用い、
前記複数台の第1の種類の分散型電源から選択した1台の分散型電源を前記交流電圧源とし、残りの前記第1の種類の分散型電源と前記第2の種類の分散型電源を前記電流制御運転により前記交流電流源として連系運転し、
前記第2の種類の分散型電源の前記電力変換装置を前記発電設備の最大電力点を追従するように電流制御運転し、
余剰電力が発生していることを判別したときには、前記交流電圧源となる前記第1の種類の分散型電源の前記電力変換装置により前記余剰電力を回生して前記蓄電設備に充電することを特徴とする分散型電源の運転方法。
With a power conversion device that converts DC power to AC power, among multiple distributed power sources that are disconnected from the power system,
A voltage control operation is performed on the power conversion device of the one distributed power source, and the one distributed power source is used as an AC voltage source for independent operation,
AC that synchronizes the remaining plurality of distributed power sources with the AC voltage source by performing current control operation of the power converters of the remaining plurality of distributed power sources in synchronization with the output voltage of the AC voltage source. It is a method of operating a distributed power source that operates in an interconnected manner as a current source,
As the plurality of distributed power sources, a plurality of first types of power supplies having a bidirectional conversion function for converting AC power into DC power and converting DC power into AC power and power storage equipment One or more second-type distributed power sources that include a distributed power source and a natural energy generating power generation facility that uses natural energy such as a solar cell or a wind-hydraulic power generation facility as a power generation facility and that does not have a power storage facility And
One distributed power source selected from the plurality of first type distributed power sources is the AC voltage source, and the remaining first type distributed power source and second type distributed power source are By the current control operation, the AC current source is connected and operated,
The current conversion operation of the power conversion device of the second type of distributed power supply is performed so as to follow the maximum power point of the power generation facility,
When it is determined that surplus power is generated, the surplus power is regenerated by the power conversion device of the first type distributed power source serving as the AC voltage source to charge the power storage facility. A method for operating a distributed power source.
直流電力を交流電力に変換する電力変換装置を備えて、電力系統から解列された複数台の分散型電源のうち、
1台の前記分散型電源の前記電力変換装置を電圧制御運転して該1台の分散型電源を自立運転の交流電圧源とし、
残りの複数台の前記分散型電源の前記電力変換装置を前記交流電圧源の出力電圧に同期させてそれぞれ電流制御運転することにより前記残りの複数の分散型電源を交流電流源として連系運転する分散型電源の運転方法であって、
前記複数台の分散型電源として、交流電力を直流電力に変換し且つ直流電力を交流電力に変換する双方向変換機能を有する電力変換装置と蓄電設備とを備えた複数台の第1の種類の分散型電源と、発電設備として太陽電池を備え且つ蓄電設備を有しない1台以上の第2の種類の分散型電源とを用い、
前記複数台の第1の種類の分散型電源から適当な時期に交代で選択した1台の分散型電源を前記交流電圧源とし、残りの前記第1の種類の分散型電源と前記第2の種類の分散型電源を前記電流制御運転により連系運転し、
前記第2の種類の分散型電源の前記電力変換装置を前記太陽電池の最大電力点を追従するように電流制御運転し、
余剰電力が発生していることを判別したときには、前記交流電圧源となる前記第1の種類の分散型電源の前記電力変換装置により前記余剰電力を回生して前記蓄電設備に充電することを特徴とする分散型電源の運転方法。
A power conversion device that converts direct current power into alternating current power, and among a plurality of distributed power sources separated from the power system,
Voltage-controlled operation of the power conversion device of one of the distributed power sources to make the one distributed power source an AC voltage source for independent operation,
The power converters of the remaining plurality of distributed power sources are each operated in a current controlled manner in synchronization with the output voltage of the AC voltage source, whereby the remaining plurality of distributed power sources are connected to each other as an AC current source. A method of operating a distributed power source,
As the plurality of distributed power sources, a plurality of first types of power supplies having a bidirectional conversion function for converting AC power into DC power and converting DC power into AC power and power storage equipment Using a distributed power source and one or more second type distributed power sources that include solar cells as power generation facilities and do not have power storage facilities,
One of the plurality of first-type distributed power supplies selected alternately at an appropriate time is used as the AC voltage source, and the remaining first-type distributed power supplies and the second A distributed power source of a kind is connected to the current controlled operation, and
The current conversion operation of the power conversion device of the second type of distributed power source so as to follow the maximum power point of the solar cell,
When it is determined that surplus power is generated, the surplus power is regenerated by the power conversion device of the first type distributed power source serving as the AC voltage source to charge the power storage facility. A method for operating a distributed power source.
前記交流電圧源として用いている前記第1の種類の分散型電源が故障したときには、故障した前記第1の種類の分散型電源の運転を停止し、
他の1台の前記第1の種類の分散型電源を前記交流電圧源として用いる切換動作を行って、運転を継続することを特徴とする請求項4または5に記載の分散型電源の運転方法。
When the first type of distributed power supply used as the AC voltage source fails, the operation of the failed first type of distributed power supply is stopped,
6. The method of operating a distributed power supply according to claim 4 or 5, wherein the operation is continued by performing a switching operation using another one of the first type distributed power supplies as the AC voltage source. .
前記第1の種類の分散型電源は、太陽電池、風水力発電設備等の自然エネルギを利用して発電する自然エネルギ利用発電設備を含む発電設備を備えている請求項3,4または5に記載の分散型電源の運転方法。   The said 1st type distributed power supply is equipped with the power generation equipment containing the natural energy utilization power generation equipment which generate | occur | produces using natural energy, such as a solar cell and a wind-hydraulic power generation equipment. Of operating distributed power supply.
JP2004108233A 2004-03-31 2004-03-31 Operation method of distributed power supply Expired - Lifetime JP4101201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108233A JP4101201B2 (en) 2004-03-31 2004-03-31 Operation method of distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108233A JP4101201B2 (en) 2004-03-31 2004-03-31 Operation method of distributed power supply

Publications (2)

Publication Number Publication Date
JP2005295707A true JP2005295707A (en) 2005-10-20
JP4101201B2 JP4101201B2 (en) 2008-06-18

Family

ID=35328029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108233A Expired - Lifetime JP4101201B2 (en) 2004-03-31 2004-03-31 Operation method of distributed power supply

Country Status (1)

Country Link
JP (1) JP4101201B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
JP2014050292A (en) * 2012-09-04 2014-03-17 Toshiba Syst Technol Corp Distributed power supply system, and autonomous operation control device
JP2014079137A (en) * 2012-10-12 2014-05-01 Sanken Electric Co Ltd Emergency power system
JP2015119581A (en) * 2013-12-19 2015-06-25 京セラ株式会社 Power control system and power control method
JP2016140125A (en) * 2015-01-26 2016-08-04 大和ハウス工業株式会社 Power supply system
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
JP2017123747A (en) * 2016-01-08 2017-07-13 シャープ株式会社 Power management device
JP2018107845A (en) * 2016-12-22 2018-07-05 大和ハウス工業株式会社 Power supply system
KR20220165977A (en) * 2021-06-09 2022-12-16 옴니시스템 주식회사 Apparatus and method for driving EMS in Microgrid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161730B2 (en) 2014-01-20 2017-07-12 三菱電機株式会社 Power converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870533A (en) * 1994-08-26 1996-03-12 Omron Corp Power supply using solar battery
JPH0991049A (en) * 1995-09-22 1997-04-04 Toshiba Corp Solar photovoltaic power generation system
JPH09215198A (en) * 1996-02-07 1997-08-15 Hitachi Ltd Automatic voltage regulator
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system
JP2003189477A (en) * 2001-12-14 2003-07-04 Daikin Ind Ltd Power controller
JP2003229782A (en) * 2002-02-05 2003-08-15 Honda Motor Co Ltd Wireless call system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870533A (en) * 1994-08-26 1996-03-12 Omron Corp Power supply using solar battery
JPH0991049A (en) * 1995-09-22 1997-04-04 Toshiba Corp Solar photovoltaic power generation system
JPH09215198A (en) * 1996-02-07 1997-08-15 Hitachi Ltd Automatic voltage regulator
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system
JP2003189477A (en) * 2001-12-14 2003-07-04 Daikin Ind Ltd Power controller
JP2003229782A (en) * 2002-02-05 2003-08-15 Honda Motor Co Ltd Wireless call system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182017A (en) * 2007-01-24 2008-08-07 Meidensha Corp Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
JP2014050292A (en) * 2012-09-04 2014-03-17 Toshiba Syst Technol Corp Distributed power supply system, and autonomous operation control device
JP2014079137A (en) * 2012-10-12 2014-05-01 Sanken Electric Co Ltd Emergency power system
JP2015119581A (en) * 2013-12-19 2015-06-25 京セラ株式会社 Power control system and power control method
JP2016140125A (en) * 2015-01-26 2016-08-04 大和ハウス工業株式会社 Power supply system
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
JP2017123747A (en) * 2016-01-08 2017-07-13 シャープ株式会社 Power management device
JP2018107845A (en) * 2016-12-22 2018-07-05 大和ハウス工業株式会社 Power supply system
KR20220165977A (en) * 2021-06-09 2022-12-16 옴니시스템 주식회사 Apparatus and method for driving EMS in Microgrid
KR102582427B1 (en) * 2021-06-09 2023-09-25 옴니시스템 주식회사 Apparatus and method for driving EMS in Microgrid

Also Published As

Publication number Publication date
JP4101201B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
EP2763265B1 (en) Power conditioner system and storage battery power conditioner
US6795322B2 (en) Power supply with uninterruptible function
JP6227885B2 (en) Power control system, power control apparatus, and control method for power control system
JP2000358330A (en) Photovoltaic power generating apparatus
JP5945594B2 (en) Power supply system
JP2014063282A (en) Power conditioner and method of controlling the same
WO2011039608A1 (en) Electric power distribution system
JPH1189096A (en) Operation control method of distributed power supply equipment
JP2013123355A (en) Power management apparatus and method of controlling the same
JP4101201B2 (en) Operation method of distributed power supply
JP2022179781A (en) power conversion system
JP2013013174A (en) Power supply system
KR101409272B1 (en) Power system associated new regeneration energy
JP6439165B2 (en) AC power supply output power control method and AC power supply
US20200067318A1 (en) Mobile micro-grid unit and micro-grid system
WO2014115569A1 (en) Power router and operation control method therefor, power network system, and non-transitory computer readable medium with program stored
KR101769663B1 (en) Energy Storage System
JP2004336933A (en) Power supplying system
CN103208854A (en) Multi-energy multi-mode uninterruptible power supply (UPS) based on controller area network (CAN) bus
CN112803475A (en) Parallel operation control system and method for household energy storage inverter
JP6200013B2 (en) Energy storage system
JP2005086984A (en) Power supply system and facility
JP2016127726A (en) Power router, method for controlling power router, and program
JP2019024318A (en) Power control apparatus, power control system, and control method of power control system
KR101152255B1 (en) Bluetooth parallel operating ups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350