JP2005074472A - Method of brazing carbon nanotube to base material - Google Patents

Method of brazing carbon nanotube to base material Download PDF

Info

Publication number
JP2005074472A
JP2005074472A JP2003308264A JP2003308264A JP2005074472A JP 2005074472 A JP2005074472 A JP 2005074472A JP 2003308264 A JP2003308264 A JP 2003308264A JP 2003308264 A JP2003308264 A JP 2003308264A JP 2005074472 A JP2005074472 A JP 2005074472A
Authority
JP
Japan
Prior art keywords
cnt
metal
brazing
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003308264A
Other languages
Japanese (ja)
Other versions
JP4333285B2 (en
Inventor
Takamine Mukai
敬峰 向井
Yasuhiko Nishi
泰彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003308264A priority Critical patent/JP4333285B2/en
Publication of JP2005074472A publication Critical patent/JP2005074472A/en
Application granted granted Critical
Publication of JP4333285B2 publication Critical patent/JP4333285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brazing method of a carbon nanotube (CNT) to a base material, the method with which a sufficient CNT adhesive strength can be obtained while low gas releasability and electrical conductivity are secured. <P>SOLUTION: In the brazing method of a CNT to a base material, a metal or a metallic compound is stuck to a part of the CNT and then, the CNT is brazed to the base material using a brazing filler metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、広くはカーボンナノチューブの接合方法に関し、特にカーボンナノチューブと金属又はガラス等の基材への接合法に関する。   The present invention relates generally to a method for bonding carbon nanotubes, and more particularly to a method for bonding carbon nanotubes to a metal or glass substrate.

カーボンナノチューブ(CNT)は、およそ直径0.4〜100nm、長さ1〜数百μmという、極細、高アスペクト比という特徴を有し、また、鋼の数10倍以上の引っ張り強度と導電性を有することから、フィールドエミッションディスプレー(FED)や、その他のフィールドエミッター(FE)としての利用が期待されている。   Carbon nanotubes (CNT) are characterized by ultra-fine and high aspect ratios of approximately 0.4 to 100 nm in diameter and 1 to several hundred μm in length, and have a tensile strength and electrical conductivity several tens of times that of steel. Therefore, it is expected to be used as a field emission display (FED) and other field emitters (FE).

しかしながら、このCNTを電子放出源として利用するためには、基材となる金属、半導体、ガラス等の基板にCNTを塗布もしくは接着することが必要であるが、現在のところ、電子放出特性を損なわずに、接着強度、真空中での低ガス放出、導電性を満足する接合方法が見出されておらず、CNTを用いた電子放出源の商品化の課題となっている。   However, in order to use the CNT as an electron emission source, it is necessary to apply or bond the CNT to a substrate such as a metal, semiconductor, glass, or the like as a base material. However, a bonding method that satisfies adhesive strength, low gas emission in vacuum, and conductivity has not been found, and this is a problem for commercialization of electron emission sources using CNTs.

たとえば、カーボンナノチューブ等の微小炭素物質を基材に接合して電子源を製造する方法としては、カーボンナノチューブに代えて気相成長カーボンファイバーを用い、導電性ポリマーの水溶液又は水性分散液にこれを分散させて、導電性を有する基板に浸漬等の手段で付着させる方法が知られている。(特許文献1参照)。   For example, as a method of manufacturing an electron source by bonding a minute carbon substance such as carbon nanotube to a base material, vapor-grown carbon fiber is used instead of carbon nanotube, and this is applied to an aqueous solution or dispersion of a conductive polymer. A method of dispersing and adhering to a conductive substrate by means such as immersion is known. (See Patent Document 1).

また、高分子樹脂中に黒鉛粉末を混練して板状に成形後焼成炭素化する方法が知られている(特許文献2参照)。こうして得られた炭素系エミッタは接着剤を用いて基板に接着させる。   Further, a method is known in which graphite powder is kneaded into a polymer resin, formed into a plate shape, and then calcined carbonized (see Patent Document 2). The carbon-based emitter thus obtained is bonded to the substrate using an adhesive.

電極基板に導電体層を形成し、これをカーボンナノチューブを分散させた液体中に浸して電気泳動法によりカーボンナノチューブを前記導電体層の表面に付着させ、これを導電性材料の融点により高い温度に加熱する電子放出源の製造方法も知られている(特許文献3参照)。   A conductive layer is formed on the electrode substrate, and this is immersed in a liquid in which carbon nanotubes are dispersed, and the carbon nanotubes are attached to the surface of the conductive layer by electrophoresis, and this is heated to a temperature higher than the melting point of the conductive material. Also known is a method of manufacturing an electron emission source that is heated at a high temperature (see Patent Document 3).

特開2002−8517号公報JP 2002-8517 A 特開2002−100278号公報Japanese Patent Laid-Open No. 2002-1000027 特開2003−59391号公報JP 2003-59391 A

前述のように、このCNTを電子放出源として利用するためには、基材となる金属、半導体、ガラス等の基板にCNTを塗布もしくは接着することが必要であるが、現在のところ、電子放出特性を損なわずに、接着強度、真空中での低ガス放出、導電性を満足する接合方法が見出されていない。   As described above, in order to use this CNT as an electron emission source, it is necessary to apply or bond CNT to a substrate such as a metal, semiconductor, glass, etc. as a base material. A bonding method that satisfies adhesive strength, low outgassing in a vacuum, and conductivity without damaging properties has not been found.

たとえば、有機物を用いた導電性接着剤を用いた場合、基板とCNTの接着力は十分に得られるが、無処理のままでは、電子源として用いるために高真空(105Pa程度)容器に封止すると、接着剤からのガス放出により、真空容器内の真空度が悪化し、電子放出源としての性能、寿命を著しく損なう。 For example, when a conductive adhesive using an organic material, the adhesion force of the substrate and the CNT can be sufficiently obtained, but remains untreated, high vacuum for use as an electron source (10 - about 5 Pa) in a container When sealed, the degree of vacuum in the vacuum container deteriorates due to gas release from the adhesive, and the performance and life as an electron emission source are significantly impaired.

この問題に対して、たとえば特許文献2の様に、真空封止する前に熱処理を行い、接着剤を炭化させて真空中でのガス放出を抑制する方法が開示されているが、接着剤を炭化させることにより、接着剤本来の接着力は失われ、言うなれば炭化物が基材と付着しているだけであり、十分な接着力は得られない。加えて、炭化処理は接着剤を数時間以上高温に加熱する必要があり生産性を落とすだけでなく、たとえ長時間炭化処理を行ったにせよ、一部炭化接着剤内に閉じ込められたガス成分が徐々に放出されるため、電子放出源として用いることのできるガス放出量に抑えることは困難である。   To solve this problem, for example, as disclosed in Patent Document 2, a method is disclosed in which heat treatment is performed before vacuum sealing to carbonize the adhesive to suppress outgassing in vacuum. By carbonizing, the original adhesive strength of the adhesive is lost. In other words, the carbide is only adhered to the substrate, and sufficient adhesive strength cannot be obtained. In addition, carbonization requires heating the adhesive to a high temperature for several hours or more, which not only reduces productivity, but also gas components partially confined in the carbonization adhesive, even if carbonization is performed for a long time. Is gradually released, so that it is difficult to suppress the amount of gas released that can be used as an electron emission source.

この問題を解決するために、無機系の導電性接着剤を用いる例として錫ドープ酸化インジウム(ITO)を用いたCNTと基材との接合について特許文献1に開示されている。ITOは導電性を有し、また真空中でのガス放出量も少ないこと、ガラス基材への接着性が良いことから、真空中の導電性接着剤として広く使われている材料である。しかしながらITOはCNTと混ざりにくく、たとえばITOとCNTを混練しても、CNTがITO内に均一に分散させることは難しい。また、仮に均一分散できたとしても、基材に塗布、焼成した場合、ほとんどのCNTはITO内に埋没し、ごく一部のCNTが表面に現れるだけであり、電子放出の均一性を損なうとともに、CNTの歩留まりを低下させる。また、基材に予めITOを塗布した上に、CNTを散布し加熱処理しても、CNTとITOがなじまないため、接着できないのが現実である。   In order to solve this problem, Patent Document 1 discloses bonding of a CNT and a base material using tin-doped indium oxide (ITO) as an example of using an inorganic conductive adhesive. ITO is a material that is widely used as a conductive adhesive in vacuum because it has electrical conductivity, has a small amount of outgassing in a vacuum, and has good adhesion to a glass substrate. However, ITO is difficult to mix with CNT. For example, even if ITO and CNT are kneaded, it is difficult to uniformly disperse CNT in ITO. Moreover, even if it can be uniformly dispersed, when applied to a substrate and baked, most of the CNTs are buried in the ITO, and only a small part of the CNTs appear on the surface, impairing the uniformity of electron emission. , CNT yield is reduced. In addition, even if ITO is applied to the substrate in advance and then CNTs are dispersed and heat-treated, the CNTs and the ITO do not blend together, so that it is impossible to bond them.

また、特許文献3のごとく低融点の金属を用いてCNTと基材とをろう付けする方法では、やはりCNTと金属がなじみにくく、前述のごとくCNTとろう材との接着力が十分に得られない。   Moreover, in the method of brazing CNT and a base material using a metal having a low melting point as described in Patent Document 3, the CNT and the metal are not easily mixed with each other, and sufficient adhesion between the CNT and the brazing material can be obtained as described above. Absent.

本発明は、上記のような問題点を解決するためになされたものであり、低ガス放出性と導電性を確保しながら充分なCNT接着力が得られるCNTの基材へのろう付け方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and provides a method for brazing CNT to a base material, which can provide a sufficient CNT adhesive force while ensuring low outgassing properties and conductivity. It is intended to provide.

本発明は、上記課題を解決するべくなされたもので、カーボンナノチューブの一部に金属又は金属化合物を付着させてから、ろう材を用いて基材にろう付けすることを特徴とする、カーボンナノチューブの基材へのろう付け方法によってかかる目的を達成したものである。   The present invention has been made to solve the above-mentioned problems, and is characterized in that a metal or a metal compound is attached to a part of the carbon nanotube and then brazed to a base material using a brazing material. This object is achieved by the method of brazing to the base material.

以上のように本発明によれば、カーボンナノチューブに金属を付着させ、ろう材との濡れ性を改善したので、カーボンナノチューブと基材となる金属板もしくはガラスとのろう付け性を高めることができ、十分な接着強度を得ることが可能となる。また、電子放出特性を損なわずに、低ガス放出性、導電性を確保しつつ、接着剤を得られることから、品質の高い電子放出源を得ることができる。   As described above, according to the present invention, the metal is adhered to the carbon nanotube and the wettability with the brazing material is improved, so that the brazing property between the carbon nanotube and the metal plate or glass as the base material can be improved. It is possible to obtain a sufficient adhesive strength. In addition, since an adhesive can be obtained while ensuring low gas emission and conductivity without impairing electron emission characteristics, a high quality electron emission source can be obtained.

カーボンナノチューブは公知の方法で得られたものをそのまま使用することができ、粉状、シート状等の形状を問わない。例えば、本発明者が先に開発した、カーボン中空電極を用いて得られるテープ状のものも適用できる(特願2002−192749)。基材にろう付けされるカーボンナノチューブは通常は面状(シート状)であり、0.1〜5μg/mm程度、通常1〜2μg/mm2程度である。 As the carbon nanotube, those obtained by a known method can be used as they are, and any shape such as powder or sheet may be used. For example, the tape-like thing obtained using the carbon hollow electrode developed previously by the present inventor can be applied (Japanese Patent Application No. 2002-192749). The carbon nanotubes to be brazed to the substrate are usually planar (sheet-like), about 0.1 to 5 μg / mm 2 , and usually about 1 to 2 μg / mm 2 .

金属又は金属化合物を付着させるカーボンナノチューブは集合状態にあることが好ましい。例えば、基板に付着させるとか、凝集させるとか、テープ状あるいはシート状に形成させたものである。   The carbon nanotubes to which the metal or metal compound is attached are preferably in an aggregated state. For example, they are attached to a substrate, aggregated, or formed into a tape shape or a sheet shape.

このCNT吹付け用の基板は塗布もしくは散布の際、均一な厚さのCNT層を得るためとCNTに金属を蒸着する際の基板として使われるもので、CNTを汚染せず、真空中で使用できるものであれば材質は問わない。代表的な例としては、ガラス、金属板、セラミックス等が挙げられる。好ましくは、CNT塗布面を鏡
面仕上げしておくことが望ましい。また、CNTの塗布、散布方法については、溶媒中にCNTを分散させてスプレー散布する方法、テープやシート状のCNT集合体を載せ金網などで押さえる方法などを用いることができる。この際、基板とCNTの接合力は蒸着が行える程度の接着力を有していれば良く、前記の方法で十分である。
This CNT spraying substrate is used as a substrate when depositing metal on CNTs to obtain a CNT layer with a uniform thickness during coating or spraying. It does not contaminate CNTs and is used in a vacuum. Any material can be used as long as it is possible. Typical examples include glass, metal plates, ceramics and the like. Preferably, the CNT-coated surface is mirror finished. As for the method of applying and spreading CNTs, there can be used a method in which CNTs are dispersed in a solvent and sprayed, a method in which a tape or sheet-like CNT aggregate is placed and pressed with a wire mesh or the like. At this time, the bonding force between the substrate and the CNTs is sufficient as long as it has an adhesive force capable of vapor deposition, and the above method is sufficient.

金属または金属化合物は、CNTとろう材のなじみ(濡れ性)を改善してCNTの基材への接着力を向上させるものであり、炭素及びろう材の両方に濡れ性がよくろう材よりも融点が高い、炭素や基材に悪影響を与えない等の要件を満たすものであり、さらに真空蒸着を行えるものが好ましい。   Metals or metal compounds improve the adhesion (wetting properties) between CNT and brazing material and improve the adhesion of CNT to the substrate. Both carbon and brazing material have better wettability than brazing material. It preferably satisfies the requirements such as a high melting point, does not adversely affect carbon and the substrate, and can perform vacuum deposition.

ここでいう濡れ性が良いとは、蒸着金属または金属化合物単体の界面エネルギーをγA、ろう材の界面エネルギーをγB、蒸着金属または金属化合物とろう材との接触部における界面エネルギーをγABとしたとき、γA+γB≧γABとなることを意味する。この状態においては、金属もしくは金属化合物とろう材がなじみ、ろう付けが可能となる。   Here, the wettability is good when the interfacial energy of the vapor-deposited metal or metal compound is γA, the interfacial energy of the brazing material is γB, and the interfacial energy at the contact portion between the vapor-deposited metal or metal compound and the brazing material is γAB. ΓA + γB ≧ γAB. In this state, the metal or metal compound is compatible with the brazing material, and brazing becomes possible.

また、金属または金属化合物の融点は、ろう材の融点+100℃以上、好ましくはろう材の融点+500℃以上のものがよい。融点の下限はろう材の融点以上である。   Further, the melting point of the metal or metal compound is preferably the melting point of the brazing material + 100 ° C. or more, preferably the melting point of the brazing material + 500 ° C. or more. The lower limit of the melting point is not less than the melting point of the brazing material.

さらに、CNTに付着させる金属または金属化合物とろう材とを、合金を形成する組み合わせとすることにより、CNTに付着された金属もしくは金属化合物とろう材が一体化し、より高い結合力を得られる。加えて、金属もしくは金属化合物およびろう材単体の融点より、合金化した場合のほうが融点が高くなる材料を組合わせることにより、低いろう付け温度と高い使用温度を両立できる。 Furthermore, the metal or metal compound attached to the CNT and the brazing material are combined to form an alloy, so that the metal or metal compound attached to the CNT and the brazing material are integrated to obtain a higher bonding force. In addition, it is possible to achieve both a low brazing temperature and a high use temperature by combining materials whose melting points are higher when alloyed than the melting points of metals or metal compounds and brazing filler metal alone.

あるいは金属又は金属とろう材とが共晶を形成するものも好ましい。たとえば、In−Ni、In−Sn、Pb−Snといった組合せである。   Or what a metal or a metal, and a brazing material form a eutectic is also preferable. For example, there are combinations such as In—Ni, In—Sn, and Pb—Sn.

金属の具体例としては、ニッケル、錫、鉛、銅等を挙げることができる。金属化合物の例としては酸化物、たとえばITO(錫ドープ酸化インジウム)が挙げられる。   Specific examples of the metal include nickel, tin, lead, copper and the like. Examples of metal compounds include oxides such as ITO (tin doped indium oxide).

CNTに金属または金属化合物粒子を付着させる方法としては、蒸着を用いることで、均一かつ付着量を制御できる。ここで言う蒸着とは、真空中で行われる物理蒸着を意味し、たとえば、ヒータにて金属を昇華、蒸発させる真空蒸着法、電子銃を用いる方法、イオンプレーティング、スパッタリングを意味する。   As a method for attaching metal or metal compound particles to CNTs, the amount of adhesion can be controlled uniformly by using vapor deposition. Vapor deposition as used herein means physical vapor deposition performed in vacuum, for example, vacuum deposition method in which a metal is sublimated and evaporated with a heater, a method using an electron gun, ion plating, and sputtering.

CNTにはその一部に金属又は金属化合物を付着させる。この場合の一部とは、電子顕微鏡等で観察した場合、付着面の金属または金属化合物の間にCNTが観察される、すなわち全面付着している必要のないことを意味する。   A metal or a metal compound is attached to a part of the CNT. The part in this case means that when observed with an electron microscope or the like, CNTs are observed between the metal or metal compound on the adhesion surface, that is, it is not necessary to adhere to the entire surface.

CNTへの金属又は金属化合物の付着量は、膜厚で、通常0.1〜10μm程度、好ましくは1〜4μm程度である。但し、1μm以下の膜厚で十分な効果が得られる。なお、この際、たとえばアルミニウム(Al)を、10〜100μm蒸着するとアルミが薄膜を形成し、基板に塗布したCNTがシート状で取り出すことができ、このCNT付Alシートを別途基材に取り付けたりすることも可能である。   The adhesion amount of the metal or metal compound to the CNT is usually about 0.1 to 10 μm, preferably about 1 to 4 μm in terms of film thickness. However, a sufficient effect can be obtained with a film thickness of 1 μm or less. In this case, for example, when aluminum (Al) is deposited to a thickness of 10 to 100 μm, the aluminum forms a thin film, and the CNT applied to the substrate can be taken out in a sheet form. It is also possible to do.

ろう材はCNT及び基材より融点の低い金属(合金を含む。)や金属化合物であり、かつ、CNT及び基材に濡れ性のよいものである。ろう材の融点は、基材の融点−500℃以下、好ましくは基材の融点−800℃以下のものがよい。融点の下限は100℃程度である。   The brazing material is a metal (including an alloy) or a metal compound having a melting point lower than that of the CNT and the base material, and has good wettability to the CNT and the base material. The melting point of the brazing material is the melting point of the base material −500 ° C. or less, preferably the melting point of the base material −800 ° C. or less. The lower limit of the melting point is about 100 ° C.

ろう材料の例としては、基材がステンレススチールの場合には、インジウム、はんだ(Sn−In系、Sn−Pb系等)、他の低融点金属、合金等を用いることができる。   As an example of the brazing material, in the case where the base material is stainless steel, indium, solder (Sn—In series, Sn—Pb series, etc.), other low melting point metals, alloys, and the like can be used.

基材としてガラスを用いる場合には、Inを用いてもかなり高い接着力を得ることは可能であるが、望ましくはガラス用はんだ、ITO等元来ガラスとの接着力が高い導電性無機材料を使用することが好ましい。この場合、CNTに蒸着する金属は錫やInなどろう材と化合物を作る材料とすることが望ましい。   When glass is used as the base material, it is possible to obtain a considerably high adhesive force even if In is used, but it is desirable to use a conductive inorganic material having a high adhesive force with glass such as solder for glass and ITO. It is preferable to use it. In this case, it is desirable that the metal deposited on the CNT is a material that forms a compound with a brazing material such as tin or In.

基材の形状、材料等はCNTろう付物の用途等に応じて定まるが、材質としては、一般に、ステンレススチール、ニッケル、銅および銅合金等の金属、ガラス、セラミクス等が用いられる。大きさとしては、容積が1〜750,000mm3程度、通常3〜500mm3程度で、CNTろう付け面の面積としては、2〜400,000mm2程度である。ろう付け面は鏡面加工、メッキ処理等の加工、あるいは脱脂処理、酸化膜除去たとえばイオンボンバード等の前処理を施すことができる。 The shape, material, and the like of the base material are determined according to the use of the CNT brazing material, but as a material, generally, a metal such as stainless steel, nickel, copper, and a copper alloy, glass, ceramics, or the like is used. The size is about 1 to 750,000 mm 3 , usually about 3 to 500 mm 3 , and the area of the CNT brazing surface is about 2 to 400,000 mm 2 . The brazing surface can be subjected to processing such as mirror surface processing, plating processing, or preprocessing such as degreasing and oxide film removal, such as ion bombardment.

本発明においては、ろう材はまず基材のろう付け面に付着させる。しかしながら、逆に、CNTに付着させた金属又は金属化合物に付着させてこれを基材のろう付け面にろう付けすることもできる。   In the present invention, the brazing material is first adhered to the brazing surface of the substrate. However, conversely, the metal or metal compound attached to the CNT may be attached and brazed to the brazing surface of the substrate.

ろう材の基材面への付着は、均一に行うため、蒸着が好ましいが、その他の付着手段、例えば粉末ろう材の散布、懸濁液や溶液の吹付けあるいはその他の手段による塗布、箔等にしての貼着等、如何なる手段によってもよい。ろう付の付着量は厚さで5〜200μm程度、通常10〜100μm程度でよい。   Vapor deposition is preferable because the brazing material adheres uniformly to the base material surface, but other adhering means, for example, dispersion of powder brazing material, spraying of suspension or solution or application by other means, foil, etc. Any means such as pasting may be used. The adhesion amount of brazing may be about 5 to 200 μm, usually about 10 to 100 μm in thickness.

CNTの基材へのろう付けは、この状態でCNTを基材面に密着させて加熱する。   The brazing of the CNTs to the substrate is performed by bringing the CNTs into close contact with the substrate surface in this state.

CNTの基材面への密着は、CNTが前記の基板等に付着されあるいは膜状、シート状等の成形品であればこれを基材面に押付ければよい。押付圧力は特に強力である必要はなく、例えば、0.1g/cm2以上程度、特に、1g/cm2以上程度でよく、基材あるいは基板の自重等によるものであってもよい。 The adhesion of the CNTs to the substrate surface may be achieved by pressing the CNTs against the substrate surface if the CNTs are attached to the substrate or the like, or if the CNT is a molded product such as a film or sheet. The pressing pressure need not be particularly strong, and may be, for example, about 0.1 g / cm 2 or more, particularly about 1 g / cm 2 or more, and may be due to the weight of the substrate or the substrate.

加熱は、ろう材と金属又は金属化合物が変質しない雰囲気がよく、これはろう材と金属又は金属化合物が安定でありかつCNTが変質しない温度であれば大気中でもよい。必要により、真空(減圧)あるいは、He、Ar等の不活性ガス雰囲気が用いられる。加熱温度はろう材が溶融する温度であり、ろう材の融点も50℃以上、好ましくは融点+200℃以上が適当である。加熱温度の上限は基材等が変質や融解しない範囲である。例えばインジウムをSUSにろう付けする場合には200〜500℃程度が適当である。加熱時間は充分にろう付けが行われればよく、10分間もあれば充分である。   Heating may be performed in an atmosphere in which the brazing material and the metal or metal compound are not denatured. This may be in the atmosphere as long as the brazing material and the metal or metal compound are stable and the CNT does not denature. If necessary, a vacuum (reduced pressure) or an inert gas atmosphere such as He or Ar is used. The heating temperature is a temperature at which the brazing material is melted, and the melting point of the brazing material is 50 ° C. or higher, and preferably the melting point + 200 ° C. or higher. The upper limit of the heating temperature is a range in which the substrate or the like does not change or melt. For example, when indium is brazed to SUS, about 200 to 500 ° C. is appropriate. The heating time may be sufficiently brazed, and 10 minutes is sufficient.

図1は本発明の一実地例であるカーボンナノチューブの基材へのろう付け方法の概略手順を示す図である。   FIG. 1 is a diagram showing a schematic procedure of a method of brazing carbon nanotubes to a base material, which is a practical example of the present invention.

同図に示すように、まず、CNT塗布用基板にCNTを塗布又は散布した。このCNT塗布基板はSUS304製で直径30mm、厚さ5mmの表面を鏡面仕上した円盤であり、CNTはメチルアルコールに0.03mg/mlの濃度で分散させて、これを基板の略中央に円状にCNT0.007μg/mmの量を吹付けた。溶媒を蒸発させてから、この基板のCNTを付着させた面にニッケルを
4μg/mm(厚さ4μm)真空蒸着させた。
As shown in the figure, first, CNT was applied or dispersed on a CNT coating substrate. This CNT-coated substrate is a disk made of SUS304 and having a mirror-finished surface with a diameter of 30 mm and a thickness of 5 mm. CNT is dispersed in methyl alcohol at a concentration of 0.03 mg / ml, and this is circular in the approximate center of the substrate. An amount of 0.007 μg / mm 2 of CNT was sprayed on. After evaporating the solvent, 4 μg / mm 2 (4 μm thickness) of nickel was vacuum-deposited on the surface of the substrate on which the CNTs were adhered.

CNTを接着させる基材には直径10mm、厚さ10mmのステンレススチール(SUS304)製ディスクを用い、この基材のろう付け面にインジウムを70μg/mm真空蒸着させた。 A stainless steel (SUS304) disk having a diameter of 10 mm and a thickness of 10 mm was used as a substrate to which CNTs were adhered, and indium was vacuum-deposited on the brazed surface of the substrate at 70 μg / mm 2 .

基材のインジウム蒸着面に前記基板のCNT付着面を合わせ、5×10−3Paの真空中で約500℃に10分間加熱して、ろう材のインジウムを溶融させた。その際、基材又はCNT塗布用基板の重量により、8g/cm程度の密着力が加わっている。これにより、溶融したInはNiと共晶化合物を形成し、InとNi、すなわちNiが蒸着されたCNTと基材とが接着される。なお、InはCNTのNi蒸着された部分にしか濡れず、また、NiはCNT塗布膜の1面にしか付着していないため、あたかもCNT塗布膜のNi蒸着面のみがInに濡れた状態になり、CNTがInに埋没することはない。 The CNT adhering surface of the substrate was aligned with the indium deposition surface of the base material and heated to about 500 ° C. for 10 minutes in a vacuum of 5 × 10 −3 Pa to melt the indium of the brazing material. At that time, an adhesive force of about 8 g / cm 2 is applied depending on the weight of the base material or the CNT coating substrate. As a result, the molten In forms a eutectic compound with Ni, and the In and Ni, that is, the CNT on which Ni is deposited, and the substrate are bonded. Note that In only wets the Ni-deposited portion of CNT, and Ni adheres to only one surface of the CNT coating film, so that only the Ni deposition surface of the CNT coating film is wet with In. Thus, the CNT is not buried in In.

冷却後、CNT吹付け用の基板と基材とを剥がすと、CNT塗布膜はCNT吹付け用の基板から剥がれ、基材に均一に接合していた。   After cooling, when the substrate for CNT spraying and the base material were peeled off, the CNT coating film was peeled off from the substrate for CNT spraying and was uniformly bonded to the base material.

このようにして接着した基材のCNT接合面に流速5m/分の大気を吹きつけたところ、表層のごく一部のCNTが飛散したが、接合した面積のいずれの箇所においてもCNTの剥離が見られなかった。このことから、飛散したCNTは、CNT膜の表面に付着している他のCNTや基材との結合がほとんどない状態、言うなれば不純物である。   As a result of blowing air at a flow rate of 5 m / min on the CNT bonding surface of the base material bonded in this manner, a small part of the CNT on the surface layer was scattered, but the CNT was peeled off at any location of the bonded area. I couldn't see it. From this, the scattered CNT is an impurity, in other words, a state in which there is almost no bonding with other CNTs and the substrate adhering to the surface of the CNT film.

本発明の別の実施例であるろう付け方法の概略手順を図2に示す。   FIG. 2 shows a schematic procedure of a brazing method which is another embodiment of the present invention.

この実施例においては、特願2002−192749明細書の実施例で得られたテープ状CNTの集合体を用いた。このテープ状CNTは厚さ100μmでCNTを2μg/mm含むものであった。 In this example, an aggregate of tape-like CNTs obtained in the example of Japanese Patent Application No. 2002-192749 was used. The tape-like CNT had a thickness of 100 μm and contained 2 μg / mm 2 of CNT.

このテープ状CNTの両面にNiを真空蒸着した後に必須ではないが直径10mmの円状に打ち抜いた。Niの膜厚は各5μmとした。   After vacuum-depositing Ni on both sides of the tape-like CNT, it was punched into a circle having a diameter of 10 mm, although not essential. The thickness of Ni was 5 μm each.

一方、基材として、2個の直径10mm、高さ10mmのステンレススチール(SUS304)製ディスクを準備し、それぞれ片面にInを50μmの膜厚に真空蒸着させた。この両基材のIn蒸着面を向い合せにしてその間に前記のNiを両面に真空蒸着したCNTを挟み込んだ。これを5×103Paの真空中で約500℃で30分間加熱した。 On the other hand, two stainless steel (SUS304) disks having a diameter of 10 mm and a height of 10 mm were prepared as substrates, and In was vacuum-deposited to a thickness of 50 μm on each side. The In vapor-deposited surfaces of both substrates were faced to each other, and CNTs in which the Ni was vacuum-deposited on both surfaces were sandwiched therebetween. This 5 × 10 - heated 3 Pa 30 minutes at about 500 ° C. in a vacuum of.

冷却後、両基材を剥がすと、各々の基材の剥離面にCNTが接着されており、現われたCNT表面にはろう材、蒸着金属のいずれもが見出されなかった。   When both substrates were peeled off after cooling, CNTs were adhered to the peeled surfaces of the respective substrates, and neither brazing material nor vapor deposited metal was found on the CNT surfaces that appeared.

こうして得られたCNTろう付け基材の電子放出特性を測定したところ、約4V/μmの電界強度にて、100μA/mm平均電流密度を得ることができた。この値は、単にSUS基材にCNTを塗布した状態のものと同等であり、電子放出特性を損なわず、より高い接着強度を得ることができた。 When the electron emission characteristics of the CNT brazing substrate thus obtained were measured, an average current density of 100 μA / mm 2 could be obtained at an electric field strength of about 4 V / μm. This value is equivalent to that in a state where CNT is simply applied to a SUS substrate, and higher adhesive strength can be obtained without impairing the electron emission characteristics.

本発明のさらに別の実施例であるろう付け方法の概略手順を図3に示す。   A schematic procedure of a brazing method which is still another embodiment of the present invention is shown in FIG.

この実施例では、実施例1で得られたCNTろう付け基材のCNTろう付面にさらにNiを4μg/mm(厚さ4μm)に真空蒸着させた。 In this example, Ni was further vacuum-deposited on the CNT brazing surface of the CNT brazing substrate obtained in Example 1 to 4 μg / mm 2 (thickness 4 μm).

一方、別の基材として直径10mm、高さ10mmのステンレススチール(SUS304)製ディスクの片面にInを70μg/mm真空蒸着した。 On the other hand, 70 μg / mm 2 of In was vacuum deposited on one surface of a stainless steel (SUS304) disk having a diameter of 10 mm and a height of 10 mm as another substrate.

前記基材のNi蒸着したCNTろう付面にこのディスクのIn蒸着面を合わせ、これを5×103Paの真空中で約500℃で30分間加熱した。 The combined base Ni vapor deposited CNT brazing surface In the deposition surface of the disk, which 5 × 10 - heated 3 Pa 30 minutes at about 500 ° C. in a vacuum of.

冷却後、両基材を剥がすと、各々の基材の剥離面にCNTが接着されており、現われたCNT表面にはろう材、蒸着金属のいずれもが見出されなかった。   When both substrates were peeled off after cooling, CNTs were adhered to the peeled surfaces of the respective substrates, and neither brazing material nor vapor deposited metal was found on the CNT surfaces that appeared.

こうして得られたCNTろう付け基材の電子放出特性を測定したところ、約4V/μmの電界強度にて、100μA/mm平均電流密度を得ることができた。この値は、単にSUS基材にCNTを塗布した状態のものと同等であり、電子放出特性を損なわず、より高い接着強度を得ることができた。 When the electron emission characteristics of the CNT brazing substrate thus obtained were measured, an average current density of 100 μA / mm 2 could be obtained at an electric field strength of about 4 V / μm. This value is equivalent to that in a state where CNT is simply applied to a SUS substrate, and higher adhesive strength can be obtained without impairing the electron emission characteristics.

なお、実施例2および3においてどちらか一方の基材へのろう材蒸着をリソグラフィー、もしくは蒸着時のマスクなどでパターン化することにより、基材のろう材付着部分に選択的にCNTを接合することができた。   In Examples 2 and 3, CNT is selectively bonded to the brazing material adhering portion of the base material by patterning the brazing material vapor deposition on one of the base materials with lithography or a mask at the time of vapor deposition. I was able to.

比較例Comparative example

比較のために、金属又は金属化合物による前処理を行わないでCNTを基材にろう付けした手順の概略を図4に示す。   For comparison, FIG. 4 shows an outline of a procedure in which CNT is brazed to a substrate without performing a pretreatment with a metal or a metal compound.

実施例1と同じSUS基材の片面に実施例1と同様にしてインジウムを蒸着させた。   Indium was deposited on one side of the same SUS substrate as in Example 1 in the same manner as in Example 1.

このインジウム蒸着面に、実施例1と同じCNTを同様にアルコール懸濁液として吹付けた。   The same CNT as in Example 1 was sprayed on the indium vapor deposition surface as an alcohol suspension.

溶媒蒸発後、基材を実施例と同様に加熱し、CNTを基材にろう付けした。   After evaporation of the solvent, the substrate was heated as in the example, and the CNTs were brazed to the substrate.

基材冷却後、CNT散布面に流速5m/分の大気を吹きつけたところ、約95%の面積のCNTが飛散し、基材に付着したCNTはごく一部であった。   After cooling the base material, an air flow rate of 5 m / min was blown onto the CNT-spreading surface. As a result, about 95% of the CNTs were scattered and only a small part of the CNT adhered to the base material.

本発明の方法でロウ付けされた物は、高い接合力、低ガス放出特性、高い電子放出特性を有することから、電子放出源として用いることができる。用途としては、電子線源、蛍光表示管、FED等が挙げられる。   The thing brazed by the method of the present invention has high bonding strength, low gas emission characteristics, and high electron emission characteristics, and therefore can be used as an electron emission source. Applications include electron beam sources, fluorescent display tubes, FEDs, and the like.

本発明の一実施例であるカーボンナノチューブの基材へのろう付け方法の概略手順を示す工程図である。It is process drawing which shows the schematic procedure of the brazing method to the base material of the carbon nanotube which is one Example of this invention. 本発明の別の実施例であるカーボンナノチューブの基材へのろう付け方法の概略手順を示す工程図である。It is process drawing which shows the schematic procedure of the brazing method to the base material of the carbon nanotube which is another Example of this invention. 本発明のさらに別の実施例であるカーボンナノチューブの基材へのろう付け方法の概略手順を示す工程図である。It is process drawing which shows the schematic procedure of the brazing method to the base material of the carbon nanotube which is another Example of this invention. 本発明の比較例であるカーボンナノチューブの基材へのろう付け方法の概略手順を示す工程図である。It is process drawing which shows the schematic procedure of the brazing method to the base material of the carbon nanotube which is a comparative example of this invention.

Claims (7)

カーボンナノチューブの一部に金属又は金属化合物を付着させてから、ろう材を用いて基材にろう付けすることを特徴とする、カーボンナノチューブの基材へのろう付け方法   A method of brazing a carbon nanotube to a base material, comprising attaching a metal or a metal compound to a part of the carbon nanotube and then brazing the base material using a brazing material 金属又は金属化合物を付着させるカーボンナノチューブが基板上に付着したものである請求項1記載のろう付け方法   2. The brazing method according to claim 1, wherein the carbon nanotube to which the metal or the metal compound is attached is attached on the substrate. カーボンナノチューブがシート状集合体であり、その両面に金属又は金属化合物を付着させる請求項1記載のろう付け方法   The brazing method according to claim 1, wherein the carbon nanotube is a sheet-like aggregate, and a metal or a metal compound is adhered to both surfaces thereof. 金属又は金属化合物を付着させるカーボンナノチューブが基材にろう付けされているカーボンナノチューブ集合体である請求項1記載のろう付け方法   2. The brazing method according to claim 1, wherein the carbon nanotube to which the metal or metal compound is attached is a carbon nanotube aggregate in which the base material is brazed. カーボンナノチューブへの金属又は金属化合物の付着が該金属又は金属化合物の蒸着によって行われる請求項1、2、3又は4記載のろう付け方法   The brazing method according to claim 1, 2, 3, or 4, wherein the metal or metal compound is attached to the carbon nanotube by vapor deposition of the metal or metal compound. 金属又は金属化合物とろう材とが合金を形成する組合せである請求項1、2、3、4又は5記載のろう付け方法   The brazing method according to claim 1, 2, 3, 4 or 5, wherein the metal or the metal compound and the brazing material form an alloy. カーボンナノチューブが金属または金属化合物とろう材を介して基材に接着されている電界放出型電子源   Field emission electron source in which carbon nanotubes are bonded to a substrate via a metal or metal compound and a brazing material
JP2003308264A 2003-09-01 2003-09-01 Method of brazing carbon nanotube to substrate Expired - Fee Related JP4333285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308264A JP4333285B2 (en) 2003-09-01 2003-09-01 Method of brazing carbon nanotube to substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308264A JP4333285B2 (en) 2003-09-01 2003-09-01 Method of brazing carbon nanotube to substrate

Publications (2)

Publication Number Publication Date
JP2005074472A true JP2005074472A (en) 2005-03-24
JP4333285B2 JP4333285B2 (en) 2009-09-16

Family

ID=34410779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308264A Expired - Fee Related JP4333285B2 (en) 2003-09-01 2003-09-01 Method of brazing carbon nanotube to substrate

Country Status (1)

Country Link
JP (1) JP4333285B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718155B2 (en) 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US7718156B2 (en) 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
US7887771B2 (en) 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US7935276B2 (en) 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
WO2020085291A1 (en) * 2018-10-26 2020-04-30 学校法人早稲田大学 Carbon-metal structure and method for manufacturing carbon-metal structure
CN112404631A (en) * 2020-10-27 2021-02-26 哈尔滨工业大学 Method for soldering dissimilar materials with assistance of carbon nanotube sponge intermediate layer
WO2021053876A1 (en) * 2019-09-19 2021-03-25 株式会社明電舎 Emitter support structure and field emission device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718155B2 (en) 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US7887771B2 (en) 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7935276B2 (en) 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US7718156B2 (en) 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
CN112930578A (en) * 2018-10-26 2021-06-08 学校法人早稻田大学 Carbon-metal structure and method for producing carbon-metal structure
US20210375572A1 (en) * 2018-10-26 2021-12-02 Waseda University Carbon-metal structure and method for manufacturing carbon-metal structure
KR102565282B1 (en) * 2018-10-26 2023-08-09 각코호진 와세다다이가쿠 Carbon metal structure and manufacturing method of carbon metal structure
US11527378B2 (en) 2018-10-26 2022-12-13 Waseda University Carbon-metal structure and method for manufacturing carbon-metal structure
WO2020085291A1 (en) * 2018-10-26 2020-04-30 学校法人早稲田大学 Carbon-metal structure and method for manufacturing carbon-metal structure
KR20210077739A (en) * 2018-10-26 2021-06-25 각코호진 와세다다이가쿠 Carbon metal structure and method of manufacturing carbon metal structure
JPWO2020085291A1 (en) * 2018-10-26 2021-09-24 学校法人早稲田大学 Carbon-Metal Structure and Method for Manufacturing Carbon-Metal Structure
KR20220042472A (en) * 2019-09-19 2022-04-05 메이덴샤 코포레이션 Emitter support structure and field emission device
JP2021048051A (en) * 2019-09-19 2021-03-25 株式会社明電舎 Emitter support structure and field emission device
KR102497717B1 (en) 2019-09-19 2023-02-09 메이덴샤 코포레이션 Emitter support structure and field emission device
US11615937B2 (en) 2019-09-19 2023-03-28 Meidensha Corporation Emitter support structure and field emission device
WO2021053876A1 (en) * 2019-09-19 2021-03-25 株式会社明電舎 Emitter support structure and field emission device
CN112404631A (en) * 2020-10-27 2021-02-26 哈尔滨工业大学 Method for soldering dissimilar materials with assistance of carbon nanotube sponge intermediate layer
CN112404631B (en) * 2020-10-27 2022-06-07 哈尔滨工业大学 Method for soldering dissimilar materials with assistance of carbon nanotube sponge intermediate layer

Also Published As

Publication number Publication date
JP4333285B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN1959896B (en) Field emission of Nano carbon tube, and preparation method
KR100768675B1 (en) Device comprising carbon nanotube field emitter structure and process for forming device
KR100944828B1 (en) Process for producing cold field-emission cathodes
TWI312165B (en)
EP2863426B1 (en) Thermal interface sheet, preparation method therefor and cooling system therefor
US20090246507A1 (en) Systems and methods for fabrication and transfer of carbon nanotubes
US20040265592A1 (en) Field emission type cold cathode device, manufacturing method thereof and vacuum micro device
EP1594151A2 (en) Method of manufacturing carbon nanotube field emission device
JP2000223004A (en) Device including carbon nano-tube, device including field emission structure, and its manufacture
JP4333285B2 (en) Method of brazing carbon nanotube to substrate
US20160243636A1 (en) Brazing joining method of cnt assemblies on substrates using an at least ternary brazing alloy; corresponding brazing material and device comprising such assembly
KR101939831B1 (en) Method of manufacturing field emitter electrode
KR100679209B1 (en) A method for manufacturing carbon nanotube based-field emitters using thin metal layer
JP4355928B2 (en) Manufacturing method of field emission cold cathode
US20090079320A1 (en) Field electron emission source having carbon nanotubes and method for manufacturing the same
KR101700810B1 (en) Electron emitting device using graphite adhesive material and manufacturing method for the same
JP2007319761A (en) Catalyst composition for forming carbon-based nano material, carbon-based nano material device, cathode substrate for electron discharging element and its manufacturing method, and electron discharging element device and its manufacturing method
WO2020085291A1 (en) Carbon-metal structure and method for manufacturing carbon-metal structure
JP2008297174A (en) Method of manufacturing substrate for growing carbon nanotubes
JP5069486B2 (en) Thin film type electron emission material, method for manufacturing the same, field emission type device, and field emission type display
US20230411104A1 (en) Method of forming field emission cathodes by co-electrodeposition
JP2005332612A (en) Carbon nano-tube electrode and manufacturing method of the same
CN117393403A (en) Carbon nano tube field emission cathode and preparation method thereof
WO2022070094A1 (en) Methods of forming a field emission cathode
KR20230119628A (en) Carbon nanotube/metal composite films and methods for fabricating field emission cathodes therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees