JP2002369498A - Gate drive circiuit for power semiconductor element - Google Patents

Gate drive circiuit for power semiconductor element

Info

Publication number
JP2002369498A
JP2002369498A JP2001172943A JP2001172943A JP2002369498A JP 2002369498 A JP2002369498 A JP 2002369498A JP 2001172943 A JP2001172943 A JP 2001172943A JP 2001172943 A JP2001172943 A JP 2001172943A JP 2002369498 A JP2002369498 A JP 2002369498A
Authority
JP
Japan
Prior art keywords
power semiconductor
gate drive
circuit
command signal
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001172943A
Other languages
Japanese (ja)
Other versions
JP4706130B2 (en
Inventor
Akitake Takizawa
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001172943A priority Critical patent/JP4706130B2/en
Publication of JP2002369498A publication Critical patent/JP2002369498A/en
Application granted granted Critical
Publication of JP4706130B2 publication Critical patent/JP4706130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect the power semiconductor elements of IGBTs, etc., when the elements are parallelly driven by preventing the occurrence of a heat- concentrating phenomenon nor a high-surge voltage impressing the phenomenon to a specific elements. SOLUTION: The detected values D of the currents, flowing to the IGBTs, are inputted to a sample-and-hold circuit (S/H) 13 and a peak hold circuit 14 and the differences between the current values, when the inputting time of power semiconductor element turn-off commands to gate drive circuits for the power semiconductor elements approaches and a maximum current value during the inputting periods of the commands are found by means of a subtractor 15. When the differences are larger than a prescribed value Se, the currents of the elements are made to be balanced with each other by making the time, required until the elements are actually turned off by means of a variable delay circuit 18 to be shorter by setting a flip-flop circuit 17. A circuit such as the one shown in Figure, is provided for each element installed in parallel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、インバータなど
の電力変換器を構成するIGBT(絶縁ゲート型バイポ
ーラトランジスタ)等の電力用半導体素子のゲート駆動
回路、特にIGBT並列接続時のゲート駆動回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate drive circuit for a power semiconductor device such as an IGBT (insulated gate bipolar transistor) constituting a power converter such as an inverter, and more particularly to a gate drive circuit when IGBTs are connected in parallel.

【0002】[0002]

【従来の技術】図6にこの種のIGBTを用いたインバ
ータ主回路図を示す。同図において、1は直流電源(な
お、交流入力の場合は整流器+電解コンデンサの構成と
なる)、2はIGBTおよびダイオードよりなり直流を
交流に変換するインバータ回路、3A,3BはIGBT
のゲート駆動回路(各素子対応に設けられる)、4はI
GBTがターンオフする際のサージ電圧からIGBTを
保護するためのスナバコンデンサ、5はスナバコンデン
サとインバータ回路間の配線インダクタンス、6はモー
タなどの負荷である。
2. Description of the Related Art FIG. 6 shows a main circuit diagram of an inverter using an IGBT of this type. In FIG. 1, reference numeral 1 denotes a DC power supply (in the case of AC input, a rectifier + electrolytic capacitor is used); 2 denotes an inverter circuit composed of an IGBT and a diode for converting DC to AC; 3A and 3B denote IGBTs;
Gate drive circuit (provided for each element), 4 is I
A snubber capacitor for protecting the IGBT from a surge voltage when the GBT is turned off, 5 is a wiring inductance between the snubber capacitor and the inverter circuit, and 6 is a load such as a motor.

【0003】図7にゲート駆動回路の具体例を示す。7
は駆動回路用電源、8,9はIGBTをそれぞれターン
オン,ターンオフさせるためのスイッチ素子、10,1
1はターンオン,ターンオフ用のゲート抵抗で、スイッ
チ素子8,9は、上位からの指令信号Sおよび制御部1
2からのオン指令信号Nまたはオフ指令信号Fによって
動作する。また、図8にIGBTを並列(2並列)駆動
する際の構成例を示す。ここでは、上記からの指令信号
Sが並設されるゲート駆動回路3A,3Bに入力され、
それぞれのゲート駆動回路でそれぞれのIGBTを駆動
するようにしている。
FIG. 7 shows a specific example of a gate drive circuit. 7
Is a drive circuit power supply, and 8 and 9 are switch elements for turning on and off the IGBT, respectively.
Reference numeral 1 denotes a gate resistor for turn-on and turn-off.
2 is operated by the ON command signal N or the OFF command signal F from FIG. 8 shows a configuration example when the IGBTs are driven in parallel (two parallel). Here, the command signal S from above is input to the gate drive circuits 3A and 3B arranged in parallel,
Each IGBT is driven by each gate drive circuit.

【0004】図9,図10にIGBTのコレクタ電流検
出回路例を示す。図9はセンサ端子を持つセンスIGB
Tにシャント抵抗RS1を接続したものであり、図10は
シャント抵抗RS2のみを用いるものである。これらの例
では、シャント抵抗RS1,RS2の両端の電圧から電流を
検出するようにしており、検出出力信号Da,Dbがコ
レクタ電流相当値となる。
FIGS. 9 and 10 show examples of a collector current detection circuit of an IGBT. FIG. 9 shows a sense IGB having a sensor terminal
The shunt resistor R S1 is connected to T, and FIG. 10 uses only the shunt resistor R S2 . In these examples, the current is detected from the voltage between both ends of the shunt resistors R S1 and R S2 , and the detection output signals Da and Db are equivalent to the collector current.

【0005】[0005]

【発明が解決しようとする課題】図8のように、IGB
Tとゲート駆動回路を並列接続して駆動すると、上位か
らのターンオフ指令信号Sに対し、各ゲート駆動回路に
おける制御部(12)の回路遅れや、ターンオフ用のゲ
ート抵抗値(11)およびIGBTのストレージ時間の
ばらつきにより、実際のIGBTのターンオフ波形は図
11にIc1,Ic2で示すように、アンバランスな電
流波形となる。このようなアンバランス現象が発生する
と、特定の素子のターンオフ損失が増加する結果、異常
過熱現象が発生したり、特定の素子のターンオフ時の高
di/dt化と、配線インダクタンス(図6の符号5参
照)による高サージ電圧化(図11の波形Ic1参照)
によって、最悪IGBTの破壊を招くおそれがある。し
たがって、この発明の課題は、特定素子への熱集中現象
や高サージ電圧印加現象を抑制し、素子の破壊を防止す
ることにある。
[0008] As shown in FIG.
When T and the gate drive circuit are connected in parallel and driven, a circuit delay of the control unit (12) in each gate drive circuit, a turn-off gate resistance value (11), and an Due to the variation of the storage time, the actual turn-off waveform of the IGBT becomes an unbalanced current waveform as shown by Ic1 and Ic2 in FIG. When such an unbalance phenomenon occurs, the turn-off loss of a specific element increases, resulting in an abnormal overheating phenomenon, a high di / dt at the time of turn-off of the specific element, and an increase in wiring inductance (reference numeral in FIG. 6). 5) (see waveform Ic1 in FIG. 11).
In the worst case, the IGBT may be destroyed. Therefore, an object of the present invention is to suppress a heat concentration phenomenon and a high surge voltage application phenomenon to a specific element, and prevent the element from being destroyed.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、電力変換器を構成する電
力用半導体素子を並列接続し、個別に設けられたゲート
駆動回路に共通の駆動指令信号を与えて、前記電力用半
導体素子それぞれを駆動する電力用半導体素子のゲート
駆動回路において、前記電力用半導体素子に流れている
電流を検出する電流検出手段と、電力用半導体素子のタ
ーンオフ指令信号の入力時点近傍で検出した電流検出値
と、前記ターンオフ指令信号が入力されている期間に検
出した電流最大値との差を求める演算手段と、その演算
結果を所定の設定値と比較する比較手段とを設け、その
比較結果が所定値以上のときはターンオフ指令信号が入
力されてから実際に電力用半導体素子がターンオフする
迄の時間を短くすることを特徴とする。
In order to solve such a problem, according to the first aspect of the present invention, power semiconductor elements constituting a power converter are connected in parallel, and are commonly used for individually provided gate drive circuits. A current detection means for detecting a current flowing in the power semiconductor element, in a gate drive circuit of the power semiconductor element for driving each of the power semiconductor elements, Calculating means for calculating a difference between a current detection value detected near the input time point of the turn-off command signal and a current maximum value detected during a period in which the turn-off command signal is input, and comparing the calculation result with a predetermined set value A comparison means for performing the operation, when the comparison result is equal to or more than a predetermined value, shorten the time from when the turn-off command signal is input to when the power semiconductor element is actually turned off. It is characterized in.

【0007】請求項2の発明では、電力変換器を構成す
る電力用半導体素子を並列接続し、個別に設けられたゲ
ート駆動回路に共通の駆動指令信号を与えて、前記電力
用半導体素子それぞれを駆動する電力用半導体素子のゲ
ート駆動回路において、前記電力用半導体素子に流れて
いる電流の微分値を検出する電流微分値検出手段と、そ
の電流微分値を所定の設定値と比較する比較手段とを設
け、電力用半導体素子のターンオフ指令信号が入力され
ている期間に検出した電流微分値が設定値以上のとき
は、ターンオフ指令信号が入力されてから実際に電力用
半導体素子がターンオフする迄の時間を短くすることを
特徴とする。
According to the second aspect of the present invention, the power semiconductor elements constituting the power converter are connected in parallel, and a common drive command signal is given to a separately provided gate drive circuit, so that each of the power semiconductor elements is controlled. In the gate drive circuit of the power semiconductor element to be driven, current differential value detection means for detecting a differential value of a current flowing in the power semiconductor element, and comparison means for comparing the current differential value with a predetermined set value. When the current differential value detected during the period in which the power semiconductor device turn-off command signal is input is equal to or greater than the set value, the time from when the power-off command signal is input until the power semiconductor device is actually turned off. It is characterized by shortening the time.

【0008】すなわち、これらの発明は、並列接続され
たIGBT等の電力用半導体素子がターンオフする際、
これらの素子のターンオフタイミングが一致していない
と、タイミングの遅い方の素子に瞬間的に大電流が流れ
る現象が発生することに着目したもので、この現象を電
流値またはその微分値から検出し、検出後はタイミング
が遅い方の素子の駆動条件を、素子のスイッチングタイ
ミングが速くなるようにすることで電流アンバランスの
解消を図り、バランスさせるものである。
[0008] That is, these inventions are used when a power semiconductor element such as an IGBT connected in parallel is turned off.
If the turn-off timings of these elements do not match, attention is focused on the phenomenon that a large current flows instantaneously into the element with the later timing, and this phenomenon is detected from the current value or its differential value. After the detection, the drive condition of the element whose timing is later is adjusted so that the switching timing of the element is advanced so that the current imbalance is eliminated and the element is balanced.

【0009】[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す回路図である。図1において、13はサンプル
ホールド回路(S/H)、14はピークホールド回路
で、これらにはIGBTコレクタ電流検出値Dが入力さ
れる。この検出に当たっては、図9,10に示されるよ
うな従来と同様の回路が用いられる。S/H13は指令
信号Sの立ち下がり時点のデータをオフ指令期間中ホー
ルドし、ピークホールド回路14はオフ指令期間中のピ
ーク値をホールドし、オン期間中はリセットされる。回
路13,14の出力は減算器15に入力され、その減算
結果はコンパレータ16に入力され、設定値Seと比較
される。なお、ここでは1つのIGBT駆動回路のみを
示すが、並設されるIGBT駆動回路も同様に構成され
ることは勿論である。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 13 denotes a sample and hold circuit (S / H), and 14 denotes a peak hold circuit, to which an IGBT collector current detection value D is input. In this detection, a circuit similar to the conventional circuit as shown in FIGS. 9 and 10 is used. The S / H 13 holds the data at the time of the falling of the command signal S during the OFF command period, the peak hold circuit 14 holds the peak value during the OFF command period, and is reset during the ON period. The outputs of the circuits 13 and 14 are input to a subtractor 15, and the result of the subtraction is input to a comparator 16 and compared with a set value Se. Although only one IGBT drive circuit is shown here, it goes without saying that IGBT drive circuits arranged in parallel are similarly configured.

【0010】以上のような構成において、IGBTター
ンオフ時に、図11にIc1で示すような電流の増加現
象が発生すると、コンパレータ16により信号Cが出力
される。この信号CはSRフリップフロップ回路17に
入力され、これがセットされる。回路17のリセット
は、指令信号Sのオン指令で行なわれる。18は回路1
2からのオフ指令信号Fを遅延させる可変遅延回路で、
ここでは回路17の出力Hが入力されたら、遅延時間を
短縮させるようにする。
In the above configuration, when the IGBT turns off and a current increasing phenomenon occurs as indicated by Ic1 in FIG. 11, a signal C is output from the comparator 16. This signal C is input to the SR flip-flop circuit 17, which is set. The reset of the circuit 17 is performed by the ON command of the command signal S. 18 is the circuit 1
A variable delay circuit that delays the off command signal F from
Here, when the output H of the circuit 17 is input, the delay time is reduced.

【0011】図2はこの発明の第1の実施の形態を示す
回路図である。これは、IGBTコレクタ電流を検出す
る代わりにその微分値を検出し、これを用いる点が特徴
で、コンパレータ16にはIGBTコレクタ電流の微分
値DDが入力される。なお、IGBTコレクタ電流の微
分値を求めるに当たっては、図3,4に示す回路が用い
られるが、これは、図9,10の出力信号Dを微分する
微分回路19を付加して構成するか、図5のようにイン
ダクタンス20を接続して(実際のインダクタンスを接
続しても良く、配線インダクタンスを利用するようにし
ても良い)、その両端電圧を検出することによりコレク
タ電流の微分値相当DDを得るようにしても良い。
FIG. 2 is a circuit diagram showing a first embodiment of the present invention. This is characterized in that a differential value of the IGBT collector current is detected instead of detecting the IGBT collector current, and the differential value DD of the IGBT collector current is input to the comparator 16. The circuits shown in FIGS. 3 and 4 are used to determine the differential value of the IGBT collector current. This circuit is constructed by adding a differentiating circuit 19 for differentiating the output signal D shown in FIGS. As shown in FIG. 5, by connecting the inductance 20 (the actual inductance may be connected or the wiring inductance may be used), the differential value DD of the collector current is obtained by detecting the voltage between both ends. It may be obtained.

【0012】コンパレータ16では、上記のように得ら
れたコレクタ電流の微分値DDを設定値Se1と比較す
る。そして、IGBTターンオフ時に、図11にIc1
で示すように電流が大きく増加する(増加時のdi/d
tが高い)と、コンパレータ16により信号Cが出力さ
れ、図1の場合と同様の動作が行なわれる。ここでも1
つのIGBT駆動回路のみを示すが、並設されるIGB
T駆動回路も同様に構成されるのは図1の場合と同様で
ある。
The comparator 16 compares the differential value DD of the collector current obtained as described above with a set value Se1. Then, when the IGBT is turned off, FIG.
The current greatly increases as shown by (di / d at the time of increase).
When t is high), the signal C is output by the comparator 16 and the same operation as in FIG. 1 is performed. Again 1
Although only one IGBT drive circuit is shown,
The configuration of the T drive circuit is the same as in the case of FIG.

【0013】以上では、指令信号Sが入力されてから実
際にIGBTがターンオフするまでの時間を短縮する方
法として、可変遅延回路の遅延時間を短くするようにし
ているが、他の方法として例えば、ターンオフ用のゲー
ト抵抗値を2並列または2直列以上とし、可変遅延回路
の出力信号がアクティブの場合にはその合成抵抗値を小
さくするなどの方法が考えられるが、遅延時間を短縮で
きる方法ならば如何なる方法を用いても良い。
In the above, as a method of shortening the time from when the command signal S is input until the IGBT is actually turned off, the delay time of the variable delay circuit is shortened. The turn-off gate resistance may be set to two parallel or two or more series, and when the output signal of the variable delay circuit is active, a method of reducing the combined resistance may be considered. However, if the delay time can be reduced, Any method may be used.

【0014】[0014]

【発明の効果】この発明によれば、IGBTおよびゲー
ト駆動回路を並列接続するシステムにおいて、並設され
るIGBTやゲート駆動回路に特性ばらつきや内部回路
定数に差異がある場合でも、ほぼバランスした電流波形
でターンオフさせることができる。その結果、特定素子
の異常過熱現象や素子破壊を防ぐことが可能となる。
According to the present invention, in a system in which an IGBT and a gate drive circuit are connected in parallel, even when the IGBTs and the gate drive circuits provided side by side have a characteristic variation and a difference in internal circuit constants, a substantially balanced current is obtained. It can be turned off with a waveform. As a result, it is possible to prevent the abnormal overheating phenomenon and the destruction of the specific element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】コレクタ電流微分値の第1の検出回路例を示す
回路図である。
FIG. 3 is a circuit diagram showing a first example of a detection circuit of a collector current differential value.

【図4】コレクタ電流微分値の第2の検出回路例を示す
回路図である。
FIG. 4 is a circuit diagram showing a second example of a detection circuit of a collector current differential value.

【図5】コレクタ電流微分値の第3の検出回路例を示す
回路図である。
FIG. 5 is a circuit diagram showing a third detection circuit example of a differential collector current value.

【図6】インバータの従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example of an inverter.

【図7】図6のゲート駆動回路の具体例を示す構成図で
ある。
FIG. 7 is a configuration diagram illustrating a specific example of the gate drive circuit of FIG. 6;

【図8】IGBTおよびゲート駆動回路の並設システム
例を示す構成図である。
FIG. 8 is a configuration diagram illustrating an example of a system in which an IGBT and a gate drive circuit are arranged side by side.

【図9】コレクタ電流検出回路の第1の例を示す回路図
である。
FIG. 9 is a circuit diagram showing a first example of a collector current detection circuit.

【図10】コレクタ電流検出回路の第2の例を示す回路
図である。
FIG. 10 is a circuit diagram showing a second example of the collector current detection circuit.

【図11】図8における電流波形例説明図である。FIG. 11 is an explanatory diagram of an example of a current waveform in FIG. 8;

【符号の説明】[Explanation of symbols]

1…直流電源、2…インバータ回路、3A,3B…ゲー
ト駆動回路、4…スナバコンデンサ、5…配線インダク
タンス、6…モータ(負荷)、7…ゲート駆動回路用電
源、8,9…スイッチ、10,11…ゲート抵抗、12
…制御部、13…サンプルホールド回路、14…ピーク
ホールド回路、15…減算器、16…コンパレータ、1
7…セットリセットフリップフロップ(SRFF)、1
8…可変遅延回、19…微分回路、20…リアクトル。
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Inverter circuit, 3A, 3B ... Gate drive circuit, 4 ... Snubber capacitor, 5 ... Wiring inductance, 6 ... Motor (load), 7 ... Power supply for gate drive circuit, 8, 9 ... Switch, 10 , 11 ... gate resistance, 12
... Control unit, 13 ... Sample hold circuit, 14 ... Peak hold circuit, 15 ... Subtractor, 16 ... Comparator, 1
7 ... Set reset flip-flop (SRFF), 1
8: variable delay times, 19: differentiation circuit, 20: reactor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力変換器を構成する電力用半導体素子
を並列接続し、個別に設けられたゲート駆動回路に共通
の駆動指令信号を与えて、前記電力用半導体素子それぞ
れを駆動する電力用半導体素子のゲート駆動回路におい
て、 前記電力用半導体素子に流れている電流を検出する電流
検出手段と、電力用半導体素子のターンオフ指令信号の
入力時点近傍で検出した電流検出値と、前記ターンオフ
指令信号が入力されている期間に検出した電流最大値と
の差を求める演算手段と、その演算結果を所定の設定値
と比較する比較手段とを設け、その比較結果が所定値以
上のときはターンオフ指令信号が入力されてから実際に
電力用半導体素子がターンオフする迄の時間を短くする
ことを特徴とする電力用半導体素子のゲート駆動回路。
A power semiconductor for connecting power semiconductor elements constituting a power converter in parallel, applying a common drive command signal to individually provided gate drive circuits, and driving each of the power semiconductor elements. In the gate drive circuit of the element, current detection means for detecting a current flowing in the power semiconductor element, a current detection value detected near an input time point of a turn-off command signal for the power semiconductor element, and the turn-off command signal A calculating means for obtaining a difference from the current maximum value detected during the input period; and a comparing means for comparing the calculation result with a predetermined set value. If the comparison result is equal to or more than a predetermined value, a turn-off command signal is output. A gate drive circuit for a power semiconductor device, wherein the time from when the power semiconductor device is input to when the power semiconductor device is actually turned off is shortened.
【請求項2】 電力変換器を構成する電力用半導体素子
を並列接続し、個別に設けられたゲート駆動回路に共通
の駆動指令信号を与えて、前記電力用半導体素子それぞ
れを駆動する電力用半導体素子のゲート駆動回路におい
て、 前記電力用半導体素子に流れている電流の微分値を検出
する電流微分値検出手段と、その電流微分値を所定の設
定値と比較する比較手段とを設け、電力用半導体素子の
ターンオフ指令信号が入力されている期間に検出した電
流微分値が設定値以上のときは、ターンオフ指令信号が
入力されてから実際に電力用半導体素子がターンオフす
る迄の時間を短くすることを特徴とする電力用半導体素
子のゲート駆動回路。
2. A power semiconductor for connecting power semiconductor elements constituting a power converter in parallel, applying a common drive command signal to a separately provided gate drive circuit, and driving each of the power semiconductor elements. In the gate drive circuit of the element, a current differential value detecting means for detecting a differential value of a current flowing through the power semiconductor element, and a comparing means for comparing the current differential value with a predetermined set value are provided. If the current differential value detected during the period when the turn-off command signal of the semiconductor element is input is equal to or greater than the set value, shorten the time from when the turn-off command signal is input until the power semiconductor element is actually turned off. A gate drive circuit for a power semiconductor device, comprising:
JP2001172943A 2001-06-07 2001-06-07 Gate drive circuit for power semiconductor device Expired - Fee Related JP4706130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172943A JP4706130B2 (en) 2001-06-07 2001-06-07 Gate drive circuit for power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172943A JP4706130B2 (en) 2001-06-07 2001-06-07 Gate drive circuit for power semiconductor device

Publications (2)

Publication Number Publication Date
JP2002369498A true JP2002369498A (en) 2002-12-20
JP4706130B2 JP4706130B2 (en) 2011-06-22

Family

ID=19014488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172943A Expired - Fee Related JP4706130B2 (en) 2001-06-07 2001-06-07 Gate drive circuit for power semiconductor device

Country Status (1)

Country Link
JP (1) JP4706130B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005122176A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Switching circuit of plasma display panel and drive device for plasma display panel
JP2005295661A (en) * 2004-03-31 2005-10-20 Mitsubishi Electric Corp Driving circuit for power semiconductor element and power converter
JP2008079379A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method for driving voltage-driven type semiconductor element, and gate drive circuit
JP2009135626A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Parallel driving device
WO2011111262A1 (en) * 2010-03-09 2011-09-15 三菱電機株式会社 Power semiconductor module, electric power converter, and railway vehicle
JP2014230307A (en) * 2013-05-17 2014-12-08 富士電機株式会社 Electric power conversion system
JP2014233127A (en) * 2013-05-28 2014-12-11 株式会社豊田自動織機 Drive circuit
JP2015035863A (en) * 2013-08-08 2015-02-19 株式会社日立製作所 Power conversion device
JP2018085885A (en) * 2016-11-25 2018-05-31 株式会社デンソー Gate drive device
JP2018107880A (en) * 2016-12-26 2018-07-05 株式会社デンソー Power converter control device
CN110719094A (en) * 2018-07-12 2020-01-21 株式会社电装 Gate drive circuit
CN112823469A (en) * 2018-10-12 2021-05-18 株式会社电装 Gate driving device
JP7472645B2 (en) 2020-05-13 2024-04-23 富士電機株式会社 Power module with built-in drive circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795975B (en) * 2015-04-29 2017-04-12 永济新时速电机电器有限责任公司 High-voltage IGBT protecting function collection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365047A (en) * 1989-07-20 1991-03-20 General Electric Co <Ge> Method and apparatus for current-balancing switching device connected in parallel
JPH0548434U (en) * 1991-11-26 1993-06-25 株式会社明電舎 Semiconductor circuit drive circuit
JPH10150764A (en) * 1996-09-20 1998-06-02 Fuji Electric Co Ltd Gate driving circuit in power converter
JPH10323016A (en) * 1997-05-14 1998-12-04 Fuji Electric Co Ltd Device steady current balance control circuit of power converter
JP2002095240A (en) * 2000-09-18 2002-03-29 Toshiba Corp Gate drive circuit of insulated gate semiconductor device and electric power conversion system using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365047A (en) * 1989-07-20 1991-03-20 General Electric Co <Ge> Method and apparatus for current-balancing switching device connected in parallel
JPH0548434U (en) * 1991-11-26 1993-06-25 株式会社明電舎 Semiconductor circuit drive circuit
JPH10150764A (en) * 1996-09-20 1998-06-02 Fuji Electric Co Ltd Gate driving circuit in power converter
JPH10323016A (en) * 1997-05-14 1998-12-04 Fuji Electric Co Ltd Device steady current balance control circuit of power converter
JP2002095240A (en) * 2000-09-18 2002-03-29 Toshiba Corp Gate drive circuit of insulated gate semiconductor device and electric power conversion system using it

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372432B2 (en) 2003-10-16 2008-05-13 Samsung Sdi Co., Ltd. Switching device and driving apparatus for plasma display panel
JP2005122176A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Switching circuit of plasma display panel and drive device for plasma display panel
JP2005295661A (en) * 2004-03-31 2005-10-20 Mitsubishi Electric Corp Driving circuit for power semiconductor element and power converter
JP2008079379A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Method for driving voltage-driven type semiconductor element, and gate drive circuit
JP2009135626A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Parallel driving device
US9270193B2 (en) 2010-03-09 2016-02-23 Mitsubishi Electric Corporation Power semiconductor module, power converting apparatus, and railway car
WO2011111262A1 (en) * 2010-03-09 2011-09-15 三菱電機株式会社 Power semiconductor module, electric power converter, and railway vehicle
WO2011111175A1 (en) * 2010-03-09 2011-09-15 三菱電機株式会社 Power semiconductor module, power conversion device, and railway vehicles
JP2014230307A (en) * 2013-05-17 2014-12-08 富士電機株式会社 Electric power conversion system
JP2014233127A (en) * 2013-05-28 2014-12-11 株式会社豊田自動織機 Drive circuit
JP2015035863A (en) * 2013-08-08 2015-02-19 株式会社日立製作所 Power conversion device
JP2018085885A (en) * 2016-11-25 2018-05-31 株式会社デンソー Gate drive device
WO2018096828A1 (en) * 2016-11-25 2018-05-31 株式会社デンソー Gate drive device
JP2018107880A (en) * 2016-12-26 2018-07-05 株式会社デンソー Power converter control device
CN110719094A (en) * 2018-07-12 2020-01-21 株式会社电装 Gate drive circuit
CN112823469A (en) * 2018-10-12 2021-05-18 株式会社电装 Gate driving device
CN112823469B (en) * 2018-10-12 2024-03-15 株式会社电装 Gate driving device
JP7472645B2 (en) 2020-05-13 2024-04-23 富士電機株式会社 Power module with built-in drive circuit

Also Published As

Publication number Publication date
JP4706130B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
CA2563457C (en) Inverter bridge controller implementing short-circuit protection scheme
JP4706130B2 (en) Gate drive circuit for power semiconductor device
JP3447949B2 (en) Gate drive circuit and power converter for insulated gate semiconductor device
JP4894430B2 (en) Voltage-driven semiconductor element driving method and gate driving circuit
JPH11112313A (en) Semiconductor circuit and power transistor protection circuit
WO2014181450A1 (en) Apparatus for controlling insulating gate-type semiconductor element, and power conversion apparatus using apparatus for controlling insulating gate-type semiconductor element
KR20210010377A (en) Short circuit detection and protection for a gate driver circuit and methods of detecting the same using logic analysis
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JP2018011467A (en) Gate drive circuit for semiconductor switching element
US20170170715A1 (en) Method of controlling an inverter
JP2002125363A (en) Gate drive circuit of power semiconductor element
JP2007267560A (en) Invertor equipped with through-current controller
JP2010259313A (en) Power conversion system
JP2002262580A (en) Inverter circuit
JPH10337046A (en) Power conversion device
JPH10164854A (en) Power converter
JP2005328668A (en) Drive circuit of self arc-extinguishing semiconductor device
JP2001025259A (en) Pwm inverter
JP2001169533A (en) Power converter
JP2007252020A (en) Power conversion equipment
JPH0993948A (en) Controller of motor
CN112255522A (en) Bipolar transistor short circuit detection device and method
JP2995915B2 (en) IGBT inverter overcurrent protection circuit
JP2004015910A (en) Gate drive circuit
JP2007089294A (en) Semiconductor power converter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees