EP3435529B1 - Circuit for distortion cancellation in a dc circuit - Google Patents

Circuit for distortion cancellation in a dc circuit Download PDF

Info

Publication number
EP3435529B1
EP3435529B1 EP18185434.0A EP18185434A EP3435529B1 EP 3435529 B1 EP3435529 B1 EP 3435529B1 EP 18185434 A EP18185434 A EP 18185434A EP 3435529 B1 EP3435529 B1 EP 3435529B1
Authority
EP
European Patent Office
Prior art keywords
circuit
component
intermediate circuit
voltage
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18185434.0A
Other languages
German (de)
French (fr)
Other versions
EP3435529A1 (en
Inventor
Axel Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brusa Technology Ag
Original Assignee
Brusa Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brusa Technology Ag filed Critical Brusa Technology Ag
Publication of EP3435529A1 publication Critical patent/EP3435529A1/en
Application granted granted Critical
Publication of EP3435529B1 publication Critical patent/EP3435529B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • G01R19/1658AC voltage or recurrent signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples

Definitions

  • the present invention relates to the technical field of direct current networks.
  • the present invention relates to an interference suppression device for a direct current circuit, a vehicle component, a high-voltage intermediate circuit and a vehicle.
  • a circuit is used to supply various components with electrical energy.
  • a single component can be operated on a circuit; However, as is often the case in an electric or hybrid vehicle, a large number of components can also be operated.
  • components that are operated on a direct current circuit are susceptible to interference, in particular to alternating voltages that arise on the direct current circuit for various reasons or that are coupled onto the direct current circuit from outside and spread across the direct current circuit.
  • the susceptibility of a component to interference can be caused by the fact that filter components, which are actually intended to suppress interference generated by the component, are excited when interference occurs on the direct current circuit, in particular when an alternating voltage with a certain frequency occurs, that they lead to destruction of the component or individual components of the component.
  • the publication DD 208 019 concerns the reduction of the current load of additional chokes, which are present in a direct current system to limit the current in the event of an accident and through which the full load current also flows, for a voltage inverter for feeding three-phase machines.
  • the publication DE 21 60 925 A1 describes a method and filter for eliminating the hum component of a direct current.
  • the publication US 2005/141248 A1 relates to a power electronics system for conditioning power from a fuel cell with a boost converter, for increasing a voltage of a DC output voltage of the fuel cell and for removing a ripple through mutual inductors, with a high-frequency converter and with an AC-AC converter.
  • an interference suppression device for a direct current circuit, a vehicle component, a high-voltage intermediate circuit and a vehicle is specified.
  • an interference suppression device for a direct current circuit has at least two conductors.
  • the interference suppression device has a first connection which serves to connect the interference suppression device to a first conductor of the direct current circuit and a second connection which serves to connect the interference suppression device to a second conductor of the direct current circuit.
  • the interference suppression device also has a sensor.
  • the sensor can be coupled to the direct current circuit essentially without contact.
  • the property "non-contact" may refer to a galvanic coupling, since mechanical contact via a winding core of a transformer is certainly possible.
  • a substantially complete air coupling with the direct current circuit may be able to be established, so that essentially - apart from connections via a common connection - there is no electrical coupling and no mechanical coupling between the sensor and the direct current circuit.
  • a connection does not exist for the transmission of a measured variable, such as the alternating current flowing in the direct current circuit.
  • an alternating current flowing in the direct current circuit may be transmitted by the coupling essentially without contact.
  • the sensor is also set up to detect when a predeterminable limit value of a superimposed alternating voltage in the first conductor of the direct current circuit is exceeded and to substantially reduce the alternating voltage in the first conductor of the direct current circuit to the predeterminable limit value by impressing a current into the first connection and/or below the limit value.
  • the current is recorded inductively but is impressed conductively into the direct current circuit via diodes.
  • a component in particular a vehicle component, is specified.
  • the component can be, for example, a drive converter, an on-board power converter, a charger, an air conditioning compressor or a converter.
  • the component has a DC circuit with a first conductor, a second conductor and an intermediate circuit filter.
  • the interference suppression device according to the invention is present in or on the component, wherein the first connection of the interference suppression device is connected to the first conductor, the second connection of the interference suppression device is connected to the second conductor and the sensor is coupled to the intermediate circuit filter in a substantially contactless manner.
  • the direct current circuit is set up for connection to a high-voltage intermediate circuit.
  • a high-voltage intermediate circuit for a vehicle.
  • This high-voltage intermediate circuit has a supply battery, a first component which is operated at a working frequency and at least one second component.
  • the high-voltage intermediate circuit has at least one interference suppression device according to the invention.
  • the supply battery, the first component and the second component are each connected to a first conductor and a second conductor of the high-voltage intermediate circuit.
  • the first conductor of the at least one second component is connected to the first connection of the interference suppression device and the second conductor of the at least one second component is connected to the second connection of the interference suppression device.
  • the sensor of the interference suppression device is coupled without contact to the part of the first conductor and/or the second conductor belonging to the at least second component.
  • the interference suppression device can also be referred to as a resonant power regeneration circuit.
  • capacitor and “capacitance” as well as “coil” or “choke” and “inductance” may be used interchangeably.
  • the component itself may have an intermediate circuit filter, the filter containing at least one intermediate circuit capacitor and at least one intermediate circuit coil or an intermediate circuit choke.
  • This intermediate circuit filter may be designed as a low-pass filter. This low-pass filter may have a resonance frequency that is well below the clock frequency at which the respective component works, e.g. a drive inverter, an on-board power converter, a charger or air conditioning compressor inverter.
  • the working frequency of the component in such a way that this frequency is far above the resonance frequency of the low pass and as far as possible outside the pass band of the low pass, it can be ensured that interference, in particular alternating current interference (AC interference, alternating current interference) or voltage -Ripples that are generated by the component are dampened and, if possible, do not spread or only spread to a small extent to the direct current circuit and/or the intermediate circuit to which the component is connected.
  • AC interference alternating current interference
  • alternating current interference alternating current interference
  • voltage -Ripples that are generated by the component are dampened and, if possible, do not spread or only spread to a small extent to the direct current circuit and/or the intermediate circuit to which the component is connected.
  • low-frequency oscillations which propagate in the intermediate circuit in the direction of the internal components of the component and which have a frequency in the range of the resonance frequency, can increase in such a way that they can lead to damage to the components of the components. Or in still other words, dampens it Intermediate circuit filter alternating interference (AC) in the range of the working frequency of the component well in the direction of the intermediate circuit, but amplifies alternating interference (AC), which has a frequency in the range of the resonance frequency, and propagates from the intermediate circuit in the direction of the component and in particular in Direction of the interior of the component.
  • AC Intermediate circuit filter alternating interference
  • the interference that propagates from the intermediate circuit in the direction of the component could be suppressed by damping with the help of additional filters and/or a filter designed for a correspondingly large frequency range.
  • the filters would have to be designed to be correspondingly large, which would increase the weight and cost of the filter.
  • steaming involves energy losses and could lead to high losses.
  • the interference suppression device according to the invention however, the current caused by the voltage increase can be used by feeding or impressing it back into the intermediate circuit or direct current circuit and the energy contained in it is essentially preserved, i.e. not destroyed.
  • the sensor for contactless coupling with the first conductor of the direct current circuit has a coil in order to form a transformer with a predeterminable coupling factor with the direct current circuit.
  • the interference suppression coil can be wound on a common ferrite core with the intermediate circuit filter coil.
  • the coils are essentially galvanically isolated, particularly in relation to voltage transmission.
  • the turns ratio of the interference suppression coil to the intermediate circuit filter coil can be, for example, 1:10 or 1:20, regardless of the coupling factor k.
  • a first connection of the coil in particular a first connection of the interference suppression coil, is connected to the first connection and a second connection of the coil is connected to the first connection via at least one capacitor, in particular via the interference suppression capacitor, and via at least one diode.
  • a connection of the at least one capacitor, in particular the interference suppression capacitor, is connected to the second connection via a further diode.
  • the second connection can be a reference potential, for example ground.
  • the first connection and the second connection are designed for connecting to a vehicle component.
  • the first and second connections can, for example, be made using a plug-in connection that is common for intermediate circuits, which greatly simplifies the retrofitting of an intermediate circuit with the interference suppression device.
  • the sensor of the interference suppression device is designed to be coupled to a filter coil and/or line inductance of a direct current circuit.
  • the supply line can be routed through at least one toroidal core. If the supply line is through one or a plurality of toroidal cores which are wound with the interference suppression coil, this line inductance acts as a DC link filter coil, since the line inductance is increased by means of one and/or the plurality of toroidal cores.
  • the interference suppression device is designed to be connected to a direct current circuit or direct current intermediate circuit which has a direct voltage of 400 V or 900 V.
  • the interference suppression device has a housing, wherein the housing is designed to be attached to a vehicle.
  • the housing can be a robust housing that meets the standards for installing additional components in a vehicle, in particular an electric vehicle.
  • an interference suppression device which is connected to a direct current network or intermediate circuit.
  • the intermediate circuit may have a large number of inductances and capacitances, which are essentially formed by the intermediate circuit filters of the components connected to the DC network.
  • the resonant circuit amplitude is limited by the LC filter and the energy of the interference suppression device, the resonant circuit or the LC filter may be fed back into the direct current network as direct current.
  • a different maximum permissible amplitude can be specified for each frequency.
  • the intermediate circuit filters of different components have different resonance frequencies and/or different maximum permissible amplitudes or voltage amplitudes, a different maximum permissible amplitude may be specified for each frequency.
  • each component connected separately to the HV bus high-voltage bus, high-voltage bus, intermediate circuit
  • the housing can be set as the component boundary. In this way it is also possible if If several components are located in the same housing, the common connection to the HV bus can be used to suppress interference for all components.
  • the invention is based on the knowledge that a resonant circuit, which is intended to prevent the propagation of a disturbance from a component in the direction of other components, passes on a disturbance to the component in an amplified manner when a disturbance in the opposite direction from other components to the Oscillating circuit hits. Or in other words, this may mean that an oscillating circuit behaves asymmetrically in different directions at different frequencies.
  • Fig. 1 Shows an intermediate circuit 100 or HV bus 100 with connected components 102a, 102b, 102c, 102d according to an exemplary embodiment of the present invention.
  • the high-voltage intermediate circuit 100 of an electric and hybrid vehicle has a first line 103 and a second line 104. These are supplied by the battery 101, for example a Li-ion battery, with a direct current (DC) of 400 V, 450 V or 900 V.
  • the voltages can be chosen arbitrarily. Without limiting generality, voltages 300 V, 350 V, 400 V, 450 V, 500 V, 550 V, 600 V, 650 V, 700 V, 750 V, 800 V, 850 V and 900 V can also be selected.
  • any voltages from the range of 300 V to 900 V are also possible.
  • the voltages can also lie within a tolerance range of the specified values.
  • Several components 102a, 102b, 102c, 102d are connected to the high-voltage intermediate circuit 100.
  • the components are the high-voltage battery 101, the drive converter 102a, which is connected to the engine, the on-board power converter 102b, the charger 102c or the DC-DC converter 102c, the AC / DC converter 102d, the air conditioning compressor -Inverter and any number of other components.
  • these components 102a, 102b, 102c, 102d contain electronic converters which periodically load the intermediate circuit 100 with sometimes high currents at a clock frequency in the range of 5 to 500 kHz. These converters have switches that are switched according to the respective clock frequency of the associated component.
  • the Fig. 2 shows a partial equivalent circuit diagram of the filter components of the components 101, 102a, 102b, 102c, 102d of the intermediate circuit 100 Fig. 1 according to an exemplary Embodiment of the present invention.
  • Fig. 2 shows in particular an equivalent circuit diagram, which results for an interference alternating voltage 206a, which can arise in the inverter 102a due to switching processes.
  • the switching can cause loads or disturbances in the form of an alternating voltage (AC) 206a or a voltage ripple 206a to form.
  • the interference voltage 206a in particular the interference alternating voltage 206a, can be understood as a voltage source 206a, B1a.
  • Fig. 2 The emergence of a fault is shown in the case of the inverter 102a for the energy supply of a 100 kW drive motor for an electric vehicle, which, as a generator, generates a drive current of 400 A for the drive motor of the vehicle.
  • the interference current 206a is absorbed by the intermediate circuit capacitor 205a, which creates an interference voltage on the intermediate circuit 100, 103, 104 or on the HV-DC bus 100, 103, 104, which can in principle excite all filter circuits connected to it to oscillate.
  • the disturbances 206a caused by this can spread from the causing component 102a in the direction of the intermediate circuit 100 and reach the other components 102b, 102c, 102d via the intermediate circuit 100.
  • the intermediate circuit 100 or DC bus 100 is operated as a direct current circuit (DC).
  • the battery 101 generates a direct voltage VB of, for example, 400V, 450V or 900V, which is superimposed on the interference alternating voltage V AC . So that this load caused by the interference alternating voltage 206a does not impair the function of other components 102b, 102c, 102d connected to the intermediate circuit 100, there is an intermediate circuit filter 207a in the inverter 102a, which contains the intermediate circuit filter capacitor 205a and those on the positive conductor 103a or on the first conductor 103a connected positive intermediate circuit filter coil 203a and the negative intermediate circuit filter coil 204a connected to the negative conductor 104a or second conductor 104a.
  • Such an intermediate circuit filter 207a, 207b, 207c, 207d is located in every component 102a, 102b, 102c, 102d, which can serve as a potential interferer. However, it can also alternatively or additionally be arranged on the component connections of the intermediate circuit and thus be part of the intermediate circuit. Components 102a, 102b, 102c, 102d can share an intermediate circuit filter if they are close to each other are located in the same housing and are connected to the intermediate circuit 100 via a common supply line.
  • the intermediate circuit capacitor 205a, 205b, 205c, 205d of an intermediate circuit filter is as close as possible to the active switching elements (in Fig.
  • each of these components 102a, 102b, 102c, 102d there is also an intermediate circuit capacitor 205b, 205c, 205d or intermediate circuit filter capacitor 205b, 205c, 205d with a capacity that is in the range from 10 to 1000 ⁇ F.
  • these components 102b, 102c, 102d are connected via filter inductors 203b, 204b, 203c, 204c, 203d, 204d, intermediate circuit filter inductors 203b, 204b, 203c, 204c, 203d, 204d or intermediate circuit inductors 203b, 204b, 203c, 204c, 203d, 204d with the DC link 100 connected.
  • the battery 101 has an internal resistance 201 of 0.1 ⁇ , which causes damping for the resonant circuit formed.
  • the intermediate circuit 100 also has a line inductance 203 in the positive bus line 103 and a line inductance 204 in the negative bus line 104.
  • the intermediate circuit filters 207a, 207b, 207c, 207d form a low-pass filter that filters out interference in the range of the typical clock frequency the respective component and the interference it generates and strongly attenuates interference with frequencies in this frequency range. Since the low-pass filter formed is a second-order filter, each filter has a resonance frequency.
  • This resonance frequency f 0 is below the typical clock frequency of the component for which the intermediate circuit filter 207a, 207b, 207c, 207d is designed.
  • the resonance frequency f 0 is therefore in the pass band of the intermediate circuit filter. Consequently, the intermediate circuit filter 207a, 207b, 207c, 207d not only represents a damping device for the interference generated by the respective components, but also forms an oscillating circuit, which has the intermediate circuit filter capacitor 205a, 205b, 205c, 205d, the intermediate circuit filter coil and possibly also parts of the inductance of the supply line.
  • the inductances of the supply lines with the respective intermediate circuit filter capacitor 205a, 205b, 205c, 205d contribute to the permeability for interference in the direction of the component 102a, 102b, 102c, 102d.
  • the power inductor 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c is difficult to locate. This is in Fig. 2 shown as a coil component 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c.
  • the supply line 103a, 104a, 103b, 104b, 103c, 104c, 103d, 104d can be replaced by a toroidal core and/or a plurality of toroidal cores (in Fig. 2 not shown).
  • This toroidal core can also be used to increase the effectiveness of a coupling.
  • this line inductance acts as an intermediate circuit filter coil 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d, since the line inductance is increased by means of the toroidal cores.
  • the intermediate circuit filter coil 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c guided through the toroidal core can also be referred to as coil L2.
  • the interference suppression coil wound around the toroidal core can be referred to as L3.
  • the components of the individual intermediate circuit filters 207a, 207b, 207c, 207d are taken into account.
  • the intermediate circuit filters 207a, 207b, 207c, 207d are all excited together by the same interference source 206a, B1a
  • the exciting circuit 102a, which contains the interference source 206a, B1a often has such a low impedance in comparison to the others when implemented Filter circuits 207b, 207c, 207d, so that the filter circuits 207b, 207c, 207d excited by the interference circuit 207a can be viewed as decoupled from one another in an approximation.
  • intermediate circuit filter capacitors 205a, 205b, 205c, 205d form with the intermediate circuit filter coils 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d and if necessary the line inductors 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d a network of resonant circuits 207a, 207b, 207c, 207d.
  • Intermediate circuit filter capacitors 205a, 205b, 205c, 205d are also referred to as intermediate circuit capacitors.
  • intermediate circuit capacitors can be present in addition to the intermediate circuit filter capacitors (ZK filter capacitor).
  • An intermediate circuit capacitor is defined as a capacitor that is connected directly to the switches, in particular to the semiconductor switches, of the components 102a, 102b, 102c, 102d, while a intermediate circuit filter capacitor 205a, 205b, 205c, 205d or intermediate circuit filter capacitor 205a, 205b , 205c, 205d is connected downstream of a filter choke 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d to form a filter circuit 207a, 207b, 207c, 207d.
  • DC link filter capacitors and additional DC link capacitors are present, for example, in multi-stage filters.
  • the working frequency of one component for example the converter 102a
  • the filter resonance frequency of another Component for example the on-board power converter 102c
  • the resonant circuit formed by the elements 203c, 204c, 205c of the intermediate circuit filter 207c would be excited to oscillate.
  • the working frequency corresponds to the typical clock frequency of the respective component.
  • the operating frequency of the converter 102a would essentially correspond to the resonance frequency f 0 of the intermediate circuit filter 107c of the on-board power converter 102c. And even if the intermediate circuit filter tuned to the operating frequency of the interference component 102a suppresses the majority of the interference, interference of a corresponding frequency can spread on the intermediate circuit 100.
  • Exciting the filter resonance frequency in the intermediate circuit filter of the other component 102c can lead to such high losses in the chokes, coils and/or capacitors involved in the intermediate circuit filter of the other component 102c, for example in the components of the vehicle electrical system converter 102c, that the components (not in Fig. 2 shown) of the other component 102c can be overloaded and fail.
  • exciting a resonant frequency in a DC link filter can result in a
  • An increase in the amplitude of the vibration occurs, in particular an increase in voltage, which leads to an overload on individual components of the other component 102c, which can then fail as a result.
  • This increase in tension is reflected in the figures Fig.4 , Fig. 5a and Fig.5b described.
  • the components 102a, 102b, 102c, 102d are connected to the positive line 103 of the intermediate circuit 100 via the intermediate circuit filters 207a, 207b, 207c, 207d at the positive connection contacts V2a, V2b, V2c, V2d and via the negative connection contacts Na, Nb, Nc , Nd connected to the negative line 104 of the intermediate circuit 100.
  • Fig. 3 shows an equivalent circuit diagram for an interference suppression device 300, which is connected to an intermediate circuit and an intermediate circuit filter of a component, according to an exemplary embodiment of the present invention.
  • the entire circuit 301 of Fig. 3 is a simulation diagram which essentially simulates the influence of the fault 206a on a faulty component 102c including the intermediate circuit filter 207c. Since the individual disturbances differ in the frequencies to which the respective intermediate circuit filter 207c reacts with resonance, it is permissible to consider each disturbance caused by a disturbance source B1a, 206a independently of the other disturbances.
  • All elements that are subordinate to the simulation of the disturbance such as the interconnection of the intermediate circuit 100 with the intermediate circuit filters 207b, 207c, 207d, which are not directly involved in the disturbance, are combined in the intermediate circuit 100 'and in particular in the lines 103'.
  • the conductors 103c, 104c are connected to the associated conductors 103, 104 of the intermediate circuit 100.
  • the use of the interference suppression device 300 represents a measure which can be used to reduce the amplitude of a resulting interference oscillation V(VCc) or a resulting voltage amplitude V(VCc) at the intermediate frequency filter output VCc, which is caused by an input interference oscillation V AC , V(V2c) is excited at a certain frequency at the intermediate circuit filter input V2c.
  • the resulting interference oscillation V(VCc) which is generated at the intermediate frequency filter output VCc, may also be referred to as the resulting interference amplitude V(VCc) for simplicity.
  • the component to be protected by the interference suppression device 300 or the interference filter 300 is in Fig. 3 not shown. However, this component could be the on-board power converter 102c, which was already mentioned in the description Fig.
  • the component to be protected 102c (not in Fig. 2 shown), for example the Vehicle electrical system converter 102c would be connected to the first conductor 103c at the connection VCc and to the second conductor 104c at the connection Mc.
  • the interference suppression device 300 is dimensioned so that it can reduce the resulting amplitude of a voltage V(VCc), which is generated by a disturbance caused by an interference voltage from the intermediate circuit 100 'via the substantially resonant intermediate circuit filter 207c at the connection VCc is excited and thus keeps the voltage at the connection VCc, to which a component 102c to be protected can be connected, below a predeterminable maximum value.
  • the interference suppression device limits a resulting voltage amplitude at a component connection VCc, Mc to a value that is harmless or acceptable for the component 102c and also keeps the associated power loss very small.
  • This maximum value can, for example, be specified by an OEM for a specific frequency range.
  • An intermediate circuit LC filter 207c which has the intermediate circuit filter coil 203c, 204c, L2 and the intermediate circuit filter capacitor 205, C, is connected to an intermediate circuit 100' at a connection V2c, Nc.
  • the battery 101 has a voltage source 101 'with a constant voltage Vbatt of 900V and the internal resistance Ri, 201, which can be, for example, 100m ⁇ . Periodic or alternating interference voltages V AC can be superimposed on this direct voltage VB.
  • interference voltages can be caused by switched components that can excite periodic interference signals during their switching processes.
  • the switched components do have filters that are intended to suppress the periodically excited interference. However, it may happen that the filters cannot completely eliminate all interference.
  • the strongest disturbances may be caused by the components that switch the greatest power in an intermediate circuit 100'.
  • a disturbance, an interference signal or an interference voltage may be superimposed on the existing DC voltage VB.
  • the biggest “source of stimulation” is usually the Inverter 102a, from which in Fig. 3 the disturbance caused by it is modeled as a voltage source B1, 206a.
  • the coil L0 is the combination of the inductors 203a, 204a including leads 103a, 104a to the converter 102a, and L1 is the summary of the inductors 203c, 204c and leads 103c, 104c to the intermediate circuit filter 207c.
  • the interference suppression device 300 for the direct current circuit 100' or intermediate circuit 100' which has two conductors 103c, 104c, comprises a first connection VCc, for connecting the interference suppression device to the first conductor 103' of the direct current circuit 100', in particular to a first conductor 103c of the intermediate circuit filter 207c of the component 102c to be protected. Furthermore, the interference suppression device 300 comprises a second connection Mc, for connecting the interference suppression device 300 to a second conductor 104 'of the direct current circuit 100', in particular to a second conductor 104c of the intermediate circuit filter 207c of the component 102c to be protected.
  • the interference filter 300 or the interference suppression device 300 is connected in parallel to the intermediate circuit filter capacitor 205c and in series to the intermediate circuit filter coil L2, 203c, 204c.
  • This intermediate circuit filter coil L2, 203c, 204c is designed as a discrete component in the intermediate circuit filter 207c, so that this coil L2, 203c, 204c can be localized very precisely in the intermediate circuit filter.
  • the connections VCc, Mc of the interference filter can have connecting cables.
  • the interference suppression device 300 Connected to the connections VCc, Mc, the interference suppression device 300 has a sensor 300 ', which is set up to reduce interference that endangers the elements of the component 102c.
  • the component 102c is also connected in parallel to the interference suppression device 300 at the connections VCc, Mc.
  • the sensor 300' is set up to detect when a predeterminable limit value of a superimposed alternating voltage V AC is exceeded in the first conductor 103', 103c of the direct current circuit 100' and in particular in the intermediate circuit filter 207c.
  • the sensor 300' is also contactless or galvanically isolated from the direct current circuit 100' or Intermediate circuit 100 'and in particular with the intermediate circuit filter 207c of the intermediate circuit 100' can be coupled.
  • the coil L2 of the intermediate circuit filter is formed in order to enable effective coupling to the sensor 300'.
  • the sensor 300' is set up to essentially reduce the resulting alternating interference voltage in the first conductor of the direct current circuit to the predeterminable limit value by impressing a current into the first connection VCc.
  • the resulting voltage V(VCc) between the connections VCc and Mc is regulated below a maximum value by generating a current that can be impressed into the first sensor connection VCc in the event of an increase in the amplitude of the voltage V(VCc). To counteract an increase in amplitude.
  • the sensor 300' has one or more additional windings L3, chokes L3 or coils L3, which are magnetically coupled to the filter choke L2, 203c, 204c of the intermediate circuit filter 207c, for example by winding on a common ferrite core or toroidal core.
  • the coils L2, 203c, 204c and L3 then form a transformer. If there is no filter choke L2 in the intermediate circuit 100' or in the intermediate circuit filter 207c, it can be subsequently installed in the supply line 103', 104', 103c, 104c, for example by routing at least one of the supply lines 103c, 104c through a toroidal core.
  • a connection of the filter coil L2, 203c, 204c in the connection VCc is coupled to a connection of the sensor coil L3.
  • the connections of the filter coil L2 and the sensor coil L3 are also connected to a connection of the filter capacitor C, 205c.
  • the other terminal of the filter capacitor C, 205c is connected to the second sensor terminal Mc.
  • At the second connection of the sensor coil L3, 302, at least one connection of a sensor capacitor C3, 303 is connected in series with the sensor coil L3, 302. The sensor coil L3, 302 and the sensor capacitor C3, 303 thus form a series resonant circuit.
  • a second terminal of the sensor capacitor C3, 302 is connected to the anode of a feedback diode D1, 304.
  • the cathode of the feedback diode D1, 304 is connected to the connection VCc.
  • a current picked up and amplified by the sensor coil L3, 302 from the intermediate circuit 100' and in particular from the intermediate circuit filter 207c can be impressed into the connection VCc via the feedback diode D1, 304.
  • the anode of the feedback diode D1, 304 is also one with the cathode Connection diode D2, 305 connected.
  • the anode of the connection diode is connected to the second connection Mc.
  • the first terminal VCc and the second terminal Mc are connected to each other via the feedback diode D1, 304 and the connection diode D2, 305.
  • the connection diode D2, 305 is essentially connected in parallel to the intermediate circuit filter capacitor C, 305.
  • the second connection is connected to the connection Nc and to reference potential or ground if the interference suppression device is connected to the intermediate circuit filter.
  • the sensor capacitor C3, 303 can also be realized from a large number of capacitors C3, C4 connected essentially in parallel.
  • the diodes D1, 304, D2, 305 can be implemented as a single diode or as a plurality of diodes D1, D2, D3, D4.
  • An external periodic disturbance V AC which is caused by the disturbance source B1a, 206a, causes a resonant overvoltage across L2 and, because of the coupling, therefore also across L3. If the interference voltage caused is sufficiently large and the voltage ratio, which results from the ratio of the number of windings of the coupled coils L3, 302, L2, 203c, 204c of the transformer they form, is also large enough, a periodic current begins across the sensor capacitor C3, 303 and the sensor diodes 304, D1, 305, D2 to flow.
  • This current induced in the sensor 300' which is proportional to the superimposed disturbance V AC in the direct current circuit 100' and in particular to the disturbance V AC in the intermediate circuit filter 207c, is impressed into the connection VCc and limits the resonant overvoltage resulting from the resonance V AC in that the energy generated by the transformer coupling in the sensor is diverted into the intermediate circuit 100 'and in particular into the intermediate circuit filter 207c through the impressed current.
  • the disturbance V AC oscillates around the operating point 900V.
  • This disorder acts in a direction from the intermediate circuit 100' towards component 102c, which is connected to the connections VCc and Mc, to the intermediate circuit filter 207c, although this filter 207c is originally intended to attenuate interference that propagates from the component 102c to the intermediate circuit 100' .
  • the resulting voltage at the connection pair VCc, Mc reacts with an increase in amplitude, which leads to an increased current in the intermediate circuit filter coil L2, 203c, 204c.
  • the transformer only transfers the periodic portion of the excess voltage present at VCc.
  • the turns ratio is, for example, 1:20. Consequently, the excess voltage is transmitted to the sensor 300' with a corresponding voltage ratio.
  • the coils L2, 203c, 204c and L3, 302 have the common connection VCc, the voltage induced in the sensor does not fluctuate around the operating point of the intermediate circuit 100, 100' of 900V but only around the center potential between 0 and +900V, i.e 450V.
  • the turns ratio is chosen so that even with the smallest intermediate circuit voltage that occurs, only the overshoot is limited by the diodes.
  • V AC V ripple
  • L2 and C are already predetermined by the dimensioning of the component and the associated intermediate circuit filter 207c.
  • a good result can be achieved, for example, if C3 is chosen so that: C 3 ⁇ L 3 ⁇ 1.6 ⁇ C ⁇ L 2 d .H . C 3 ⁇ C ⁇ 1.6 ⁇ n 2 n 3 2
  • Table 1 shows the dimensioning of the components of the circuit Fig. 3 at. Herein C3 is determined according to the dimensioning rule given above.
  • Table 1 Ri 100m ⁇ L0 2.5 ⁇ H Vbatt 900V L1 2.5 ⁇ H C 20 ⁇ F L2 26.35 ⁇ H C3 80nF L3 10.54mH
  • Fig. 4 shows a selection of four frequency diagrams 400 for an interference signal with a low interference amplitude according to an exemplary embodiment of the present invention.
  • the circuit was designed for the simulation Fig. 3 , which represents an equivalent circuit diagram for a real intermediate circuit in an electric vehicle, is subjected to a constant interference amplitude of 2V and a variable frequency.
  • the frequency from 0ms to 200ms or 0 to 20kHz is plotted on the abscissa 401.
  • the abscissa can be calibrated in milliseconds (ms), whereby the values can be converted into the associated frequency using the conversion factor 1kHz/10ms, so that a frequency range from 0 Hz to 20kHz is shown on the abscissa.
  • the voltage coordinate 402 indicates voltage values in the range from 855V to 945V.
  • the current coordinate 403 indicates current values from -30A to +30A.
  • the course of the interference voltage V(V2c), 410 is in Fig. 4 drawn.
  • the voltage curve V(VCc), 411 at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although a resonance and in particular an increase in current and voltage develops in the range of 6.5 kHz, due to the Small excitation with an interference amplitude of 2V is only harmless Voltage amplitude of 35V remains.
  • the interference suppression device is therefore not used because a maximum permissible voltage at the connections VCc, Mc is not exceeded.
  • Fig. 5a shows a selection of frequency diagrams 400' for an interference signal with a large interference amplitude at 900VDC intermediate circuit voltage according to an exemplary embodiment of the present invention.
  • the course of the interference voltage V(V2c), 410' is in Fig. 5a drawn.
  • the voltage curve V(VCc), 411' at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although there is a resonance and in particular an increase in current and voltage in a wide frequency range around 6.5 kHz which is limited to a voltage amplitude of 45V, ie from 855V to 945V, due to the intervention of the interference suppression device 300.
  • Opposite Fig.4 The center of gravity of the resonance is shifted to a slightly lower frequency due to the effect of the interference suppression device. As already stated, a good result can be achieved with the dimensioning for C3 given above.
  • the current I(L2), 412 ⁇ through coil L2 remains below 30A over the entire frequency range.
  • the course of the current curve I(L3), 413 ⁇ shows that in a range from 5.2kHz to 8.6kHz a high current flows through L3 and therefore the interference suppression device becomes active. Without the intervention of the interference suppression device, the voltage amplitude V(VCc), 411' would reach a voltage amplitude of 350V in the frequency range around 6.5 kHz, which could destroy a component connected to VCc. In the example below Fig. 4 The interference suppression device does not intervene due to the low excitation voltage.
  • Fig. 5b shows a selection of frequency diagrams 400" for an interference signal with a large interference amplitude at 450V intermediate circuit voltage according to an exemplary embodiment of the present invention.
  • the voltage ordinate 402" indicates voltage values in the range from 405V to 495V.
  • the current coordinate 403" indicates current values from -35A to +35A.
  • the course of the interference voltage V(V2c), 410" is in Fig. 5b drawn.
  • the voltage curve V(VCc), 411" at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although there is a resonance and in particular an increase in current and voltage in a wide frequency range around 6.5 kHz forms, this is limited to a voltage amplitude of 30V, ie from 420V to 480V, due to the intervention of the interference suppression device 300.
  • Fig.4 The center of gravity of the resonance is shifted to a slightly lower frequency due to the effect of the interference suppression device.
  • the dimensioning can be done C 3 ⁇ C ⁇ 1.6 ⁇ n 2 n 3 2 achieve a good result. This makes it possible to ensure that a component connected to VCc is not loaded with a voltage amplitude of more than 36V if, for example, it is required that no major loads should occur over the frequency range from 0Hz to 20kHz or that greater loads should be avoided over this range.
  • the current I(L2), 412" through the coil L2 remains below 35A over the entire frequency range and is slightly larger in a narrow frequency range than a corresponding value of curve 412' in Fig. 5a .
  • the course of the current curve I(L3), 413" shows that in a range from 4.5 kHz to 11 kHz a high current flows through L3 and therefore the Suppression device becomes active.
  • the voltage amplitude V(VCc), 411" in the frequency range around 6.5 kHz would reach a voltage amplitude of 350V, which could destroy a component connected to VCc.
  • the interference suppression device does not intervene due to the low excitation voltage.
  • Fig. 6 shows a further embodiment of an interference suppression device 300a according to an exemplary embodiment of the present invention.
  • This configuration allows the use of more cost-effective components for the sensor 300'a.
  • the turns ratio is 1:10 which allows the use of a coil L3 with a lower inductance that can be manufactured more cheaply.
  • the capacitor C3, 303 is replaced by a pair of capacitors 303', C3', C4 and instead of the diodes D1, D2, four diodes D1', D2', D3, D4 are used, which are arranged in a series connection.
  • a resistor R1, R2, R3, R4 is connected in parallel with each of the diodes.
  • the intermediate circuit filter 207c ⁇ also has a different structure than the intermediate circuit filter 207c Fig. 3 .
  • a series connection of the capacitors C1, C2 is used in order to be able to connect the anode of the diode D2 ⁇ and the cathode of the diode D3 between the connection of the capacitors C1, C2.
  • Resistors R1, R2, R3, R4 are optional but can be used to ensure convergence in a simulation.
  • the structure of the interference suppression device 300a is in Fig. 6 from the structure of the interference suppression device 300 Fig. 3 differs, the basic functionality of the interference suppression devices 300, 300a is essentially the same.
  • the interference suppression device 300a due to the series connection of two diode half-bridges D1', D2' and D3, D4, only half the voltage at L3' compared to the voltage at L3, 302 is required for the circuit 300a to intervene. Accordingly, the number of turns of L3 'of the interference suppression device 300a can be halved compared to the number of turns of L3, 302, of the interference suppression device 300.
  • the capacitors C3' and C4 are connected to a common terminal both to each other and to a terminal of the coil L3'.
  • the other terminal of the capacitor C3' is connected to an anode of the diode D1' and a cathode of the diode D2'.
  • the diodes D1' and D2' form a diode half bridge.
  • the other terminal of the capacitor C4 is connected to an anode of the diode D3 and a cathode of the diode D4.
  • the diodes D3 and D4 form another diode half bridge.

Description

Feld der ErfindungField of invention

Die vorliegende Erfindung betrifft das technische Gebiet von Gleichstromnetzwerken. Insbesondere betrifft die vorliegende Erfindung eine Entstörvorrichtung für einen Gleichstromkreis, eine Fahrzeugkomponente, einen Hochspannungs-Zwischenkreis und ein Fahrzeug.The present invention relates to the technical field of direct current networks. In particular, the present invention relates to an interference suppression device for a direct current circuit, a vehicle component, a high-voltage intermediate circuit and a vehicle.

Hintergrund der ErfindungBackground of the invention

Ein Stromkreis dient dazu, verschiedene Komponenten mit elektrischer Energie zu versorgen. An einem Stromkreis kann eine einzige Komponente betrieben werden; es können aber auch, wie es oft beispielsweise in einem Elektro- oder Hybridfahrzeug der Fall ist, eine Vielzahl von Komponenten betrieben werden. Komponenten, die an einem Gleichstromkreis betrieben werden, sind jedoch anfällig für Störungen, insbesondere für Wechselspannungen, die auf dem Gleichstromkreis aus den unterschiedlichen Gründen entstehen oder von außen auf den Gleichstromkreis eingekoppelt werden und sich auf dem Gleichstromkreis ausbreiten.A circuit is used to supply various components with electrical energy. A single component can be operated on a circuit; However, as is often the case in an electric or hybrid vehicle, a large number of components can also be operated. However, components that are operated on a direct current circuit are susceptible to interference, in particular to alternating voltages that arise on the direct current circuit for various reasons or that are coupled onto the direct current circuit from outside and spread across the direct current circuit.

Die Störanfälligkeit einer Komponente kann davon verursacht werden, dass Filterkomponenten, die eigentlich dafür vorgesehen sind, Störungen zu unterdrücken, welche von der Komponente erzeugt werden, beim Auftreten Störungen auf dem Gleichstromkreis, insbesondere beim Auftreten einer Wechselspannung mit einer bestimmten Frequenz, so angeregt werden, dass sie zu einer Zerstörung der Komponente oder einzelner Bauteile der Komponente führen.The susceptibility of a component to interference can be caused by the fact that filter components, which are actually intended to suppress interference generated by the component, are excited when interference occurs on the direct current circuit, in particular when an alternating voltage with a certain frequency occurs, that they lead to destruction of the component or individual components of the component.

Die Druckschrift DD 208 019 betrifft die Verringerung der Strombelastung von zusätzlichen Drosseln, die in einem Gleichstromsystem zur Strombegrenzung im Havariefall vorhanden sind und über die auch der volle Laststrom fließt, für einen Spannungswechselrichter zur Speisung von Drehstrommaschinen.The publication DD 208 019 concerns the reduction of the current load of additional chokes, which are present in a direct current system to limit the current in the event of an accident and through which the full load current also flows, for a voltage inverter for feeding three-phase machines.

Die Druckschrift DE 21 60 925 A1 beschreibt ein Verfahren und Filter zur Beseitigung der Brummkomponente eines Gleichstroms.The publication DE 21 60 925 A1 describes a method and filter for eliminating the hum component of a direct current.

Die Druckschrift US 2005/141248 A1 betrifft ein Leistungselektroniksystem zum Konditionieren einer Leistung aus einer Brennstoffzelle mit einem Boost-Wandler, zum Erhöhen einer Spannung einer Gleichstromausgangsspannung der Brennstoffzelle und zum Entfernen eines Rippels durch gegenseitige Induktivitäten, mit einem Hochfrequenzwandler und mit einem AC-AC-Wandler.The publication US 2005/141248 A1 relates to a power electronics system for conditioning power from a fuel cell with a boost converter, for increasing a voltage of a DC output voltage of the fuel cell and for removing a ripple through mutual inductors, with a high-frequency converter and with an AC-AC converter.

Gegenüber der US 2005/141248 A1 besteht daher die Aufgabe, eine Alternative zur dort offenbarten passiven und transformatorisch und konduktiv gekoppelten resonanten Entstörschaltung zu erhalten.Opposite the US 2005/141248 A1 The task is therefore to obtain an alternative to the passive and transformerically and conductively coupled resonant interference suppression circuit disclosed there.

Zusammenfassung der ErfindungSummary of the invention

Dementsprechend wird eine Entstörvorrichtung für einen Gleichstromkreis, eine Fahrzeugkomponente, ein Hochspannungs-Zwischenkreis und ein Fahrzeug angegeben.Accordingly, an interference suppression device for a direct current circuit, a vehicle component, a high-voltage intermediate circuit and a vehicle is specified.

Der Gegenstand der Erfindung wird von den Merkmalen des unabhängigen Patentanspruchs 1 angegeben.The subject matter of the invention is specified by the features of independent claim 1.

Ausführungsbeispiele und weitere Aspekte der Erfindung werden von den abhängigen Ansprüchen und der folgenden Beschreibung angegeben.Embodiments and further aspects of the invention are set out in the dependent claims and the following description.

Gemäß einem Aspekt der Erfindung wird eine Entstörvorrichtung für einen Gleichstromkreis angegeben. Der Gleichstromkreis weist zumindest zwei Leiter auf. Die Entstörvorrichtung weist einen ersten Anschluss auf, der zum Verbinden der Entstörvorrichtung mit einem ersten Leiter des Gleichstromkreises dient und einen zweiten Anschluss, der zum Verbinden der Entstörvorrichtung mit einem zweiten Leiter des Gleichstromkreises dient. Außerdem weist die Entstörvorrichtung einen Sensor auf. Der Sensor ist im Wesentlichen berührungslos mit dem Gleichstromkreis koppelbar. In einem Beispiel mag die Eigenschaft "berührungslos" eine galvanische Kopplung bezeichnen, da durchaus eine mechanische Berührung über einen Wickelkern eines Transformators möglich ist. In einem anderen Beispiel mag eine im Wesentlichen vollkommene Luftkopplung mit dem Gleichstromkreis herstellbar sein, so dass im Wesentlichen - abgesehen von Verbindungen über einen gemeinsamen Anschluss - keine elektrische Kopplung und auch keine mechanische Kopplung zwischen dem Sensor und dem Gleichstromkreis besteht. Insbesondere existiert solch eine Verbindung nicht für die Übertragung einer Messgröße, wie den im Gleichstromkreis fließenden Wechselstrom. Oder in anderen Worten ausgedrückt mag ein im Gleichstromkreis fließender Wechselstrom von der Koppelung im Wesentlichen berührungslos übertragen werden.According to one aspect of the invention, an interference suppression device for a direct current circuit is provided. The direct current circuit has at least two conductors. The interference suppression device has a first connection which serves to connect the interference suppression device to a first conductor of the direct current circuit and a second connection which serves to connect the interference suppression device to a second conductor of the direct current circuit. The interference suppression device also has a sensor. The sensor can be coupled to the direct current circuit essentially without contact. In one example, the property "non-contact" may refer to a galvanic coupling, since mechanical contact via a winding core of a transformer is certainly possible. In another example, a substantially complete air coupling with the direct current circuit may be able to be established, so that essentially - apart from connections via a common connection - there is no electrical coupling and no mechanical coupling between the sensor and the direct current circuit. In particular, such a connection does not exist for the transmission of a measured variable, such as the alternating current flowing in the direct current circuit. Or in other words, an alternating current flowing in the direct current circuit may be transmitted by the coupling essentially without contact.

Der Sensor ist auch dazu eingerichtet, ein Übersteigen eines vorgebbaren Grenzwertes einer überlagerten Wechselspannung in dem ersten Leiter des Gleichstromkreises zu erkennen und durch Einprägen eines Stromes in den ersten Anschluss die Wechselspannung im ersten Leiter des Gleichstromkreises im Wesentlichen auf den vorgebbaren Grenzwert zu verringern und/oder unter dem Grenzwert zu lassen. Der Strom wird induktiv aufgenommen aber konduktiv über Dioden in den Gleichstromkreis eingeprägt.The sensor is also set up to detect when a predeterminable limit value of a superimposed alternating voltage in the first conductor of the direct current circuit is exceeded and to substantially reduce the alternating voltage in the first conductor of the direct current circuit to the predeterminable limit value by impressing a current into the first connection and/or below the limit value. The current is recorded inductively but is impressed conductively into the direct current circuit via diodes.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird eine Komponente, insbesondere eine Fahrzeugkomponente angegeben. Bei der Komponente kann es sich beispielsweise um einen Antriebs-Umrichter, einen Bordnetzwandler, ein Ladegerät, einen Klimakompressor oder einen Umrichter handeln. Die Komponente weist einen Gleichstromkreis mit einem ersten Leiter, einem zweiten Leiter und einem Zwischenkreis-Filter auf. Außerdem ist in oder an der Komponente die erfindungsgemäße Entstörvorrichtung vorhanden, wobei der erste Anschluss der Entstörvorrichtung mit dem ersten Leiter verbunden ist, der zweite Anschluss der Entstörvorrichtung mit dem zweiten Leiter verbunden ist und der Sensor im Wesentlichen berührungslos mit dem Zwischenkreis-Filter gekoppelt ist. Ferner ist der Gleichstromkreis zum Anschließen an einen Hochspannungs-Zwischenkreis eingerichtet.According to a further aspect of the present invention, a component, in particular a vehicle component, is specified. The component can be, for example, a drive converter, an on-board power converter, a charger, an air conditioning compressor or a converter. The component has a DC circuit with a first conductor, a second conductor and an intermediate circuit filter. In addition, the interference suppression device according to the invention is present in or on the component, wherein the first connection of the interference suppression device is connected to the first conductor, the second connection of the interference suppression device is connected to the second conductor and the sensor is coupled to the intermediate circuit filter in a substantially contactless manner. Furthermore, the direct current circuit is set up for connection to a high-voltage intermediate circuit.

Gemäß noch einem Aspekt der Erfindung wird ein Hochspannungs-Zwischenkreis für ein Fahrzeug angegeben. Dieser Hochspannungs-Zwischenkreis weist eine Versorgungsbatterie, eine erste Komponente, welche mit einer Arbeitsfrequenz betrieben wird und zumindest eine zweite Komponente auf. Außerdem weist der Hochspannungs-Zwischenkreis zumindest eine erfindungsgemäße Entstörvorrichtung auf. Die Versorgungsbatterie, die erste Komponente und die zweite Komponente sind jeweils mit einem ersten Leiter und einem zweiten Leiter des Hochspannungs-Zwischenkreises verbunden.According to another aspect of the invention, a high-voltage intermediate circuit is specified for a vehicle. This high-voltage intermediate circuit has a supply battery, a first component which is operated at a working frequency and at least one second component. In addition, the high-voltage intermediate circuit has at least one interference suppression device according to the invention. The supply battery, the first component and the second component are each connected to a first conductor and a second conductor of the high-voltage intermediate circuit.

Der erste Leiter der zumindest einen zweiten Komponente ist mit dem ersten Anschluss der Entstörvorrichtung verbunden und der zweite Leiter der zumindest einen zweiten Komponente ist mit dem zweiten Anschluss der Entstörvorrichtung verbunden. Darüber hinaus ist der Sensor der Entstörvorrichtung berührungslos mit dem zu der zumindest zweiten Komponente gehörenden Teil des ersten Leiters und/oder des zweiten Leiters gekoppelt.The first conductor of the at least one second component is connected to the first connection of the interference suppression device and the second conductor of the at least one second component is connected to the second connection of the interference suppression device. In addition, the sensor of the interference suppression device is coupled without contact to the part of the first conductor and/or the second conductor belonging to the at least second component.

Die Entstörvorrichtung kann auch als resonanter Leistungsregenierungsschaltkreis (resonant power regeneration circuit) bezeichnet werden. In diesem Text mögen die Begriffe "Kondensator" und "Kapazität" sowie "Spule" oder "Drossel" und "Induktivität" gleichbedeutend verwendet werden.The interference suppression device can also be referred to as a resonant power regeneration circuit. In this text, the terms “capacitor” and “capacitance” as well as “coil” or “choke” and “inductance” may be used interchangeably.

Werden Komponenten von einem OEM (Original Equipment Manufacturer) bei einem Zulieferer bestellt, so legt der OEM eine maximale zulässige Amplitude fest, die innerhalb eines ebenfalls vorgegebenen Frequenzbereichs nicht überschritten werden darf. Würde diese Amplitude überschritten, könnte die Komponente beschädigt oder zerstört werden. Um eine Störung ausgehend von der Komponente auf andere Komponenten, die an dem gleichen Stromkreis angeschlossen sind, zu verhindern, mag die Komponente selbst ein Zwischenkreisfilter aufweisen, wobei das Filter zumindest einen Zwischenkreiskondensator und zumindest eine Zwischenkreisspule oder eine Zwischenkreisdrossel enthält. Dieses Zwischenkreisfilter mag als ein Tiefpassfilter ausgebildet sein. Dieses Tiefpassfilter mag eine Resonanzfrequenz aufweisen, die weit unterhalb der Taktfrequenz liegt, mit der die jeweilige Komponente arbeitet, z:B. ein Antriebs-Umrichter, ein Bordnetzwandler, ein Ladegerät oder Klimakompressor-Umrichter. Durch die Auslegung auf die Arbeitsfrequenz der Komponente derart, dass diese Frequenz weit über der Resonanzfrequenz des Tiefpasses und möglichst weit außerhalb des Durchlassbereichs des Tiefpasses liegt, mag sichergestellt werden, dass Störungen, insbesondere Wechselstromstörungen (AC-Störungen, Alternating Current-Störungen) oder Spannungs-Rippel, die von der Komponente erzeugt werden, gedämpft werden und sich möglichst nicht oder nur in geringen Massen auf den Gleichstromkreis und/oder den Zwischenkreis ausbreiten, an dem die Komponente angeschlossen ist.If components are ordered from a supplier by an OEM (Original Equipment Manufacturer), the OEM specifies a maximum permissible amplitude that must not be exceeded within a specified frequency range. If this amplitude were exceeded, the component could be damaged or destroyed. In order to prevent interference from the component to other components that are connected to the same circuit, the component itself may have an intermediate circuit filter, the filter containing at least one intermediate circuit capacitor and at least one intermediate circuit coil or an intermediate circuit choke. This intermediate circuit filter may be designed as a low-pass filter. This low-pass filter may have a resonance frequency that is well below the clock frequency at which the respective component works, e.g. a drive inverter, an on-board power converter, a charger or air conditioning compressor inverter. By designing the working frequency of the component in such a way that this frequency is far above the resonance frequency of the low pass and as far as possible outside the pass band of the low pass, it can be ensured that interference, in particular alternating current interference (AC interference, alternating current interference) or voltage -Ripples that are generated by the component are dampened and, if possible, do not spread or only spread to a small extent to the direct current circuit and/or the intermediate circuit to which the component is connected.

Trotz dieser Vorsichtsmaßnahmen kann es jedoch vorkommen, dass auf dem Zwischenkreis Störungen in Form von Wechselspannungen (AC) oder Spannungs-Rippel entstehen, die eine Frequenz aufweisen, welche tiefer als die Arbeitsfrequenz einer Komponente liegt, jedoch in dem Resonanzfrequenzbereich des zu der Komponente gehörenden Zwischenkreisfilters liegt. Eine solche Störung ist dann in der Lage Resonanzschwingungen in dem Filter zu erzeugen, die zu einer Spannungsüberhöhung führen können, welche wiederum Bauelemente der Komponente schädigen können, da die Spannungsüberhöhung in die Richtung der internen Bauelemente der Komponente gerichtet ist. Oder in anderen Worten, kann der Aufbau einer Filterkomponente, beispielsweise ein Filter zweiter oder höherer Ordnung, zwar Störungen im Bereich der Arbeitsfrequenz der Komponente dämpfen, die sich von der Komponente in Richtung Zwischenkreis ausbreiten. Jedoch können sich Schwingungen (AC) geringer Frequenz, welche sich in dem Zwischenkreis in Richtung der inneren Bauteile der Komponente ausbreiten und welche eine Frequenz im Bereich der Resonanzfrequenz aufweisen, derart verstärken, dass sie zu einer Schädigung der Bauteile der Komponenten führen können. Oder in noch anderen Worten, dämpft das Zwischenkreisfilter Wechsel-Störungen (AC) im Bereich der Arbeitsfrequenz der Komponente gut in Richtung des Zwischenkreises, verstärkt jedoch Wechsel-Störungen (AC), die eine Frequenz im Bereich der Resonanzfrequenz aufweisen, und sich von dem Zwischenkreis in Richtung der Komponente ausbreiten und insbesondere in Richtung des Innenbereichs der Komponente.Despite these precautionary measures, however, it can happen that interference occurs on the intermediate circuit in the form of alternating voltages (AC) or voltage ripples that have a frequency that is lower than the operating frequency of a component, but in the resonant frequency range of the intermediate circuit filter belonging to the component lies. Such a disturbance is then able to generate resonant oscillations in the filter, which can lead to an increase in voltage, which in turn can damage components of the component, since the increase in voltage is directed in the direction of the internal components of the component. Or in other words, the structure of a filter component, for example a second or higher order filter, can attenuate disturbances in the range of the component's operating frequency that propagate from the component towards the intermediate circuit. However, low-frequency oscillations (AC), which propagate in the intermediate circuit in the direction of the internal components of the component and which have a frequency in the range of the resonance frequency, can increase in such a way that they can lead to damage to the components of the components. Or in still other words, dampens it Intermediate circuit filter alternating interference (AC) in the range of the working frequency of the component well in the direction of the intermediate circuit, but amplifies alternating interference (AC), which has a frequency in the range of the resonance frequency, and propagates from the intermediate circuit in the direction of the component and in particular in Direction of the interior of the component.

Es könnten zwar die Störungen, die sich von dem Zwischenkreis in Richtung der Komponente ausbreiten, mit Hilfe von zusätzlichen Filtern und/oder einem für einen entsprechend großen Frequenzbereich ausgelegtem Filter durch Dämpfen unterdrückt werden. Jedoch müssten die Filter entsprechend groß ausgelegt werden, wodurch Gewicht und Kosten des Filters steigen würden. Außerdem ist das Dämpfen mit Energieverlusten verbunden und könnte zu hohen Verlusten führen. Mit Hilfe der erfindungsgemäßen Entstörvorrichtung kann jedoch der durch die Spannungsüberhöhung hervorgerufene Strom genutzt werden, indem er in den Zwischenkreis oder Gleichstromkreis zurück gespeist oder eingeprägt wird und die in ihm enthaltene Energie im Wesentlichen erhalten wird, also nicht vernichtet wird.The interference that propagates from the intermediate circuit in the direction of the component could be suppressed by damping with the help of additional filters and/or a filter designed for a correspondingly large frequency range. However, the filters would have to be designed to be correspondingly large, which would increase the weight and cost of the filter. In addition, steaming involves energy losses and could lead to high losses. With the help of the interference suppression device according to the invention, however, the current caused by the voltage increase can be used by feeding or impressing it back into the intermediate circuit or direct current circuit and the energy contained in it is essentially preserved, i.e. not destroyed.

Der Sensor zum berührungslosen Koppeln mit dem ersten Leiter des Gleichstromkreises weist eine Spule auf, um mit dem Gleichstromkreis einen Transformator mit einem vorgebbaren Koppelfaktor zu bilden.The sensor for contactless coupling with the first conductor of the direct current circuit has a coil in order to form a transformer with a predeterminable coupling factor with the direct current circuit.

Mittels der Spule kann im Wesentlichen verlustfrei ein Strom in der Entstörvorrichtung abgegriffen werden, der zurück in den Gleichstromkreis oder den Zwischenkreis geleitet werden kann, um der Störung entgegenzuwirken. Die Entstörspule kann auf einem gemeinsamen Ferritkern mit der Zwischenkreisfilterspule aufgewickelt sein. Die Spulen sind im Wesentlichen galvanisch getrennt, insbesondere in Bezug zu der Spannungsübertragung. Der Koppelfaktor k gibt an, wie sehr die Kopplung einer idealen Kopplung entspricht. Bei einer idealen Kopplung ist der Koppelfaktor k=1, d.h. der gesamte magnetische Fluß durch die Primärspule entspricht dem Fluss durch die Sekundär Spule. Bei einer realen Kopplung kann ein Streufluss auftreten, so dass k<1 ist, beispielsweise kann k=0.9 betragen. Das Windungsverhältnis der Entstörspule zur Zwischenkreisfilterspule kann beispielsweise 1:10 oder 1:20 betragen, unabhängig von dem Koppelfaktor k.By means of the coil, a current can be tapped in the interference suppression device essentially without loss, which can be fed back into the direct current circuit or the intermediate circuit in order to counteract the interference. The interference suppression coil can be wound on a common ferrite core with the intermediate circuit filter coil. The coils are essentially galvanically isolated, particularly in relation to voltage transmission. The coupling factor k indicates how closely the coupling corresponds to an ideal coupling. With an ideal coupling, the coupling factor k=1, ie the total magnetic flux through the primary coil corresponds to the flux through the secondary coil. In a real coupling, a leakage flux can occur so that k<1, for example k=0.9. The turns ratio of the interference suppression coil to the intermediate circuit filter coil can be, for example, 1:10 or 1:20, regardless of the coupling factor k.

Ein erster Anschluss der Spule, insbesondere ein erster Anschluss der Entstörspule, ist mit dem ersten Anschluss und ein zweiter Anschluss der Spule über zumindest einen Kondensator, insbesondere über den Entstörkondensator, und über zumindest eine Diode mit dem ersten Anschluss verbunden. Durch diese Art und Weise der Verschaltung der Entstörspule lässt sich ein mittels der Entstörspule abgegriffener Strom in den ersten Anschluss und somit in den Zwischenkreis einprägen und/oder zurückführen.A first connection of the coil, in particular a first connection of the interference suppression coil, is connected to the first connection and a second connection of the coil is connected to the first connection via at least one capacitor, in particular via the interference suppression capacitor, and via at least one diode. By connecting the interference suppression coil in this way, a current tapped by means of the interference suppression coil can be impressed and/or fed back into the first connection and thus into the intermediate circuit.

Ein Anschluss des zumindest einen Kondensators, insbesondere des Entstörkondensators, ist über eine weitere Diode mit dem zweiten Anschluss verbunden.A connection of the at least one capacitor, in particular the interference suppression capacitor, is connected to the second connection via a further diode.

Bei dem zweiten Anschluss kann es sich um ein Bezugspotential handeln, beispielsweise um Masse.The second connection can be a reference potential, for example ground.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung sind der erste Anschluss und der zweite Anschluss zum Verbinden mit einer Fahrzeugkomponente ausgebildet.According to a further aspect of the present invention, the first connection and the second connection are designed for connecting to a vehicle component.

Sollte die Entstörvorrichtung zum nachträglichen Einbau in einen Zwischenkreis vorgesehen sein, können beispielsweise der erste und der zweite Anschluss mittels einer bei Zwischenkreisen üblichen Steckverbindung erfolgen, was das Nachrüsten eines Zwischenkreises mit der Entstöreinrichtung sehr vereinfacht. Zusätzlich zum Anschließen der Entstöreinrichtung an dem ersten Leiter und an dem zweiten Leiter mag es notwendig sein, die Entstörspule in die Nähe der Zwischenkreisspule zu bringen, um einen guten Koppelfaktor bereitstellen zu können.If the interference suppression device is intended for subsequent installation in an intermediate circuit, the first and second connections can, for example, be made using a plug-in connection that is common for intermediate circuits, which greatly simplifies the retrofitting of an intermediate circuit with the interference suppression device. In addition to connecting the interference suppression device to the first conductor and to the second conductor, it may be necessary to bring the interference suppression coil close to the intermediate circuit coil in order to be able to provide a good coupling factor.

Der Sensor der Entstörvorrichtung ist dazu ausgebildet, mit einer Filter-Spule und/oder Leitungsinduktivität eines Gleichstromkreises gekoppelt zu werden.The sensor of the interference suppression device is designed to be coupled to a filter coil and/or line inductance of a direct current circuit.

Um die Effektivität einer Kopplung zu erhöhen kann die Zuleitung durch zumindest einen Ringkern geführt werden. Wird die Zuleitung durch einen oder eine Vielzahl von Ringkerne geführt, die mit der Entstörspule bewickelt sind, so wirkt diese Leitungsinduktivität als Zwischenkreisfilterspule, da die Leitungsinduktivität mittels des einen und/oder der Vielzahl von Ringkernen vergrößert wird.In order to increase the effectiveness of a coupling, the supply line can be routed through at least one toroidal core. If the supply line is through one or a plurality of toroidal cores which are wound with the interference suppression coil, this line inductance acts as a DC link filter coil, since the line inductance is increased by means of one and/or the plurality of toroidal cores.

Je nach Ausprägung der Leitungsinduktivitäten müssen nicht nur die Filterspule oder Zwischenkreisfilterspule sondern auch noch Leitungsinduktivitäten berücksichtigt werden, die zu der Kopplung und/oder zu der Störung durch die eingeprägte Wechselspannung (AC) beitragen. Diese sind ggf. bei der Dimensionierung der Entstörspule oder der Bestimmung der Windungszahl zu berücksichtigen.Depending on the characteristics of the line inductances, not only the filter coil or intermediate circuit filter coil but also line inductances that contribute to the coupling and/or to the interference caused by the impressed alternating voltage (AC) must be taken into account. These may need to be taken into account when dimensioning the interference suppression coil or determining the number of turns.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist die Entstörvorrichtung dazu eingerichtet, mit einem Gleichstromkreis oder Gleichstrom-Zwischenkreis verbunden zu werden, der eine Gleichspannung von 400 V oder 900 V aufweist.According to a further aspect of the present invention, the interference suppression device is designed to be connected to a direct current circuit or direct current intermediate circuit which has a direct voltage of 400 V or 900 V.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist die Entstörvorrichtung ein Gehäuse auf, wobei das Gehäuse zum Befestigen an einem Fahrzeug ausgebildet ist. Das Gehäuse kann ein robustes Gehäuse sein, das die Standards zum Einbau von Zusatzkomponenten in ein Fahrzeug erfüllt, insbesondere in ein Elektrofahrzeug.According to a further aspect of the present invention, the interference suppression device has a housing, wherein the housing is designed to be attached to a vehicle. The housing can be a robust housing that meets the standards for installing additional components in a vehicle, in particular an electric vehicle.

Gemäß einem Aspekt der vorliegenden Erfindung wird eine Entstörvorrichtung angegeben, die an einem Gleichstromnetz oder Zwischenkreis angeschlossen ist. Der Zwischenkreis mag eine Vielzahl von Induktivitäten und Kapazitäten aufweisen, die im Wesentlichen von den Zwischenkreisfiltern der an dem Gleichstromnetz angeschlossenen Komponenten gebildet werden. Bei Anregung mit einer Wechselspannung mit einer definierten Frequenz oberhalb einer definierten Amplitude wird die Schwingkreisamplitude von dem LC Filter begrenzt und die Energie der Entstörvorrichtung, des Schwingkreises oder des LC Filters mag als Gleichstrom in das Gleichstromnetz zurückgespeist werden. Für jede Frequenz kann eine andere maximal zulässige Amplitude vorgegeben sein. Insbesondere dann, wenn die Zwischenkreisfilter unterschiedlicher Komponenten unterschiedliche Resonanzfrequenzen und/oder unterschiedliche maximal zulässige Amplituden oder Spannungsamplituden aufweisen mag für jede Frequenz eine andere maximal zulässige Amplitude vorgegeben sein. Um die Entstörung für jede Komponente individuell durchzuführen, wird jede separat am HV-Bus (High-Voltage-Bus, Hochspannungsbus, Zwischenkreis) angeschlossene Komponente einzeln entstört. Um eine Komponente zu definieren kann beispielsweise das Gehäuse als Komponentengrenze festgelegt werden. Auf diese Weise ist es auch möglich, falls sich mehrere Komponenten im selben Gehäuse befinden, den gemeinsamen Anschluss zum HV-Bus für alle Komponenten gemeinsam zu entstören.According to one aspect of the present invention, an interference suppression device is specified which is connected to a direct current network or intermediate circuit. The intermediate circuit may have a large number of inductances and capacitances, which are essentially formed by the intermediate circuit filters of the components connected to the DC network. When excited with an alternating voltage with a defined frequency above a defined amplitude, the resonant circuit amplitude is limited by the LC filter and the energy of the interference suppression device, the resonant circuit or the LC filter may be fed back into the direct current network as direct current. A different maximum permissible amplitude can be specified for each frequency. In particular, if the intermediate circuit filters of different components have different resonance frequencies and/or different maximum permissible amplitudes or voltage amplitudes, a different maximum permissible amplitude may be specified for each frequency. In order to carry out interference suppression individually for each component, each component connected separately to the HV bus (high-voltage bus, high-voltage bus, intermediate circuit) is individually suppressed. To define a component, for example, the housing can be set as the component boundary. In this way it is also possible if If several components are located in the same housing, the common connection to the HV bus can be used to suppress interference for all components.

Im Wesentlichen liegt der Erfindung die Erkenntnis zugrunde, dass ein Schwingkreis, welcher die Ausbreitung einer Störung von einer Komponente in die Richtung zu anderen Komponenten, verhindern soll, eine Störung verstärkt zu der Komponente weitergibt, wenn eine Störung in umgekehrter Richtung von anderen Komponenten auf den Schwingkreis trifft. Oder in anderen Worten mag das bedeuten, dass sich ein Schwingkreis bei unterschiedlichen Frequenzen in unterschiedliche Richtungen unsymmetrisch verhält.Essentially, the invention is based on the knowledge that a resonant circuit, which is intended to prevent the propagation of a disturbance from a component in the direction of other components, passes on a disturbance to the component in an amplified manner when a disturbance in the opposite direction from other components to the Oscillating circuit hits. Or in other words, this may mean that an oscillating circuit behaves asymmetrically in different directions at different frequencies.

Kurze Beschreibung der FigurenShort description of the characters

Im Folgenden werden weitere exemplarische Ausführungsbeispiele der vorliegenden Erfindung mit Verweis auf die Figuren beschrieben.

  • Fig. 1 Zeigt einen Hochspannungs-Zwischenkreis mit angeschlossenen Komponenten gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 2 zeigt ein Teilersatzschaltbild der Filterbauteile der Komponenten des Zwischenkreises aus Fig. 1 gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 3 zeigt ein Ersatzschaltbild für eine Entstörvorrichtung, welche an einen Zwischenkreis und ein Zwischenkreisfilter einer Komponente angeschlossen ist.
  • Fig. 4 zeigt eine Selektion von Frequenzdiagrammen für ein Störsignal mit einer geringen Störamplitude gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 5a zeigt eine Selektion von Frequenzdiagrammen für ein Störsignal mit einer großen Störamplitude bei 900V Zwischenkreisspannung gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 5b zeigt eine Selektion von Frequenzdiagrammen für ein Störsignal mit einer großen Störamplitude bei 450V Zwischenkreisspannung gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 6 zeigt ein Ersatzschaltbild für eine weitere Ausgestaltung einer Entstörvorrichtung mit vervielfachten Elementen gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung.
Further exemplary embodiments of the present invention are described below with reference to the figures.
  • Fig. 1 Shows a high-voltage intermediate circuit with connected components according to an exemplary embodiment of the present invention.
  • Fig. 2 shows a partial equivalent circuit diagram of the filter components of the intermediate circuit components Fig. 1 according to an exemplary embodiment of the present invention.
  • Fig. 3 shows an equivalent circuit diagram for an interference suppression device, which is connected to an intermediate circuit and an intermediate circuit filter of a component.
  • Fig. 4 shows a selection of frequency diagrams for an interference signal with a low interference amplitude according to an exemplary embodiment of the present invention.
  • Fig. 5a shows a selection of frequency diagrams for an interference signal with a large interference amplitude at 900V intermediate circuit voltage according to an exemplary embodiment of the present invention.
  • Fig. 5b shows a selection of frequency diagrams for an interference signal with a large interference amplitude at 450V intermediate circuit voltage according to an exemplary embodiment of the present invention.
  • Fig. 6 shows an equivalent circuit diagram for a further embodiment of an interference suppression device with multiple elements according to an exemplary embodiment of the present invention.

Detaillierte Beschreibung von AusführungsbeispielenDetailed description of exemplary embodiments

Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich. In der folgenden Beschreibung der Fig. 1 bis Fig. 6 werden die gleichen Bezugsziffern für gleiche oder sich entsprechende Elemente verwendet.The representations in the figures are schematic and not to scale. In the following description of the Fig. 1 to Fig. 6 the same reference numbers are used for the same or corresponding elements.

Fig. 1 Zeigt einen Zwischenkreis 100 oder HV-Bus 100 mit angeschlossenen Komponenten 102a, 102b, 102c, 102d gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Der Hochspannungs-Zwischenkreis 100 eines Elektro- und Hybridfahrzeugs weist eine erste Leitung 103 und eine zweite Leitung 104 auf. Diese werden von der Batterie 101, beispielsweise einer Li-Ion Batterie, mit einer Gleichspannung (DC, Direct Current) von 400 V, 450 V oder 900 V versorgt. Die Spannungen können beliebig gewählt werden. Ohne Einschränkung der Allgemeinheit können auch Spannungen 300 V, 350 V, 400 V, 450 V, 500 V, 550 V, 600 V, 650 V, 700 V, 750 V, 800 V, 850 V und 900 V gewählt werden. Insbesondere sind auch beliebige Spannungen aus dem Bereich von 300 V bis 900 V. Die Spannungen können auch innerhalb eines Toleranzbereichs der angegebenen Werte liegen. An den Hochspannungs-Zwischenkreis 100 sind mehrere Komponenten 102a, 102b, 102c, 102d angeschlossen. Bei den Komponenten handelt es sich um die Hochvolt-Batterie 101, den Antriebs-Umrichter 102a, der mit dem Motor verbunden ist, den Bordnetzwandler 102b, das Ladegerät 102c oder den DC-DC Wandler 102c, den AC/DC Wandler 102d, den Klimakompressor-Umrichter und beliebig viele andere Komponenten. Mit Ausnahme der Batterie 101 befinden sich in diesen Komponenten 102a, 102b, 102c, 102d elektronische Umformer, welche den Zwischenkreis 100 mit einer Taktfrequenz im Bereich von 5 bis 500kHz periodisch mit zum Teil hohen Strömen belasten. Diese Umformer weisen Schalter auf, die entsprechend mit der jeweiligen Taktfrequenz der zugehörigen Komponente umgeschaltet werden. Fig. 1 Shows an intermediate circuit 100 or HV bus 100 with connected components 102a, 102b, 102c, 102d according to an exemplary embodiment of the present invention. The high-voltage intermediate circuit 100 of an electric and hybrid vehicle has a first line 103 and a second line 104. These are supplied by the battery 101, for example a Li-ion battery, with a direct current (DC) of 400 V, 450 V or 900 V. The voltages can be chosen arbitrarily. Without limiting generality, voltages 300 V, 350 V, 400 V, 450 V, 500 V, 550 V, 600 V, 650 V, 700 V, 750 V, 800 V, 850 V and 900 V can also be selected. In particular, any voltages from the range of 300 V to 900 V are also possible. The voltages can also lie within a tolerance range of the specified values. Several components 102a, 102b, 102c, 102d are connected to the high-voltage intermediate circuit 100. The components are the high-voltage battery 101, the drive converter 102a, which is connected to the engine, the on-board power converter 102b, the charger 102c or the DC-DC converter 102c, the AC / DC converter 102d, the air conditioning compressor -Inverter and any number of other components. With the exception of the battery 101, these components 102a, 102b, 102c, 102d contain electronic converters which periodically load the intermediate circuit 100 with sometimes high currents at a clock frequency in the range of 5 to 500 kHz. These converters have switches that are switched according to the respective clock frequency of the associated component.

Die Fig. 2 zeigt ein Teilersatzschaltbild der Filterbauteile der Komponenten 101, 102a, 102b, 102c, 102d des Zwischenkreises 100 aus Fig. 1 gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Fig. 2 zeigt dabei insbesondere ein Ersatzschaltbild, welches sich für eine Stör-Wechselspannung 206a ergibt, die sich in dem Inverter 102a durch Umschaltvorgänge ergeben kann. In jeder der Komponenten 102a, 102b, 102c, 102d, die einen Umschalter aufweist, der mit einer bestimmten Frequenz betrieben wird, können sich durch das Umschalten Belastungen oder Störungen in Form einer Wechselspannung (AC) 206a oder eines Spannungsrippels 206a bilden. Die Störspannung 206a, insbesondere die Störwechselspannung 206a kann als eine Spannungsquelle 206a, B1a aufgefasst werden.The Fig. 2 shows a partial equivalent circuit diagram of the filter components of the components 101, 102a, 102b, 102c, 102d of the intermediate circuit 100 Fig. 1 according to an exemplary Embodiment of the present invention. Fig. 2 shows in particular an equivalent circuit diagram, which results for an interference alternating voltage 206a, which can arise in the inverter 102a due to switching processes. In each of the components 102a, 102b, 102c, 102d, which has a changeover switch that is operated at a certain frequency, the switching can cause loads or disturbances in the form of an alternating voltage (AC) 206a or a voltage ripple 206a to form. The interference voltage 206a, in particular the interference alternating voltage 206a, can be understood as a voltage source 206a, B1a.

In Fig. 2 ist die Entstehung einer Störung für den Fall des Inverters 102a für die Energieversorgung eines 100kW Antriebsmotors für ein Elektrofahrzeug dargestellt, der als Generator einen Antriebsstrom von 400 A für den Antriebsmotor des Fahrzeugs erzeugt. Der Störstrom 206a wird durch den Zwischenkreiskondensator 205a aufgenommen, wodurch eine Störspannung am Zwischenkreis 100, 103, 104 bzw. am HV-DC-Bus 100, 103, 104 entsteht, die prinzipiell alle daran angeschlossenen Filterkreise zu Schwingungen anregen kann. Die dadurch verursachten Störungen 206a können sich ausgehend von der verursachenden Komponente 102a in Richtung des Zwischenkreises 100 ausbreiten und über den Zwischenkreis 100 die jeweils anderen Komponenten 102b, 102c, 102d erreichen. Der Zwischenkreis 100 oder DC-Bus 100 wird als Gleichstromkreis (DC) betrieben. Von der Batterie 101 wird eine Gleichspannung VB in der Höhe von beispielsweise 400V, 450V oder 900V erzeugt, der sich die Störwechselspannung VAC überlagert. Damit diese durch die Stör-Wechselspannung 206a hervorgerufene Belastung nicht die Funktion anderer am Zwischenkreis 100 angeschlossenen Komponenten 102b, 102c, 102d beeinträchtigt, befindet sich in dem Inverter 102a ein Zwischenkreisfilter 207a, welches den Zwischenkreisfilterkondensator 205a und die am positiven Leiter 103a oder am ersten Leiter 103a angeschlossene positive Zwischenkreisfilterspule 203a und die am negativen Leiter 104a oder zweiten Leiter 104a angeschlossene negative Zwischenkreisfilterspule 204a aufweist.In Fig. 2 The emergence of a fault is shown in the case of the inverter 102a for the energy supply of a 100 kW drive motor for an electric vehicle, which, as a generator, generates a drive current of 400 A for the drive motor of the vehicle. The interference current 206a is absorbed by the intermediate circuit capacitor 205a, which creates an interference voltage on the intermediate circuit 100, 103, 104 or on the HV-DC bus 100, 103, 104, which can in principle excite all filter circuits connected to it to oscillate. The disturbances 206a caused by this can spread from the causing component 102a in the direction of the intermediate circuit 100 and reach the other components 102b, 102c, 102d via the intermediate circuit 100. The intermediate circuit 100 or DC bus 100 is operated as a direct current circuit (DC). The battery 101 generates a direct voltage VB of, for example, 400V, 450V or 900V, which is superimposed on the interference alternating voltage V AC . So that this load caused by the interference alternating voltage 206a does not impair the function of other components 102b, 102c, 102d connected to the intermediate circuit 100, there is an intermediate circuit filter 207a in the inverter 102a, which contains the intermediate circuit filter capacitor 205a and those on the positive conductor 103a or on the first conductor 103a connected positive intermediate circuit filter coil 203a and the negative intermediate circuit filter coil 204a connected to the negative conductor 104a or second conductor 104a.

Ein solches Zwischenkreisfilter 207a, 207b, 207c, 207d befindet sich in jeder Komponente 102a, 102b, 102c, 102d, die als potenzieller Störer dienen kann. Es kann aber auch alternativ oder zusätzlich an den Komponentenanschlüssen des Zwischenkreises angeordnet sein und somit zu dem Zwischenkreis gehörig sein. Komponenten 102a, 102b, 102c, 102d können sich ein Zwischenkreisfilter teilen, wenn sie sich nahe beieinander im selben Gehäuse befinden und über eine gemeinsame Zuleitung mit dem Zwischenkreis 100 verbunden sind. Der Zwischenkreiskondensator 205a, 205b, 205c, 205d eines Zwischenkreisfilters ist möglichst nahe an den aktiven Schaltelementen (in Fig. 2 nicht dargestellt) der jeweiligen Komponente 102a, 102b, 102c, 102d angeordnet. Somit ist auch in jeder dieser Komponenten102a, 102b, 102c, 102d ein Zwischenkreiskondensator 205b, 205c, 205d oder Zwischenkreisfilterkondensator 205b, 205c, 205d mit einer Kapazität vorhanden, die im Bereich von 10 bis1000µF liegt. Außerdem werden diese Komponenten 102b, 102c, 102d über Filterinduktivitäten 203b, 204b, 203c, 204c, 203d, 204d, Zwischenkreisfilterinduktivitäten 203b, 204b, 203c, 204c, 203d, 204d oder Zwischenkreisinduktivitäten 203b, 204b, 203c, 204c, 203d, 204d mit dem Zwischenkreis 100 verbunden. Die Batterie 101 weist einen Innenwiderstand 201 von 0,1Ω auf, der eine Dämpfung für den gebildeten Schwingkreis bewirkt. Der Zwischenkreis 100 weist außerdem eine Leitungsinduktivität 203 in der positiven Busleitung 103 und eine Leitungsinduktivität 204 in der negativen Busleitung 104 auf.Such an intermediate circuit filter 207a, 207b, 207c, 207d is located in every component 102a, 102b, 102c, 102d, which can serve as a potential interferer. However, it can also alternatively or additionally be arranged on the component connections of the intermediate circuit and thus be part of the intermediate circuit. Components 102a, 102b, 102c, 102d can share an intermediate circuit filter if they are close to each other are located in the same housing and are connected to the intermediate circuit 100 via a common supply line. The intermediate circuit capacitor 205a, 205b, 205c, 205d of an intermediate circuit filter is as close as possible to the active switching elements (in Fig. 2 not shown) of the respective component 102a, 102b, 102c, 102d. Thus, in each of these components 102a, 102b, 102c, 102d there is also an intermediate circuit capacitor 205b, 205c, 205d or intermediate circuit filter capacitor 205b, 205c, 205d with a capacity that is in the range from 10 to 1000µF. In addition, these components 102b, 102c, 102d are connected via filter inductors 203b, 204b, 203c, 204c, 203d, 204d, intermediate circuit filter inductors 203b, 204b, 203c, 204c, 203d, 204d or intermediate circuit inductors 203b, 204b, 203c, 204c, 203d, 204d with the DC link 100 connected. The battery 101 has an internal resistance 201 of 0.1Ω, which causes damping for the resonant circuit formed. The intermediate circuit 100 also has a line inductance 203 in the positive bus line 103 and a line inductance 204 in the negative bus line 104.

Die Zwischenkreisfilter 207a, 207b, 207c, 207d bilden durch die Zusammenschaltung des jeweiligen Filterkondensators 205b, 205c, 205 mit den jeweiligen Filterinduktivitäten 203b, 204b, 203c, 204c, 203d, 204d ein Tiefpassfilter, das auf die Filterung von Störungen im Bereich der typischen Taktfrequenz der jeweiligen Komponente und der von ihr erzeugten Störung ausgelegt ist und Störungen mit Frequenzen in diesem Frequenzbereich stark dämpft. Da es sich bei dem gebildeten Tiefpassfilter um ein Filter 2. Ordnung handelt, weist jedes Filter eine Resonanzfrequenz auf. Diese Resonanzfrequenz f0 eines jeden der Zwischenkreisfilter 207a, 207b, 207c, 207d wird nach der Formel f 0 = 1 2 π LC

Figure imgb0001
berechnet, wobei sich die Induktivität L aus der Zusammenschaltung der jeweiligen positiven und negativen Zwischenkreisfilterspulen 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c und die Kapazität C der jeweiligen Kapazität des zugehörigen Zwischenkreisfilterkondensators 205a, 205b, 205c, 205d entspricht.By interconnecting the respective filter capacitor 205b, 205c, 205 with the respective filter inductances 203b, 204b, 203c, 204c, 203d, 204d, the intermediate circuit filters 207a, 207b, 207c, 207d form a low-pass filter that filters out interference in the range of the typical clock frequency the respective component and the interference it generates and strongly attenuates interference with frequencies in this frequency range. Since the low-pass filter formed is a second-order filter, each filter has a resonance frequency. This resonance frequency f 0 of each of the intermediate circuit filters 207a, 207b, 207c, 207d is determined according to the formula f 0 = 1 2 π LC
Figure imgb0001
calculated, whereby the inductance L is calculated from the interconnection of the respective positive and negative intermediate circuit filter coils 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c and the capacitance C corresponds to the respective capacity of the associated intermediate circuit filter capacitor 205a, 205b, 205c, 205d.

Diese Resonanzfrequenz f0 liegt unterhalb der typischen Taktfrequenz der Komponente, für die das Zwischenkreisfilter 207a, 207b, 207c, 207d ausgelegt ist. Die Resonanzfrequenz f0 liegt daher in dem Durchlassbereich des Zwischenkreisfilters. Folglich stellt das Zwischenkreisfilter 207a, 207b, 207c, 207d nicht nur eine dämpfende Einrichtung für die von der jeweiligen Komponenten erzeugten Störung dar, sondern bildet auch einen Schwingkreis, der den Zwischenkreisfilterkondensator 205a, 205b, 205c, 205d, die Zwischenkreisfilterspule und ggf. auch noch Anteile der Induktivität der Zuleitung aufweist.This resonance frequency f 0 is below the typical clock frequency of the component for which the intermediate circuit filter 207a, 207b, 207c, 207d is designed. The resonance frequency f 0 is therefore in the pass band of the intermediate circuit filter. Consequently, the intermediate circuit filter 207a, 207b, 207c, 207d not only represents a damping device for the interference generated by the respective components, but also forms an oscillating circuit, which has the intermediate circuit filter capacitor 205a, 205b, 205c, 205d, the intermediate circuit filter coil and possibly also parts of the inductance of the supply line.

In dem Zwischenkreis 100 aus Fig. 2, in dem keine Entstörvorrichtung zum Einsatz kommt, tragen die Induktivitäten der Zuleitungen mit dem jeweiligen Zwischenkreisfilterkondensator 205a, 205b, 205c, 205d zu der Durchlässigkeit für Störungen in Richtung der Komponente 102a, 102b, 102c, 102d bei. Die Leistungsinduktivität 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c ist jedoch schwer lokalisierbar. Diese ist in Fig. 2 als ein Spulenbauteil 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c eingezeichnet. Um die Leitungsinduktivität in einer praktischen beispielhaften Realisierung lokalisieren zu können, und um die Entstörspule an dieser Position anordnen zu können, kann die Zuleitung 103a, 104a, 103b, 104b, 103c, 104c, 103d, 104d durch einen Ringkern und/oder eine Vielzahl von Ringkernen (in Fig. 2 nicht gezeigt) geführt werden. Dieser Ringkern kann auch genutzt werden, um die Effektivität einer Kopplung zu erhöhen. Wird die Zuleitung durch den Ringkern geführt, der mit der Entstörspule bewickelt ist, so wirkt diese Leitungsinduktivität als Zwischenkreisfilterspule 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d, da die Leitungsinduktivität mittels der Ringkerne vergrößert wird. Die durch den Ringkern geführte Zwischenkreisfilterspule 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c kann auch als Spule L2 bezeichnet werden. Die um den Ringkern gewickelte Entstörspule kann als L3 bezeichnet werden.In the intermediate circuit 100 off Fig. 2 , in which no interference suppression device is used, the inductances of the supply lines with the respective intermediate circuit filter capacitor 205a, 205b, 205c, 205d contribute to the permeability for interference in the direction of the component 102a, 102b, 102c, 102d. However, the power inductor 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c is difficult to locate. This is in Fig. 2 shown as a coil component 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c. In order to be able to localize the line inductance in a practical exemplary implementation and to be able to arrange the interference suppression coil at this position, the supply line 103a, 104a, 103b, 104b, 103c, 104c, 103d, 104d can be replaced by a toroidal core and/or a plurality of toroidal cores (in Fig. 2 not shown). This toroidal core can also be used to increase the effectiveness of a coupling. If the supply line is led through the toroidal core, which is wound with the interference suppression coil, this line inductance acts as an intermediate circuit filter coil 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d, since the line inductance is increased by means of the toroidal cores. The intermediate circuit filter coil 203a, 204a, 203b, 204b, 203c, 204c, 203c, 204c guided through the toroidal core can also be referred to as coil L2. The interference suppression coil wound around the toroidal core can be referred to as L3.

Zur Auslegung geeigneter Entstörvorrichtungen für die Zwischenkreisfilter 207a, 207b, 207c, 207d werden die Bestandteile der einzelnen Zwischenkreisfilter 207a, 207b, 207c, 207d berücksichtigt. Die Zwischenkreisfilter 207a, 207b, 207c, 207d werden zwar alle gemeinsam durch die selbe Störquelle 206a, B1a angeregt, jedoch hat der anregende Schaltkreis 102a, der die Störquelle 206a, B1a enthält, bei einer Realisierung oftmals eine derart tiefe Impedanz im Vergleich zu den übrigen Filterkreisen 207b, 207c, 207d, so dass die von dem Störkreis 207a angeregten Filterkreise 207b, 207c, 207d in einer Näherung als voneinander entkoppelt betrachtet werden können. Da sämtliche der Zwischenkreisfilter 207a, 207b, 207c, 207d über den Zwischenkreis 100 verbunden sind, bilden deren Zwischenkreisfilterkondensatoren 205a, 205b, 205c, 205d mit den Zwischenkreisfilterspulen 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d und ggf. mit den Leitungsinduktivitäten 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d ein Netzwerk von Schwingkreisen 207a, 207b, 207c, 207d. In dem Ausführungsbeispiel nach Fig. 2 sind nur Zwischenkreisfilterkondensatoren 205a, 205b, 205c, 205d dargestellt. In diesem Fall können die Zwischenkreisfilterkondensatoren 205a, 205b, 205c, 205d auch als Zwischenkreiskondensatoren bezeichnet werden. In einem anderen Ausführungsbeispiel können Zwischenkreiskondensatoren zusätzlich zu den Zwischenkreisfilterkondensatoren (ZK-Filterkondensator) vorhanden sein. Ein Zwischenkreiskondensator ist dabei definiert als ein Kondensator, der unmittelbar mit den Schaltern, insbesondere mit den Halbleiterschaltern, der der Komponenten 102a, 102b, 102c, 102d verbunden ist, während ein ZK-Filterkondensator 205a, 205b, 205c, 205d oder Zwischenkreisfilterkondensator 205a, 205b, 205c, 205d einer Filterdrossel 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d nachgeschaltet ist, um einen Filterkreise 207a, 207b, 207c, 207d zu bilden. Zwischenkreisfilterkondensatoren und zusätzliche Zwischenkreiskondensatoren sind beispielsweise bei mehrstufigen Filtern vorhanden.To design suitable interference suppression devices for the intermediate circuit filters 207a, 207b, 207c, 207d, the components of the individual intermediate circuit filters 207a, 207b, 207c, 207d are taken into account. Although the intermediate circuit filters 207a, 207b, 207c, 207d are all excited together by the same interference source 206a, B1a, the exciting circuit 102a, which contains the interference source 206a, B1a, often has such a low impedance in comparison to the others when implemented Filter circuits 207b, 207c, 207d, so that the filter circuits 207b, 207c, 207d excited by the interference circuit 207a can be viewed as decoupled from one another in an approximation. Since all of the intermediate circuit filters 207a, 207b, 207c, 207d are connected via the intermediate circuit 100, their intermediate circuit filter capacitors 205a, 205b, 205c, 205d form with the intermediate circuit filter coils 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d and if necessary the line inductors 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d a network of resonant circuits 207a, 207b, 207c, 207d. In the exemplary embodiment according to Fig. 2 Only intermediate circuit filter capacitors 205a, 205b, 205c, 205d are shown. In this case they can Intermediate circuit filter capacitors 205a, 205b, 205c, 205d are also referred to as intermediate circuit capacitors. In another exemplary embodiment, intermediate circuit capacitors can be present in addition to the intermediate circuit filter capacitors (ZK filter capacitor). An intermediate circuit capacitor is defined as a capacitor that is connected directly to the switches, in particular to the semiconductor switches, of the components 102a, 102b, 102c, 102d, while a intermediate circuit filter capacitor 205a, 205b, 205c, 205d or intermediate circuit filter capacitor 205a, 205b , 205c, 205d is connected downstream of a filter choke 203a, 204a, 203b, 204b, 203c, 204c, 203d, 204d to form a filter circuit 207a, 207b, 207c, 207d. DC link filter capacitors and additional DC link capacitors are present, for example, in multi-stage filters.

Da oftmals unterschiedliche Komponenten über den Zwischenkreis zusammengeschaltet werden und die Komponenten mit unterschiedlichen Frequenzen arbeiten und dementsprechend die einzelnen Komponenten Filter mit unterschiedlichen Resonanzfrequenzen enthalten, kann es vorkommen, dass die Arbeitsfrequenz einer Komponente, z.B. des Umrichters 102a, genau auf der Filter-Resonanzfrequenz einer anderen Komponente, z.B. dem Bordnetzwandler 102c, zu liegen kommt und insbesondere auf der Resonanzfrequenz des Zwischenkreisfilters 207c zu liegen kommt. Daher würde der von den Elementen 203c, 204c, 205c des Zwischenkreisfilters 207c gebildete Schwingkreis zu Schwingungen angeregt. Die Arbeitsfrequenz entspricht dabei der typischen Taktfrequenz der jeweiligen Komponente. In dem beschriebenen Beispiel entspräche die Arbeitsfrequenz des Umrichters 102a im Wesentlichen der Resonanzfrequenz f0 des Zwischenkreisfilters 107c des Bordnetzwandlers 102c. Und selbst, wenn der auf die Arbeitsfrequenz der Störkomponente 102a abgestimmte Zwischenkreisfilter den Großteil der Störungen unterdrückt, können sich Störungen einer entsprechenden Frequenz auf dem Zwischenkreis 100 ausbreiten.Since different components are often interconnected via the intermediate circuit and the components work at different frequencies and, accordingly, the individual components contain filters with different resonance frequencies, it can happen that the working frequency of one component, for example the converter 102a, is exactly at the filter resonance frequency of another Component, for example the on-board power converter 102c, comes to rest and in particular comes to rest on the resonance frequency of the intermediate circuit filter 207c. Therefore, the resonant circuit formed by the elements 203c, 204c, 205c of the intermediate circuit filter 207c would be excited to oscillate. The working frequency corresponds to the typical clock frequency of the respective component. In the example described, the operating frequency of the converter 102a would essentially correspond to the resonance frequency f 0 of the intermediate circuit filter 107c of the on-board power converter 102c. And even if the intermediate circuit filter tuned to the operating frequency of the interference component 102a suppresses the majority of the interference, interference of a corresponding frequency can spread on the intermediate circuit 100.

Das Anregen der Filter-Resonanzfrequenz in dem Zwischenkreisfilter der anderen Komponente 102c kann zu so hohen Verlusten in den beteiligten Drosseln, Spulen und/oder Kondensatoren des Zwischenkreisfilters der anderen Komponente 102c führen, z.B. in den Bauelementen des Bordnetzwandlers 102c, dass die Bauelemente (nicht in Fig. 2 dargestellt) der anderen Komponente 102c überlastet werden und ausfallen. In anderen Worten kann es durch das Anregen einer Resonanzfrequenz in einem Zwischenkreisfilter zu einer Amplitudenüberhöhung der Schwingung kommen, insbesondere zu einer Spannungsüberhöhung, die an einzelnen Bauelementen der anderen Komponente 102c zu einer Überlastung führt, die dann dadurch ausfallen können. Diese Spannungserhöhung wird in den Figuren Fig.4, Fig. 5a und Fig.5b beschrieben. Die Komponenten 102a, 102b, 102c, 102d sind über die Zwischenkreisfilter 207a, 207b, 207c, 207d an den positiven Verbindungskontakten V2a, V2b, V2c, V2d mit der positiven Leitung 103 des Zwischenkreises 100 verbunden und über die negativen Verbindungskontakte Na, Nb, Nc, Nd mit der negativen Leitung 104 des Zwischenkreises 100 verbunden.Exciting the filter resonance frequency in the intermediate circuit filter of the other component 102c can lead to such high losses in the chokes, coils and/or capacitors involved in the intermediate circuit filter of the other component 102c, for example in the components of the vehicle electrical system converter 102c, that the components (not in Fig. 2 shown) of the other component 102c can be overloaded and fail. In other words, exciting a resonant frequency in a DC link filter can result in a An increase in the amplitude of the vibration occurs, in particular an increase in voltage, which leads to an overload on individual components of the other component 102c, which can then fail as a result. This increase in tension is reflected in the figures Fig.4 , Fig. 5a and Fig.5b described. The components 102a, 102b, 102c, 102d are connected to the positive line 103 of the intermediate circuit 100 via the intermediate circuit filters 207a, 207b, 207c, 207d at the positive connection contacts V2a, V2b, V2c, V2d and via the negative connection contacts Na, Nb, Nc , Nd connected to the negative line 104 of the intermediate circuit 100.

Fig. 3 zeigt ein Ersatzschaltbild für eine Entstörvorrichtung 300, welche an einen Zwischenkreis und ein Zwischenkreisfilter einer Komponente angeschlossen ist, gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Die gesamte Schaltung 301 der Fig. 3 ist ein Simulationsdiagramm, welches im Wesentlichen den Einfluss der Störung 206a auf eine gestörte Komponente 102c samt Zwischenkreisfilter 207c simuliert. Da sich die einzelnen Störungen in den Frequenzen unterscheiden, auf die das jeweilige Zwischenkreisfilter 207c mit Resonanz reagiert, ist es zulässig, jede Störung durch eine Störquelle B1a, 206a unabhängig von den anderen Störungen zu betrachten. Sämtliche für die Simulation der Störung untergeordnete Elemente, wie die Zusammenschaltung des Zwischenkreises 100 mit den Zwischenkreisfiltern 207b, 207c, 207d, die an der Störung nicht direkt beteiligt sind, werden in dem Zwischenkreis 100' und insbesondere in den Leitungen 103' zusammengefasst. Die Leiter 103c, 104c sind mit den zugehörigen Leitern 103, 104 des Zwischenkreises 100 verbunden. Fig. 3 shows an equivalent circuit diagram for an interference suppression device 300, which is connected to an intermediate circuit and an intermediate circuit filter of a component, according to an exemplary embodiment of the present invention. The entire circuit 301 of Fig. 3 is a simulation diagram which essentially simulates the influence of the fault 206a on a faulty component 102c including the intermediate circuit filter 207c. Since the individual disturbances differ in the frequencies to which the respective intermediate circuit filter 207c reacts with resonance, it is permissible to consider each disturbance caused by a disturbance source B1a, 206a independently of the other disturbances. All elements that are subordinate to the simulation of the disturbance, such as the interconnection of the intermediate circuit 100 with the intermediate circuit filters 207b, 207c, 207d, which are not directly involved in the disturbance, are combined in the intermediate circuit 100 'and in particular in the lines 103'. The conductors 103c, 104c are connected to the associated conductors 103, 104 of the intermediate circuit 100.

Der Einsatz der Entstörvorrichtung 300 stellt eine Maßnahme dar, welche genutzt werden kann, um die Amplitude einer resultierenden Störschwingung V(VCc) oder eine resultierende Spannungsamplitude V(VCc) an dem Zwischenfrequenzfilter Ausgang VCc zu reduzieren, die durch eine Eingangs-Störschwingung VAC, V(V2c) mit einer bestimmten Frequenz an dem Zwischenkreisfilter Eingang V2c angeregt wird. Die resultierende Störschwingung V(VCc), die am Zwischenfrequenzfilter Ausgang VCc erzeugt wird, mag zur Vereinfachung auch als resultierende Störamplitude V(VCc) bezeichnet werden. Die Komponente, die von der Entstörvorrichtung 300 oder dem Entstörfilter 300 geschützt werden soll, ist in Fig. 3 nicht dargestellt. Bei dieser Komponente könnte es sich aber um den Bordnetzwandler 102c handeln, auf den bereits bei der Beschreibung der Fig. 2 beispielhaft Bezug genommen wurde. Die zu schützende Komponente 102c (nicht in Fig. 2 dargestellt), beispielsweise der Bordnetzwandler 102c, wäre an dem Anschluss VCc mit dem ersten Leiter 103c und am Anschluss Mc mit dem zweiten Leiter 104c verbunden. Die Entstörvorrichtung 300 ist so dimensioniert, dass sie die resultierende Amplitude einer Spannung V(VCc) reduzieren kann, welche von einer Störung erzeugt wird, die von einer Störspannung aus dem Zwischenkreis 100' über das im Wesentlichen in Resonanz schwingende Zwischenkreisfilter 207c an dem Anschluss VCc angeregt wird und so die Spannung an dem Anschluss VCc, an dem eine zu schützende Komponente 102c angeschlossen sein kann, unter einem vorgebbaren Maximalwert hält. Die Entstörvorrichtung begrenzt eine resultierende Spannungsamplitude an einem Komponentenanschluss VCc, Mc auf einen für die Komponente 102c unschädlichen oder akzeptablen Wert und hält auch die damit einhergehende Verlustleistung sehr klein. Dieser Maximalwert kann beispielsweise von einem OEM für einen bestimmten Frequenzbereich vorgegeben werden.The use of the interference suppression device 300 represents a measure which can be used to reduce the amplitude of a resulting interference oscillation V(VCc) or a resulting voltage amplitude V(VCc) at the intermediate frequency filter output VCc, which is caused by an input interference oscillation V AC , V(V2c) is excited at a certain frequency at the intermediate circuit filter input V2c. The resulting interference oscillation V(VCc), which is generated at the intermediate frequency filter output VCc, may also be referred to as the resulting interference amplitude V(VCc) for simplicity. The component to be protected by the interference suppression device 300 or the interference filter 300 is in Fig. 3 not shown. However, this component could be the on-board power converter 102c, which was already mentioned in the description Fig. 2 was referred to as an example. The component to be protected 102c (not in Fig. 2 shown), for example the Vehicle electrical system converter 102c would be connected to the first conductor 103c at the connection VCc and to the second conductor 104c at the connection Mc. The interference suppression device 300 is dimensioned so that it can reduce the resulting amplitude of a voltage V(VCc), which is generated by a disturbance caused by an interference voltage from the intermediate circuit 100 'via the substantially resonant intermediate circuit filter 207c at the connection VCc is excited and thus keeps the voltage at the connection VCc, to which a component 102c to be protected can be connected, below a predeterminable maximum value. The interference suppression device limits a resulting voltage amplitude at a component connection VCc, Mc to a value that is harmless or acceptable for the component 102c and also keeps the associated power loss very small. This maximum value can, for example, be specified by an OEM for a specific frequency range.

Ein Zwischenkreis-LC-Filter 207c, welches die Zwischenkreisfilterspule 203c, 204c, L2 und die Zwischenkreisfilterkondensator 205, C aufweist, ist an einem Anschluss V2c, Nc an einen Zwischenkreis 100' angeschlossen. Der Zwischenkreis 100' wird von der Versorgungsbatterie 101 oder Gleichstromquelle 101 mit der Zwischenkreisgleichspannung VB=Vbatt-Ri*I mit einer Gleichspannung von 900V versorgt, abzüglich der Spannung an Ri, die von einem durch Ri fließenden Strom I verursacht wird. Die Batterie 101 weist eine Spannungsquelle 101' mit einer konstanten Spannung Vbatt von 900V und dem Innenwiderstand Ri, 201 auf, der beispielsweise 100mΩ betragen kann. Über diese Gleichspannung VB können sich periodische oder alternierende Störspannungen VAC überlagern. Diese Störspannungen können von geschalteten Komponenten verursacht werden, die bei ihren Schaltvorgängen periodische Störsignale anregen können. Zwar weisen die geschalteten Komponenten Filter auf, die die die periodisch angeregten Störungen unterdrücken sollen. Jedoch mag es vorkommen, dass die Filter nicht alle Störungen vollständig eliminieren können. Die stärksten Störungen mögen von den Komponenten hervorgerufen werden, die die größte Leistung in einem Zwischenkreis 100' schalten. Eine Störung, ein Störsignal oder eine Störspannung mag sich der vorhandenen Gleichspannung VB überlagern. Die Spannung, die somit auf dem Zwischenkreis 100' auftritt ist eine Gleichspannung VB = 900V, der eine periodische Störspannung von beispielsweise V AC = 20 V sin ( 2 πft )

Figure imgb0002
überlagert ist, wobei f die Taktfrequenz der "Anregungsquelle" ist. Die größte "Anregungsquelle" ist meist der Umrichter 102a, von dem in Fig. 3 die von ihm verursachte Störung als Spannungsquelle B1, 206a modelliert ist.An intermediate circuit LC filter 207c, which has the intermediate circuit filter coil 203c, 204c, L2 and the intermediate circuit filter capacitor 205, C, is connected to an intermediate circuit 100' at a connection V2c, Nc. The intermediate circuit 100' is supplied with a direct voltage of 900V by the supply battery 101 or direct current source 101 with the intermediate circuit direct voltage VB=Vbatt-Ri*I, minus the voltage at Ri, which is caused by a current I flowing through Ri. The battery 101 has a voltage source 101 'with a constant voltage Vbatt of 900V and the internal resistance Ri, 201, which can be, for example, 100mΩ. Periodic or alternating interference voltages V AC can be superimposed on this direct voltage VB. These interference voltages can be caused by switched components that can excite periodic interference signals during their switching processes. The switched components do have filters that are intended to suppress the periodically excited interference. However, it may happen that the filters cannot completely eliminate all interference. The strongest disturbances may be caused by the components that switch the greatest power in an intermediate circuit 100'. A disturbance, an interference signal or an interference voltage may be superimposed on the existing DC voltage VB. The voltage that thus occurs on the intermediate circuit 100 'is a direct voltage VB = 900V, which has a periodic interference voltage of, for example v AC = 20 v sin ( 2 πft )
Figure imgb0002
is superimposed, where f is the clock frequency of the “excitation source”. The biggest “source of stimulation” is usually the Inverter 102a, from which in Fig. 3 the disturbance caused by it is modeled as a voltage source B1, 206a.

Für das vereinfachte Schema in Fig.3 wird nun angenommen, dass die beiden Zuleitungen 103a, 104a, 103b, 104b, 103c, 104c, 103d, 104d aller Komponenten "sternförmig" zur Batterie 101 hinführen und dort alle in je einem Anschlusspunkt verbunden sind. Die Zuleitungsinduktivitäten 203, 204 sind in Fig.3 nicht dargestellt.For the simplified scheme in Fig.3 It is now assumed that the two supply lines 103a, 104a, 103b, 104b, 103c, 104c, 103d, 104d of all components lead to the battery 101 in a "star shape" and are all connected there at one connection point. The lead inductances 203, 204 are in Fig.3 not shown.

Die Spule L0 ist die die Zusammenfassung der Induktivitäten 203a, 204a inklusive Zuleitungen 103a, 104a zum Umrichter 102a, und L1 ist die Zusammenfassung der Induktivitäten 203c, 204c und Zuleitungen 103c, 104c zu dem Zwischenkreisfilter 207c.The coil L0 is the combination of the inductors 203a, 204a including leads 103a, 104a to the converter 102a, and L1 is the summary of the inductors 203c, 204c and leads 103c, 104c to the intermediate circuit filter 207c.

Die Entstörvorrichtung 300 für den Gleichstromkreis 100' oder Zwischenkreis 100', welcher zwei Leiter 103c, 104c aufweist, umfasst einen ersten Anschluss VCc, zum Verbinden der Entstörvorrichtung mit dem ersten Leiter 103' des Gleichstromkreises 100', insbesondere mit einem ersten Leiter 103c des Zwischenkreisfilters 207c der zu schützenden Komponente 102c. Ferner umfasst die Entstörvorrichtung 300 einen zweiten Anschluss Mc, zum Verbinden der Entstörvorrichtung 300 mit einem zweiten Leiter 104' des Gleichstromkreises 100', insbesondere mit einem zweiten Leiter 104c des Zwischenkreisfilters 207c der zu schützenden Komponente 102c. Das Entstörfilter 300 oder die Entstörvorrichtung 300 ist parallel zu der Zwischenkreisfilterkondensator 205c und in Reihe zu der Zwischenkreisfilterspule L2, 203c, 204c geschaltet. Diese Zwischenkreisfilterspule L2, 203c, 204c ist in dem Zwischenkreisfilter 207c als diskretes Bauelement ausgeführt, so dass diese Spule L2, 203c, 204c in dem Zwischenkreisfilter sehr genau lokalisiert werden kann.The interference suppression device 300 for the direct current circuit 100' or intermediate circuit 100', which has two conductors 103c, 104c, comprises a first connection VCc, for connecting the interference suppression device to the first conductor 103' of the direct current circuit 100', in particular to a first conductor 103c of the intermediate circuit filter 207c of the component 102c to be protected. Furthermore, the interference suppression device 300 comprises a second connection Mc, for connecting the interference suppression device 300 to a second conductor 104 'of the direct current circuit 100', in particular to a second conductor 104c of the intermediate circuit filter 207c of the component 102c to be protected. The interference filter 300 or the interference suppression device 300 is connected in parallel to the intermediate circuit filter capacitor 205c and in series to the intermediate circuit filter coil L2, 203c, 204c. This intermediate circuit filter coil L2, 203c, 204c is designed as a discrete component in the intermediate circuit filter 207c, so that this coil L2, 203c, 204c can be localized very precisely in the intermediate circuit filter.

Die Anschlüsse VCc, Mc des Entstörfilters können Anschlussleitungen aufweisen. An den Anschlüssen VCc, Mc angeschlossen weist die Entstörvorrichtung 300 einen Sensor 300' auf, der eingerichtet ist, eine Störung zu vermindern, die die Elemente der Komponente 102c gefährdet. Die Komponente 102c ist ebenfalls parallel zu der Entstörvorrichtung 300 an den Anschlüssen VCc, Mc angeschlossen. Für dieses Entgegenwirken oder Kompensieren ist der Sensor 300` dazu eingerichtet, ein Übersteigen eines vorgebbaren Grenzwertes einer überlagerten Wechselspannung VAC in dem ersten Leiter 103', 103c des Gleichstromkreises 100' und insbesondere in dem Zwischenkreisfilter 207c zu erkennen. Der Sensor 300' ist ferner berührungslos oder galvanisch getrennt mit dem Gleichstromkreis 100' oder Zwischenkreis 100' und insbesondere mit dem Zwischenkreisfilter 207c des Zwischenkreises 100' koppelbar. Durch das Aufbringen einer Zuleitung 103c, 104c auf einen Ringkern wird die Spule L2 des Zwischenkreisfilters gebildet, um eine effektive Kopplung mit dem Sensor 300' zu ermöglichen. Der Sensor 300' ist dazu eingerichtet, durch Einprägen eines Stromes in den ersten Anschluss VCc die resultierende Störwechselspannung im ersten Leiter des Gleichstromkreises im Wesentlichen auf den vorgebbaren Grenzwert zu verringern. In anderen Worten wird die resultierende Spannung V(VCc) zwischen den Anschlüssen VCc und Mc unter einen Maximalwert geregelt, indem ein Strom generiert wird, der in den ersten Sensoranschluss VCc eingeprägt werden kann, um im Falle einer Amplitudenüberhöhung der Spannung V(VCc) dieser Amplitudenerhöhung entgegen zu wirken.The connections VCc, Mc of the interference filter can have connecting cables. Connected to the connections VCc, Mc, the interference suppression device 300 has a sensor 300 ', which is set up to reduce interference that endangers the elements of the component 102c. The component 102c is also connected in parallel to the interference suppression device 300 at the connections VCc, Mc. To counteract or compensate for this, the sensor 300' is set up to detect when a predeterminable limit value of a superimposed alternating voltage V AC is exceeded in the first conductor 103', 103c of the direct current circuit 100' and in particular in the intermediate circuit filter 207c. The sensor 300' is also contactless or galvanically isolated from the direct current circuit 100' or Intermediate circuit 100 'and in particular with the intermediate circuit filter 207c of the intermediate circuit 100' can be coupled. By applying a supply line 103c, 104c to a toroidal core, the coil L2 of the intermediate circuit filter is formed in order to enable effective coupling to the sensor 300'. The sensor 300' is set up to essentially reduce the resulting alternating interference voltage in the first conductor of the direct current circuit to the predeterminable limit value by impressing a current into the first connection VCc. In other words, the resulting voltage V(VCc) between the connections VCc and Mc is regulated below a maximum value by generating a current that can be impressed into the first sensor connection VCc in the event of an increase in the amplitude of the voltage V(VCc). To counteract an increase in amplitude.

Der Sensor 300' weist eine oder mehrere zusätzliche Wicklungen L3, Drosseln L3 oder Spulen L3 auf, die mit der Filterdrossel L2, 203c, 204c des Zwischenkreisfilters 207c magnetisch gekoppelt werden, beispielsweise durch Wickeln auf einen gemeinsamen Ferritkern oder Ringkern. Die Spulen L2, 203c, 204c und L3 bilden dann einen Transformator. Ist keine Filterdrossel L2 in dem Zwischenkreis 100' oder in dem Zwischenkreisfilter 207c vorhanden, so kann diese nachträglich in die Zuleitung 103`, 104', 103c, 104c eingebaut werden, beispielsweise indem zumindest eine der Zuleitungen 103c, 104c durch einen Ringkern geführt wird.The sensor 300' has one or more additional windings L3, chokes L3 or coils L3, which are magnetically coupled to the filter choke L2, 203c, 204c of the intermediate circuit filter 207c, for example by winding on a common ferrite core or toroidal core. The coils L2, 203c, 204c and L3 then form a transformer. If there is no filter choke L2 in the intermediate circuit 100' or in the intermediate circuit filter 207c, it can be subsequently installed in the supply line 103', 104', 103c, 104c, for example by routing at least one of the supply lines 103c, 104c through a toroidal core.

Zusätzlich zu der magnetischen oder berührungslosen Kopplung der Spulen L2, 203c, 204c ist ein Anschluss der Filterspule L2, 203c, 204c in dem Anschluss VCc mit einem Anschluss der Sensorspule L3 gekoppelt. In dem Anschluss VCc sind die Anschlüsse der Filterspule L2 und der Sensorspule L3 auch mit einem Anschluss des Filterkondensators C, 205c verbunden. Der andere Anschluss des Filterkondensators C, 205c ist mit dem zweiten Sensoranschluss Mc verbunden. An dem zweiten Anschluss der Sensorspule L3, 302 ist zumindest ein Anschluss eines Sensorkondensators C3, 303 in Reihe mit der Sensorspule L3, 302 geschaltet. Die Sensorspule L3, 302 und der Sensorkondensator C3, 303 bilden somit einen Reihenschwingkreis. Ein zweiter Anschluss des Sensorkondensators C3, 302 ist mit der Anode einer Rückkoppeldiode D1, 304 verbunden. Die Kathode der Rückkoppeldiode D1, 304 ist mit dem Anschluss VCc verbunden. Über die Rückkoppeldiode D1, 304 kann ein mittels der Sensorspule L3, 302 aus dem Zwischenkreis 100' und insbesondere aus dem Zwischenkreisfilter 207c aufgenommener und verstärkter Strom in den Anschluss VCc eingeprägt werden. Die Anode der Rückkoppeldiode D1, 304 ist auch mit der Kathode einer Verbindungsdiode D2, 305 verbunden. Die Anode der Verbindungsdiode ist mit dem zweiten Anschluss Mc verbunden. Folglich sind der erste Anschluss VCc und der zweite Anschluss Mc über die Rückkoppeldiode D1, 304 und die Verbindungsdiode D2, 305 miteinander verbunden. In einem eingebauten Zustand, in dem die Entstörvorrichtung 300 parallel zu dem Zwischenkreisfilterkondensator C, 305 geschaltet ist, ist die Verbindungsdiode D2, 305 im Wesentlichen parallel zu dem Zwischenkreisfilterkondensator C, 305 geschaltet. Der zweite Anschluss ist mit dem Anschluss Nc und mit Bezugspotenzial oder Masse verbunden, wenn die Entstörvorrichtung mit dem Zwischenkreisfilter verbunden ist.In addition to the magnetic or non-contact coupling of the coils L2, 203c, 204c, a connection of the filter coil L2, 203c, 204c in the connection VCc is coupled to a connection of the sensor coil L3. In the connection VCc, the connections of the filter coil L2 and the sensor coil L3 are also connected to a connection of the filter capacitor C, 205c. The other terminal of the filter capacitor C, 205c is connected to the second sensor terminal Mc. At the second connection of the sensor coil L3, 302, at least one connection of a sensor capacitor C3, 303 is connected in series with the sensor coil L3, 302. The sensor coil L3, 302 and the sensor capacitor C3, 303 thus form a series resonant circuit. A second terminal of the sensor capacitor C3, 302 is connected to the anode of a feedback diode D1, 304. The cathode of the feedback diode D1, 304 is connected to the connection VCc. A current picked up and amplified by the sensor coil L3, 302 from the intermediate circuit 100' and in particular from the intermediate circuit filter 207c can be impressed into the connection VCc via the feedback diode D1, 304. The anode of the feedback diode D1, 304 is also one with the cathode Connection diode D2, 305 connected. The anode of the connection diode is connected to the second connection Mc. Consequently, the first terminal VCc and the second terminal Mc are connected to each other via the feedback diode D1, 304 and the connection diode D2, 305. In an installed state in which the interference suppression device 300 is connected in parallel to the intermediate circuit filter capacitor C, 305, the connection diode D2, 305 is essentially connected in parallel to the intermediate circuit filter capacitor C, 305. The second connection is connected to the connection Nc and to reference potential or ground if the interference suppression device is connected to the intermediate circuit filter.

Der Sensorkondensator C3, 303 kann auch aus einer Vielzahl von im Wesentlichen parallelgeschalteter Kondensatoren C3, C4 realisiert sein. Die Dioden D1, 304, D2, 305 können sowohl als eine einzelne als auch als eine Vielzahl von Dioden D1, D2, D3, D4 realisiert sein.The sensor capacitor C3, 303 can also be realized from a large number of capacitors C3, C4 connected essentially in parallel. The diodes D1, 304, D2, 305 can be implemented as a single diode or as a plurality of diodes D1, D2, D3, D4.

In dem in Fig. 3 dargestellten Beispiel bilden die Wicklungen der Spulen L2, 203c, 204c und L3, 302 einen Transformator mit einem bestimmten Koppelfaktor k, beispielsweise k=0.9. Eine äußere periodische Störung VAC, die von der Störquelle B1a, 206a hervorgerufen wird, bewirkt eine resonante Überspannung über L2 und wegen der Kopplung folglich auch über L3. Ist die bewirkte Störspannung genügend groß und die Spannungsübersetzung, die sich aus dem Verhältnis der Anzahl der Wicklungen der gekoppelten Spulen L3, 302, L2, 203c, 204c des von ihnen gebildeten Transformators ergibt, auch groß genug, so beginnt ein periodischer Strom über den Sensorkondensator C3, 303 und die Sensordioden 304, D1, 305, D2 zu fließen. Dieser in dem Sensor 300' induzierte Strom, welcher zu der überlagerten Störung VAC in dem Gleichstromkreis 100' und insbesondere zu der Störung VAC in dem Zwischenkreisfilter 207c proportional ist, wird in den Anschluss VCc eingeprägt und begrenzt die durch die Resonanz entstehende resonante Überspannung VAC indem durch den eingeprägten Strom die Energie, die durch die transformatorische Kopplung in dem Sensor erzeugt wird, in den Zwischenkreis 100' und insbesondre in das Zwischenkreisfilter 207c abgeleitet wird.In the in Fig. 3 In the example shown, the windings of the coils L2, 203c, 204c and L3, 302 form a transformer with a specific coupling factor k, for example k=0.9. An external periodic disturbance V AC , which is caused by the disturbance source B1a, 206a, causes a resonant overvoltage across L2 and, because of the coupling, therefore also across L3. If the interference voltage caused is sufficiently large and the voltage ratio, which results from the ratio of the number of windings of the coupled coils L3, 302, L2, 203c, 204c of the transformer they form, is also large enough, a periodic current begins across the sensor capacitor C3, 303 and the sensor diodes 304, D1, 305, D2 to flow. This current induced in the sensor 300', which is proportional to the superimposed disturbance V AC in the direct current circuit 100' and in particular to the disturbance V AC in the intermediate circuit filter 207c, is impressed into the connection VCc and limits the resonant overvoltage resulting from the resonance V AC in that the energy generated by the transformer coupling in the sensor is diverted into the intermediate circuit 100 'and in particular into the intermediate circuit filter 207c through the impressed current.

In anderen Worten, weist beispielsweise die Spannung V(V2c), die von dem Zwischenkreis durch eine Überlagerung der periodischen Störung VAC von der Störquelle B1a, 206a und der Gleichspannung VB herrührt den Verlauf V V 2 c = VB + V AC = 90 0 V + 20 V sin ( 2 πft )

Figure imgb0003
auf. Hierbei schwingt die Störung VAC um den Arbeitspunkt 900V. Diese Störung wirkt in einer Richtung vom Zwischenkreis 100' in Richtung Komponente 102c, die an den Anschlüssen VCc und Mc angeschlossen ist, auf das Zwischenkreisfilter 207c, obwohl dieses Filter 207c ursprünglich zur Dämpfung von Störungen vorgesehen ist, die sich von der Komponente 102c auf den Zwischenkreis 100' ausbreiten. Im Bereich der Resonanzfrequenz reagiert die resultierende Spannung an dem Anschlusspaar VCc, Mc mit einer Erhöhung der Amplitude, die zu einem erhöhten Strom in der Zwischenkreisfilterspule L2, 203c, 204c führt. Der Transformator überträgt lediglich den periodischen Anteil der überhöhten Spannung, die an VCc anliegt. Das Windungsverhältnis beträgt beispielsweise 1:20. Folglich wird die überhöhte Spannung mit einer entsprechenden Spannungsübersetzung in den Sensor 300' übertragen. Da die Spulen L2, 203c, 204c und L3, 302 jedoch den gemeinsamen Anschluss VCc haben, pendelt die in dem Sensor induzierte Spannung nicht um den Arbeitspunkt des Zwischenkreis 100, 100' von 900V sondern lediglich um das Mittenpotential zwischen 0 und +900V, also 450V. Solange die induzierte Spannung diese 450V nicht überschreitet, werden die Dioden 304,305 nicht leitend. Wird die induzierte Spannung über L3 grösser als 450V - d.h., die Spannung über L2 ist grösser als 450V/20 = 22.5V -, dann beginnen die Dioden 304, 305 zu leiten und führen einen Teil der in der Schwingung gespeicherten Energie in den Zwischenkreis 100' ab. Das Windungsverhältnis wird so gewählt, dass auch bei der kleinsten auftretenden Zwischenkreisspannung nur das Überschwingen durch die Dioden begrenzt wird. Beim Auftreten der größten spezifizierten Störspannung VAC = Vripple soll die Begrenzung nicht wirksam werden, wenn der Filter-Schwingkreis 207c nicht angeregt wird.In other words, for example, the voltage V(V2c), which comes from the intermediate circuit through a superposition of the periodic interference V AC from the interference source B1a, 206a and the DC voltage VB, has the curve v v 2 c = VB + v AC = 90 0 v + 20 v sin ( 2 πft )
Figure imgb0003
on. Here the disturbance V AC oscillates around the operating point 900V. This disorder acts in a direction from the intermediate circuit 100' towards component 102c, which is connected to the connections VCc and Mc, to the intermediate circuit filter 207c, although this filter 207c is originally intended to attenuate interference that propagates from the component 102c to the intermediate circuit 100' . In the range of the resonance frequency, the resulting voltage at the connection pair VCc, Mc reacts with an increase in amplitude, which leads to an increased current in the intermediate circuit filter coil L2, 203c, 204c. The transformer only transfers the periodic portion of the excess voltage present at VCc. The turns ratio is, for example, 1:20. Consequently, the excess voltage is transmitted to the sensor 300' with a corresponding voltage ratio. However, since the coils L2, 203c, 204c and L3, 302 have the common connection VCc, the voltage induced in the sensor does not fluctuate around the operating point of the intermediate circuit 100, 100' of 900V but only around the center potential between 0 and +900V, i.e 450V. As long as the induced voltage does not exceed 450V, the diodes 304,305 do not conduct. If the induced voltage across L3 is greater than 450V - that is, the voltage across L2 is greater than 450V/20 = 22.5V - then the diodes 304, 305 begin to conduct and lead part of the energy stored in the oscillation into the intermediate circuit 100 ' away. The turns ratio is chosen so that even with the smallest intermediate circuit voltage that occurs, only the overshoot is limited by the diodes. When the largest specified interference voltage V AC = V ripple occurs, the limitation should not take effect if the filter resonant circuit 207c is not excited.

Bei einer genauen Betrachtung ergibt sich folgende beispielhafte brauchbare Dimensionierung. In dem Beispiel sei Vripple = 16Vpk (Peak Spannung) und VDCmin = 450VDC (Spannung des Gleichstromanteils) sowie eine Windungsanzahl n3 der Spule L3 und n2 der Spule L2 angenommen: n 3 n 2 = L 3 L 2 V DC min 2 V ripple = 450 V 2 16 V pk 20

Figure imgb0004
A closer look reveals the following exemplary usable dimensions. In the example, V ripple = 16Vpk (peak voltage) and V DCmin = 450VDC (voltage of the direct current component) as well as a number of turns n 3 of the coil L3 and n 2 of the coil L2 are assumed: n 3 n 2 = L 3 L 2 v DC min 2 v ripple = 450 v 2 16 v pk 20
Figure imgb0004

Es ergibt sich ein Windungsverhältnis von 1:20. L2 und C sind durch die Dimensionierung der Komponente und des zugehörigen Zwischenkreisfilters 207c bereits vorbestimmt. Eine Kopplung k=0.9 mag zu einem guten Ergebnis führen, und C3 wird so gewählt, dass sich über alle Arbeitspunkte ein möglichst kleiner Drosselstrom durch L2, 203c, 204c ergibt. Ein gutes Ergebnis ist beispielsweise zu erzielen, wenn C3 so gewählt wird, dass gilt: C 3 L 3 1,6 C L 2 d .h . C 3 C 1,6 n 2 n 3 2

Figure imgb0005
This results in a turns ratio of 1:20. L2 and C are already predetermined by the dimensioning of the component and the associated intermediate circuit filter 207c. A coupling k=0.9 may lead to a good result, and C3 is chosen so that the smallest possible inductor current through L2, 203c, 204c results across all operating points. A good result can be achieved, for example, if C3 is chosen so that: C 3 L 3 1.6 C L 2 d .H . C 3 C 1.6 n 2 n 3 2
Figure imgb0005

Die Tabelle 1 gibt die Dimensionierung der Bauelemente der Schaltung aus Fig. 3 an. Hierin ist C3 entsprechend der oben angegebenen Dimensionierungsvorschrift bestimmt. Tabelle 1 Ri 100mΩ L0 2,5µH Vbatt 900V L1 2,5µH C 20µF L2 26,35µH C3 80nF L3 10,54mH Table 1 shows the dimensioning of the components of the circuit Fig. 3 at. Herein C3 is determined according to the dimensioning rule given above. Table 1 Ri 100mΩ L0 2.5µH Vbatt 900V L1 2.5µH C 20µF L2 26.35µH C3 80nF L3 10.54mH

Fig. 4 zeigt eine Selektion von vier Frequenzdiagrammen 400 für ein Störsignal mit einer geringen Störamplitude gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Für die Simulation wurde die Schaltung nach Fig. 3, die ein Ersatzschaltbild für einen realen Zwischenkreis in einem Elektrofahrzeug darstellt, mit einer konstanten Störamplitude von 2V und variabler Frequenz beaufschlagt. In dem Diagramm 400 ist an der Abszisse 401 die Frequenz von 0ms bis 200ms bzw. 0 bis 20kHz aufgetragen. Die Abszisse kann in Millisekunden (ms) geeicht sein, wobei die Werte mittels des Umrechnungsfaktors 1kHz/10ms in die zugehörige Frequenz gewandelt werden können, so dass auf der Abszisse ein Frequenzbereich von 0 Hz bis 20kHz dargestellt ist. Die Spannungsordinate 402 gibt Spannungswerte im Bereich von 855V bis 945V an. Die Stromordinate 403 gibt Stromwerte von -30A bis +30A an. Fig. 4 shows a selection of four frequency diagrams 400 for an interference signal with a low interference amplitude according to an exemplary embodiment of the present invention. The circuit was designed for the simulation Fig. 3 , which represents an equivalent circuit diagram for a real intermediate circuit in an electric vehicle, is subjected to a constant interference amplitude of 2V and a variable frequency. In the diagram 400, the frequency from 0ms to 200ms or 0 to 20kHz is plotted on the abscissa 401. The abscissa can be calibrated in milliseconds (ms), whereby the values can be converted into the associated frequency using the conversion factor 1kHz/10ms, so that a frequency range from 0 Hz to 20kHz is shown on the abscissa. The voltage coordinate 402 indicates voltage values in the range from 855V to 945V. The current coordinate 403 indicates current values from -30A to +30A.

Um die Auswirkungen mit variabler Frequenz darstellen zu können, wird an dem Anschluss V2c die sweep Funktion V V 2 c = 90 0 V + 2 V sin ( 2 π 50000 1 s 2 t 2 )

Figure imgb0006
angelegt. Der Verlauf der Störspannung V(V2c), 410 ist in Fig. 4 eingezeichnet. Die Störamplitude der Störspannung beträgt VAC = 2V insbesondere Vripple = 2Vpk. Der Spannungsverlauf V(VCc), 411 am Filterausgang an den Komponentenanschlüssen VCc, Mc über dem Zwischenkreiskondensator C, 205c zeigt, dass sich, obwohl sich im Bereich von 6,5 kHz eine Resonanz und insbesondere auch eine Strom- und Spannungsüberhöhung ausbildet, wegen der kleinen Anregung mit einer Störamplitude von 2V nur eine unschädliche Spannungsamplitude von 35V bleibt. Die Entstörvorrichtung kommt daher nicht zum Einsatz, da eine maximal zulässige Spannung an den Anschlüssen VCc, Mc nicht überschritten wird.In order to be able to display the effects with variable frequency, the sweep function is used at connection V2c v v 2 c = 90 0 v + 2 v sin ( 2 π 50000 1 s 2 t 2 )
Figure imgb0006
created. The course of the interference voltage V(V2c), 410 is in Fig. 4 drawn. The interference amplitude of the interference voltage is V AC = 2V, in particular V ripple = 2Vpk. The voltage curve V(VCc), 411 at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although a resonance and in particular an increase in current and voltage develops in the range of 6.5 kHz, due to the Small excitation with an interference amplitude of 2V is only harmless Voltage amplitude of 35V remains. The interference suppression device is therefore not used because a maximum permissible voltage at the connections VCc, Mc is not exceeded.

Ebenso bleibt der Strom I(L2), 412 durch L2 unter 24A. Der Strom durch L3 I(L3), 413 bleibt im Wesentlichen konstant, wie die Kurve 413 zeigt, die mit einem Faktor von 10 bewertet ist.Likewise, the current I(L2), 412 through L2 remains below 24A. The current through L3 I(L3), 413 remains essentially constant, as shown by curve 413, which is valued by a factor of 10.

Fig. 5a zeigt eine Selektion von Frequenzdiagrammen 400' für ein Störsignal mit einer großen Störamplitude bei 900VDC Zwischenkreisspannung gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Es wird an dem Anschluss V2c die sweep Funktion V V 2 c = 90 0 V + 20 V sin ( 2 π 50000 1 s 2 t 2 )

Figure imgb0007
angelegt, also verglichen mit der Störspannung aus Fig. 4 mit einer zehnfachen Störamplitude. Der Verlauf der Störspannung V(V2c), 410' ist in Fig. 5a eingezeichnet. Der Spannungsverlauf V(VCc), 411' am Filterausgang an den Komponentenanschlüssen VCc, Mc über dem Zwischenkreiskondensator C, 205c zeigt, dass sich, obwohl sich in einem breiten Frequenzbereich um wiederum 6,5 kHz eine Resonanz und insbesondere auch eine Strom- und Spannungsüberhöhung ausbildet, die wegen dem Eingreifen der Entstörvorrichtung 300 auf eine Spannungsamplitude von 45V, d.h. von 855V bis 945V begrenzt wird. Gegenüber Fig.4 wird durch die Wirkung der Entstörvorrichtung der Schwerpunkt der Resonanz zu einer etwas tieferen Frequenz verschoben. Wie bereits angeführt, lässt sich mit der oben angegebenen Dimensionierung für C3 ein gutes Ergebnis erreichen. Somit kann sichergestellt werden, dass eine an VCc angeschlossene Komponente nicht mit einer Spannungsamplitude von mehr als 45V belastet wird, wenn beispielsweise gefordert wird, dass über den Frequenzbereich von 0Hz bis 20kHz keine größeren Belastungen auftreten sollen oder, dass größere Belastungen vermieden werden. Fig. 5a shows a selection of frequency diagrams 400' for an interference signal with a large interference amplitude at 900VDC intermediate circuit voltage according to an exemplary embodiment of the present invention. The sweep function is used at connection V2c v v 2 c = 90 0 v + 20 v sin ( 2 π 50000 1 s 2 t 2 )
Figure imgb0007
applied, i.e. compared to the interference voltage Fig. 4 with a tenfold interference amplitude. The course of the interference voltage V(V2c), 410' is in Fig. 5a drawn. The voltage curve V(VCc), 411' at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although there is a resonance and in particular an increase in current and voltage in a wide frequency range around 6.5 kHz which is limited to a voltage amplitude of 45V, ie from 855V to 945V, due to the intervention of the interference suppression device 300. Opposite Fig.4 The center of gravity of the resonance is shifted to a slightly lower frequency due to the effect of the interference suppression device. As already stated, a good result can be achieved with the dimensioning for C3 given above. This makes it possible to ensure that a component connected to VCc is not loaded with a voltage amplitude of more than 45V if, for example, it is required that no larger loads should occur over the frequency range from 0Hz to 20kHz or that larger loads should be avoided.

Der Strom I(L2), 412` durch die Spule L2 bleibt über dem gesamten Frequenzbereich unter 30A. Der Verlauf der Stromkurve I(L3), 413` zeigt, dass in einem Bereich von 5,2kHz bis 8.6kHz ein hoher Strom durch L3 fließt und daher die Entstörvorrichtung aktiv wird. Ohne das Eingreifen der Entstörvorrichtung würde die Spannungsamplitude V(VCc), 411' in dem Frequenzbereich um 6.5 kHz eine Spannungsamplitude von 350V erreichen, wodurch eine an VCc angeschlossene Komponente zerstört werden könnte. In dem Beispiel nach Fig. 4 greift die Entstörvorrichtung wegen der geringen Anregungsspannung nicht ein. Durch die 10-fache Anregung gegenüber der der Fig.4 zugrundeliegenden Anregungsfunktion V V 2 c = 90 0 V + 2 V sin ( 2 π 50000 1 s 2 t 2 )

Figure imgb0008
ergäbe sich ohne das Vorhandensein der Entstörvorrichtung 300 auch die 10-fache Spannung, denn das System ohne Entstörvorrichtung verhält sich linear aufgrund der Tatsache, dass es nur lineare Bauteile aufweist.The current I(L2), 412` through coil L2 remains below 30A over the entire frequency range. The course of the current curve I(L3), 413` shows that in a range from 5.2kHz to 8.6kHz a high current flows through L3 and therefore the interference suppression device becomes active. Without the intervention of the interference suppression device, the voltage amplitude V(VCc), 411' would reach a voltage amplitude of 350V in the frequency range around 6.5 kHz, which could destroy a component connected to VCc. In the example below Fig. 4 The interference suppression device does not intervene due to the low excitation voltage. Due to the 10-fold stimulation compared to that of the Fig.4 underlying excitation function v v 2 c = 90 0 v + 2 v sin ( 2 π 50000 1 s 2 t 2 )
Figure imgb0008
Without the presence of the interference suppression device 300, the voltage would be 10 times higher, because the system without the interference suppression device behaves linearly due to the fact that it only has linear components.

Fig. 5b zeigt eine Selektion von Frequenzdiagrammen 400" für ein Störsignal mit einer großen Störamplitude bei 450V Zwischenkreisspannung gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Die Spannungsordinate 402" gibt Spannungswerte im Bereich von 405V bis 495V an. Die Stromordinate 403" gibt Stromwerte von -35A bis +35A an. Es wird an dem Anschluss V2c die sweep Funktion V V 2 c = 45 0 V + 20 V sin ( 2 π 50000 1 s 2 t 2 )

Figure imgb0009
angelegt, also verglichen mit der Störspannung aus Fig. 4 mit einer zehnfachen Störamplitude von 20V, jedoch bei einem geringeren Arbeitspunkt von 450VDC. Der Verlauf der Störspannung V(V2c), 410" ist in Fig. 5b eingezeichnet. Der Spannungsverlauf V(VCc), 411" am Filterausgang an den Komponentenanschlüssen VCc, Mc über dem Zwischenkreiskondensator C, 205c zeigt, dass sich, obwohl sich in einem breiten Frequenzbereich um wiederum 6,5 kHz eine Resonanz und insbesondere auch eine Strom- und Spannungsüberhöhung ausbildet, diese wegen dem Eingreifen der Entstörvorrichtung 300 auf eine Spannungsamplitude von 30V, d.h. von 420V bis 480V begrenzt wird. Gegenüber Fig.4 wird durch die Wirkung der Entstörvorrichtung der Schwerpunkt der Resonanz zu einer etwas tieferen Frequenz verschoben. Wie bereits angeführt, lässt sich mit der Dimensionierung C 3 C 1,6 n 2 n 3 2
Figure imgb0010
ein gutes Ergebnis erreichen. Somit kann sichergestellt werden, dass eine an VCc angeschlossene Komponente nicht mit einer Spannungsamplitude von mehr als 36V belastet wird, wenn beispielsweise gefordert ist, dass über den Frequenzbereich von 0Hz bis 20kHz keine größeren Belastungen auftreten sollen oder über diesen Bereich größere Belastungen vermieden werden sollen. Fig. 5b shows a selection of frequency diagrams 400" for an interference signal with a large interference amplitude at 450V intermediate circuit voltage according to an exemplary embodiment of the present invention. The voltage ordinate 402" indicates voltage values in the range from 405V to 495V. The current coordinate 403" indicates current values from -35A to +35A. The sweep function is used at connection V2c v v 2 c = 45 0 v + 20 v sin ( 2 π 50000 1 s 2 t 2 )
Figure imgb0009
applied, i.e. compared to the interference voltage Fig. 4 with a tenfold interference amplitude of 20V, but at a lower operating point of 450VDC. The course of the interference voltage V(V2c), 410" is in Fig. 5b drawn. The voltage curve V(VCc), 411" at the filter output at the component connections VCc, Mc across the intermediate circuit capacitor C, 205c shows that, although there is a resonance and in particular an increase in current and voltage in a wide frequency range around 6.5 kHz forms, this is limited to a voltage amplitude of 30V, ie from 420V to 480V, due to the intervention of the interference suppression device 300. Opposite Fig.4 The center of gravity of the resonance is shifted to a slightly lower frequency due to the effect of the interference suppression device. As already mentioned, the dimensioning can be done C 3 C 1.6 n 2 n 3 2
Figure imgb0010
achieve a good result. This makes it possible to ensure that a component connected to VCc is not loaded with a voltage amplitude of more than 36V if, for example, it is required that no major loads should occur over the frequency range from 0Hz to 20kHz or that greater loads should be avoided over this range.

Der Strom I(L2), 412" durch die Spule L2 bleibt über dem gesamten Frequenzbereich unter 35A und ist in einem schmalen Frequenzbereich etwas grösser als ein entsprechender Wert von Kurve 412' in Fig. 5a. Der Verlauf der Stromkurve I(L3), 413" zeigt, dass in einem Bereich von 4,5 kHz bis 11 kHz ein hoher Strom durch L3 fließt und daher die Entstörvorrichtung aktiv wird. Ohne das Eingreifen der Entstörvorrichtung würde die Spannungsamplitude V(VCc), 411" in dem Frequenzbereich um 6.5 kHz eine Spannungsamplitude von 350V erreichen, wodurch eine an VCc angeschlossene Komponente zerstört werden könnte. In dem Beispiel nach Fig. 4 greift die Entstörvorrichtung wegen der geringen Anregungsspannung nicht ein. Durch die 10-fache Anregung gegenüber der der Fig.4 zugrundeliegenden Anregungsfunktion V V 2 c = 90 0 V + 2 V sin ( 2 π 50000 1 s 2 t 2 )

Figure imgb0011
ergäbe sich ohne dem Vorhandensein der Entstörvorrichtung 300 auch die 10-fache Spannung, denn das System ohne Entstörvorrichtung verhält sich linear, da es nur lineare Bauteile aufweist.The current I(L2), 412" through the coil L2 remains below 35A over the entire frequency range and is slightly larger in a narrow frequency range than a corresponding value of curve 412' in Fig. 5a . The course of the current curve I(L3), 413" shows that in a range from 4.5 kHz to 11 kHz a high current flows through L3 and therefore the Suppression device becomes active. Without the intervention of the interference suppression device, the voltage amplitude V(VCc), 411" in the frequency range around 6.5 kHz would reach a voltage amplitude of 350V, which could destroy a component connected to VCc. In the example Fig. 4 The interference suppression device does not intervene due to the low excitation voltage. Due to the 10-fold stimulation compared to that of the Fig.4 underlying excitation function v v 2 c = 90 0 v + 2 v sin ( 2 π 50000 1 s 2 t 2 )
Figure imgb0011
Without the presence of the interference suppression device 300, the voltage would be 10 times higher, because the system without the interference suppression device behaves linearly since it only has linear components.

Fig. 6 zeigt eine weitere Ausgestaltung einer Entstörvorrichtung 300a gemäß einem exemplarischen Ausführungsbeispiel der vorliegenden Erfindung. Diese Ausgestaltung erlaubt die Verwendung von kostengünstigeren Bauelementen für den Sensor 300'a. Das Windungsverhältnis beträgt 1: 10 wodurch eine Spule L3 mit einer geringeren Induktivität verwendet werden kann, die günstiger hergestellt werden kann. Der Koppelfaktor beträgt jedoch wie in Fig. 3 k= 0,9. Der Kondensator C3, 303 ist durch ein Kondensatorpaar 303`, C3', C4 ersetzt und statt der Dioden D1, D2 werden vier Dioden D1', D2', D3, D4 verwendet, die in einer Serienschaltung angeordnet sind. Parallel zu jeder der Dioden ist ein Widerstand R1, R2, R3, R4 geschaltet. Fig. 6 shows a further embodiment of an interference suppression device 300a according to an exemplary embodiment of the present invention. This configuration allows the use of more cost-effective components for the sensor 300'a. The turns ratio is 1:10 which allows the use of a coil L3 with a lower inductance that can be manufactured more cheaply. However, the coupling factor is as in Fig. 3 k = 0.9. The capacitor C3, 303 is replaced by a pair of capacitors 303', C3', C4 and instead of the diodes D1, D2, four diodes D1', D2', D3, D4 are used, which are arranged in a series connection. A resistor R1, R2, R3, R4 is connected in parallel with each of the diodes.

Auch das Zwischenkreisfilter 207c` hat einen anderen Aufbau als das Zwischenkreisfilter 207c aus Fig. 3. Statt der Kapazität C kommt eine Serienschaltung der Kondensatoren C1, C2 zum Einsatz, um zwischen der Verbindung der Kondensatoren C1, C2 die Anode der Diode D2` und die Kathode der Diode D3 anschließen zu können.The intermediate circuit filter 207c` also has a different structure than the intermediate circuit filter 207c Fig. 3 . Instead of the capacitance C, a series connection of the capacitors C1, C2 is used in order to be able to connect the anode of the diode D2` and the cathode of the diode D3 between the connection of the capacitors C1, C2.

Die Widerstände R1, R2, R3, R4 sind optional, können jedoch eingesetzt werden, um die Konvergenz bei einer Simulation sicherzustellen. Obwohl sich der Aufbau der Entstörvorrichtung 300a in Fig. 6 von dem Aufbau der Entstörvorrichtung 300 aus Fig. 3 unterscheidet, ist die prinzipielle Funktionsweise der Entstörvorrichtungen 300, 300a im Wesentlichen gleich. Allerdings ist bei der Entstörvorrichtung 300a durch die Reihenschaltung von zwei Diodenhalbbrücken D1' D2' und D3, D4 nur die halbe Spannung an L3' gegenüber der Spannung an L3, 302 erforderlich, damit die Schaltung 300a eingreift. Entsprechend kann die Windungszahl von L3' der Entstörvorrichtung 300a gegenüber der Windungszahl von L3, 302, der Entstörvorrichtung 300 halbiert werden. Mit einer Kopplung k=0.9 lassen sich gute Ergebnisse erzielen, und die Kapazitäten der Kondensatoren C3` und C4 werden so gewählt, dass C3`=C4 gilt und dass sich über alle Arbeitspunkte ein möglichst kleiner Drosselstrom durch L2 ergibt. Die Kondensatoren C3` und C4 sind an einem gemeinsamen Anschluss sowohl miteinander als auch mit einem Anschluss der Spule L3' verbunden. Der andere Anschluss des Kondensators C3` ist mit einer Anode der Diode D1' und einer Kathode der Diode D2` verbunden. Die Dioden D1' und D2' bilden eine Diodenhalbbrücke. Der andere Anschluss des Kondensators C4 ist mit einer Anode der Diode D3 und einer Kathode der Diode D4 verbunden. Die Dioden D3 und D4 bilden eine weitere Diodenhalbbrücke. Ein gutes Ergebnis lässt sich erzielen, wenn C3`=C4 gewählt wird, wobei die Werte von C3' und C4 so gewählt werden, dass bei C1=C2 die folgende Bedingung erfüllt ist: C 3 C 1 1,8 n 2 n 3 2

Figure imgb0012
Resistors R1, R2, R3, R4 are optional but can be used to ensure convergence in a simulation. Although the structure of the interference suppression device 300a is in Fig. 6 from the structure of the interference suppression device 300 Fig. 3 differs, the basic functionality of the interference suppression devices 300, 300a is essentially the same. However, in the interference suppression device 300a, due to the series connection of two diode half-bridges D1', D2' and D3, D4, only half the voltage at L3' compared to the voltage at L3, 302 is required for the circuit 300a to intervene. Accordingly, the number of turns of L3 'of the interference suppression device 300a can be halved compared to the number of turns of L3, 302, of the interference suppression device 300. With a coupling k=0.9, good results can be achieved, and the capacitances of the capacitors C3` and C4 are chosen so that C3`=C4 and that the smallest possible inductor current through L2 results across all operating points. The capacitors C3' and C4 are connected to a common terminal both to each other and to a terminal of the coil L3'. The other terminal of the capacitor C3' is connected to an anode of the diode D1' and a cathode of the diode D2'. The diodes D1' and D2' form a diode half bridge. The other terminal of the capacitor C4 is connected to an anode of the diode D3 and a cathode of the diode D4. The diodes D3 and D4 form another diode half bridge. A good result can be achieved if C3`=C4 is chosen, where the values of C3' and C4 are chosen such that when C1=C2 the following condition is fulfilled: C 3 C 1 1.8 n 2 n 3 2
Figure imgb0012

Die Tabelle 2 gibt die Dimensionierung der Bauelemente der Schaltung aus Fig. 6 an. Dieser Dimensionierung nach Tabelle 2 ist zu entnehmen, dass die Bedingungen C1=C2 und C3`=C4 erfüllt sind. Außerdem stehen die Werte der Kondensatoren C3' und C1 in dem oben angegebenen Zusammenhang. Tabelle 2 Ri 100mΩ L0 2,5µH Vbatt 900V L1 2,5µH C1 40µF L2 26,35µH C2 40µF L3' 2,635mH C3' 180nF R1=R2=R3=R4 1MΩ C4 180nF Table 2 shows the dimensioning of the components of the circuit Fig. 6 at. From this dimensioning according to Table 2 it can be seen that the conditions C1=C2 and C3`=C4 are met. In addition, the values of the capacitors C3' and C1 are in the relationship stated above. Table 2 Ri 100mΩ L0 2.5µH Vbatt 900V L1 2.5µH C1 40µF L2 26.35µH C2 40µF L3' 2.635mH C3' 180nF R1=R2=R3=R4 1MΩ C4 180nF

Ergänzend ist darauf hinzuweisen, dass "umfassend" und "aufweisend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt.In addition, it should be noted that “comprising” and “having” do not exclude other elements or steps and “a” or “an” does not exclude a plurality.

Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.Reference symbols in the claims are not to be viewed as a limitation.

Claims (8)

  1. Circuit for distortion cancellation (300, 300a) in a DC circuit (100, 100'), which has two conductors (103', 103c, 104', 104c),
    wherein the circuit for distortion cancellation (300, 300a) comprises:
    - a first component connection (VCc) for connecting the circuit for distortion cancellation (300, 300a) to a first conductor (103', 103c) of the DC circuit (100, 100');
    - a second component connection (Mc) for connecting the circuit for distortion cancellation (300, 300a) to a second conductor (104', 104c) of the DC circuit (100, 100');
    - a sensor (300', 300a'), wherein the sensor:
    - is transformer-coupled to a DC circuit (100, 100');
    - is equipped to detect an exceeding of a predetermined limit of a superimposed AC current in the first conductor (103', 103c) of the DC circuit; and
    - is equipped to reduce the AC current in the first conductor of the DC circuit to the predetermined limit by applying a current into the first component connection (VCc);
    wherein the sensor (300', 300a') has a coil (302, L3; L3') for transformer-coupling to the first conductor of the DC circuit in order to form a transformer with the DC circuit (100, 100') having a predetermined coupling factor (k);
    wherein a first connection of the coil (L3; L3') is connected to the first component connection (VCc), characterized in that
    a second connection of the coil (L3; L3') is connected to the first component connection (VCc) via at least one capacitor (303, C3; C3', C4) and via at least one diode (D1, 304, D2, 305; D1', D2', D3, D4);
    wherein a connection of the at least one capacitor (C3; C3', C4) is connected to the second component connection (Mc) via a further diode (D2; D4);
    wherein the anode of the at least one diode (D1, 304, D2, 305; D1', D2', D3, D4) is connected to the cathode of the further diode (D2; D4).
  2. Circuit for distortion cancellation (300, 300a) according to claim 1,
    wherein the first component connection (VCc) and the second component connection (Mc) is designed for connecting to a vehicle component (102a, 102b, 102c, 102d) .
  3. Circuit for distortion cancellation (300, 300a) according to claim 1 or 2,
    whose sensor (300', 300a') is equipped to be coupled to a filter coil (L2, 203c, 204c) and/or to a lead inductance (L2, 203c, 204c) of the DC circuit.
  4. Circuit for distortion cancellation (300, 300a) according to one of claims 1 to 3,
    which is equipped to be coupled to a DC circuit (100, 100') which has a DC voltage of 400 V or 900 V.
  5. Circuit for distortion cancellation (300, 300a) according to one of claims 1 to 4,
    further having: a housing; wherein the housing is designed for fastening to a vehicle.
  6. Component (102a, 102b, 102c, 102d) having:
    - a DC circuit (100, 100') with a first conductor (103', 103c), a second conductor (104', 104c), and a DC link filter (207c, 207c') in the first conductor;
    - a circuit for distortion cancellation (300, 300a) according to one of claims 1-5; wherein
    - the first component connection (VCc) of the circuit for distortion cancellation is connected to the first conductor (103', 103c);
    - the second component connection (Mc) of the circuit for distortion cancellation is connected to the second conductor (104', 104c);
    - the sensor (300', 300a') is transformer-coupled to the DC link filter (207c, 207c'); and
    - the DC circuit is equipped for connecting to a high-voltage DC link.
  7. High-voltage DC link (100, 100') for a vehicle having:
    - a supply battery (101);
    - a first component (102a) which is operated at an operating frequency;
    - at least one second component (102b, 102c, 102d);
    - at least one circuit for distortion cancellation according to one of claims 1-5;
    wherein
    - the supply battery, the first component, and the second component are each connected to a first conductor and to a second conductor of the high-voltage DC link;
    - the first conductor of the at least one second component is connected to the first component connection (VCc) of the circuit for distortion cancellation;
    - the second conductor of the at least one second component is connected to the second component connection (Mc) of the circuit for distortion cancellation; and
    - the sensor (300', 300a') of the circuit for distortion cancellation is transformer-coupled to the part of the first conductor associated with at least the second component.
  8. Vehicle having at least one subject matter selected from:
    - the circuit for distortion cancellation according to one of claims 1-5;
    - the component according to claim 6;
    - the high-voltage DC link according to claim 7.
EP18185434.0A 2017-07-28 2018-07-25 Circuit for distortion cancellation in a dc circuit Active EP3435529B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017117183.5A DE102017117183A1 (en) 2017-07-28 2017-07-28 Suppressor for a DC circuit

Publications (2)

Publication Number Publication Date
EP3435529A1 EP3435529A1 (en) 2019-01-30
EP3435529B1 true EP3435529B1 (en) 2023-11-22

Family

ID=63173931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18185434.0A Active EP3435529B1 (en) 2017-07-28 2018-07-25 Circuit for distortion cancellation in a dc circuit

Country Status (3)

Country Link
US (1) US11218128B2 (en)
EP (1) EP3435529B1 (en)
DE (1) DE102017117183A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141248A1 (en) * 2003-09-11 2005-06-30 Mazumder Sudip K. Novel efficient and reliable DC/AC converter for fuel cell power conditioning

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE433673C (en) * 1925-02-26 1926-09-09 Bbc Brown Boveri & Cie Process for suppressing harmonics in electrical power networks
DE1203839B (en) * 1962-02-14 1965-10-28 Siemens Ag Glazing device
GB1369602A (en) * 1970-12-08 1974-10-09 Brentford Electric Ltd Electrical circuits that include ripple filters
DD208019A1 (en) 1982-07-13 1984-03-21 Guenter Tietz POWER INVERTER
US6926288B2 (en) * 2003-06-02 2005-08-09 Bose Corporation Electromagnetic interference filter
US7675192B2 (en) * 2005-06-15 2010-03-09 Gm Global Technology Operations, Inc. Active DC bus filter for fuel cell applications
US8212416B2 (en) * 2008-12-24 2012-07-03 Synergy Energy Inc. Device for filtering harmonics
US9461486B2 (en) * 2011-07-02 2016-10-04 Leonid Rozenboim Accumulator battery monitoring over power circuit
WO2013004019A1 (en) * 2011-07-07 2013-01-10 City University Of Hong Kong Dc link module for reducing dc link capacitance
WO2014052872A1 (en) * 2012-09-28 2014-04-03 Arc Suppression Technologies Contact separation detector and methods therefor
DE102014200018A1 (en) * 2014-01-03 2015-07-09 Schmidhauser Ag Power converter and converter network
WO2017015038A1 (en) * 2015-07-17 2017-01-26 Ballard Power Systems Inc. Reduced stack voltage circuitry for energy storage system diagnostics
DE102017111396B4 (en) * 2017-05-24 2020-08-06 Hanon Systems Arrangement for the active suppression of interference signals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141248A1 (en) * 2003-09-11 2005-06-30 Mazumder Sudip K. Novel efficient and reliable DC/AC converter for fuel cell power conditioning

Also Published As

Publication number Publication date
US11218128B2 (en) 2022-01-04
DE102017117183A1 (en) 2019-01-31
EP3435529A1 (en) 2019-01-30
US20190036506A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
DE112011101193B4 (en) Leakage current reduction device
DE112011102817T5 (en) Device for reducing a leakage current
DE102013202428A1 (en) Power supply arrangement for powering industrial processes
EP3619800A1 (en) Inverter
EP3625881A1 (en) Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters
WO2016066484A2 (en) Inverter and reactor for rejecting common-mode interferences
DE102015110064A1 (en) Arrangement for protecting electronic assemblies
CH693524A5 (en) Means for limiting the Aenderungsgeschwindigkeit the output values ​​of a self-commutated via a DC intermediate circuit polyphase inverter.
DE102013109827A1 (en) A method for minimizing the harmonic load and welding power source caused by a welding power source for performing the method
DE102015205459B4 (en) Potential-free DC voltage network
EP3435529B1 (en) Circuit for distortion cancellation in a dc circuit
DE2355603A1 (en) PROTECTIVE CIRCUIT
DE2036928A1 (en) Control circuit for controlled rectifiers
EP2299569A1 (en) Direct current converter and direct current conversion method
EP3269031B1 (en) Converter containing a transformer with center tap and measurement of the output voltage
EP3526889B1 (en) Inverter assembly with a grounding transformer
DE112016001109B4 (en) RESONANCE CONVERTER WITH A CENTER-TAP TRANSFORMER
DE102011102134A1 (en) Filter circuit for coupling between alternating current voltage source and power pulse current converter circuit, has first and third inductors arranged on same leg of one common iron core and are wound together and are interconnected
EP3726724B1 (en) Device for creating electrical energy and method
DE102015215746A1 (en) Potential-free direct voltage network
EP3167522B1 (en) Redundant voltage supply device
EP0029525B1 (en) Rectifier element
DE102022126571A1 (en) Control device and plasma-energetic protection device for an ion engine
DE102017131295A1 (en) Device having an electrical device, power electronic converter and method for improving an electromagnetic compatibility of an electrical device
AT406204B (en) Transformer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190730

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230629

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRUSA TECHNOLOGY AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013655

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322