EP3050205A4 - Apparatus and method for high efficiency resonant converters - Google Patents

Apparatus and method for high efficiency resonant converters Download PDF

Info

Publication number
EP3050205A4
EP3050205A4 EP14853659.2A EP14853659A EP3050205A4 EP 3050205 A4 EP3050205 A4 EP 3050205A4 EP 14853659 A EP14853659 A EP 14853659A EP 3050205 A4 EP3050205 A4 EP 3050205A4
Authority
EP
European Patent Office
Prior art keywords
high efficiency
resonant converters
efficiency resonant
converters
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14853659.2A
Other languages
German (de)
French (fr)
Other versions
EP3050205B1 (en
EP3050205A1 (en
Inventor
Daoshen Chen
Heping Dai
Xujun Liu
Zhihua Liu
Liming Ye
Dianbo Fu
Ce Liu
Bing Cai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of EP3050205A1 publication Critical patent/EP3050205A1/en
Publication of EP3050205A4 publication Critical patent/EP3050205A4/en
Application granted granted Critical
Publication of EP3050205B1 publication Critical patent/EP3050205B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
EP14853659.2A 2013-10-17 2014-10-17 Apparatus and method for high efficiency resonant converters Active EP3050205B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/056,532 US9444346B2 (en) 2013-10-17 2013-10-17 Apparatus and efficiency point tracking method for high efficiency resonant converters
PCT/CN2014/088828 WO2015055139A1 (en) 2013-10-17 2014-10-17 Apparatus and method for high efficiency resonant converters

Publications (3)

Publication Number Publication Date
EP3050205A1 EP3050205A1 (en) 2016-08-03
EP3050205A4 true EP3050205A4 (en) 2017-03-01
EP3050205B1 EP3050205B1 (en) 2020-04-22

Family

ID=52826015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14853659.2A Active EP3050205B1 (en) 2013-10-17 2014-10-17 Apparatus and method for high efficiency resonant converters

Country Status (6)

Country Link
US (3) US9444346B2 (en)
EP (1) EP3050205B1 (en)
JP (1) JP6386549B2 (en)
KR (1) KR101846408B1 (en)
CN (1) CN105917565B (en)
WO (1) WO2015055139A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295173B2 (en) * 2014-05-19 2018-03-14 ローム株式会社 Power supply
CN105226916B (en) * 2014-06-25 2018-02-27 台达电子企业管理(上海)有限公司 The current sample method and sampling apparatus of isolated power converters
BE1022933B1 (en) * 2014-11-07 2016-10-20 Mindcet Bvba Method and system for calculating model parameters for a capacitor to be modeled
US9685864B2 (en) * 2015-03-31 2017-06-20 Qualcomm Incorporated Switching regulator circuits and methods with reconfigurable inductance
US9871456B2 (en) * 2015-07-03 2018-01-16 Texas Instruments Incorporated Voltage conversion device and method of operation
US10673339B2 (en) 2015-07-23 2020-06-02 Texas Instruments Incorporated Hysteretic control for transformer based power converters
KR101796376B1 (en) * 2016-03-24 2017-12-01 국민대학교산학협력단 The method and apparatus which bus converter operation with variable switching frequency employing llc converter
CN106211408B (en) * 2016-06-30 2019-12-31 广东美的厨房电器制造有限公司 Control method of microwave oven and microwave oven
US10097095B2 (en) 2016-09-21 2018-10-09 General Electric Company DC converters with modified droop control and method of use
US10673323B2 (en) * 2016-10-27 2020-06-02 University Of Florida Research Foundation, Incorporated Loop noise balance technique for CM EMI noise reduction of the full bridge LLC resonant converter
EP3577752A4 (en) * 2017-02-04 2020-10-07 ABB Schweiz AG Dc-dc converter and control method
CN109428490B (en) * 2017-08-15 2020-10-16 台达电子企业管理(上海)有限公司 Multi-cell power conversion system
EP3447895B1 (en) * 2017-08-21 2024-04-03 Flex, Ltd. Adaptive resonant frequency converter
TWI666861B (en) * 2017-09-01 2019-07-21 明緯(廣州)電子有限公司 Control circuit for reducing power loss of llc resonant converter during light-load or no-load operation
US10243453B1 (en) * 2017-09-27 2019-03-26 Apple Inc. Common mode noise cancelation in power converters
CN109698623B (en) * 2017-10-20 2021-11-16 泰达电子股份有限公司 Power module and power circuit
CN109995236B (en) * 2017-12-29 2021-04-23 东南大学 Control system of LLC converter synchronous rectifier tube
EP3528378B1 (en) * 2018-02-19 2021-06-09 OSRAM GmbH Electronic converter and related lighting system
CN108415497B (en) * 2018-05-16 2023-12-29 广州宇曦电子科技有限公司 Automatic control system and method for radio frequency high-voltage output amplitude
CN110504837B (en) * 2018-05-16 2020-10-30 台达电子工业股份有限公司 Power conversion circuit and power conversion circuit control method
US10873265B2 (en) * 2018-06-12 2020-12-22 Virginia Tech Intellectual Properties, Inc. Bidirectional three-phase direct current (DC)/DC converters
JP7175699B2 (en) * 2018-10-04 2022-11-21 キヤノン株式会社 Power supply and image forming apparatus
US10797583B2 (en) 2018-12-13 2020-10-06 Power Integrations, Inc. Secondary winding sense for hard switch detection
US10763756B2 (en) * 2018-12-13 2020-09-01 Power Integrations, Inc. Apparatus and methods for sensing resonant circuit signals to enhance control in a resonant converter
TWI711259B (en) * 2019-05-30 2020-11-21 亞源科技股份有限公司 Resonant converter
CN111181363B (en) * 2019-07-01 2020-10-16 苏州纳芯微电子股份有限公司 Isolated power supply circuit and control method thereof
US11532989B2 (en) * 2019-11-27 2022-12-20 Hamilton Sundstrand Corporation Using parasitic capacitance of a transformer as a tank element in a DC-DC converter
CN111628556B (en) * 2020-03-14 2023-06-16 青岛鼎信通讯股份有限公司 Control strategy for improving DCDC efficiency of charging station based on energy router
CN111555627B (en) * 2020-05-09 2022-09-06 哈尔滨工业大学 Control method of high-order LCLCL direct current converter
US11594976B2 (en) * 2020-06-05 2023-02-28 Delta Electronics, Inc. Power converter and control method thereof
TWI740619B (en) 2020-08-21 2021-09-21 國立臺灣科技大學 Control circuit and control method for power converter
TWI751798B (en) * 2020-11-19 2022-01-01 宏碁股份有限公司 Power supply device with tunable gain
TWI746294B (en) * 2020-11-27 2021-11-11 宏碁股份有限公司 Power supply device with low loss
CN113131751B (en) * 2021-04-14 2022-05-27 中车青岛四方车辆研究所有限公司 Full-bridge LLC resonant converter resonant frequency tracking method
CN115224915A (en) * 2021-04-21 2022-10-21 友尚股份有限公司 Power converter
US20220399821A1 (en) * 2021-06-15 2022-12-15 Texas Instruments Incorporated Llc converter and control
TWI800420B (en) * 2022-06-29 2023-04-21 明志科技大學 Full Bridge LLC Resonant Converter
JP3239437U (en) 2022-08-01 2022-10-13 株式会社エルメックス Diluent storage container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099827A1 (en) * 2003-11-11 2005-05-12 Hitachi Ltd. Resonant converter and control method thereof
US20060132062A1 (en) * 2004-12-08 2006-06-22 Naoki Maru Current detection circuit, and power supply apparatus, power supply system and electronic apparatus using the current detection circuit
US20070165426A1 (en) * 2006-01-16 2007-07-19 Sanken Electric Co., Ltd. Resonant switching power source apparatus
US7282871B1 (en) * 2006-07-05 2007-10-16 Samsung Electro-Mechanics Co., Ltd. Backlight inverter for inductively detecting current
US20100020578A1 (en) * 2008-07-25 2010-01-28 Samsung Electro-Mechanics Co., Ltd. Adapter power supply
WO2012106967A1 (en) * 2011-02-12 2012-08-16 中兴通讯股份有限公司 Bridge current detection circuit
CN102904457A (en) * 2012-08-29 2013-01-30 华为技术有限公司 High-frequency switch power supply and high-frequency current detecting method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584288A (en) * 1969-03-26 1971-06-08 Technology Instr Corp Transformer power supply for microwave generators
JP2588789B2 (en) * 1990-06-20 1997-03-12 国際電気株式会社 Temperature compensated level detector
US5173846A (en) * 1991-03-13 1992-12-22 Astec International Ltd. Zero voltage switching power converter
JPH0584186A (en) 1991-09-27 1993-04-06 Matsushita Electric Ind Co Ltd Suction device for floor of vacuum cleaner
JPH0584186U (en) * 1992-04-13 1993-11-12 株式会社豊田自動織機製作所 Current resonance type power supply control circuit
US6301128B1 (en) * 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
US6492880B1 (en) * 2001-02-21 2002-12-10 Cisco Technology, Inc. Common mode termination
US6975098B2 (en) 2002-01-31 2005-12-13 Vlt, Inc. Factorized power architecture with point of load sine amplitude converters
JP4318174B2 (en) * 2003-12-11 2009-08-19 本田技研工業株式会社 DC-DC converter
EP2122813B1 (en) * 2007-01-17 2013-03-13 OSRAM GmbH Circuit arrangement and method for increasing the safety of a switching power supply
WO2008147150A1 (en) * 2007-05-30 2008-12-04 Electronics And Telecommunications Research Institute Radio resource reallocating method for circuit mode
EP2201669B1 (en) * 2007-09-18 2017-06-21 Nxp B.V. Control method for a half bridge resonant converter for avoiding capacitive mode
JP5221268B2 (en) * 2007-11-07 2013-06-26 パナソニック株式会社 Power switching element driving circuit, driving method thereof, and switching power supply device
US8031496B2 (en) 2007-11-07 2011-10-04 Panasonic Corporation Driving circuit for power switching device, driving method thereof, and switching power supply apparatus
TWI367623B (en) * 2008-03-14 2012-07-01 Delta Electronics Inc Parallel-connected resonant converter circuit and controlling method thereof
US8288954B2 (en) * 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
JP5092023B2 (en) * 2009-02-06 2012-12-05 新電元工業株式会社 Current detection circuit and transformer current measurement system
CN103069704B (en) 2010-08-16 2015-06-10 英派尔科技开发有限公司 Converter and converter control method
US20120062190A1 (en) * 2010-09-10 2012-03-15 Holger Haiplik Dc-dc converters
KR20130073611A (en) 2011-12-23 2013-07-03 삼성전기주식회사 Power supplying apparatus
CN102611315A (en) * 2012-03-22 2012-07-25 华为技术有限公司 Resonant switching circuit
US9190911B2 (en) * 2013-03-05 2015-11-17 Futurewei Technologies, Inc. Auxiliary resonant apparatus for LLC converters
US9356519B2 (en) * 2014-02-12 2016-05-31 Sanken Electric Co., Ltd. Current balance circuit of resonant type switching power-supply circuit
CN105226916B (en) * 2014-06-25 2018-02-27 台达电子企业管理(上海)有限公司 The current sample method and sampling apparatus of isolated power converters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099827A1 (en) * 2003-11-11 2005-05-12 Hitachi Ltd. Resonant converter and control method thereof
US20060132062A1 (en) * 2004-12-08 2006-06-22 Naoki Maru Current detection circuit, and power supply apparatus, power supply system and electronic apparatus using the current detection circuit
US20070165426A1 (en) * 2006-01-16 2007-07-19 Sanken Electric Co., Ltd. Resonant switching power source apparatus
US7282871B1 (en) * 2006-07-05 2007-10-16 Samsung Electro-Mechanics Co., Ltd. Backlight inverter for inductively detecting current
US20100020578A1 (en) * 2008-07-25 2010-01-28 Samsung Electro-Mechanics Co., Ltd. Adapter power supply
WO2012106967A1 (en) * 2011-02-12 2012-08-16 中兴通讯股份有限公司 Bridge current detection circuit
CN102904457A (en) * 2012-08-29 2013-01-30 华为技术有限公司 High-frequency switch power supply and high-frequency current detecting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015055139A1 *

Also Published As

Publication number Publication date
CN105917565A (en) 2016-08-31
EP3050205B1 (en) 2020-04-22
US20150109824A1 (en) 2015-04-23
US20190074774A1 (en) 2019-03-07
US20160380547A1 (en) 2016-12-29
US10116219B2 (en) 2018-10-30
WO2015055139A1 (en) 2015-04-23
EP3050205A1 (en) 2016-08-03
KR101846408B1 (en) 2018-04-06
US9444346B2 (en) 2016-09-13
US10284097B2 (en) 2019-05-07
KR20160070820A (en) 2016-06-20
JP6386549B2 (en) 2018-09-05
CN105917565B (en) 2020-01-31
JP2016533704A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
EP3050205A4 (en) Apparatus and method for high efficiency resonant converters
EP3050203A4 (en) Apparatus and method for multiple primary bridge resonant converters
EP2972844A4 (en) Method and apparatus for efficient scheduling for asymmetrical execution units
EP2978114A4 (en) Power conversion apparatus
EP3036812A4 (en) Apparatus and method for providing a power interface
EP3072215A4 (en) Wireless charging apparatus and wireless charging method
EP3031127A4 (en) Apparatus and method for wireless power reception
EP2939337A4 (en) Apparatus and method for resonant converters
EP3083004A4 (en) A desanding apparatus and a method of using the same
HK1205986A1 (en) Apparatus and method for generating power
EP3029793A4 (en) Power conversion apparatus, method for controlling power conversion apparatus, and power conversion system
EP3059847A4 (en) Power conversion device and power conversion method
GB2514128B (en) Energy management method and apparatus
GB201406141D0 (en) Apparatus and method for securing beacons
GB201608306D0 (en) Apparatus and method using ultrasounds for gas conversion
PL3027980T3 (en) Method for electrocaloric energy conversion
EP3083337A4 (en) Method and apparatus for in-vehicular communications
EP3033911A4 (en) Method and apparatus
EP3021446A4 (en) Power conversion device, power conversion system, and power conversion method
IL277817A (en) Energy conversion device and method for making and using same
EP3008806A4 (en) Apparatus and method for energy harvesting
EP3084977A4 (en) Method and apparatus for data-sharing
EP3029794A4 (en) Power-supply-device identification apparatus, power-supply-device identification method, and power conversion apparatus
EP3020683A4 (en) Apparatus for manufacturing micro-channel and method for manufacturing micro-channel using same
EP2987045A4 (en) Apparatus and method for power converters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170130

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 1/00 20070101ALI20170124BHEP

Ipc: H02M 3/28 20060101ALI20170124BHEP

Ipc: H02M 3/335 20060101AFI20170124BHEP

Ipc: H02M 3/337 20060101ALI20170124BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014064280

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1261463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1261463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014064280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201017

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201017

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211111 AND 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014064280

Country of ref document: DE

Owner name: HUAWEI DIGITAL POWER TECHNOLOGIES CO., LTD., S, CN

Free format text: FORMER OWNER: HUAWEI TECHNOLOGIES CO., LTD., SHENZHEN, GUANGDONG, CN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 10