EP2019482B1 - System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine - Google Patents

System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine Download PDF

Info

Publication number
EP2019482B1
EP2019482B1 EP07113231A EP07113231A EP2019482B1 EP 2019482 B1 EP2019482 B1 EP 2019482B1 EP 07113231 A EP07113231 A EP 07113231A EP 07113231 A EP07113231 A EP 07113231A EP 2019482 B1 EP2019482 B1 EP 2019482B1
Authority
EP
European Patent Office
Prior art keywords
output
machine
speed
input
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07113231A
Other languages
English (en)
French (fr)
Other versions
EP2019482A1 (de
Inventor
Fritz Rainer Dr. Ing. Götz
Viktor Dr. Ing. Barinberg
Franz Jäger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baumueller Nuernberg GmbH
Original Assignee
Baumueller Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baumueller Nuernberg GmbH filed Critical Baumueller Nuernberg GmbH
Priority to AT07113231T priority Critical patent/ATE463073T1/de
Priority to EP07113231A priority patent/EP2019482B1/de
Priority to DE502007003311T priority patent/DE502007003311D1/de
Priority to DE202008009574U priority patent/DE202008009574U1/de
Priority to US12/177,182 priority patent/US7999498B2/en
Priority to JP2008191634A priority patent/JP5501580B2/ja
Priority to CN2008101443425A priority patent/CN101399514B/zh
Publication of EP2019482A1 publication Critical patent/EP2019482A1/de
Application granted granted Critical
Publication of EP2019482B1 publication Critical patent/EP2019482B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung der Antriebs-Geschwindigkeit und -Lage eines Permanentmagnet-Läufers einer elektrischen bürstenlosen Maschine. Dieses Verfahren ist insbesondere zum Einsatz in einen Antriebsregelkreis geeignet. Für das Verfahren werden mehrphasige Strommessungen an der Maschine verwendet, deren Messwerte in Abhängigkeit von der ermittelten Lage in ein rotorbezogenes d,q-Koordinatensystem zu einer Längsstrom-Vektorkomponente und einer Querstrom-Vektorkomponente transformiert werden. Zusammen mit der ermittelten (elektrischen) Drehzahl werden die Längs- und Quervektorkompenten vom Strom und einer vorgegebenen Spannung als Eingangsvariable einem mathematischen Modell von der elektrischen Maschine zugeführt. Das Maschinenmodell generiert eine erste Ausgangsvariable und eine zweite Ausgangsvariable, wobei die erste Ausgangsvariable im d,q-Koordinatensystem der d- bzw. Längsvektorkomponente sowie eines Lageermittlungsfehlers und die zweite Ausgangsvariable im d,q-Koordinatensystem der q- bzw. Querkomponente sowie einem Geschwindigkeitsermittlungsfehler entsprechen. Die beiden Ausgangsvariablen werden einem Nachführregler zu Ermittlung und Ausgabe der Geschwindigkeit, insbesondere elektrischen Drehzahl, und der Lage, insbesondere des elektrischen Winkels zugeführt. Die Erfindung betrifft ferner zur Durchführung dieses Verfahrens geeignete Lage- und/oder Geschwindigkeits-Ermittlungseinrichtung, Maschinen-Modellierungsmodul und Geschwindigkeits-Nachführregler gemäß den jeweiligen ersten Teilen/Oberbegriffen der nebengeordneten, unabhängigen Ansprüche 8, 12 und 15.
  • Zur Ermittlung der Lage und Geschwindigkeit des Permanentmagnet-Läufers bei einem elektrischen, bürstenlosen Antriebsmotor wird in der AT-Fachzeitschrift "Elektrotechnik und Informationstechnik" Nr. 2/2000 "Geregelte Antriebe", auf Seiten 103-112 von M. Schrödl und E. Robeischl gelehrt, für höhere Drehzahlen (im Bereich über etwa 10 % bis 20 % der Nenndrehzahl) über ein EMK-Modell/Spannungsmodell der Permanentmagnet-Synchronmaschine die beispielsweise für eine Antriebsregelung nötige Lage- und Drehzahlinformation in Echtzeit aus elektrischen Größen zu bestimmen. Die Läuferlageschätzung soll aufgrund der induzierten Spannung in der Statorwicklung durchgeführt werden, was die Stromregelung nicht beeinflusst. Der Grundgedanke dabei ist, die Änderung des Statorfluss-Verkettungsraumzeigers messtechnisch zu bestimmen. Durch Messung des Stromverlaufs wird die Änderung des Permanentmagnetfluss-Raumzeigers aus dem Permanentmagnet-Läufer ermittelt.
  • US 2005/0 029 972 A1 beschreibt eine vektorielle, feldorientierte Antriebsregelung für einen permanentmagneterregten, bürstenlosen Gleichstrommotor. Die Antriebsregelung umfasst folgendes: einen Winkelfehlerrechner zur Berechnung eines Sinus- und Kosinus-Werts einer Winkeldifferenz zwischen einer geschätzten Winkellage und der tatsächlichen Winkellage. Dies basiert auf einer Phasenspannungsdifferenz mehrerer Phasen am Eingang der Statorwindungen und auf den Phasenströmen einer Mehrzahl von Phasen. Ferner umfasst die Antriebsregelung einen Beobachter zur Berechnung des Lagewinkels auf der Basis des Sinus- und Kosinus-Werts der Winkeldifferenz.
  • Diese US 2005/0 029 972 A1 offenbart zur Realisierung der soeben genannten, regelungstechnischen Gesichtspunkte ferner eine erste Ausführungsform mit mehreren Abwandlungen und eine zweite Ausführungsform mit mehreren Abwandlungen, die jeweils eine Funktionseinheit zur Berechnung eines Motormodells verwenden. Beim Motormodell der ersten Ausführungsform werden die dynamischen Spannungsabfälle an den Stator-Induktivitäten, welche in der Fachwelt durch so genannte Ldi/dt-Terme berücksichtigt werden, vernachlässigt bzw. weggelassen. Dies mindert allerdings die Genauigkeit. Beim Motormodell der zweiten Ausführungsform sind diese Terme bzw. die entsprechenden zeitlichen Differenzierungen der Ströme explizit enthalten. Neben dem dadurch verursachten, zusätzlichen Rechenaufwand resultiert noch der weitere Nachteil, dass durch die der zeitlichen Ableitungen innewohnende Hochpass-Charakteristik die Störfestigkeit beeinträchtigt bzw. kurzzeitige Störungen sogar verstärkt werden. Allen Ausführungsformen bzw. -varianten ist gemeinsam, dass der Ausgang des Motormodells mit dem Eingang einer so genannten Normalisierungseinheit verbunden ist, welche zur Berechnung eines Näherungswerts für eine Winkeldifferenz ausgebildet ist, und zwar stets über eine Divisions-Rechenoperation im Zusammenhang mit einer Vektorkomponente der induzierten Spannung, wie sie im Motormodell berechnet ist. Derartige Divisions-Rechenoperationen verbrauchen Rechenzeit, sind aufwendig zu implementieren und vermindern die Rechengenauigkeit.
  • Ein System zur Ermittlung der Antriebs-Lage und/oder Geschwindigkeit bei einer elektrischen, bürstenlosen Maschine, insbesondere Synchronmotor, mit Permanentmagnet-Läufer etwa der anfangs im ersten Absatz genannten Art ist bekannt, vgl. Fachartikel von S. M. Abu-Sharkh, V. Barinberg "A new approach to rotor position estimation for a PM brushless motor drive", Mediterranean Electrotechnical Conf. 1998, Seiten 1199-1203. Danach erfolgt die Läuferlage- und/oder Geschwindigkeitsschätzung ebenfalls nach dem EMK- /Spannungsmodell der elektrischen Maschine. Die dafür an sich notwendige, in der Praxis aber problematische Differenziation/zeitliche Ableitung von Stromsignalen wird durch die Verwendung parameterabhängiger Tiefpassfilter vermieden, deren zeitverzögernde Wirkung von einem nachgeordneten Proportional- und Integral-Nachführregler (PI-Nachführregler) kompensiert wird. Die Zeitkonstante der Tiefpass-Filter entspricht der Stator-Zeitkonstante der elektrischen Maschine. Mit den Tiefpassfiltern werden die Lage- und Geschwindigkeitsermittlungsfehler gewichtet.
  • Der Erfindung liegt die Aufgabe zugrunde, dem gegenüber das Antriebs-Lage- und Antriebs-Geschwindigkeits-Ermittlungssystem in seinem strukturellen Aufbau zu vereinfachen. Zur Lösung wird auf das im Anspruch 1 angegebene Ermittlungsverfahren, auf die im Anspruch 8 angegebene Ermittlungseinrichtung, auf das im Anspruch 12 angegebene Maschinen-Modellierungsmodul sowie auf den im Anspruch 15 angegebenen Nachführregler verwiesen. Optionale, vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Zwar arbeitet gemäß dem erfindungsgemäßen Verfahren das Maschinenmodell noch mit der Ausgabe einer dritten Abweichungsvariablen an den Nachführregler; jedoch wird dabei die dritte Ausgangsvariable über einfach zu realisierende Rechenschritte erzeugt, die lediglich Gewichtungen durch Proportionalglieder mit Induktivitäts-Festwerten und Summierungen/Differenzbildungen umfassen und mithin mit rechentechnisch einfachen und schnell ablaufenden Funktionskomponenten wie P-Glieder und Summierstellen zu realisieren sind. Mithin lässt sich mit dem erfindungsgemäßen Verfahren der Vorteil einer Effizienzsteigerung erzielen, zumal weder eine zeitliche Differenzierung von Strömen noch zusätzliche phasenverbrauchende Filter wie z. B. die oben beim Stand der Technik verwendeten Tiefpass-Filter notwendig sind.
  • Zweckmäßig werden im Rahmen des Maschinenmodells die beiden Wichtungsergebnisse (Strom-Längskomponente gewichtet mit Längsinduktivität und Strom-Querkomponente gewichtet mit Querinduktivität) entsprechend einer maschinenspezifischen EMK-Konstante oder einer Zeitkonstante modifiziert. Mit besonderem Vorteil wird dann im Nachführregler eine Integration mit den genannten Konstanten als Integrationsparameter über eine Differenz durchgeführt, die zwischen dem Lage- und dem Geschwindigkeitsermittlungsfehler ("Lageabweichung" beziehungsweise "Geschwindigkeitsabweichung") bzw. den entsprechenden Längs- und Querkomponenten der Spannungsabweichung gebildet ist.
  • In weiterer Ausgestaltung der Erfindung wird die dem Nachführregler zugeführte dritte Ausgangsvariable mit einem Integrationsergebnis über eine Differenz summiert oder sonst wie verknüpft, welche Differenz aus dem Unterschied zwischen des Lageermittlungsfehlers und des Geschwindigkeitsermittlungsfehlers gebildet wird. Gegebenenfalls ist der Lageermittlungsfehler vorher noch proportional verstärkt worden. Das Verknüpfungsergebnis kann dann aus dem Nachführregler als ermittelte Geschwindigkeit ausgegeben werden. Es wird der Vorteil einer Vereinfachung der Struktur des Nachführreglers erzielt, indem gegenüber reinen Integriergliedern komplexere Proportional- und Integralglieder vermieden sind.
  • Da gemäß einer Erfindungsvariante bei der Zuführung der dritten Ausgangsvariablen in den Nachführregler sowohl das dortige Proportionalglied (interpretierbar als "Lageregler") als auch ein reines erstes Integrationsglied ohne Proportionalanteil (interpretierbar als "Geschwindigkeitsregler") über eine diesen nachgeordnete Summierstelle übersprungen werden, ist es zweckmäßig, die (übersprungene) Proportionalverstärkung bereits im Maschinenmodell bei der Bildung der dritten Ausgangsvariablen zur Auswirkung zu bringen. Dies lässt sich realisieren, indem die Strom-Längsvektorkomponente nach Einführung in das Maschinenmodell darin mit dieser Proportionalverstärkung bzw. -faktor gewichtet wird.
  • Weitere Einzelheiten, Merkmale, Merkmalskombinationen, Vorteile und Wirkungen auf der Basis der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung sowie aus den Zeichnungen. Diese zeigen in jeweils schematischer Blockschaltbild-Darstellung in
    • Figur 1 und als gedanklicher Ausgangspunkt einen Antriebsregelkreis mit einem Motormodell und nach geschaltetem, erfindungsgemäßen Nachführregler, wobei zum besseren Verständnis der Erfindung das Maschinenmodell noch die nachteiligen direkten zeitlichen Ableitungen von Strömen enthält;
    • Figur 2 einen Antriebsregelkreis mit erfindungsgemäß ausgebildeten Motormodell und entsprechend angepassten Nachführregler.
  • Gemäß Figur 1 ist der Stator 1 einer bürstenlosen elektrischen Maschine, beispielsweise eines Synchronmotors mit Permanentmagnet-Läufer, von einem auf der Basis von Pulsweitenmodulation (PWM) arbeitenden Umrichter 2 mit einem dreiphasigen Drehstrom betrieben. Für eine Stromregelung werden vom Stator die beiden Phasenströme i1, i2 abgegriffen bzw. gemessen, welche in einer 3-zu-2 Phasen-Transformationseinheit 3 auf ein statorbezogenes, orthogonales α, β-Koordinatensystem abgebildet werden. Im Zuge der Transformation werden zwei den Statorstrom repräsentierende α, β Vektorkomponenten iα, iβ erzeugt und an eine zweite, nachgeordnete Koordinaten-Transformationseinheit 4 ausgegeben. Diese ist dazu ausgebildet, eine Koordinatentransformation vom statorbezogenen α,β-Koordinatensystem zum rotorbezogenen d,q-Koordinatensystem mit der Ausgabe der Strom-Längs- und Quervektorkomponenten id, iq vorzunehmen. Die Längs- und Quervektorkomponenten id, iq vom Statorstrom werden als Istwerte den Längsstrom- und Querstromreglern Id, Iq zum Soll-/Istwert-Vergleich mit entsprechenden Längs- und Querstrom-Sollwerten idsoll, iqsoll zugeführt. Wie an sich in der Fachwelt üblich, wird die Längsstrom-Sollwertvorgabe idsoll auf Null gesetzt, während der Querstromregler die Sollwertvorgabe Iqsoll von einem vorgeordneten Geschwindigkeitsregler 5 empfängt. Dieser geht von einem Vergleich eines Drehzahlsollwerts ωsoll mit dem von einem Nachführregler 6 ausgegebenen Schätz- bzw. Ermittlungswert für eine elektrische Drehzahl ωem aus. Aus dem Nachführregler 6 wird ferner ein ermittelter elektrischer Winkel ϕem ausgegeben und der zweiten Transformationseinheit 4 sowie einer zu dieser komplementären dritten Transformationseinheit 7 zugeführt. Die dritte Transformationseinheit 7 empfängt ferner die von den Stromreglern Id, Iq vorgegebenen Längs- und Querspannungs-Vektorkomponenten ug, uq und bildet diese in das statorbezogene α, β-Koordinatensystem mit den vorgegebenen Spannungsvektorkomponenten uα, uβ ab. Letztere Spannungsvektorkomponenten werden von einer nachgeordneten, 2-zu-3 Phasen Transformationseinheit 8 empfangen, welche die Spannungsvorgabe in drei dem Drehstromsystem entsprechende Phasen u1, u2, u3 für den nachgeordneten Umrichter 2 umsetzt.
  • Gemäß Figur 1 ist dem Nachführregler 6 ein Motor-Modellierungsmodul 9 vorgeordnet. Dieses weist Eingangsschnittstellen 10 für die ermittelte Drehzahl ωem, 11 für die gemessenen und in das d,q-Koordinatensystem abgebildeten Längs- bzw. Querströme id, iq und 12 für die im d,q-Koordinatensystem vorgegebenen Längs- und Querspannungen ud, uq auf. Ferner weist das Modellierungsmodul 9 eine erste Ausgangsschnittstelle 13 für die Längsspannungsabweichung Δud und eine zweite Ausgangsschnittstelle 14 für die Querspannungsabweichung Δuq auf.
  • Gemäß Figur 1 wird die über die Drehzahl-Eingangsschnittstellen 10 dem Motormodell 9 zugeführte, ermittelte Drehzahl ωem mit mehreren separaten Proportionalgliedern gewichtet, deren Verstärkungen der EMK-Konstante KE, der Motor-Längsinduktivität Ld und der Motor-Querinduktivität Lq entsprechen. Ferner wird die eingegebene Drehzahl ωem noch mit einem Signumsglied 15 gewichtet. Die Ausgänge der Induktivitäts-Proportionalglieder Ld, Lq sind jeweils mit einem eigens zugeordneten Multiplizierglied Md, Mq verbunden. Die zweiten Eingänge der Multiplizierglieder Md, Mq sind jeweils mit der entsprechenden der beiden Strom-Eingangsschnittstellen 11 für Längs- bzw. Querstrom id, iq verbunden. Die jeweiligen Ausgänge der Multiplizierglieder Md, Mq sind Längsspannungs- bzw. Querspannungs-Summiergliedern Sd, Sq jeweils mit positivem Vorzeichen zugeführt. Einem jeweils zweiten Eingang der Längs- bzw. Quer-Spannungssummierglieder Sd, Sq sind über die Spannungs-Eingangsschnittstellen 12 die Längs- bzw. Querspannungsvorgaben ud, uq auch mit jeweils positivem Vorzeichen zugeführt. Die beiden SpannungsSummierglieder Sd, Sq besitzen jeweils noch einen zusätzlichen Negativ-Eingang (mit jeweils negativem Vorzeichen), denen ein jeweiliger Ausgang zweier vorgeordneter Spannungs-Vorsummierglieder VSd bzw. VSq für die Summation von ohmschen und induktiven Längs- bzw. Querspannungs-Zwischenwerten zugeordnet ist, die aus den über die Strom-Eingangsschnittstellen 11 zugeführten Längs- und Querströme erzeugt werden. Zu dieser Erzeugung dienen einerseits je ein Proportionalglied mit der dem ohmschen Motorwiderstand entsprechenden Verstärkung r. Andererseits werden, wie von der Motorphysik gefordert, die induktiven Elemente bzw. die Längs- und Querinduktivität Ld, Lq, über jeweilige Differenzierglieder sLd und sLq (s: differenzierender Laplace-Operator) mit in die Berechnung der Spannungszwischenwerte eingebracht. Die Eingänge der jeweiligen Proportionalglieder r und Differenzierglieder sLd, sLq sind dazu mit den jeweiligen Strom-Eingangsschnittstellen 11 verbunden. Die Ausgänge der jeweiligen Proportionalglieder r und der jeweiligen Differenzierglieder sLd bzw. sLq sind dann mit den jeweiligen Eingängen positiven Vorzeichens der Vorsummierglieder VSd, VSq verbunden.
  • Gemäß Figur 1 ist das Signumsglied 15 eingangsseitig mit der Drehzahl-Eingangsschnittstelle 10 und ausgangsseitig mit dem ersten Eingang eines Vorzeichen-Multipliziergliedes SMd verbunden. Dessen zweiter Eingang kommuniziert mit dem Ausgang des Längsspannungs-Summiergliedes Sd, und der Ausgang des Vorzeichen-Multipliziergliedes SMd steht mit der ersten Ausgangsschnittstelle 13 für die Längsvektorkomponente Δud der Spannungsabweichung in Verbindung. Dadurch lässt sich die Richtung des Läufers der elektrischen Maschine in die Berechnung des Lageermittlungsfehlers mit einbeziehen.
  • Gemäß Figur 1 fließt bei der Berechnung des Geschwindigkeitsermittlungsfehlers in Form der Quervektorkomponente Δuq der Spannungsabweichung noch die EMK-Motorkonstante über ein mit entsprechender Verstärkung dimensioniertes Proportionalglied 16 mit ein. Das EMK-Proportionalglied ist dazu eingangsseitig mit der Drehzahl-Eingangsschnittstelle 10 verbunden. Ausgangsseitig ist das EMK-Proportionalglied 16 mit dem Minus-Eingang eines EMK-Summierglieds 17 verbunden, dessen Plus-Eingang mit dem Ausgang des Querspannungs-Summierglieds Sq kommuniziert. Der Ausgang des EMK-Summierglieds 17 geht direkt auf die zweite bzw. Querspannungsabweichungs-Ausgangsschnittstelle 14 des Modellierungsmoduls zur Ausgabe des Geschwindigkeitsermittlungsfehlers an den nachgeordneten Nachführregler 6.
  • Gemäß Figur 1 besitzt der Nachführregler zwei Eingangsschnittstellen 18, 19 für die Längs- und Quervektorkomponenten Δud, Δuq der im Modellierungsmodul 9 berechneten Spannungsabweichung. Die Längsvektorkomponente entspricht des Lageermittlungsfehlers, und die Quervektorkomponente dem Geschwindigkeitsermittlungsfehler. Die Eingangsschnittstelle 18 für die Längsspannungsabweichung Δud ist direkt einem Proportionalglied 20 zugeführt, welches mit der Proportionalverstärkung kp dimensioniert ist und ausgangsseitig mit dem Minus-Eingang eines ersten Nachführ-Summierglieds 21 verbunden ist. Dessen Plus-Eingang ist intern im Nachführ-Regler 6 direkt mit der Eingangsschnittstelle für die Querspannungsabweichung Δuq verbunden. Das Summierergebnis wird ausgangsseitig einem ersten Integrationsglied 22 zugeführt, das erfindungsgemäß ohne Proportionalanteil ausgeführt und auf der Basis der EMK-Konstante KE und einer Zeitkonstante Tω bemessen ist. An dessen Ausgang entsteht per Integration der Differenz der Längs- und Querspannungsabweichung über die Zeit die ermittelte Antriebs-Winkelgeschwindigkeit bzw. Drehzahl ωem, welche über eine erste Nachführregler-Ausgangsschnittstelle 23 sowohl dem Maschinen-Modellierungsmodul 9 als auch dem Geschwindigkeitsregler 5 gleichsam als Istwert bzw. zum Vergleich mit einem Geschwindigkeitssollwert ωsoll und zur Berechnung eines Vorgabe-Querstromwerts iqsoll zu geführt wird. Ferner wird intern im Nachführregler 6 die ermittelte Antriebsgeschwindigkeit ωem noch mit einem zweiten Integrationsglied 24 verarbeitet, welches daraus in an sich bekannter Weise die elektrische Antriebs-Lage beziehungsweise Winkellage berechnet und über die zweite Nachführregler-Ausgangsschnittstelle 25 ausgibt. Wie bereits oben angesprochen, dient die elektrische Antriebslage ϕem, ausgegeben über die zweite Nachführregler-Ausgangsschnittstelle, zur Steuerung bzw. Kontrolle der beiden α,β/d,q bzw. d,q/α,β-Transformationseinheiten 4, 7. Der erfindungsgemäße Nachführregler zeichnet sich bereits allein durch die vereinfachte I-Struktur mit zwei mittelbar aufeinander folgenden Integriergliedern 22, 24 aus.
  • In Figur 2 ist ein gegenüber Figur 1 modifiziertes Steuerungs- bzw. Antriebsregelungssystem dargestellt. Die Modifikationen manifestieren sich vor allem in den mit A-D gekennzeichneten Blöcken des Modellierungsmoduls 9 und einer dritten Eingangsschnittstelle 28 des Nachführreglers 6.
  • Gemäß Figur 2 sind im Vergleich zur Modellierungsanordnung nach Figur 1 die dortigen Induktivitäts-Differenzierglieder sLd, sLq ersetzt durch Induktivitätsproportionalglieder A, D mit der Längs- bzw. Querinduktivität Ld, Lq als jeweiliger Verstärkungsfaktor. Dem Induktivitätsproportionalglied A kann noch in Reihenschaltung ein weiteres Proportionalglied entsprechend dem oben im Zusammenhang mit dem Nachführ-Regler 6 genannten Proportionalglied 20 (interpretierbar als "Lageregulierungsglied") vor- oder nachgeschaltet sein. Dem Ausgang des für die Längsvektorkomponente zuständigen Induktivitäts-Proportionalgliedes A ist ein Multiplizierglied B nachgeordnet, dessen zweiter Eingang mit dem Ausgang des bereits genannten Signumsglieds 15 verbunden ist, wodurch die Richtung der Läuferdrehung oder -Linearbewegung mit einbezogen wird. Der Ausgang des Multipliziergliedes A ist auf den Plus-Eingang eines Induktivitäts-Summiergliedes 26 geführt, dessen zweiter Eingang, verknüpft mit negativem Vorzeichen, mit dem Ausgang des für die Querstromkomponente zuständigen Induktivitäts-Proportionalgliedes D verbunden ist. Der sich am Ausgang des Induktivitäts-Summiergliedes 26 ergebende Differenzwert wird noch mit einem zugeordneten Proportionalglied C gewichtet, das ausgangsseitig mit der dritten Ausgangsschnittstelle 27 für die Induktivitätsspannungsabweichung ΔuL verbunden und entsprechend der maschinenspezifischen EMK-Konstante KE und der Zeitkonstante Tω dimensioniert ist.
  • Gemäß Figur 2 wird der an der dritten Ausgangsschnittstelle 27 bzw. am Ausgang des Proportionalgliedes C ausgegebene Wert für die Induktivitäts-Spannungsabweichung ΔuL der dritten Eingangsschnittstelle 28 des Nachführreglers 6 eingegeben. Intern wird die Spannungsabweichung ΔuL im Nachführ-Regler einem zweiten Nachführ-Summierglied 29 mit positivem Vorzeichen zugeführt. Dem zweiten Eingang des zweiten Nachführ-Summierglieds 29 ist der Ausgang des ersten Integrationsglieds 22 ebenfalls mit positivem Vorzeichen zugeordnet. Der Ausgang des zweiten Nachführ-Summierglieds 29 steht direkt mit der ersten Nachführregler-Ausgangsschnittstelle 23 zur Rückkopplung der ermittelten Antriebs-Geschwindigkeit ωem sowie mit dem Eingang des zweiten Integrationsgliedes 24 zur Ermittlung und Ausgabe der Antriebslage ϕem an die zweite und dritte Koordinaten-Transformationseinheit 4, 7 in Verbindung.
  • Den beiden Ausführungsbeispielen gemäß Figuren 1 und 2 ist gemeinsam, dass die Lage- und Geschwindigkeitsermittlung "sensorisch" allein über Messungen der Statorströme I1, I2 erfolgt.
  • Bezugszeichenliste
  • 1
    Stator
    2
    Umrichter
    3
    3-zu-2 Phasen-Transformationseinheit
    4
    zweite Koordinaten-Transformationseinheit
    iα, iβ
    Stromkomponenten im statorbezogenen α, β-Koordinatensystem
    idsoll, iqsoll
    Längs- bzw. Querstromsollwert
    Id, Iq
    Längs- und Querstromregler
    5
    Geschwindigkeitsregler
    6
    Nachführregler
    ωsoll
    Drehzahlsollwert
    ωem
    ermittelte elektrische Drehzahl
    ϕem
    ermittelte elektrische Winkellage
    7
    dritter Koordinaten-Transformationseinheit
    ud, uq
    Längs- bzw. Querspannungsvorgaben
    uα, uβ
    Spannungsvorgabe im α, β-Koordinatensystem (statorbezogen)
    8
    2-zu-3 Phasen-Transformationseinheit
    u1, u2, u3
    Spannungsvorgabe für drei Phasen
    9
    Motor-Modellierungsmodul
    10
    Drehzahl-Eingangsschnittstellen
    11
    Strom-Eingangsschnittstellen
    12
    Spannungs-Eingangsschnittstelle
    13, 14
    erste und zweite Ausgangsschnittstelle für intern berechnete Spannungsabweichungs-Vektorkomponenten
    KE
    EMK-Konstante
    15
    Signumsglied
    Md, Mq
    Multiplizierglieder
    Sd, Sq
    Spannungssummierglieder
    VSd, VSq
    Vorsummierglieder
    r
    Proportionalglied für Motorwiderstand
    sLd, sLq
    Längs-, Querstrom-Differenzierglied
    SMd
    Vorzeichen-Multiplizierglied
    Δud
    Längsvektorkomponente
    Δuq
    Quervektorkomponente
    16
    EMK-Proportionalglied
    17
    EMK-Summierglied
    18, 19
    Eingangsschnittstellen für Längs- und Querspannungsabweichung
    20
    Proportionalglied
    21
    erstes Nachführ-Summierglied
    22
    erstes Integrationsglied
    23
    erste Nachführregler-Ausgangsschnittstelle
    24
    zweites Integrationsglied
    25
    zweite Nachführregler-Ausgangsschnittstelle
    A,D
    Induktivitäts-Proportionalglieder
    B
    Multiplizierglied
    26
    Induktivitäts-Summierglied
    C
    Proportionalglied
    27
    dritte Ausgangsschnittstelle
    28
    dritte Eingangsschnittstelle
    29
    zweites Nachführ-Summierglied

Claims (18)

  1. Verfahren zur Ermittlung der elektrischen Antriebs-Geschwindigkeit (ωem) und -Lage (ϕem) eines Permanentmagnet-Läufers einer elektrischen bürstenlosen Linear- oder Rotations-Maschine insbesondere für einen Antriebsregelkreis, unter Verwendung mehrphasiger Strommessungen an der Maschine, deren Messwerte (ii,i2) in Abhängigkeit von der ermittelten Lage (ϕem) in ein läuferbezogenes d,q-Koordinatensystem zu einer Längsstrom-Vektorkomponente (id) und einer Querstrom-Vektorkomponente (iq) transformiert werden, und die Längs- und Quervektorkomponenten vom Strom (id,iq) und einer vorgegebenen Spannung (ud,uq) zusammen mit der ermittelten Geschwindigkeit (ωem) als Eingangsvariable einem mathematischen Maschinenmodell (9) zugeführt werden, und das Maschinenmodell (9) eine erste Ausgangsvariable (Δud) und eine zweite Ausgangsvariable (Δuq) generiert, wobei die erste Ausgangsvariable (Δud) im d,q-Koordinatensystem der d- beziehungsweise Längsvektorkomponente sowie einem Lageermittlungsfehler und die zweite Ausgangsvariable (Δuq) im d,q-Koordinatensystem der q- beziehungsweise Quervektorkomponente sowie einem Geschwindigkeitsermittlungsfehler entsprechen, und die beiden Ausgangsvariablen (Δud, Δuq) einem Nachführregler (6) zur Ermittlung und Ausgabe der Lage (ϕem) und/oder Geschwindigkeit (ωem) zugeführt werden, dadurch gekennzeichnet, dass aus dem Maschinenmodell eine dritte Ausgangsvariable (ΔuL) berechnet wird, indem
    a) die Längs- und die Quervektorkomponenten vom Strom(id,iq) mit einer Längs- beziehungsweise Querinduktivität (Ld,Lq) der Maschine jeweils gewichtet werden,
    b) und die dritte Ausgangsvariable (ΔuL) aus der Differenz der beiden Wichtungsergebnisse gebildet wird,
    wobei die dritte Ausgangsvariable (ΔuL) dem Nachführregler (6) zur Verarbeitung für die Ermittlung der Lage (ϕem) und Geschwindigkeit (ωem) zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die mit der Längsinduktivität (Ld) gewichtete Strom-Längskomponente (id) mit dem Vorzeichen beziehungsweise der Richtung der ermittelten Geschwindigkeit (ωem) beeinflusst wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Maschinenmodell (9) die aus den beiden Wichtungsergebnissen gebildete Differenz von einer maschinenspezifischen EMK-Konstante (KE) und/oder von einer Zeitkonstante (Tω) beeinflusst wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass im Maschinenmodell (9) die Differenz durch die EMK-Konstante (KE) und/oder die Zeitkonstante (Tω) dividiert wird, und im Nachführregler (6) die selbe EMK-Konstante (KE) und/oder die selbe Zeitkonstante (Tω) als Parameter für die Integration einer Differenz verwendet werden, die aus dem gegebenenfalls proportional (kp) verstärkten Lageermittlungsfehler (Δud) und des Geschwindigkeitsermittlungsfehlers (Δuq) gebildet wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass im Nachführregler (6) die diesem zugeführte dritte Ausgangsvariable (ΔuL) mit dem Ergebnis einer Integration (22) einer Differenz (21) summiert oder sonst verknüpft wird, welche aus dem gegebenenfalls proportional (kp) verstärkten Lageermittlungsfehler (Δud) und des Geschwindigkeitsermittlungsfehlers (Δuq) gebildet wird, und das Verknüpfungsergebnis als ermittelte Geschwindigkeit (ωem) verwendet und/oder ausgegeben wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Differenz (21) im Nachführregler (6) gebildet und/oder einer Integration (22) ohne Proportionalanteil unterworfen wird.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass im Maschinenmodell (9) die Strom-Längsvektorkomponente (id) mit einem Proportionalfaktor (kp) gewichtet wird, der im Nachführregler (6) zur Regulierung des Lageermittlungsfehler (Δud) verwendet wird.
  8. Einrichtung zur Ermittlung der elektrischen Antriebs-Lage (ϕem) und -Geschwindigkeit (ωem) eines Permanentmagnet-Läufers einer elektrischen bürstenlosen Linear- oder Rotations-Maschine, insbesondere für einen Antriebsregelkreis, geeignet zur Durchführung des Ermittlungs-Verfahrens nach einem der vorangehenden Ansprüche, mit folgenden Funktionskomponenten:
    a) mit einem schaltungs- und/oder programmtechnisch realisierten Maschinen-Modellierungsmodul (9), das aufweist:
    aa) Eingangs-Schnittstellen (10,11,12) für in ein läuferbezogenes d,q-Koordinatensystem transformierte Maschinen-Längs- und - Quervektorkomponenten (id,iq;ud,uq) vom Stator-Strom (i1,i2) und
    einer vorgegebenen Spannung sowie für die ermittelte Geschwindigkeit (ωem),
    ab) und wenigstens zwei Ausgangs-Schnittstellen (13,14) für in das d,q-Koordinatensystem transformierte Vektorkomponenten (Δud, Δuq) einer intern berechneten Spannungsabweichung,
    b) mit einem schaltungs- und/oder programmtechnisch zur Ausgabe der Lage und/oder Geschwindigkeit realisierten Nachführregler (6), der verbunden ist:
    ba) eingangsseitig mit den wenigstens beiden Ausgangschnittstellen (13,14) des Modellierungsmoduls (9)
    bb) und ausgangsseitig mit der Geschwindigkeits-Eingangs-Schnittstelle (10) des Modellierungsmoduls (9),
    dadurch gekennzeichnet, dass
    das Maschinen-Modellierungsmodul (9) wenigstens noch eine dritte Ausgangsschnittstelle (27) für eine Induktivitäts-Spannungsabweichung (ΔuL) aufweist und dazu ausgebildet ist, mittels Proportionalglieder (A,D) die Eingangswerte für die Strom-Längs- und Quervektorkomponenten (id,iq) mit Festwerten für eine Längs- beziehungsweise Querinduktivität (Ld,Lq) des Stators (1) oder der Maschine zu bewerten, mittels eines Induktivitäts-Summierglieds (26) die Differenz aus den induktiv bewerteten Eingangswerten zu bilden und diese über die dritte Ausgangsschnittstelle (27) auszugeben, mit der der Nachführregler (6) eingangsseitig zum Empfang der Differenz verbunden und dazu ausgebildet ist, die Differenz zur Ermittlung der Geschwindigkeit (ωem) zu verarbeiten und letztere an die Geschwindigkeits-Eingangs-Schnittstelle (10) des Modellierungsmoduls (9) auszugeben.
  9. Ermittlungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass im Maschinenmodell (9) die Eingangsschnittstelle (11) für die Strom-Längsvektorkomponente (id) einem Proportionalglied (A) mit einer Proportionalverstärkung (kp) zugeführt ist, und im Nachführregler (6) ein Proportionalglied (20) mit der selben oder ähnlichen Proportionalverstärkung (kp) angeordnet ist zur Gewichtung des Lageermittlungsfehlers (Δud).
  10. Ermittlungseinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass im Maschinenmodell das Proportionalglied mit der Proportionalverstärkung (kp) in Reihenschaltung mit einem entsprechend dem Längsinduktivitäts-Festwert (Ld) dimensionierten Induktivitäts-Proportionalglied (A) angeordnet ist.
  11. Ermittlungseinrichtung nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, dass der Ausgang des Induktivitäts-Summierglieds (26) mit der dritten Ausgangsschnittstelle (27) über ein Proportionalglied (C) verbunden ist, das entsprechend einer EMK-Konstante (KE) und/oder einer Zeitkonstante (Tω) dimensioniert ist, und im Nachführregler (6) zur dortigen Verarbeitung einer gegebenenfalls gewichteten oder sonst bearbeiteten Kombination der d,q-Vektorkomponenten (Δud, Δuq) der vom vorgeordneten Modellierungsmodul (9) zugeführten Spannungsabweichung ein erstes Integrationsglied (22) angeordnet ist, das entsprechend der selben oder ähnlichen EMK-Konstante (KE) und/oder Zeitkonstante (Tω) eingestellt ist.
  12. Maschinen-Modellierungsmodul für eine elektrische bürstenlosen Linear- oder Rotations-Maschine mit Permanentmagnet-Läufer, geeignet zum Einsatz in der Ermittlungseinrichtung nach Anspruch 8 oder 9, mit
    a) Eingangs-Schnittstellen (11) für in ein läuferbezogenes d,q-Koordinatensystem transformierte Maschinen-Längs- und - Quervektorkomponenten (id,iq ud,uq;) vom Strom und einer vorgegebenen Spannung sowie für eine extern ermittelte Maschinen-Geschwindigkeit (ωem),
    b) und mit mindestens zwei Ausgangs-Schnittstellen (13,14) für in das d,q-Koordinatensystem transformierte Längs- und Quervektorkomponenten (Δud, Δuq) einer intern berechneten Spannungsabweichung,
    c) und mit mehreren Proportionalgliedern (r,A,D) zur Gewichtung der Strom-Vektorkomponenten (id,iq) mit einem ohmschen Stator- oder Maschinenwiderstand (r) und einer oder mehreren Stator- oder Maschineninduktivitäten (Ld,Lq),
    gekennzeichnet durch
    wenigstens noch eine dritte Ausgangsschnittstelle (27) für eine Induktivitäts-Spannungsabweichung (ΔuL), zu deren Erzeugung ein Längs- und ein Querinduktivitäts-Proportionalglied (A,D) mit Verstärkungen entsprechend einer Längs- beziehungsweise Querinduktivität (Ld,Lq) angeordnet und eingangseitig mit den Eingangs-Schnittstellen (11) für die Strom-Längs- und Quervektorkomponenten (id,iq) verbunden sind, und die beiden Proportionalglied-Ausgänge mit den Eingängen eines Induktivitäts-Summierglieds (26) direkt oder indirekt gekoppelt sind, und der Ausgang des Induktivitäts-Summierglieds (26) unmittelbar oder mittelbar mit der dritten Ausgangsschnittstelle ( 27) gekoppelt ist.
  13. Maschinen-Modellierungsmodul nach Anspruch 12, gekennzeichnet durch ein Vorzeichen- beziehungsweise Signumsglied (15), das an seinem Eingang mit der Eingangs-Schnittstelle (10) für die extern ermittelte Maschinen-Geschwindigkeit (ωem) verbunden und ausgangsseitig über ein Multiplizierglied (B) mit dem Ausgang eines Proportionalgliedes (A,D) verknüpft ist, das die Strom-Längs- oder Quervektorkomponente (id, iq) mit der Längs- oder Querinduktivität (Ld,Lq) gewichtet.
  14. Maschinen-Modellierungsmodul nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Ausgang des Induktivitäts-Summierglieds (26) über ein Proportionalglied (C), dessen Proportionalverstärkung über Festwerte für eine maschinenspezifische EMK-Konstante (KE) und/oder Zeitkonstante (Tω) bestimmt ist, der dritten Ausgangsschnittstelle (27) zugeführt ist.
  15. Nachführregler (6) zur Durchführung des Verfahrens oder zum Einsatz in der Ermittlungseinrichtung nach einem der vorangehenden Ansprüche, mit folgenden Merkmalen:
    a) mit wenigstens zwei Eingangs-Schnittstellen (18,19) für in das d,q-Koordinatensystem transformierte Längs- und Quervektorkomponenten (Δud, Δuq) einer extern berechneten und zugeführten Spannungsabweichung,
    b) mit mindestens einer Ausgangsschnittstelle (23) für eine intern ermittelte Antriebs-Geschwindigkeit (ωem),
    c) mit einem Proportionalglied (20,kp), dessen Eingang mit der Eingangsschnittstelle (18) für die Längsvektorkomponente (Δud) der extern berechneten Spannungsabweichung beziehungsweise Lageermittlungsfehler (Δu) verbunden ist,
    d) mit einem ersten Nachführ-Summierglied (21), dessen erster Eingang mit dem Ausgang des Proportionalglieds (20,kp), und dessen zweiter Eingang über die zweite Eingangsschnittstelle (19) mit der Quervektorkomponente (Δuq) der Spannungsabweichung beziehungsweise des Geschwindigkeitsermittlungsfehlers verbunden ist,
    gekennzeichnet durch
    wenigstens noch eine dritte Eingangsschnittstelle (28) für eine von extern zugeführte Induktivitäts-Spannungsabweichung (ΔuL), wobei die dritte Eingangsschnittstelle (28) mit dem ersten Eingang eines Verknüpfungsglieds verbunden ist, dessen zweiter Eingang den Ausgang des ersten Nachführ-Summierglieds (21) mittel- oder unmittelbar erfasst, und dessen Ausgang über die mindestens eine Ausgangsschnittstelle (23) für die Antriebs-Geschwindigkeit (ωem) abgreifbar ist.
  16. Nachführregler nach Anspruch 15, dadurch gekennzeichnet, dass das Verknüpfungsglied als dem ersten Nachführ-Summierglied (21) mittel- oder unmittelbar nachgeordnetes, zweites Nachführ-Summierglied (29) ausgebildet ist.
  17. Nachführregler nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass dem ersten Nachführ-Summierglied (21) und dem Verknüpfungs- oder zweiten Nachführ-Summierglied (29) einzig ein Integrationsglied (22) zwischengeordnet ist.
  18. Nachführregler nach Anspruch 17, dadurch gekennzeichnet, dass das Integrationsglied (22) ohne Proportionalanteil und/oder auf der Basis der EMK-Konstante (KE) und/oder Zeitkonstante (Tω) dimensioniert ist.
EP07113231A 2007-07-26 2007-07-26 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine Active EP2019482B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT07113231T ATE463073T1 (de) 2007-07-26 2007-07-26 System zur lage- und geschwindigkeitsermittlung bei einem permanentmagnet-läufer einer elektrischen maschine
EP07113231A EP2019482B1 (de) 2007-07-26 2007-07-26 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine
DE502007003311T DE502007003311D1 (de) 2007-07-26 2007-07-26 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine
DE202008009574U DE202008009574U1 (de) 2007-07-26 2008-07-16 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine
US12/177,182 US7999498B2 (en) 2007-07-26 2008-07-22 System for estimation of position and speed in a permanent magnet rotor of an electrical motor
JP2008191634A JP5501580B2 (ja) 2007-07-26 2008-07-25 電気モータの永久磁石ロータにおける位置および速度の推定システム
CN2008101443425A CN101399514B (zh) 2007-07-26 2008-07-25 用于检测电机永磁转子的位置和速度的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07113231A EP2019482B1 (de) 2007-07-26 2007-07-26 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine

Publications (2)

Publication Number Publication Date
EP2019482A1 EP2019482A1 (de) 2009-01-28
EP2019482B1 true EP2019482B1 (de) 2010-03-31

Family

ID=38562827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07113231A Active EP2019482B1 (de) 2007-07-26 2007-07-26 System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine

Country Status (6)

Country Link
US (1) US7999498B2 (de)
EP (1) EP2019482B1 (de)
JP (1) JP5501580B2 (de)
CN (1) CN101399514B (de)
AT (1) ATE463073T1 (de)
DE (2) DE502007003311D1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248009B2 (en) 2008-11-17 2012-08-21 Rockwell Automation Technologies, Inc. Motor controller having integrated communications configurations
US8375809B2 (en) * 2010-03-02 2013-02-19 Hamilton Sundstrand Corporation Load monitoring for electromechanical systems
EP2421146B1 (de) * 2010-08-16 2015-02-11 Baumüller Nürnberg GmbH Vorrichtung und Verfahren zur drehgeberlosen Identifikation magnetomechanischer Kenngrößen eines Drehstrom-Synchronmotors
GB2489434A (en) * 2011-03-25 2012-10-03 Technelec Ltd Controlling an electrical machine with an observer
EP2552014A3 (de) 2011-07-28 2016-08-17 Vestas Wind Systems A/S Verfahren zur Positionierung einer sensorlosen Steuerung einer Elektromaschine
EP2552015B1 (de) 2011-07-28 2018-05-16 Vestas Wind Systems A/S Verfahren zur Positionierung einer sensorlosen Steuerung einer Elektromaschine
CN102507189B (zh) * 2011-09-23 2014-04-02 奇瑞汽车股份有限公司 混合动力电机转子位置的测试方法和测试系统
DE202012000091U1 (de) 2012-01-05 2012-03-16 Frank Mayer Einrichtung zur Regelung einer Drehfeldmaschine an einem Direktumrichter bis Drehzahl Null
US8823301B2 (en) 2012-11-05 2014-09-02 Whirlpool Corporation Method and device for detecting rotor position in a permanent magnet synchronous motor-driven washing machine
CN103346727B (zh) * 2013-07-27 2016-01-20 湖北立锐机电有限公司 应用于pmsm无位置控制的角度跟踪观测器及其实现方法
US9722522B2 (en) 2014-04-02 2017-08-01 Canrig Drilling Technology Ltd. Method for controlling torque in permanent magnet motor drives
US10655377B2 (en) 2016-04-21 2020-05-19 Westinghouse Air Brake Technologies Corporation Method and system for detecting an obstruction of a passenger door
JP6661509B2 (ja) * 2016-10-04 2020-03-11 日立オートモティブシステムズ株式会社 ブラシレスモータの制御装置及び制御方法
JP6757226B2 (ja) * 2016-10-07 2020-09-16 株式会社マキタ 電動工具
GB2579633B (en) * 2018-12-07 2023-02-01 Zf Automotive Uk Ltd A method of characterising a permanent magnet synchronous motor
CN112968643B (zh) * 2021-02-01 2022-08-26 南京邮电大学 一种基于自适应扩展h∞滤波的无刷直流电机参数辨识方法
CN115459663A (zh) 2021-05-20 2022-12-09 台达电子工业股份有限公司 马达控制方法
JP7362003B2 (ja) * 2021-08-24 2023-10-16 三菱電機株式会社 回転機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP3719910B2 (ja) * 2000-05-30 2005-11-24 株式会社東芝 モータ制御装置
JP3651595B2 (ja) * 2001-12-13 2005-05-25 株式会社東芝 洗濯機のインバータ装置及び洗濯乾燥機のインバータ装置
JP2004015858A (ja) * 2002-06-04 2004-01-15 Meidensha Corp Pmモータの位置センサレス制御方式
JP3972124B2 (ja) * 2002-07-10 2007-09-05 株式会社日立製作所 同期電動機の速度制御装置
JP4230276B2 (ja) 2003-05-19 2009-02-25 本田技研工業株式会社 ブラシレスdcモータの制御装置
CN1767356A (zh) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 直流无刷电机的速度控制装置及其方法
CN100413207C (zh) * 2006-11-17 2008-08-20 清华大学 一种异频供电永磁同步电动机矢量控制系统

Also Published As

Publication number Publication date
JP2009033963A (ja) 2009-02-12
US7999498B2 (en) 2011-08-16
CN101399514B (zh) 2012-09-05
CN101399514A (zh) 2009-04-01
EP2019482A1 (de) 2009-01-28
US20090030645A1 (en) 2009-01-29
ATE463073T1 (de) 2010-04-15
DE202008009574U1 (de) 2009-03-12
JP5501580B2 (ja) 2014-05-21
DE502007003311D1 (de) 2010-05-12

Similar Documents

Publication Publication Date Title
EP2019482B1 (de) System zur Lage- und Geschwindigkeitsermittlung bei einem Permanentmagnet-Läufer einer elektrischen Maschine
EP2023479B1 (de) System zur nahtlosen Geschwindigkeits- und/oder Lageermittlung einschließlich Stillstand bei einem Permanentmagnet-Läufer einer elektrischen Maschine
DE60024222T2 (de) Verfahren zur Schätzung der Rotorlage eines Synchronmotors, Verfahren zur Steuerung eines sensorlosen Synchronmotors und eine Steuerung für einen Synchronmotor
DE102007061905B4 (de) Hochansprechende Permanentmagnetmotorsteuerung
DE60224021T2 (de) Steuergerät für einen Elektromotor
DE10206410A1 (de) Rotorwinkel-Erfassungsvorrichtung für bürstenlose Gleichstrommotoren
EP0127158B1 (de) Verfahren und Vorrichtung zur Bestimmung des Flussvektors einer Drehfeldmaschine aus Ständerstrom und Ständerspannung und deren Anwendung
EP2226929B1 (de) Plausibilitäts-Überwachungssystem für Bewegungsmessungen an einer elektrischen Antriebseinrichtung
DE112010001465T5 (de) Wechselstrommotor-Steuervorrichtung und Wechselstrommotor-Treibersystem
DE10206191B4 (de) Verfahren zur feldorientierten Regelung einer permanenterregten Synchronmaschine mit Reluktanzmoment
DE112008003590B4 (de) Magnetpolpositions-Schätzverfahren für einen AC-Synchronmotor
DE102008058872A1 (de) Verfahren und System zur sensorlosen Steuerung eines Elektromotors
DE112004002619T5 (de) Motorregelanordnung
DE102013207121A1 (de) System zur Steuerung einer Regelgrösse einer rotierenden Maschine
WO2016207383A1 (de) VERFAHREN ZUM ERMITTELN VON STROMABHÄNGIGEN UND/ODER DREHWINKELSTELLUNGSABHÄNGIGEN KENNGRÖßEN EINER ELEKTRISCHEN MASCHINE UND FREQUENZUMRICHTER
DE112020005654T5 (de) Motorantriebseinrichtung, ausseneinheit einer klimaanlage, die diese enthält, undmotorantriebssteuerverfahren
EP2144362B1 (de) Verfahren und Anordnung zur Beobachtung der Antriebsgeschwindigkeit eines Permanentmagnet-Läufers in einem Antriebsregelkreis
DE102008058739B4 (de) Verfahren zum feldorientierten Betrieb einer geberlosen Asynchronmaschine bis zum Stillstand
DE102019116339B4 (de) Motoransteuervorrichtung
WO2012037983A1 (de) Verfahren zur (kupfer-)verlustoptimalen regelung einer asynchronmaschine mit einem umrichter
DE102008045622B4 (de) Verfahren zur Adaption einer Polradorientierung einer nicht linearen, geberlosen, permanenterregten Synchromaschine
DE102008007100A1 (de) Verfahren und Vorrichtung zur Stromregelung oder Momentenregelung
DE102019130638A1 (de) Vorrichtung und Verfahren zur Steuerung eines Motors
DE112018008190T5 (de) Steuervorrichtung für eine rotierende Maschine und Steuervorrichtung eines elektrischen Fahrzeugs
DE102010021488A1 (de) Verfahren zur (kupfer-)verlustoptimalen Regelung einer Asynchronmaschine mit einem Frequenzumrichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003311

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAELTE

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

BERE Be: lapsed

Owner name: BAUMULLER NURNBERG G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

26N No opposition filed

Effective date: 20110104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100726

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAUMUELLER NUERNBERG GMBH, DE

Free format text: FORMER OWNER: BAUMUELLER NUERNBERG GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 17

Ref country code: GB

Payment date: 20230724

Year of fee payment: 17

Ref country code: CH

Payment date: 20230802

Year of fee payment: 17

Ref country code: AT

Payment date: 20230718

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17