EP1733470A1 - Circuit device for operating a motor and corresponding method - Google Patents

Circuit device for operating a motor and corresponding method

Info

Publication number
EP1733470A1
EP1733470A1 EP05717083A EP05717083A EP1733470A1 EP 1733470 A1 EP1733470 A1 EP 1733470A1 EP 05717083 A EP05717083 A EP 05717083A EP 05717083 A EP05717083 A EP 05717083A EP 1733470 A1 EP1733470 A1 EP 1733470A1
Authority
EP
European Patent Office
Prior art keywords
voltage
switching
semiconductor device
switched
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05717083A
Other languages
German (de)
French (fr)
Other versions
EP1733470B1 (en
Inventor
Andreas Fritsch
Markus Meier
Norbert Reichenbach
Fritz Royer
Johann Seitz
Bernhard Streich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1733470A1 publication Critical patent/EP1733470A1/en
Application granted granted Critical
Publication of EP1733470B1 publication Critical patent/EP1733470B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts

Definitions

  • the present invention relates to a switching device for operating a motor with a mechanical contact device which is arranged between two connections and which can be switched on in a continuous operating phase of the motor to bridge the connections, and a semiconductor device which is connected in parallel with the contact device and which is between the two Connections in a start phase of the engine for conductive connection of the connections can be switched on.
  • the present invention relates to a corresponding method for operating a motor with such a switching device.
  • bypass contacts In today's known electronic motor starters, the parallel connection of semiconductor elements and mechanical contacts is common. In continuous operation, the semiconductor elements are bridged by the mechanical contacts. As a result, instead of the comparatively high power losses of the semiconductor elements, only the low power losses of the mechanical contact system occur in continuous operation.
  • the mechanical contact system hereinafter referred to as bypass contacts or bypass contact system
  • bypass contacts bypass contact system
  • Operational current transition is understood to mean the transitions from the semiconductor element to the bypass contact system and vice versa, which occur when changing between operational control states.
  • the transition from the ramp ramp end to continuous operation (also referred to as the bypass phase) may be mentioned as an example.
  • a further possibility is hardware-controlled positive ignition of the semiconductor elements, as mentioned in DE 20014351 U1.
  • the object of the present invention is therefore to avoid the disadvantages mentioned above, in particular to reliably detect a faulty opening of the bypass contacts when the semiconductor elements are switched off.
  • this object is achieved by a switching device for starting a motor with a mechanical contact device which is arranged between two connections and which can be switched on in a continuous operating phase of the motor to bridge the connections, and a semiconductor device which is connected in parallel with the contact device and which between the two connections can be switched on in a start phase of the engine for the conductive connection of the connections, and a voltage monitoring device for monitoring the voltage at the connections and for Turning on the semiconductor device if the voltage exceeds a predetermined value.
  • a method for operating a motor with such a switching device is provided, the voltage at the connections being monitored and the semiconductor circuit being switched on if the voltage exceeds a predetermined value.
  • An arc can thus be reliably detected in a parallel circuit arrangement of semiconductor elements and bypass contacts without a mechanical arc extinguishing device when the semiconductor elements are switched off.
  • a targeted and defined current supply can be achieved via the semiconductor elements and damage to the device by the arc can be avoided.
  • reliable monitoring and evaluation e.g. error reporting
  • the semiconductor device preferably has two thyristors connected in anti-parallel. These can be ignited electronically at defined times and enable very quick switching on and off. This means that the effective voltage can be continuously increased, for example when starting an engine.
  • the voltage monitoring device can have an analog converter, a threshold value comparison element and a control unit, so that an analog voltage signal can be compared with a threshold value and a resultant, binary comparison result can be used as an input signal for the control unit for switching the semiconductor device.
  • This analog evaluation enables simple and inexpensive voltage monitoring to be achieved.
  • the voltage monitoring device can comprise a control unit, in which an analog / digital converter and a threshold value comparison element are integrated, so that a digitized voltage signal can be compared with a threshold value and a resultant comparison result can be used for switching the semiconductor device by the control unit. This means that all components for digital voltage monitoring are integrated in the control unit, which may lead to assembly advantages.
  • the voltage range of the monitored voltage should include the arc voltage occurring at the contact device.
  • the occurrence of an arc can thus be determined in a targeted manner.
  • the switching device according to the invention has a switch-off device for switching off the semiconductor device after a defined period of time or number of periods of a voltage curve following the switching on of the semiconductor device by the voltage monitoring device.
  • the mechanical contact device switches back to low-loss continuous operation after the semiconductor device has been switched on.
  • the switch-off device outputs a fault signal if the semiconductor device is switched on several times in a predetermined time period by the voltage monitoring device. This repeated switching on of the semiconductor device indicates an irreversible error, so that for safety reasons it can be appropriate to use the fault signal to actuate an external switching device connected upstream and in series with the switching device in order to interrupt the current flow and the like Initiate repair measures.
  • Another preferred embodiment is the integration of a switching element in the switching device. This switching element is in series with the parallel connection of mechanical contact device and semiconductor device and is actuated by the control unit in the event of an irreversible error in order to interrupt the current flow.
  • FIG. 1 shows a basic circuit diagram of a switching device according to the invention.
  • FIG 2 shows waveform diagrams of the switching device according to the invention.
  • the aim of the invention is to recognize the non-operational state of the bypass contact opening (for example due to an error or mechanical stress) within the bypass phase and to react in such a way that irreversible damage to the contacts does not result in irreparable damage to the contacts Arcing is coming.
  • the device should not be thermally destroyed by a standing arc and the effects of such a fault should be limited to the device itself.
  • reversible errors are, for example, a brief interruption or a failure of the control voltage of the coil drive of the bypass contact system, which leads to the contacts being opened unintentionally. Reversible errors are also mechanical shocks that also lead to the unwanted opening of the contacts.
  • An irreversible fault can be a break in the coil wire of the coil drive, a break in the main contact spring of the bypass contact system or a component defect in the control of the coil drive.
  • the voltage across the parallel circuit arrangement is detected according to the invention.
  • the bypass contacts are closed, almost no voltage drops across the parallel circuit. If the bypass contacts open, the resulting voltage corresponds to the arc voltage between the bypass contacts.
  • the arc voltage can be detected according to FIG. 1 with a voltage detection circuit.
  • the voltage at the parallel circuit arrangement consisting of the mechanical contacts or the bypass contact system 1 and the semiconductor device 2 connected in parallel thereto is monitored.
  • the semiconductor device 2 here consists of an parallel connection of two thyristors 3 and 4.
  • the voltage Up present at the parallel circuit arrangement is recorded in a voltage monitoring device 5 and used to control the semiconductor device 2 or the thyristors 3 and 4 and the bypass contact system 1.
  • the voltage monitoring device consists of an analog converter 6, a threshold value comparison element 7 and a control unit 8 connected to it.
  • the analog converter 6 converts the analog voltage signal Up into an analog voltage Uap of a suitable level for the purpose of level adjustment.
  • the downstream threshold value comparison element 7 effects a comparison of the analog voltage signal Uap with one predetermined threshold.
  • the digital output signal Udp of this threshold value comparison element 7 changes its level as soon as the digital voltage signal exceeds or falls below the threshold or limit value.
  • the output signal Udp of the threshold value comparison element 7 is used by the control unit 8 to control the thyristors 3 and 4 and the bypass system 1.
  • the control lines are only indicated by an arrow from the control unit 8 in FIG.
  • a storm contact 9 can be provided on the control unit 8 for outputting a storm signal.
  • a switching element 10 can be connected in series in front of the parallel connection of semiconductor device 2 and mechanical contact device 1, with which the current flow can be interrupted or switched off in the event of a defect in the semiconductor device 2 or the contact device 1.
  • the analog / digital converter and the threshold value comparison element can be integrated in the control unit.
  • the analog voltage signal Up is applied directly to an A / D input of the control device and the voltage limit value monitoring is carried out within the control device.
  • the behavior of the digital signal Udp described above with regard to level and edge changes is completely monitored and utilized in the control device.
  • the control device causes the semiconductor elements 3, 4 to be switched on immediately.
  • the current flow is thus taken over by the semiconductor elements as quickly as possible and the voltage across the parallel circuit is reduced to the low forward voltage of the semiconductor elements.
  • the arc is thus extinguished.
  • the use of an electronic arc detection (or contact monitoring system) and extinguishing system results in a number of advantages: • The use of bypass contacts without mechanical arc extinguishing device and thus a simple, compact and inexpensive construction of the contacts is made possible;
  • IThy r is t or the current through the anti-parallel connected thyristors 3, 4, Ißypass corresponds to the current through the bypass system and iGesam the sum of I ⁇ hyrstor
  • the control device 8 Starting from the flank caused by the change in level of the digital voltage signal Udp, the control device 8 initiates an instantaneous switch-on of the semiconductor elements 3, 4 at time ti.
  • the current flow is thus stopped as quickly as possible by the semiconductor elements 3, 4 (cf. I ⁇ h y r i stor ) and the voltage Up at the parallel connection is due to the low forward voltage of the semiconductor elements. The arc is thus extinguished.
  • the control unit 8 switches the thyristors off again or ends their ignition. Thereupon the next zero crossing of the thyristor current Imyistor must be waited for at time t 3 so that the thyristors 3, 4 can go out, so that the switching device is switched off. Accordingly, the voltage Up at the parallel connection rises to the current voltage value of the switching device. This voltage increase in terms of amount is detected by the threshold value comparison element 7, whereby the digital signal Udp changes the level. Even afterwards if the ana- If voltage signal Up makes a zero crossing, corresponding level changes of the digital signal Udp take place before and after the zero crossing depending on the selected threshold value.
  • the switching device just described is typically not switched off after detection of a first arc, since this arc could have been triggered by a reversible fault. Rather, the bypass system is switched on again after a predetermined time and the thyristors 3 and 4 are switched off, so that the switching device continues to operate in normal operation and there was no interruption of the current iGes amt . If one or more arcs are detected again within a certain period of time, this fact can be used to bring the switching device into a safe state. The cause of the multiple arcs will be one of the irreversible faults described above.
  • a safe state is achieved in that the thyristors 3 and 4 are switched on permanently when an irreversible error is detected, in order to prevent thermal destruction of the switching device as a result of arcing.
  • the thyristors must also remain switched on when an OFF signal is given to the switching device, since it is no longer possible to open the mechanical contact device because of the irreversible error.
  • the switching device can also be brought into the safe state by a control unit 8 Fault signal is emitted, which, for example, switches off an external, upstream switching element located in series with the switching device and thus interrupts the flow of current.
  • a control unit 8 Fault signal is emitted, which, for example, switches off an external, upstream switching element located in series with the switching device and thus interrupts the flow of current.
  • the transition to the safe state can also take place in that the control unit 8 interrupts a switching element present in the switching device, which in series for Parallel connection of semiconductor device and mechanical contact device.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

The aim of the invention is to provide an inexpensive electronic arc quenching system which reliably detects and processes a non-functional state of opening of the bypass contacts (1) of a circuit device for starting a motor for example due to malfunction or mechanical stress. For this purpose, the voltage across a parallel circuit device consisting of the bypass system (1) and a semiconductor device (2) is detected and the circuit elements (1, 3, 4) are controlled in accordance therewith. If the bypass system (1) is unintentionally opened, an arc voltage is applied to the bypass contacts. When this voltage is detected, the control unit (8) switches on the semiconductor device (2) so that the current flows across the semiconductor device (2) and the arc is extinguished.

Description

Beschreibungdescription
Schaltvorrichtung zum Betreiben eines Motors und entsprechendes VerfahrenSwitching device for operating an engine and corresponding method
Die vorliegende Erfindung betrifft eine Schaltvorrichtung zum Betreiben eines Motors mit einer mechanischen Kontakteinrichtung, die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und einer Halbleitereinrichtung, die zu der Kontakteinrichtung parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist.The present invention relates to a switching device for operating a motor with a mechanical contact device which is arranged between two connections and which can be switched on in a continuous operating phase of the motor to bridge the connections, and a semiconductor device which is connected in parallel with the contact device and which is between the two Connections in a start phase of the engine for conductive connection of the connections can be switched on.
Darüber hinaus betrifft die vorliegende Erfindung ein entsprechendes Verfahren zum Betreiben eines Motors mit einer derartigen Schaltvorrichtung.In addition, the present invention relates to a corresponding method for operating a motor with such a switching device.
Bei heute bekannten elektronischen Motorstartern ist die Parallelschaltung von Halbleiterelementen und mechanischen Kontakten üblich. Im Dauerbetrieb werden die Halbleiterelemente durch die mechanischen Kontakte überbrückt. Dadurch entstehen im Dauerbetrieb statt der vergleichsweise hohen Verlustleistungen der Halbleiterelemente nur die geringen Verlustleistungen des mechanischen Kontaktsystems. Das mechanische Kontaktsystem (im Weiteren als Bypasskontakte bzw. Bypasskontaktsystem bezeichnet) ist aus wirtschaftlichen Gründen heute üblicherweise ohne Lichtbogenlöschvorrichtung ausgestattet.In today's known electronic motor starters, the parallel connection of semiconductor elements and mechanical contacts is common. In continuous operation, the semiconductor elements are bridged by the mechanical contacts. As a result, instead of the comparatively high power losses of the semiconductor elements, only the low power losses of the mechanical contact system occur in continuous operation. For economic reasons, the mechanical contact system (hereinafter referred to as bypass contacts or bypass contact system) is usually equipped without an arc extinguishing device.
Um eine Zerstörung des Bypasssystems beim betriebsmäßigen Stromübergang vom Halbleiterelement auf das Bypasskontaktsystem und umgekehrt zu vermeiden, werden die Halbleitersysteme und das Bypasskontaktsystem durch geeignete Steuerabläufe so angesteuert, dass es nur zu einer minimalen Lichtbogenbildung kommt . Unter betriebsmäßigem Stromübergang werden die Übergänge vom Halbleiterelement auf das Bypasskontaktsystem und umgekehrt verstanden, die beim Wechsel zwischen betriebsmäßigen Steuer- zuständen auftreten. Beispielhaft sei der Übergang vom Hochlauframpenende in den Dauerbetrieb (auch als Bypassphase bezeichnet) genannt.In order to avoid destruction of the bypass system during operational current transfer from the semiconductor element to the bypass contact system and vice versa, the semiconductor systems and the bypass contact system are controlled by suitable control processes in such a way that there is only minimal arcing. Operational current transition is understood to mean the transitions from the semiconductor element to the bypass contact system and vice versa, which occur when changing between operational control states. The transition from the ramp ramp end to continuous operation (also referred to as the bypass phase) may be mentioned as an example.
Werden die Steuerabläufe durch Fehler des Bypasskontaktsys- tems gestört, kann sich folgendes Problem ergeben: Wegen der fehlenden Lichtbogenlöschvorrichtung entsteht ein Stehlichtbogen, der zu einer thermischen Zerstörung des kompletten Geräts führen kann. Derartige Fehler des Bypasskontaktsystems sind beispielsweise: Bruch des Spulendrahtes, Bruch der Hauptkontaktfeder, Ausfall der Ansteuerung des Bypasskontaktsystems und Ausfall der Versorgungsspannung des Bypasssystems .If the control processes are disturbed by faults in the bypass contact system, the following problem can arise: Because of the missing arc extinguishing device, a standing arc arises, which can lead to thermal destruction of the entire device. Such errors of the bypass contact system are, for example: breakage of the coil wire, breakage of the main contact spring, failure of the control of the bypass contact system and failure of the supply voltage of the bypass system.
Zur Vermeidung der Lichtbogenbildung werden nach bekanntem Stand der Technik (z.B. US-Patent 4,618,906 "Hybrid SolidTo avoid arcing, according to known prior art (e.g. U.S. Patent 4,618,906 "Hybrid Solid
State/ Mechanical Switch with Failur.e Protection", EP 0 926 809 Bl bzw. US 6,111,377 "Control Device for a multiphase e- lectric Motor") in einer solchen Parallelschaltungsanordnung die Halbleiterelemente vor dem Einschaltbefehl für die By- passkontakte eingeschaltet und erst wieder, nachdem die Bypasskontakte per Befehl geöffnet worden sind, ausgeschaltet. Damit wird ein lichtbogenarmes Ein- und Ausschalten der Bypasskontakt erreicht.State / Mechanical Switch with Failur.e Protection ", EP 0 926 809 Bl or US 6,111,377" Control Device for a multiphase electrical motor ") in such a parallel circuit arrangement, the semiconductor elements are switched on before the switch-on command for the bypass contacts and only again after the bypass contacts have been opened with a command, so that the bypass contact is switched on and off with little arcing.
Eine weitere Möglichkeit stellt eine hardwaregesteuerte Zwangszündung der Halbleiterelemente dar, wie sie in DE 20014351 Ul genannt ist.A further possibility is hardware-controlled positive ignition of the semiconductor elements, as mentioned in DE 20014351 U1.
Eine andere Möglichkeit ist das dauerhafte Einschalten der Halbleiterelemente in der gesamten Bypassphase. Dies hat jedoch eine Reihe von Nachteilen: • Es ist eine größere Dimensionierung der Ansteuerelektronik für die Halbleiterelemente notwendig, woraus sich eine höhere Verlustleistung in der Ansteuerelektronik durch höhere Stromaufnahme und höhere Geräteinnentempe- ratur ergibt .Another possibility is the permanent switching on of the semiconductor elements in the entire bypass phase. However, this has a number of disadvantages: • A larger dimensioning of the control electronics for the semiconductor elements is necessary, which results in a higher power loss in the control electronics due to higher power consumption and higher device temperature.
• Ferner ist keine Kontrolle der Stromführung (Halbleiterelement oder Bypass) möglich. • Bei hohen Übergangswiderständen an den Bypasskontakten erfolgt der Stromfluss ausschließlich über die Halbleiterelemente, so dass eine thermische Überlastung der Halbleiterelemente eintreten kann.• Furthermore, it is not possible to control the current supply (semiconductor element or bypass). • With high contact resistances at the bypass contacts, the current flows exclusively through the semiconductor elements, so that thermal overload of the semiconductor elements can occur.
Zur Vermeidung dieser Nachteile können, wie erwähnt, dieTo avoid these disadvantages, as mentioned, the
Halbleiterelemente jeweils kurz nach dem lichtbogenarmen Einschalten der Bypasskontakte ausgeschaltet und kurz vor dem lichtbogenarmen Ausschalten der Bypasskontakte wieder eingeschaltet werden. Damit wird eine Stromführung über die By- passkontakte erzwungen.Semiconductor elements are switched off shortly after the bypass contacts are switched on with low arcing and switched on again shortly before the bypass contacts are switched off with low arcing. This means that current is forced through the bypass contacts.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, die oben genannten Nachteile zu vermeiden, insbesondere ein fehlerhaftes Öffnen der Bypasskontakte bei ausgeschalteten Halbleiterelementen zuverlässig zu erkennen.The object of the present invention is therefore to avoid the disadvantages mentioned above, in particular to reliably detect a faulty opening of the bypass contacts when the semiconductor elements are switched off.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine Schaltvorrichtung zum Starten eines Motors mit einer mechanischen Kontakteinrichtung, die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und einer Halbleitereinrichtung, die zu der Kontakteinrichtung parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist, sowie einer Spannungsüberwachungseinrich- tung zum Überwachen der Spannung an den Anschlüssen und zum Einschalten der Halbleitereinrichtung, falls die Spannung einen vorgegebenen Wert übersteigt.According to the invention, this object is achieved by a switching device for starting a motor with a mechanical contact device which is arranged between two connections and which can be switched on in a continuous operating phase of the motor to bridge the connections, and a semiconductor device which is connected in parallel with the contact device and which between the two connections can be switched on in a start phase of the engine for the conductive connection of the connections, and a voltage monitoring device for monitoring the voltage at the connections and for Turning on the semiconductor device if the voltage exceeds a predetermined value.
Ferner ist gemäß der vorliegenden Erfindung ein Verfahren zum Betreiben eines Motors mit einer derartigen Schaltvorrichtung vorgesehen, wobei die Spannung an den Anschlüssen überwacht und die Halbleiterschaltung eingeschaltet wird, falls die Spannung einen vorgegebenen Wert übersteigt .Furthermore, according to the present invention, a method for operating a motor with such a switching device is provided, the voltage at the connections being monitored and the semiconductor circuit being switched on if the voltage exceeds a predetermined value.
In vorteilhafter Weise kann damit ein Lichtbogen in einer Parallelschaltungsanordnung von Halbleiterelementen und Bypasskontakten ohne mechanische Lichtbogenlöschvorrichtung bei ausgeschalteten Halbleiterelementen zuverlässig erkannt werden. Durch entsprechendes Reagieren auf den Lichtbogen, in dem die Halbleiterelemente in geeigneter Weise eingeschaltet werden, kann eine gezielte und definierte Stromführung über die Halbleiterelemente erreicht und Schädigungen am Gerät durch den Lichtbogen vermieden werden. Darüber hinaus kann eine zuverlässige Überwachung und Auswertung (z.B. Fehlermel- düng) des mechanischen Kontaktsystems gewährleistet werden.An arc can thus be reliably detected in a parallel circuit arrangement of semiconductor elements and bypass contacts without a mechanical arc extinguishing device when the semiconductor elements are switched off. By reacting appropriately to the arc in which the semiconductor elements are switched on in a suitable manner, a targeted and defined current supply can be achieved via the semiconductor elements and damage to the device by the arc can be avoided. In addition, reliable monitoring and evaluation (e.g. error reporting) of the mechanical contact system can be guaranteed.
Vorzugsweise besitzt die Halbleitereinrichtung zwei antiparallel geschaltete Thyristoren. Diese lassen sich zu definierten Zeitpunkten elektronisch zünden und ermöglichen ein sehr rasches An- und Abschalten. Somit lässt sich die Effektivspannung beispielsweise zum Starten eines Motors kontinuierlich steigern.The semiconductor device preferably has two thyristors connected in anti-parallel. These can be ignited electronically at defined times and enable very quick switching on and off. This means that the effective voltage can be continuously increased, for example when starting an engine.
Die erfindungsgemäße Spannungsüberwachungseinrichtung kann einen Analogwandler, ein Schwellwertvergleichselement und eine Steuereinheit aufweisen, so dass ein analoges Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes, binäres Vergleichsergebnis als Eingangssignal für die Steuereinheit zum Schalten der Halbleitereinrichtung einsetz- bar ist. Durch diese analoge Auswertung kann eine einfache und kostengünstige Spannungsüberwachung erreicht werden. Alternativ kann die Spannungsüberwachungseinrichtung eine Steuereinheit umfassen, in die ein Analog/Digitalwandler und ein Schwellwertvergleichselement integriert sind, so dass ein digitalisiertes Spannungssignal mit einem Schwellwert vergleichbar und ein resultierendes Vergleichsergebnis zum Schalten der Halbleitereinrichtung durch die Steuereinheit einsetzbar ist. Damit sind sämtliche Komponenten für die digitale Spannungsüberwachung in die Steuereinheit integriert, was gegebenenfalls zu Montagevorteilen führt.The voltage monitoring device according to the invention can have an analog converter, a threshold value comparison element and a control unit, so that an analog voltage signal can be compared with a threshold value and a resultant, binary comparison result can be used as an input signal for the control unit for switching the semiconductor device. This analog evaluation enables simple and inexpensive voltage monitoring to be achieved. Alternatively, the voltage monitoring device can comprise a control unit, in which an analog / digital converter and a threshold value comparison element are integrated, so that a digitized voltage signal can be compared with a threshold value and a resultant comparison result can be used for switching the semiconductor device by the control unit. This means that all components for digital voltage monitoring are integrated in the control unit, which may lead to assembly advantages.
Der Spannungsbereich der überwachten Spannung sollte die an der Kontakteinrichtung auftretende Lichtbogenspannung einschließen. Somit lässt sich das Auftreten eines Lichtbogens zielgerecht erfassen.The voltage range of the monitored voltage should include the arc voltage occurring at the contact device. The occurrence of an arc can thus be determined in a targeted manner.
Bei einer bevorzugten Weiterentwicklung weist die erfindungsgemäße Schaltvorrichtung eine Abschalteinrichtung zum Ausschalten der Halbleitereinrichtung nach einer definierten Zeitdauer oder Periodenzahl eines Spannungsverlaufs im An- schluss an das Einschalten der Halbleitereinrichtung durch die Spannungsüberwachungseinrichtung auf. Bei reversiblen, kurzzeitigen Unterbrechungen wird nach dem Einschalten der Halbleitereinrichtung wieder in den verlustarmen Dauerbetrieb mit der mechanischen Kontakteinrichtung geschaltet.In a preferred further development, the switching device according to the invention has a switch-off device for switching off the semiconductor device after a defined period of time or number of periods of a voltage curve following the switching on of the semiconductor device by the voltage monitoring device. In the case of reversible, brief interruptions, the mechanical contact device switches back to low-loss continuous operation after the semiconductor device has been switched on.
Besonders bevorzugt ist, wenn die Abschalteinrichtung ein Störmeldesignal ausgibt, falls die Halbleitereinrichtung durch die Spannungsüberwachungseinrichtung mehrmals in einem vorgegebenen Zeitabschnitt eingeschalte wird. Dieses mehrma- lige Einschalten der Halbleitereinrichtung deutet nämlich auf einen irreversiblen Fehler hin, so dass es aus Sicherheitsgründen angebracht sein kann, mit dem Störmeldesignal ein externes, vorgeschaltetes und in Serie zur Schaltvorrichtung liegendes Schaltorgan zu betätigen, um den Stromfluss zu un- terbrechen und entsprechende Reparaturmaßnahmen einzuleiten. Eine weitere bevorzugte Ausfϋhrungsform ist die Integration eines Schaltorgans in die Schaltvorrichtung. Dieses Schaltorgan liegt in Serie zur Parallelschaltung aus mechanischer Kontakteinrichtung und Halbleitereinrichtung und wird im Falle eines irreversiblen Fehlers von der Steuereinheit betätigt, um den Stromfluss zu unterbrechen.It is particularly preferred if the switch-off device outputs a fault signal if the semiconductor device is switched on several times in a predetermined time period by the voltage monitoring device. This repeated switching on of the semiconductor device indicates an irreversible error, so that for safety reasons it can be appropriate to use the fault signal to actuate an external switching device connected upstream and in series with the switching device in order to interrupt the current flow and the like Initiate repair measures. Another preferred embodiment is the integration of a switching element in the switching device. This switching element is in series with the parallel connection of mechanical contact device and semiconductor device and is actuated by the control unit in the event of an irreversible error in order to interrupt the current flow.
Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:The present invention will now be explained in more detail with reference to the accompanying drawings, in which:
FIG 1 ein Prinzipschaltbild einer erfindungsgemäßen Schaltvorrichtung; und1 shows a basic circuit diagram of a switching device according to the invention; and
FIG 2 Signalverlaufsdiagramme der erfindungsge- mäßen Schaltvorrichtung.2 shows waveform diagrams of the switching device according to the invention.
Die nachfolgende näher beschriebenen Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The exemplary embodiments described in more detail below represent preferred embodiments of the present invention.
Das Ausschalten der Halbleiterelemente in der Bypassphase stellt eine Grundvoraussetzung für die Arbeitsweise des hier beschriebenen elektronischen Lichtbogenerkennungs- und Löschsystems dar.Switching off the semiconductor elements in the bypass phase is a basic requirement for the functioning of the electronic arc detection and quenching system described here.
Die Erfindung zielt darauf ab, den nicht betriebsmäßigen Zustand des Öffnens der Bypasskontakte (z.B. durch einen Fehlerfall oder eine mechanische Beanspruchung) innerhalb der Bypassphase zu erkennen und so zu reagieren, dass es bei re- versiblen Fehlern nicht zu einer irreparablen Schädigung der Kontakte durch die Lichtbogenbildung kommt. Bei irreversiblen Fehlern soll es nicht zu einer thermischen Zerstörung des Geräts durch einen Stehlichtbogen kommen und die Auswirkungen eines solchen Fehlers sollen auf das Gerät selbst beschränkt bleiben. Reversible Fehler sind in diesem Zusammenhang beispielsweise eine kurzzeitige Unterbrechung oder ein Ausfall der Steuerspannung des Spulenantriebs des Bypasskontaktsystems, was zum ungewollten Öffnen der Kontakte führt. Reversible Fehler sind aber auch mechanische Erschütterungen, die ebenfalls zum ungewollten Öffnen der Kontakte führen. Als irreversible Fehler können ein Bruch des Spulendrahts des Spulenantriebs, ein Bruch der Hauptkontaktfeder des Bypasskontaktsystems oder ein Bauteildefekt in der Ansteuerung des Spulenantriebs bezeich- net werden.The aim of the invention is to recognize the non-operational state of the bypass contact opening (for example due to an error or mechanical stress) within the bypass phase and to react in such a way that irreversible damage to the contacts does not result in irreparable damage to the contacts Arcing is coming. In the case of irreversible faults, the device should not be thermally destroyed by a standing arc and the effects of such a fault should be limited to the device itself. In this context, reversible errors are, for example, a brief interruption or a failure of the control voltage of the coil drive of the bypass contact system, which leads to the contacts being opened unintentionally. Reversible errors are also mechanical shocks that also lead to the unwanted opening of the contacts. An irreversible fault can be a break in the coil wire of the coil drive, a break in the main contact spring of the bypass contact system or a component defect in the control of the coil drive.
Um das ungewollte Öffnen der Bypasskontakte erkennen zu können, wird erfindungsgemäß die Spannung über der Parallelschaltungsanordnung erfasst. Bei geschlossenen Bypasskontak- ten fällt nahezu keine Spannung über der Parallelschaltung ab. Öffnen die Bypasskontakte, entspricht die entstehende Spannung der Lichtbogenspannung zwischen den Bypasskontakten.In order to be able to recognize the unwanted opening of the bypass contacts, the voltage across the parallel circuit arrangement is detected according to the invention. When the bypass contacts are closed, almost no voltage drops across the parallel circuit. If the bypass contacts open, the resulting voltage corresponds to the arc voltage between the bypass contacts.
Die Lichtbogenspannung kann entsprechend FIG 1 mit einem Spannungserfassungskreis detektiert werden. Hierbei wird die Spannung an -der Parallelschaltungsanordnung bestehend aus, den mechanischen Kontakten bzw. dem Bypasskontaktsystem 1 und der hierzu parallel geschalteten Halbleitereinrichtung 2, überwacht. Die Halbleitereinrichtung 2 besteht hier aus einer An- tiparallelschaltung von zwei Thyristoren 3 und 4.The arc voltage can be detected according to FIG. 1 with a voltage detection circuit. In this case, the voltage at the parallel circuit arrangement consisting of the mechanical contacts or the bypass contact system 1 and the semiconductor device 2 connected in parallel thereto is monitored. The semiconductor device 2 here consists of an parallel connection of two thyristors 3 and 4.
Die an der Parallelschaltungsanordnung anliegende Spannung Up wird in einer Spannungsüberwachungseinrichtung 5 erfasst und zur Ansteuerung der Halbleitereinrichtung 2 bzw. der Thy- ristoren 3 und 4 sowie des Bypasskontaktsystems 1 verwendet. Die Spannungsüberwachungseinrichtung besteht hierzu aus einem Analogwandler 6, einem Schwellwertvergleichselement 7 und einer daran angeschlossenen Steuereinheit 8. Der Analogwandler 6 setzt das analoge Spannungssignal Up in eine analoge Span- nung Uap geeigneter Höhe zum Zwecke der Pegelanpassung um. Das nachgeschaltete Schwellwertvergleichselement 7 bewirkt einen Vergleich des analogen Spannungssignals Uap mit einem vorbestimmten Schwellwert. Das digitale Ausgangssignal Udp dieses Schwellwertvergleichselements 7 wechselt seinen Pegel, sobald das digitale Spannungssignal den Schwell- bzw. Grenzwert überschreitet oder unterschreitet. Das Ausgangssignal Udp des Schwellwertvergleichselements 7 wird von der Steuereinheit 8 dazu verwendet, um die Thyristoren 3 und 4 sowie das Bypasssystem 1 anzusteuern. Die Steuerleitungen sind in FIG 1 der Übersicht halber lediglich durch einen Pfeil aus der Steuereinheit 8 angedeute .The voltage Up present at the parallel circuit arrangement is recorded in a voltage monitoring device 5 and used to control the semiconductor device 2 or the thyristors 3 and 4 and the bypass contact system 1. For this purpose, the voltage monitoring device consists of an analog converter 6, a threshold value comparison element 7 and a control unit 8 connected to it. The analog converter 6 converts the analog voltage signal Up into an analog voltage Uap of a suitable level for the purpose of level adjustment. The downstream threshold value comparison element 7 effects a comparison of the analog voltage signal Uap with one predetermined threshold. The digital output signal Udp of this threshold value comparison element 7 changes its level as soon as the digital voltage signal exceeds or falls below the threshold or limit value. The output signal Udp of the threshold value comparison element 7 is used by the control unit 8 to control the thyristors 3 and 4 and the bypass system 1. For the sake of clarity, the control lines are only indicated by an arrow from the control unit 8 in FIG.
Optional kann an der Steuereinheit 8 ein Stormeldekontakt 9 zur Ausgabe eines Stormeldesignals vorgesehen sein. Des Weiteren kann vor die Parallelschaltung aus Halbleitereinnchtung 2 und mechanischer Kontakteinrichtung 1 ein Schaltorgan 10 in Reihe geschaltet werden, mit welchem im Falle eines Defekts der Halbleitereinnchtung 2 oder der Kontakteinrichtung 1 der Stromfluss unterbrochen oder abgeschaltet werden kann.Optionally, a storm contact 9 can be provided on the control unit 8 for outputting a storm signal. Furthermore, a switching element 10 can be connected in series in front of the parallel connection of semiconductor device 2 and mechanical contact device 1, with which the current flow can be interrupted or switched off in the event of a defect in the semiconductor device 2 or the contact device 1.
In einem alternativen Aufbau kann der Analog/Digitalwandler und das Schwellwertvergleichselement in die Steuereinheit integriert sein. In diesem Fall wird das analoge Spannungssig- nal Up direkt an einen A/D-Eingang der Steuereinrichtung gelegt und die Spannungsgrenzwertüberwachung innerhalb der Steuereinrichtung durchgeführt. Das oben beschriebene Verhal- ten des digitalen Signals Udp hinsichtlich Pegel- und Flankenwechsel wird dabei vollständig in der Steuereinrichtung überwacht und verwertet .In an alternative construction, the analog / digital converter and the threshold value comparison element can be integrated in the control unit. In this case, the analog voltage signal Up is applied directly to an A / D input of the control device and the voltage limit value monitoring is carried out within the control device. The behavior of the digital signal Udp described above with regard to level and edge changes is completely monitored and utilized in the control device.
Wird eine Lichtbogenspannung detektiert, veranlasst die Steu- ereinrichtung eine sofortige Einschaltung der Halbleiterele- mente 3, 4. Der Stromfluss wird damit schnellstmöglich von den Halbleiterelementen übernommen und die Spannung an der Parallelschaltung geht auf die geringe Durchlassspannung der Halbleiterelemente zurück. Der Lichtbogen wird somit ge- loscht. Durch den Einsatz eines elektronischen Lichtbogenerkennungs- (bzw. Kontaktüberwachungssystems) und Löschsystems ergeben sich einen Reihe von Vorteilen: • ein Einsatz von Bypasskontakten ohne mechanische Lichtbogenlöschvorrichtung und somit ein einfacher, kompakter und kostengünstiger Aufbau der Kontakte wird ermöglicht;If an arc voltage is detected, the control device causes the semiconductor elements 3, 4 to be switched on immediately. The current flow is thus taken over by the semiconductor elements as quickly as possible and the voltage across the parallel circuit is reduced to the low forward voltage of the semiconductor elements. The arc is thus extinguished. The use of an electronic arc detection (or contact monitoring system) and extinguishing system results in a number of advantages: • The use of bypass contacts without mechanical arc extinguishing device and thus a simple, compact and inexpensive construction of the contacts is made possible;
• die Überwachung des mechanischen Kontaktsystems (Bypass- System) wird ermöglicht, insbesondere wird ein Bruch der Kontaktfeder erkannt und der entstehende Lichtbogen gelöscht;• The monitoring of the mechanical contact system (bypass system) is made possible, in particular a break in the contact spring is recognized and the resulting arc is extinguished;
• im fehlerfreien Betrieb erfolgt eine definierte Strom- führung über die Bypasskontakte;• In fault-free operation, there is a defined current flow through the bypass contacts;
• ein Schutz der Bypasskontakte vor irreparabler Lichtbogenschädigung wird gewährleistet; und • es erfolgt eine zuverlässige Erkennung des fehlerhaften Öffnens der Bypasskontakte bei ausgeschalteten Halbleiterelementen und somit eine sichere Fehlererkennung (Bruch Spulendraht, Bruch Kontaktfeder, etc)• Protection of the bypass contacts against irreparable arcing damage is guaranteed; and • there is a reliable detection of the faulty opening of the bypass contacts when the semiconductor elements are switched off, and thus a reliable error detection (broken coil wire, broken contact spring, etc.)
FIG 2 zeigt schematisch die Signalverläufe der Spannung Up in der Parallelschaltungsanordnung 2 und das daraus abgeleitete digitale Signal Udp, die Ansteuersignale für die Thyristoren und die Bypasskontakte sowie die zugehörigen Stromverläufe, die bei Auftreten einer Öffnung der Bypasskontakte in Verbin- düng mit dem elektronischen Lichtbogenerkennungs- und Löschsystem entstehen. Dabei entspricht IThyristor dem Strom durch die antiparallel geschalteten Thyristoren 3, 4, Ißypass dem Strom durch das Bypasssystem und iGesam der Summe aus Iτhyrstor2 schematically shows the signal curves of the voltage Up in the parallel circuit arrangement 2 and the digital signal Udp derived therefrom, the control signals for the thyristors and the bypass contacts and the associated current curves which occur when the bypass contacts open in connection with the electronic arc detection and extinguishing system arise. IThy r is t or the current through the anti-parallel connected thyristors 3, 4, Ißypass corresponds to the current through the bypass system and iGesam the sum of Iτhyrstor
Und Ißypass • Die Arbeitsweise des elektronischen Lichtbogenerkennungs- und Löschsystems lässt sich anhand von FIG 2 wie folgt beschreiben:And Ißypass • The mode of operation of the electronic arc detection and quenching system can be described with reference to FIG. 2 as follows:
Bei geschlossenen Bypasskontakten fällt nahezu keine Spannung Up über der Parallelschaltung ab und der Pegel des digitalen Spannungssignals Udp ist konstant. Öffnet ein Bypasskontakt (z.B. durch einen reversiblen Fehlerfall wie Ausfall der Versorgungsspannung des Bypasssystems oder eine mechanische Be- anspruchung oder einen irreversiblen Fehler wie Bruch der Kontaktfeder oder Bruch des Spulendrahts) zum Zeitpunkt t0, so wird sich innerhalb der Parallelschaltung eine Spannung Up aufbauen, die der Lichtbogenspannung UL zwischen den Bypasskontakten entspricht. Überschreitet die Lichtbogenspannung UL einen zulässigen Spannungsgrenzwert, so erfolgt ein Pegelwechsel des digitalen Spannungssignals Udp. Ausgehend von der Flanke, die durch den Pegelwechsel des digitalen Spannungssignals Udp entsteht, veranlasst die Steuereinrichtung 8 zum Zeitpunkt ti eine sofortige Einschaltung der Halbleiterele- mente 3, 4. Der Stromfluss wird damit schnellstmöglich von den HalbleitereLementen 3, 4 (vgl. Iτhyristor) übernommen und die Spannung Up an der Parallelschaltung geht auf die geringe Durchlassspannung der Halbleiterelemente zurück. Der Lichtbogen wird somit gelöscht.When the bypass contacts are closed, almost no voltage Up drops across the parallel circuit and the level of the digital voltage signal Udp is constant. If a bypass contact opens (e.g. due to a reversible fault such as a failure of the supply voltage to the bypass system or mechanical stress or an irreversible fault such as a break in the contact spring or a break in the coil wire) at time t 0 , a voltage Up will build up within the parallel connection. which corresponds to the arc voltage U L between the bypass contacts. If the arc voltage U L exceeds a permissible voltage limit, the level of the digital voltage signal Udp changes. Starting from the flank caused by the change in level of the digital voltage signal Udp, the control device 8 initiates an instantaneous switch-on of the semiconductor elements 3, 4 at time ti. The current flow is thus stopped as quickly as possible by the semiconductor elements 3, 4 (cf. Iτ h y r i stor ) and the voltage Up at the parallel connection is due to the low forward voltage of the semiconductor elements. The arc is thus extinguished.
Zu einem Zeitpunkt t2, der beispielsweise zwei bis drei Halbwellen der Wechselspannung nach dem Zeitpunkt ti liegt, schaltet die Steuereinheit 8 die Thyristoren wieder aus bzw. beendet deren Zünden. Daraufhin muss der nächste Nulldurch- gang des Thyristorstroms Imyistor zum Zeitpunkt t3 abgewartet werden, damit die Thyristoren 3, 4 erlöschen können, so dass die Schaltvorrichtung abgeschaltet ist. Dementsprechend steigt die Spannung Up an der Parallelschaltung auf den aktuellen Spannungswert der Schaltvorrichtung an. Dieser betrags- mäßige Spannungsanstieg wird durch das Schwellwertvergleichselement 7 detektiert, womit das digitale Signal Udp einen Pegelwechsel vollzieht. Auch im Anschluss daran, wenn das ana- löge Spannungssignal Up einen Nulldurchgang vollzieht, finden entsprechende Pegelwechsel des digitalen Signals Udp in Abhängigkeit des gewählten Schwellwerts vor und nach dem Nulldurchgang statt.At a time t 2 , which is, for example, two to three half-waves of the AC voltage after the time ti, the control unit 8 switches the thyristors off again or ends their ignition. Thereupon the next zero crossing of the thyristor current Imyistor must be waited for at time t 3 so that the thyristors 3, 4 can go out, so that the switching device is switched off. Accordingly, the voltage Up at the parallel connection rises to the current voltage value of the switching device. This voltage increase in terms of amount is detected by the threshold value comparison element 7, whereby the digital signal Udp changes the level. Even afterwards if the ana- If voltage signal Up makes a zero crossing, corresponding level changes of the digital signal Udp take place before and after the zero crossing depending on the selected threshold value.
Das soeben dargestellte Abschalten der Schaltvorrichtung erfolgt jedoch typischerweise nicht nach dem Erkennen eines ersten Lichtbogens, denn dieser Lichtbogen könnte durch einen reversiblen Fehler ausgelöst worden sein. Vielmehr wird das Bypasssystem nach einer vorbestimmten Zeit wieder eingeschaltet und die Thyristoren 3 und 4 ausgeschaltet, so dass die Schaltvorrichtung im Normalbetrieb weiterläuft und es zu keiner Unterbrechung des Stromes iGesamt gekommen ist. Wird innerhalb einer bestimmten Zeitspanne erneut ein oder mehrere Lichtbögen festgestellt, so kann diese Tatsache genutzt werden, um die Schaltvorrichtung in einen sicheren Zustand zu überführen. Die Ursache der mehreren Lichtbögen wird nämlich einer der oben beschriebenen irreversiblen Fehler sein.However, the switching device just described is typically not switched off after detection of a first arc, since this arc could have been triggered by a reversible fault. Rather, the bypass system is switched on again after a predetermined time and the thyristors 3 and 4 are switched off, so that the switching device continues to operate in normal operation and there was no interruption of the current iGes amt . If one or more arcs are detected again within a certain period of time, this fact can be used to bring the switching device into a safe state. The cause of the multiple arcs will be one of the irreversible faults described above.
Ein sicherer Zustand wird dadurch erreicht, dass die Thyristoren 3 und 4 beim Erkennen eines irreversib-len Fehlers dauerhaft eingeschaltet werden, um eine thermische Zerstörung der Schaltvorrichtung infolge von Lichtbögen zu verhindern. Die Thyristoren müssen auch eingeschaltet bleiben, wenn ein AUS-Signal an die Schaltvorrichtung gegeben wird, da wegen des irreversiblen Fehlers ein Öffnen der mechanischen Kontakteinrichtung nicht mehr möglich ist.A safe state is achieved in that the thyristors 3 and 4 are switched on permanently when an irreversible error is detected, in order to prevent thermal destruction of the switching device as a result of arcing. The thyristors must also remain switched on when an OFF signal is given to the switching device, since it is no longer possible to open the mechanical contact device because of the irreversible error.
Dies stellt insofern keinen schwerwiegenden Nachteil dar, weil erstens dieser Fehlerfall dem von durchlegierten Thyristoren entspricht und dieser Fehlerfall durch entsprechende vorgeordnete Absicherungen/Schaltorgane immer beherrscht werden muss und zweitens die als irreversibel bezeichneten Fehler nur extrem selten auftreten.This does not constitute a serious disadvantage because, firstly, this type of fault corresponds to that of alloyed thyristors and this type of fault always has to be dealt with by appropriate upstream safeguards / switching elements, and secondly, the errors described as irreversible only occur extremely rarely.
Die Überführung der Schaltvorrichtung in den sicheren Zustand kann auch dadurch erfolgen, dass von der Steuereinheit 8 ein Störmeldesignal abgegeben wird, welches z.B. ein externes, vorgeordnetes und zur Schalteinrichtung in Serie liegendes Schaltorgan ausschaltet und damit den Stromfluss unterbricht Die Überführung in den sicheren Zustand kann ferner dadurch erfolgen, dass die Steuereinheit 8 ein in der Schaltvorrichtung vorhandenes Schaltorgan unterbricht, welches in Serie zur Parallelschaltung aus Halbleitereinrichtung und mechanischer Kontakteinrichtung liegt. The switching device can also be brought into the safe state by a control unit 8 Fault signal is emitted, which, for example, switches off an external, upstream switching element located in series with the switching device and thus interrupts the flow of current. The transition to the safe state can also take place in that the control unit 8 interrupts a switching element present in the switching device, which in series for Parallel connection of semiconductor device and mechanical contact device.

Claims

Patentansprüche claims
1. Schaltvorrichtung zum Betreiben eines Motors mit einer mechanischen Kontakteinrichtung (1), die zwischen zwei Anschlüssen angeordnet und die in einer Dauerbetriebsphase des Motors zur Überbrückung der Anschlüsse einschaltbar ist, und einer Halbleitereinrichtung (2) , die zu der Kontakteinrichtung (1) parallel geschaltet ist und die zwischen den beiden Anschlüssen in einer Startphase des Motors zur leitenden Verbindung der Anschlüsse einschaltbar ist, gekennzeichnet durch eine Spannungsüberwachungseinrichtung (5) zum Überwachen der Spannung an den Anschlüssen und zum Einschalten der Halbleitereinrichtung (2) , falls die Spannung einen vorgegebenen Wert übersteigt .1. Switching device for operating a motor with a mechanical contact device (1) which is arranged between two connections and which can be switched on in a continuous operating phase of the motor to bridge the connections, and a semiconductor device (2) which is connected in parallel with the contact device (1) and which can be switched on between the two connections in a start phase of the engine for the conductive connection of the connections, characterized by a voltage monitoring device (5) for monitoring the voltage at the connections and for switching on the semiconductor device (2) if the voltage exceeds a predetermined value ,
2. Schaltvorrichtung nach Anspruch 1, wobei die Halbleitereinrichtung (2) zwei antiparallel geschaltete Thyristoren (3, 4) aufweist.2. Switching device according to claim 1, wherein the semiconductor device (2) has two anti-parallel connected thyristors (3, 4).
3. Schaltvorrichtung nach Anspruch 1 oder 2, wobei die Span- nungsüberwachungseinrichtung (5) einen Analogwandler (6), ein Schwellwertvergleichselement (7) und eine Steuereinheit (8) umfasst, so dass ein analoges Spannungssignal mit einem3. Switching device according to claim 1 or 2, wherein the voltage monitoring device (5) comprises an analog converter (6), a threshold value comparison element (7) and a control unit (8), so that an analog voltage signal with a
Schwellwert vergleichbar und ein resultierendes, binäres Vergleichsergebnis als Eingangssignal für die Steuereinheit (8) zum Schalten der Halbleitereinrichtung (2) einsetzbar ist.Threshold value comparable and a resulting binary comparison result can be used as an input signal for the control unit (8) for switching the semiconductor device (2).
4. Schaltvorrichtung nach Anspruch 1 oder 2, wobei die Span- nungsüberwachungseinrichtung (5) eine Steuereinheit (8) umfasst, in die ein Analog/Digitalwandler (6) und ein Schwellwertvergleichselement (7) integriert sind, so dass ein digitalisiertes Spannungssignal mit einem Schwellwert vergleich- bar und ein resultierendes Vergleichsergebnis zum Schalten der Halbleitereinrichtung (2) durch die Steuereinheit (8) einsetzbar ist. 4. Switching device according to claim 1 or 2, wherein the voltage monitoring device (5) comprises a control unit (8), in which an analog / digital converter (6) and a threshold value comparison element (7) are integrated, so that a digitized voltage signal with a threshold value comparable and a resultant comparison result can be used for switching the semiconductor device (2) by the control unit (8).
5. Schaltvorrichtung nach einem der vorhergehenden Ansprüche, wobei der Spannungsbereich der überwachten Spannung die an der Kontakteinrichtung auftretende Lichtbogenspannung ein- schließt .5. Switching device according to one of the preceding claims, wherein the voltage range of the monitored voltage includes the arcing voltage occurring at the contact device.
6. Schaltvorrichtung nach einem der vorhergehenden Ansprüche, die eine Abschalteinrichtung zum Ausschalten der Halbleitereinrichtung (2) nach einer definierten Zeitdauer oder Pe- riodenzahl eines Spannungsverlaufs im Anschluss an das Einschalten der Halbleitereinrichtung (2) durch die Spannungs- überwachungseinrichtung (5) aufweist.6. Switching device according to one of the preceding claims, which has a switch-off device for switching off the semiconductor device (2) after a defined period of time or number of periods of a voltage curve following the switching on of the semiconductor device (2) by the voltage monitoring device (5).
7. Schaltvorrichtung nach einem der vorhergehenden Ansprüche, wobei zu der Parallelschaltung von Halbleitereinrichtung (2) und Kontakteinrichtung (1) ein Schaltorgan in Serie geschaltet ist.7. Switching device according to one of the preceding claims, wherein a switching element is connected in series with the parallel connection of semiconductor device (2) and contact device (1).
8. Schaltvorrichtung nach Anspruch 6, die mit der Abschalt- einrichtung insgesamt abschaltbar ist, falls die Halbleitereinrichtung (2) durch die Spannungsüberwachungseinrichtung (5) mehrmals in einem vorgegebenen Zeitabschnitt eingeschaltet wird.8. Switching device according to claim 6, which can be switched off as a whole with the switch-off device if the semiconductor device (2) is switched on several times in a predetermined time period by the voltage monitoring device (5).
9. Schaltvorrichtung nach einem der Ansprüche 3 bis 8, wobei mit der Steuereinheit (8) ein Störmeldesignal ausgebbar ist.9. Switching device according to one of claims 3 to 8, wherein a fault signal can be output with the control unit (8).
10. Verfahren zum Betreiben eines Motors mit einer Schaltvorrichtung nach Anspruch 1 durch - Überwachen der Spannung an den Anschlüssen und10. A method of operating a motor with a switching device according to claim 1 by - monitoring the voltage at the terminals and
- Einschalten der Halbleitereinrichtung (2), falls die Spannung einen vorgegebenen Wert übersteigt .- Switching on the semiconductor device (2) if the voltage exceeds a predetermined value.
11. Verfahren nach Anspruch 10, wobei der Spannungsbereich der überwachten Spannung die an der Kontakteinrichtung (1) auftretende Lichtbogenspannung einschließt. 11. The method according to claim 10, wherein the voltage range of the monitored voltage includes the arcing voltage occurring at the contact device (1).
12. Verfahren nach Anspruch 10 oder 11, wobei die Halbleite- reirichtung (2) nach einer definierten Zeitdauer oder Periodenzahl eines Spannungsverlaufs im Anschluss an das Einschalten der Halbleitereinrichtung (2) ausgeschaltet wird.12. The method according to claim 10 or 11, wherein the semiconductor device (2) is switched off after a defined period of time or number of periods of a voltage curve following the switching on of the semiconductor device (2).
13. Verfahren nach Anspruch 12, wobei die Schaltvorrichtung insgesamt abgeschaltet wird, falls die Halbleitereinrichtung (2) mehrmals in einem vorgegebenen Zeitabschnitt eingeschaltet wird. 13. The method according to claim 12, wherein the switching device is switched off as a whole if the semiconductor device (2) is switched on several times in a predetermined time period.
EP05717083A 2004-04-05 2005-03-16 Circuit device for operating a motor and corresponding method Active EP1733470B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016739 2004-04-05
PCT/EP2005/051222 WO2005099080A1 (en) 2004-04-05 2005-03-16 Circuit device for operating a motor and corresponding method

Publications (2)

Publication Number Publication Date
EP1733470A1 true EP1733470A1 (en) 2006-12-20
EP1733470B1 EP1733470B1 (en) 2012-08-15

Family

ID=34961817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717083A Active EP1733470B1 (en) 2004-04-05 2005-03-16 Circuit device for operating a motor and corresponding method

Country Status (3)

Country Link
EP (1) EP1733470B1 (en)
DK (1) DK1733470T3 (en)
WO (1) WO2005099080A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032718A1 (en) 2012-08-30 2014-03-06 Siemens Aktiengesellschaft Switchgear for controlling the energy supply of an electric motor connected thereto
EP2898521B2 (en) 2012-11-19 2021-10-13 Siemens Aktiengesellschaft Switching apparatus for controlling the energy supply to a downstream connected electrical motor
DK2801994T3 (en) * 2013-05-07 2019-04-15 Abb Spa DC switching device, electronic device and method for switching an associated DC circuit
CN111988177B (en) * 2020-08-20 2023-05-12 深信服科技股份有限公司 Bypass control method, bypass control system, bypass control equipment and computer medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618906A (en) 1984-07-16 1986-10-21 Westinghouse Electric Corp. Hybrid solid state/mechanical switch with failure protection
FR2696062B1 (en) * 1992-09-23 1994-12-09 Sgs Thomson Microelectronics Controlled electrical power switch and method for switching an electrical power circuit.
FR2748612B1 (en) 1996-05-10 1998-06-19 Schneider Electric Sa CIRCUIT FOR THE PROTECTED POWER SUPPLY OF AN ELECTRIC CHARGE
FR2773016A1 (en) 1997-12-24 1999-06-25 Schneider Electric Sa APPARATUS FOR CONTROLLING AN ELECTRIC MOTOR
GB2344936A (en) 1998-12-18 2000-06-21 Zia Shlaimoun Starter switch
DE20008036U1 (en) 2000-05-04 2000-08-03 Sero Schroeder Elektronik Rohr Circuit arrangement for suppressing an arc in a switch contact
US6420848B1 (en) * 2000-05-19 2002-07-16 Eaton Corporation Method and controlling the starting of an AC induction motor with closed loop current control
KR100397565B1 (en) 2001-01-16 2003-09-13 엘지산전 주식회사 Multi-functional hybrid contactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005099080A1 *

Also Published As

Publication number Publication date
DK1733470T3 (en) 2012-12-03
WO2005099080A1 (en) 2005-10-20
EP1733470B1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
DE102011056577B3 (en) Circuit arrangement for suppressing a occurring during a switching arc
DE102005055325B3 (en) Safety switching device for use in automated operation system, has switching arrangement determining operating voltage at connecting terminals, where arrangement is arranged to control output switching signal depending on operating voltage
EP1869687B1 (en) Safety switch for the safe disconnection of an electric consumer
EP1627402B1 (en) Safety switching device for the failsafe shutdown of an electric consumer and corresponding method
EP1363306B1 (en) Security switch, security circuit with security switches and methode for operating a security switch
EP2104974B1 (en) Voltage protection arrangement for an electronic device
EP2907150A1 (en) Switching device for controlling energy supply of a downstream electric motor
EP2898521B1 (en) Switching apparatus for controlling the energy supply to a downstream connected electrical motor
EP3381043A1 (en) Switching apparatus and method for actuating a switching device
DE102007043512A1 (en) Energy conversion system
EP1667302A2 (en) Method and apparatus for detecting an inadmissible current or voltage and tripping of the supply voltage
WO2005099080A1 (en) Circuit device for operating a motor and corresponding method
DE102013012578A9 (en) Device for securing an electrical line
WO1999063561A2 (en) Device for safely disconnecting an electrical load with especially high inductivity from an electrical dc-voltage supply
EP1364459B1 (en) Safety switch device
DE19711622C1 (en) Method of running an electrical load, such as contactor or load-relay, connected into a circuit
EP3347959B1 (en) Arrangement for safely removing overvoltage protection devices from the mains, independently of switchgear or backup fuses, in the event of critical operating states
EP2672595B1 (en) Switching assembly and method for interrupting direct current
EP1986203A1 (en) Method to detect a contact isolation layer in a switching element having contacts and a switch having such a switching element
EP2461342B1 (en) Error-proof switching module
DE19735543A1 (en) Load switching circuit according to input signal in car systems
EP3709513B1 (en) Switching device and method for operating same
WO2017167514A1 (en) Circuit arrangement for protecting loads connected to a multi-phase network, having undervoltage and overvoltage switch-off function
WO2023160995A1 (en) Method and arrangement for testing the functionality of a semiconductor switch
DE10301905A1 (en) Security switch for electric motor vehicle, has power output controlled by switch with circuit having normal operating and monitoring conditions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20091102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 1/28 20060101ALI20120222BHEP

Ipc: H01H 9/54 20060101AFI20120222BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 571202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013013

Country of ref document: DE

Effective date: 20121011

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013013

Country of ref document: DE

Effective date: 20130516

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130316

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130316

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 571202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130316

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200316

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220308

Year of fee payment: 18

Ref country code: IT

Payment date: 20220322

Year of fee payment: 18

Ref country code: FR

Payment date: 20220324

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230316