CN114542937A - Self-adaptive lubricating superstructure based on negative Poisson ratio substrate - Google Patents

Self-adaptive lubricating superstructure based on negative Poisson ratio substrate Download PDF

Info

Publication number
CN114542937A
CN114542937A CN202210153401.5A CN202210153401A CN114542937A CN 114542937 A CN114542937 A CN 114542937A CN 202210153401 A CN202210153401 A CN 202210153401A CN 114542937 A CN114542937 A CN 114542937A
Authority
CN
China
Prior art keywords
negative poisson
lubricating
ratio substrate
lattice structure
poisson ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210153401.5A
Other languages
Chinese (zh)
Other versions
CN114542937B (en
Inventor
田小永
吴玲玲
刘腾飞
李涤尘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210153401.5A priority Critical patent/CN114542937B/en
Publication of CN114542937A publication Critical patent/CN114542937A/en
Application granted granted Critical
Publication of CN114542937B publication Critical patent/CN114542937B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

A self-adaptive lubricating superstructure based on a negative Poisson ratio substrate comprises a multi-layer negative Poisson ratio substrate lattice structure in contact with a load, wherein lubricating particles are introduced into each layer of the negative Poisson ratio substrate lattice structure through an auxetic effect; according to the shape and the actual motion condition of a load, the artificial coding and the dynamic control of the local lubricating effect are realized by the multi-level negative Poisson ratio substrate lattice structures in different areas; during lubrication, a load acts on the negative poisson ratio substrate lattice structure, and the negative poisson ratio substrate lattice structure can drive lubricating particles to converge towards a compression point, so that the lubricating effect of the compression point is enhanced; selecting a 3D printing manufacturing process according to actual requirements, carrying out integrated rapid manufacturing on a negative Poisson ratio substrate lattice structure and lubricating particles, and adopting a photocuring (VPP), powder bed melting (PBF) or material extrusion Molding (MD) process; the invention can maximize the effect of the lubricating particles and lay a foundation for the self-adaptive dynamic control of surface lubrication.

Description

Self-adaptive lubricating superstructure based on negative Poisson ratio substrate
Technical Field
The invention belongs to the technical field of mechanical lubrication, and particularly relates to a self-adaptive lubricating superstructure based on a negative Poisson ratio structure.
Background
Compared with the traditional lubricating oil, the lubricating effect can be greatly improved by adding the specific lubricating material. For example, the added nano lubricating particles can play the role of balls when the friction surface bears load, so that the sliding friction between friction pairs is changed into rolling friction, and the performances of wear resistance, friction reduction and pressure resistance of the lubricating oil are improved.
Generally, the lubricating particles are uniformly distributed on the surface of the substrate, the conventional lubricating substrate is mostly made of a conventional material with a positive poisson ratio, the size of the conventional lubricating substrate in the vertical stress direction is reduced when the material is stretched, and on the contrary, when the conventional substrate with the positive poisson ratio is extruded, the substrate material is diffused to the periphery, so that the lubricating particles which are uniformly distributed originally are driven to be far away from a contact point, and the lubricating effect near the pressed point is reduced. Especially when the pressure conditions of the friction surfaces are dynamically changing, resulting in the actual lubrication effect often being lower than expected. In order to overcome the defect, the internal structure of the base material needs to be reasonably adjusted, so that the material distribution at the contact point can be automatically adjusted when the base material is compressed, and the method is one of the feasible schemes for improving the surface lubricating effect under the dynamic load.
In recent years, the Negative Poisson's Ratio (Negative Poisson's Ratio) has received much attention from the academic community, which refers to an abnormal phenomenon in which a material expands laterally when stretched, and is also called "Auxetic" effect. The negative poisson ratio structure has a plurality of application potentials, such as indentation resistance, that is, when the structure is compressed, the internal units gather to the compression points, so that the effect of locally enhancing the mechanical property is achieved, and the resistance of the compressed area to external loads is greatly improved. The method is inspired by the indentation resistance characteristic of the negative Poisson ratio structure, the negative Poisson ratio structure is applied to design a superstructure with certain self-adaptive lubricating capability, and a material (such as nano lubricating particles) with a lubricating function is embedded into a substrate of the negative Poisson ratio superstructure, so that the lubricating material in an area, the surface of which is compressed by an object, is gathered, and the dynamic self-adaptive control of the lubricating effect under the action of an external force is realized. Although it is difficult to find a special material having an auxetic effect among natural materials, in recent years, a mechanical superstructure having a negative poisson's ratio effect can be easily realized by artificially designing an internal unit structure. Negative poisson's ratio superstructures have received much attention from researchers due to their large designable space and artificial coding properties. In addition, the rapid development of the 3D printing manufacturing process paves the way for the negative Poisson ratio structure to move from theoretical exploration to practical application.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a self-adaptive lubricating superstructure based on a negative poisson's ratio substrate, which can maximize the effect of a lubricating material and lay a foundation for self-adaptive dynamic control of surface lubrication.
In order to achieve the purpose, the invention adopts the technical scheme that:
a self-adaptive lubricating superstructure based on a negative Poisson ratio structure comprises a multi-level negative Poisson ratio base lattice structure 2 in contact with a load 3, wherein each layer of negative Poisson ratio base lattice structure 2 introduces lubricating particles 1 through an auxetic effect;
according to the shape and the actual motion condition of the load 3, the multi-level negative Poisson ratio substrate lattice structure 2 in different areas adopts manual coding and dynamic control for realizing the local lubrication effect;
during lubrication, the load 3 acts on the negative Poisson ratio substrate lattice structure 2, and the negative Poisson ratio substrate lattice structure 2 can drive the lubricating particles 1 to converge towards a compression point, so that the lubricating effect of the compression point is enhanced.
The negative Poisson ratio substrate lattice structure 2 is a concave hexagonal unit or a chiral/anti-chiral structure.
The lubricating particles 1 are selected from lubricating materials of nano-metal particles, polymer particles or ceramic particles.
And selecting a 3D printing manufacturing process according to actual requirements, integrally and rapidly manufacturing the negative Poisson's ratio substrate lattice structure 2 and the lubricating particles 1, and adopting a photocuring (VPP), powder bed melting (PBF) or material extrusion Molding (MD) process.
Compared with the prior art, the invention has the following remarkable advantages:
(1) the negative Poisson ratio substrate lattice structure 2 introduces the lubricating particles 1 through the auxetic effect, so that the lubricating particles 1 and the negative Poisson ratio substrate lattice structure 2 are integrated and organically combined;
(2) according to the invention, the hierarchical structure of the negative Poisson ratio substrate lattice structure 2 in different regions can be adjusted according to the actual application requirements, so that the manual coding and dynamic control of the local lubricating effect can be realized;
(3) according to the invention, the negative Poisson ratio substrate lattice structure 2 and the lubricating particles 1 are manufactured by adopting a 3D printing manufacturing process, and the negative Poisson ratio effect is only influenced by structural design and does not depend on chemical components of used preparation materials, so that the negative Poisson ratio substrate lattice structure can be selected from various 3D printing processes and corresponding materials according to actual conditions, and the negative Poisson ratio substrate lattice structure has the characteristics of process diversification and strong material compatibility, and can realize the rapid, low-cost and integrated manufacturing of the self-adaptive lubricating superstructure.
Drawings
FIG. 1 is a schematic diagram of the adaptive lubrication mechanism of the present invention, wherein (a) is a schematic diagram of a negative Poisson's ratio substrate lattice structure prior to compressive deformation; and (b) is a schematic representation of the negative poisson's ratio base lattice structure after compressive deformation.
Detailed Description
The present invention will be described in detail below with reference to examples and the accompanying drawings.
Referring to fig. 1, the self-adaptive lubricating superstructure based on the negative poisson ratio substrate comprises a multi-level negative poisson ratio substrate lattice structure 2 which is in contact with a load 3, and according to the shape and the actual motion condition of the load 3, the multi-level negative poisson ratio substrate lattice structure 2 in different areas adopts manual coding and dynamic control for realizing a local lubricating effect; each layer of negative poisson's ratio base lattice structure 2 introduces a lubricating particle 1 by the auxetic effect. During lubrication, the load 3 acts on the negative Poisson ratio substrate lattice structure 2, and the negative Poisson ratio substrate lattice structure 2 can drive the lubricating particles 1 to converge towards a compression point, so that the lubricating effect of the compression point is enhanced.
The negative Poisson ratio substrate lattice structure 2 is a concave hexagonal unit or a chiral/anti-chiral structure.
The lubricating particles 1 are selected from lubricating materials such as nano metal particles, polymer particles, ceramic particles and the like.
And selecting a 3D printing manufacturing process according to actual requirements, integrally and rapidly manufacturing the negative Poisson's ratio substrate lattice structure 2 and the lubricating particles 1, and adopting a photocuring (VPP), powder bed melting (PBF) or material extrusion Molding (MD) process.

Claims (4)

1. An adaptive lubricating superstructure based on negative poisson's ratio substrate, comprising a multi-level negative poisson's ratio substrate lattice structure (2) in contact with a load (3), characterized in that: each layer of negative Poisson ratio substrate lattice structure (2) is introduced into the lubricating particles (1) through an auxetic effect;
according to the shape and the actual motion condition of the load (3), the multi-level negative Poisson ratio substrate lattice structures (2) in different areas adopt artificial coding and dynamic control for realizing the local lubrication effect;
during lubrication, the load (3) acts on the negative Poisson ratio substrate lattice structure (2), and the negative Poisson ratio substrate lattice structure (2) can drive the lubricating particles (1) to converge towards a compression point, so that the lubricating effect of the compression point is enhanced.
2. The negative poisson's ratio substrate-based adaptive lubricating superstructure according to claim 1, characterized in that: the negative Poisson's ratio substrate lattice structure (2) selects concave hexagonal units or selects a chiral/anti-chiral structure.
3. The negative poisson's ratio substrate-based adaptive lubricating superstructure according to claim 1, characterized in that: the lubricating particles (1) are selected from lubricating materials of nano metal particles, polymer particles or ceramic particles.
4. The negative poisson's ratio substrate-based adaptive lubricating superstructure according to claim 1, characterized in that: and selecting a 3D printing manufacturing process according to actual requirements, and integrally and rapidly manufacturing the negative Poisson ratio substrate lattice structure (2) and the lubricating particles (1) by adopting a photocuring (VPP), powder bed melting (PBF) or material extrusion Molding (MD) process.
CN202210153401.5A 2022-02-18 2022-02-18 Self-adaptive lubricating superstructure based on negative Poisson ratio substrate Active CN114542937B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210153401.5A CN114542937B (en) 2022-02-18 2022-02-18 Self-adaptive lubricating superstructure based on negative Poisson ratio substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210153401.5A CN114542937B (en) 2022-02-18 2022-02-18 Self-adaptive lubricating superstructure based on negative Poisson ratio substrate

Publications (2)

Publication Number Publication Date
CN114542937A true CN114542937A (en) 2022-05-27
CN114542937B CN114542937B (en) 2022-12-06

Family

ID=81675645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210153401.5A Active CN114542937B (en) 2022-02-18 2022-02-18 Self-adaptive lubricating superstructure based on negative Poisson ratio substrate

Country Status (1)

Country Link
CN (1) CN114542937B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119792A1 (en) * 2008-11-10 2010-05-13 Zheng-Dong Ma Three-dimensional auxetic structures and applications thereof
CN105555517A (en) * 2013-03-15 2016-05-04 哈佛大学校长及研究员协会 Low porosity auxetic sheet
CN110206824A (en) * 2019-06-13 2019-09-06 西安交通大学 A kind of regulation method of the porous oil-containing retainer with Negative poisson's ratio
CN110744873A (en) * 2019-11-22 2020-02-04 南京工业大学 3D printing structure composite material sandwich board with negative Poisson ratio effect and processing method
CN111664346A (en) * 2020-06-15 2020-09-15 华中科技大学 Super-smooth structure suitable for large-scale long-period oil-free condition
CN112945431A (en) * 2021-03-24 2021-06-11 南开大学 Conductive porous pressure-sensitive metamaterial with negative Poisson ratio characteristic and preparation method and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119792A1 (en) * 2008-11-10 2010-05-13 Zheng-Dong Ma Three-dimensional auxetic structures and applications thereof
CN105555517A (en) * 2013-03-15 2016-05-04 哈佛大学校长及研究员协会 Low porosity auxetic sheet
CN110206824A (en) * 2019-06-13 2019-09-06 西安交通大学 A kind of regulation method of the porous oil-containing retainer with Negative poisson's ratio
CN110744873A (en) * 2019-11-22 2020-02-04 南京工业大学 3D printing structure composite material sandwich board with negative Poisson ratio effect and processing method
CN111664346A (en) * 2020-06-15 2020-09-15 华中科技大学 Super-smooth structure suitable for large-scale long-period oil-free condition
CN112945431A (en) * 2021-03-24 2021-06-11 南开大学 Conductive porous pressure-sensitive metamaterial with negative Poisson ratio characteristic and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘滕飞 田小永 朱伟军 李涤尘: "连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能", 《机械工程学报》 *
解芳著: "《高温发汗自润滑材料仿生胞体结构的接触稳定性研究》", 31 December 2015 *

Also Published As

Publication number Publication date
CN114542937B (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN1844671A (en) Oil-free lubricated seal ring resistant to high temperature and high pressure
CN101717682A (en) Solid lubricating composite material and manufacturing method thereof
CN114542937B (en) Self-adaptive lubricating superstructure based on negative Poisson ratio substrate
CN201110376Y (en) Novel combined sealing filler loop
CN1560128A (en) High wear-resisting composite material of strenthen polytetrafuoro ethylene and fiber rod stone kind clay and preparation process and application thereof
CN100344891C (en) Water labricating metal plastic bush and producing method
CN110938770B (en) Dynamic sealing material and preparation method and application thereof
CN100341972C (en) Nano packing filling and method for making same
CN104328368A (en) Self-lubricating and wear-resistant copper-based composite material and preparation method thereof
US5153253A (en) Bearings
CN1263127A (en) Mildewproof rubber
CN1580112A (en) Method for preparing ultrahigh molecular weight polyethylene hopper
JPS6143557A (en) Material for composite bearing with plastic sliding surface
CN1268434C (en) Grinding block for processing organic nanometer powder
CN101509518B (en) Elastic thrust block and production method thereof
CN106883917B (en) Polyester resin solid lubricating block and preparation method thereof
CN1651784A (en) Double characteristic composite throttling static pressure gas thrust bearing
CN110079036A (en) A kind of wear-resisting PTFE/Cu composite material and preparation method of pressure resistance
CN1282830C (en) Composite throttling static pressure gas cylinder bearing
CN2573755Y (en) Self-lubricating leadless bearing
CN115584120A (en) Preparation method of polyurethane elastomer composite material with negative Poisson ratio property
CN2372470Y (en) Filter element for filter
CN2886179Y (en) Anti-stripping sliding bearing
CN104712494B (en) A kind of screw drilling tool stator made using PTFE and FEP blends and the fluorine material applied to the stator
CN107088952A (en) A kind of understructure of brickmaking machine and the two-sided pressure adding brick making machine of energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant