CN112039322B - 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统 - Google Patents

适用于偶数个子模块的mmc抑制共模电压的调制方法和系统 Download PDF

Info

Publication number
CN112039322B
CN112039322B CN202010991500.1A CN202010991500A CN112039322B CN 112039322 B CN112039322 B CN 112039322B CN 202010991500 A CN202010991500 A CN 202010991500A CN 112039322 B CN112039322 B CN 112039322B
Authority
CN
China
Prior art keywords
mmc
sub
modules
common
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010991500.1A
Other languages
English (en)
Other versions
CN112039322A (zh
Inventor
蒋栋
陈嘉楠
赵炫
李桥
孙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010991500.1A priority Critical patent/CN112039322B/zh
Publication of CN112039322A publication Critical patent/CN112039322A/zh
Application granted granted Critical
Publication of CN112039322B publication Critical patent/CN112039322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明公开了适用于偶数个子模块的MMC抑制共模电压的调制方法和系统,属于电力领域。包括:将三相的参考电压模拟量线性运算转换为注入零序分量的三个参考线电压模拟量;对于具有2N个子模块的MMC,将三个参考线电压模拟量与N个同相层叠的载波分别进行载波比较,得到三个驱动信号数字量;将三个驱动信号数字量线性变换为MMC的三相参考电压数字量;将MMC的三相参考电压数字量分配给子模块对MMC进行控制,得到MMC中所有开关管的驱动信号。本发明通过载波比较的加减方式等效实现零共模电压矢量的发送,大幅度降低共模电压,抑制杂散电容耦合的共模电流,实现简单,避免了传统基于空间矢量合成方法的参考矢量定位等繁杂计算。

Description

适用于偶数个子模块的MMC抑制共模电压的调制方法和系统
技术领域
本发明属于电力电子技术领域,更具体地,涉及适用于偶数个子模块的MMC抑制共模电压的调制方法和系统。
背景技术
模块化多电平变换器(MMC)凭借优良的性能被认为是中高压电能变换场所最有应用潜力的接口。除了在高压直流输电中作为换流阀外,在一些电压等级相对不高的场合如电机控制系统和光伏发电系统也有应用前景。此时,MMC的子模块数相对较少,从而采用如载波层叠或者载波移相等开关频率较高的调制方式对MMC进行控制。
常规的载波层叠或是移相的方法都会产生共模电压,从而感应出共模电流进一步传播与衍化产生电磁干扰对变换器本身的安全运行产生威胁。除此之外,共模问题还会在光伏系统产生漏电流损坏光伏板,在电机系统产生轴电压危害电机轴承。现有的多电平变换器实现共模电压抑制的方法主要依靠零共模电压矢量合成来实现。这种方法实现起来十分复杂,需要在所有的零共模矢量中挑选出最近的三个矢量实现参考电压的合成。随着电平数的增加,零共模矢量越来越多,计算过程越发复杂。例如:三电平7个零共模矢量,即从7个中挑选3个;五电平19个零共模矢量;7电平37个零共模矢量;9电平61个零共模矢量……对不同电平变换器不具有普适性,针对三电平变换器的共模电压抑制方法是一种实现方法,针对五电平的又是另一种方法。现有的多电平变换器共模电压抑制技术针对三电平,五电平的报道十分普遍,7电平就比较少了,超过7电平几乎没有报道,也是因为越来越复杂的原因。
发明内容
针对现有技术采用MMC进行电能变换的电机系统的电机轴承与光伏发电系统光伏板容易受到共模电压导致损坏的缺陷和改进需求,本发明提供了适用于偶数个子模块的MMC抑制共模电压的调制方法和系统,其目的在于降低MMC在传统调制方式下输出的高频共模电压导致的共模电流与共模干扰。
为实现上述目的,按照本发明的第一方面,提供了适用于偶数个子模块的MMC抑制共模电压的调制方法,该方法包括以下步骤:
S1.将控制器给定的三相的参考电压模拟量Ua,Ub,Uc线性运算转换为注入零序分量的三个参考线电压模拟量Uref1,Uref2,Uref3
S2.对于具有2N个子模块的MMC,将三个参考线电压模拟量Uref1,Uref2,Uref3与N个同相层叠的载波分别进行载波比较,得到三个驱动信号数字量V1,V2,V3
S3.将三个驱动信号数字量V1,V2,V3线性变换为MMC的三相参考电压数字量Va,Vb,Vc,并保证Va,Vb,Vc之和为零;
S4.将MMC的三相参考电压数字量Va,Vb,Vc分配给子模块对MMC进行控制,得到MMC中所有开关管的驱动信号。
优选地,步骤S1中,注入零序分量的三个参考线电压模拟量Uref1,Uref2,Uref3通过以下方式获得:
Figure BDA0002690272120000021
其中,中间变量
Figure BDA0002690272120000022
注入的零序分量
Figure BDA0002690272120000031
优选地,步骤S2中,三个驱动信号数字量V1,V2,V3通过以下方式获得:
Figure BDA0002690272120000032
其中,具有2N个子模块的MMC的第ij个层叠载波
Figure BDA0002690272120000033
Figure BDA0002690272120000034
进行载波比较的载波序号
Figure BDA0002690272120000035
wc
Figure BDA0002690272120000039
分别表示三角载波的频率和初相位,序数i,j表示第j个参考波与第i个载波进项比较,i=1,2,…,N,j=1,2,3,ceil()函数表示向上取整。
优选地,步骤S3中,MMC的三相参考电压数字量Va,Vb,Vc通过以下方式获得:
Figure BDA0002690272120000036
优选地,步骤S4中,在参考波与同一载波比较的几个载波周期内,
MMC每一相下桥臂恒定投入的子模块数与切除的子模块数分别为:
Figure BDA0002690272120000037
MMC每一相上桥臂恒定投入的子模块数与切除的子模块数分别为:
Figure BDA0002690272120000038
其中,函数floor()表示向下取整,p=a,b,c;
对于MMC每个桥臂未确定投入或是切除的子模块,根据三相参考电压数字量Va,Vb,Vc进行投切斩波控制。
优选地,子模块的投入或者切除是根据子模块电容电压的排序结果决定。
为实现上述目的,按照本发明的第二方面,提供了适用于含有偶数个子模块的MMC抑制共模电压的载波层叠调制系统,包括:
计算机可读存储介质和处理器;
所述计算机可读存储介质用于存储可执行指令;
所述处理器用于读取所述计算机可读存储介质中存储的可执行指令,执行第一方面所述的适用于偶数个子模块的MMC抑制共模电压的调制方法。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)相对于传统的用于MMC的调制方法,本发明通过载波比较的加减法方式等效地实现零共模电压矢量的发送,能够大幅度地降低共模电压,从而抑制杂散电容耦合的共模电流,能够防止电机系统的电机轴承和光伏系统的光伏板受到损坏,同时共模电流的抑制也能够防止进一步传播和衍化,降低了电磁干扰的可能性,从而确保了系统的安全可靠运行。本发明实现方法简单,避免了传统的基于空间矢量合成方法的参考矢量定位、零共模电压矢量选择以及合成的繁杂计算。
(2)本发明适用于任意奇数电平数(偶数个子模块)的多电平变换器,特别适用于电平数较少(开关频率较高)的情况,如3,5,7,9,11,13,15等电平数。对于含有2N个子模块的多电平变换器,采用N个载波进行载波比较,既可以实现共模电压的消除,又可以输出2N+1个间隔均匀的电平,能够降低MMC的共模电压,从而抑制共模电流和共模干扰的产生。
附图说明
图1是本发明提供的适用的模块化多电平变换器的示意图;
图2是本发明提供的五电平变换器零共模矢量图;
图3是本发明提供的载波比较实现零共模电压输出的原理图;
图4是本发明提供的适用于偶数个子模块的MMC抑制共模电压的调制方法流程图;
图5是本发明提供的排序时刻的示意图;
图6是本发明提供的五电平共模电压对比图;
图7是本发明提供的七电平共模电压对比图;
图8是本发明提供的九电平共模电压对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
首先,对本发明涉及的术语进行解释如下:
MMC:Modular Multilevel Converters,模块化多电平变换器,属于多电平变换器的一种,特别适用于电平数较多的应用场合,因为模块化的生产制造和组装方便简单。子模块数越多,电平数越多;电平数比子模块数多1;偶数个子模块,即对应奇数个电平。
多电平:电平数大于2。
本发明适用于如图1所示的模块化多电平变换器,其子模块数可以为任意数偶数,从而可以产生任意奇数电平数(偶数个子模块)的MMC,特别适用于电平数较少(开关频率较高)的情况,如3,5,7,9,11,13,15等电平数。该拓扑共有3个相单元,每个相单元由2个桥臂通过电感连接构成,而每个桥臂由2N个子模块串联而成,子模块是典型的半桥结构。
图2是五电平变换器的空间矢量图,一共有125个空间矢量。可以使输出共模电压为零的矢量也有19个。矢量合成的方法物理概念清晰,直流电压利用率高,输出电能质量好。但是,随着电平数的增加,空间电压矢量呈几何级数增长,矢量合成愈发复杂,难以实现。
如图3所示,本发明采用载波比较的实现方式避免了复杂的矢量合成过程,以共模电压消除为目标,提出了一种适用于偶数个子模块的MMC抑制共模电压的调制方法,具体实施步骤如图4所示:
(1)在控制器给定MMC的三相参考电压(模拟量,归一化)的条件下,将三相参考电压线性运算转换成三个参考线电压(模拟量),并注入零序分量;
MMC的控制器根据相应的控制方法得到三相的参考电压值ua,ub和uc(模拟量)的条件下,计算三个参考线电压(模拟量)u’ref1,u’ref2和u’ref3
Figure BDA0002690272120000061
上式中三相的参考电压值(模拟量)ua,ub和uc之和以及三个参考线电压(模拟量)u’ref1,u’ref2和u’ref3之和都为零,即三相平衡。
注入的零序分量为:
Figure BDA0002690272120000062
上式中max{}函数表示取最大值,min{}函数表示取最小值。
注入零序分量的三个参考线电压(模拟量)uref1,uref2和uref3为:
Figure BDA0002690272120000063
(2)对于具有2N个子模块的MMC,将三个参考线电压与N个同相层叠的载波分别进行载波比较,得到三个驱动信号(数字量);
具有2N个子模块的MMC的N个层叠载波为
Figure BDA0002690272120000071
上式中ωc
Figure BDA0002690272120000076
分别是三角载波的频率和初相位。
与注入零序分量的三个参考线电压(模拟量)uref1,uref2和uref3进行载波比较的载波序号为:
Figure BDA0002690272120000072
上式中ceil(x)函数表示大于等于x的最小整数,序数i,j表示第j个参考波与第i个载波进项比较。
载波比较得到的三个驱动信号V1,V2和V3(数字量)为
Figure BDA0002690272120000073
(3)将三个驱动信号进行线性变换,得到MMC的三相参考电压(数字量);
MMC三相参考电压Va,Vb和Vc(数字量)与三个驱动信号V1,V2和V3(数字量)的关系为:
Figure BDA0002690272120000074
(4)将三相参考电压(数字量)分配给子模块对MMC进行控制,子模块分为投入、切除和斩波三种状态。
当参考波与同一载波比较的几个载波周期内,MMC每一相下桥臂恒定投入的子模块数与切除的子模块数为:
Figure BDA0002690272120000075
上式中floor(x)函数表示小于等于x的最大整数。
MMC每一相上桥臂恒定投入的子模块数与切除的子模块数为:
Figure BDA0002690272120000081
MMC每个桥臂未确定投入或是切除的一个子模块根据三相参考电压Va,Vb和Vc(数字量)进行投切斩波控制。子模块的投入或者切除应当根据子模块电容电压的排序结果决定。
图5是排序时刻的示意图。只有恒定投入子模块数量发生变化时才进行子模块电压排序,为子模块重新分配投入、切除以及斩波的状态。
图6,图7和图8分别是五电平,七电平和九电平采用本发明提出的调制方法的共模电压对比图。共模电压基本都降低到0V附近,从而抑制了杂散电容耦合的共模电流,防止危害电机系统的电机轴承和光伏系统的光伏板,同时共模电压的抑制也降低了电磁干扰的可能性,从而确保了系统的安全可靠运行。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.适用于偶数个子模块的MMC抑制共模电压的调制方法,其特征在于,该方法包括以下步骤:
S1.将控制器给定的三相的参考电压模拟量Ua,Ub,Uc线性运算转换为注入零序分量的三个参考线电压模拟量Uref1,Uref2,Uref3
S2.对于具有2N个子模块的MMC,将三个参考线电压模拟量Uref1,Uref2,Uref3与N个同相层叠的载波分别进行载波比较,得到三个驱动信号数字量V1,V2,V3
S3.将三个驱动信号数字量V1,V2,V3线性变换为MMC的三相参考电压数字量Va,Vb,Vc,并保证Va,Vb,Vc之和为零;
S4.将MMC的三相参考电压数字量Va,Vb,Vc分配给子模块对MMC进行控制,得到MMC中所有开关管的驱动信号;
步骤S2中,三个驱动信号数字量V1,V2,V3通过以下方式获得:
Figure FDA0003105128090000011
其中,具有2N个子模块的MMC的第ij个层叠载波
Figure FDA0003105128090000012
Figure FDA0003105128090000013
进行载波比较的载波序号
Figure FDA0003105128090000014
wc
Figure FDA0003105128090000015
分别表示三角载波的频率和初相位,序数i,j表示第j个参考波与第i个载波进行比较,i=1,2,…,N,j=1,2,3,ceil()函数表示向上取整。
2.如权利要求1所述的方法,其特征在于,步骤S1中,注入零序分量的三个参考线电压模拟量Uref1,Uref2,Uref3通过以下方式获得:
Figure FDA0003105128090000021
其中,中间变量
Figure FDA0003105128090000022
注入的零序分量
Figure FDA0003105128090000023
3.如权利要求1或2所述的方法,其特征在于,步骤S3中,MMC的三相参考电压数字量Va,Vb,Vc通过以下方式获得:
Figure FDA0003105128090000024
4.如权利要求1或2所述的方法,其特征在于,步骤S4中,在参考波与同一载波比较的几个载波周期内,
MMC每一相下桥臂恒定投入的子模块数与切除的子模块数分别为:
Figure FDA0003105128090000025
MMC每一相上桥臂恒定投入的子模块数与切除的子模块数分别为:
Figure FDA0003105128090000026
其中,函数floor()表示向下取整,p=a,b,c;
对于MMC每个桥臂未确定投入或是切除的子模块,根据三相参考电压数字量Va,Vb,Vc进行投切斩波控制。
5.如权利要求4所述的方法,其特征在于,子模块的投入或者切除是根据子模块电容电压的排序结果决定。
6.适用于含有偶数个子模块的MMC抑制共模电压的载波层叠调制系统,其特征在于,包括:
计算机可读存储介质和处理器;
所述计算机可读存储介质用于存储可执行指令;
所述处理器用于读取所述计算机可读存储介质中存储的可执行指令,执行权利要求1至5任一项所述的适用于偶数个子模块的MMC抑制共模电压的调制方法。
CN202010991500.1A 2020-09-18 2020-09-18 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统 Active CN112039322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010991500.1A CN112039322B (zh) 2020-09-18 2020-09-18 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010991500.1A CN112039322B (zh) 2020-09-18 2020-09-18 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统

Publications (2)

Publication Number Publication Date
CN112039322A CN112039322A (zh) 2020-12-04
CN112039322B true CN112039322B (zh) 2021-08-20

Family

ID=73574262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010991500.1A Active CN112039322B (zh) 2020-09-18 2020-09-18 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统

Country Status (1)

Country Link
CN (1) CN112039322B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994481A (zh) * 2021-02-23 2021-06-18 深圳市禾望电气股份有限公司 一种三电平npc型变流器及其控制方法
CN113890405B (zh) * 2021-08-19 2023-12-05 北京交通大学 消除mmc共模电压的脉冲顺接载波移相正弦脉宽调制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860319B (zh) * 2010-06-01 2012-05-23 华东交通大学 一种多目标的大功率逆变器共模电压抑制方法
CN105450059B (zh) * 2015-12-22 2018-05-29 合肥工业大学 抑制两h桥级联逆变器漏电流的调制方法
CN107482980B (zh) * 2017-08-07 2019-10-25 华中科技大学 一种抑制共模噪声的三相交流电机驱动系统

Also Published As

Publication number Publication date
CN112039322A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
Odeh et al. Single‐phase 9‐level hybridised cascaded multilevel inverter
CN112039322B (zh) 适用于偶数个子模块的mmc抑制共模电压的调制方法和系统
Mohan et al. A comparative analysis of multi carrier SPWM control strategies using fifteen level cascaded H-bridge multilevel inverter
Xing et al. A fast-processing predictive control strategy for common-mode voltage reduction in parallel three-level inverters
Pan et al. A diode-clamped multilevel converter with reduced number of clamping diodes
Salem et al. Novel three-phase multilevel voltage source inverter with reduced no. of switches
CN112271944A (zh) 一种npc两电平逆变器随机azspwm1方法
Ren et al. Capacitor voltage regulation strategy for 7-level single DC source hybrid cascaded inverter
Liu et al. Optimal current ripple PWM for three-level inverter with common mode voltage reduction
CN113346783B (zh) 一种开关电感z源中点嵌位型三电平逆变器
CN112910283B (zh) 模块化并联整流器的共模电压和环流同时抑制方法及系统
Sia et al. A new symmetric and asymmetric step-up switched-capacitor integrated multilevel inverter with self-balanced and inductive load capability
Das et al. DC ripple reinjection: A review
Far et al. Introduction and evaluation of novel multi-level carrier-based PWM strategies using a generalized algorithm
Kadandani Switching Sequence and Modulation Techniques of Modular Multilevel Converter
CN111900868A (zh) 抑制三相mmc共模电压的最近零共模矢量调制方法及系统
Salehahari et al. New coupled-inductor based multilevel inverter with extension capability
Hossain et al. Nearest Level Control Technique for Three-phase Transistor Clamped H-bridge Multilevel Inverter
Park et al. Common-mode Voltage Reduction for Inverters Connected in Parallel Using an MPC Method with Subdivided Voltage Vectors
CN113114058B (zh) 一种开关电感z源中点嵌位型三电平逆变器的控制方法
CN112271943A (zh) 一种npc两电平逆变器随机azspwm1方法
JP7374734B2 (ja) 電力変換装置
Verma et al. Selective Harmonic Elimination In 5-Level MLI Using Particle Swarm Optimization
Aly et al. Predictive Control for Multilevel Inverters with Reduced Number of Commutations
Khan et al. Performance analysis of various switching scheme in multilevel inverters using MATLAB/SIMULINK

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant