CN110729913B - 一种单级式高增益五开关Boost型逆变器 - Google Patents

一种单级式高增益五开关Boost型逆变器 Download PDF

Info

Publication number
CN110729913B
CN110729913B CN201911083907.8A CN201911083907A CN110729913B CN 110729913 B CN110729913 B CN 110729913B CN 201911083907 A CN201911083907 A CN 201911083907A CN 110729913 B CN110729913 B CN 110729913B
Authority
CN
China
Prior art keywords
switch
switch tube
gain
topology
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911083907.8A
Other languages
English (en)
Other versions
CN110729913A (zh
Inventor
赵犇
皇甫宜耿
俞天瀛
马瑞卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201911083907.8A priority Critical patent/CN110729913B/zh
Publication of CN110729913A publication Critical patent/CN110729913A/zh
Application granted granted Critical
Publication of CN110729913B publication Critical patent/CN110729913B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种单级式高增益五开关Boost型逆变器,针对带耦合电感的单级式Boost型逆变器的低压侧换相二极管损耗大的问题,通过引入一个开关管来移除低压侧两个换相二极管,从而减小低压侧二极管所带来的导通损耗,提高整体效率。以相同开关管参数计算并仿真比较所述拓扑与带有低压侧换相二极管的拓扑的损耗,以200W输出功率为例,导通损耗降低了近10W,占整体效率的近5%,可见所述拓扑的导通损耗降低效果明显。当输出功率进一步提升而输入电压进一步降低时,原带有低压侧换相二极管拓扑的导通损耗会进一步加大,所述拓扑优势将会更加明显。

Description

一种单级式高增益五开关Boost型逆变器
技术领域
本发明属于电力电子领域,涉及一种单级式高增益五开关Boost型逆变器。
背景技术
在光伏微型逆变器应用中,由于单个光伏电池板输出电压较低而输出电网侧电压较高,通常要求逆变器具有高电压增益。一般情况下,由于易于控制和实现,采用两级式逆变器,第一级为高增益DC-DC变换器,第二级为普通桥式逆变器。然而,由于更低的成本和更高的效率,单级式逆变器越来越引起研究者的广泛兴趣。纵观目前所提出的方案,主要涉及的是反激、Boost、以及Buck-Boost这几种类型。
在单级式逆变器所采用的方案中,反激型拓扑由于采用了变压器因而其电压增益可以很高,然而由于其单级式的结构不得不增加解耦电路以减小解耦电容,这将会弱化反激型拓扑结构简单的特点,使得器件数量增加,效率降低;Buck-Boost型拓扑大部分还是受限于有限的电压转换比,个别拓扑可以实现高转换比,但是其器件数量大大增加;Boost型拓扑由于其具有高压母线使得功率解耦变得简单,但目前多数拓扑都受制于增益有限的缺点。
有文献提出了新型Boost型逆变器拓扑通过引入耦合电感大大提高电压增益,但由于单级式拓扑构造的原因,低压侧引入了两个换相二极管,而这两个二极管由于承受大电流而造成较大的导通损耗,并且在输入电压越低的时候,二极管损耗占整体损耗比例越大。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种单级式高增益五开关Boost型逆变器,解决带耦合电感的单级式Boost型逆变器的低压侧换相二极管损耗大的问题。通过引入一个开关管来移除低压侧两个换相二极管,从而减小低压侧二极管所带来的损耗,提高整体效率。
技术方案
一种单级式高增益五开关Boost型逆变器,其特征在于包括M1~M5开关管,Lcp耦合电感,D升压二极管,输出滤波网络Lo-Co和Cdc解耦电容;M1开关管、M3开关管的源极与电源的负极相连并接地;电源的正极与Lcp耦合电感的绕组W1的同名端相连;M1开关管的漏极、M5开关管的源极与绕组W2的同名端、W1的非同名端相连;Co输出滤波电容与Lo电感串联,其一端与M4开关管的源极、M3开关管的漏极连接,另一端与开M2关管的源极、M5开关管的漏极连接;M2开关管和M4开关管的漏极与直流母线电容Cdc相连,并与二极管D的阴极相连;二极管D的阳极与耦合电感绕组W2的非同名端相连;工作时,RL负载与Co输出滤波电容并联。
所述Lcp耦合电感原边绕组匝数为N1,副边绕组匝数N2,变比为n=N2/N1
所述变比为n根据所需要的电压增益选择。
有益效果
本发明提出的一种单级式高增益五开关Boost型逆变器,针对带耦合电感的单级式Boost型逆变器的低压侧换相二极管损耗大的问题,通过引入一个开关管来移除低压侧两个换相二极管,从而减小低压侧二极管所带来的导通损耗,提高整体效率。以相同开关管参数计算并仿真比较所述拓扑与带有低压侧换相二极管的拓扑的损耗,以200W输出功率为例,导通损耗降低了近10W,占整体效率的近5%,可见所述拓扑的导通损耗降低效果明显。当输出功率进一步提升而输入电压进一步降低时,原带有低压侧换相二极管拓扑的导通损耗会进一步加大,所述拓扑优势将会更加明显。
同时所述拓扑保持了单级式紧凑的拓扑结构,器件数量较少,所具有的高压直流母线可以使用较小的解耦电容,从而避免引入解耦电路或者在低压侧放置容值很大的电容,可以提高逆变器的可靠性和寿命。
附图说明
图1为提出的单级式高增益五开关Boost型逆变器拓扑
图2为本发明的工作模态图
图2(a)模态A
图2(b)模态B
图2(c)模态C
图2(d)模态A’
图2(e)模态B’
图2(f)模态C’
图3为本发明的主要工作波形
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明提供的技术方案,所述的单级式高增益五开关Boost型逆变器包括:由五个开关管M1~M5组成的桥式电路、耦合电感Lcp、升压二极管D、直流母线电容Cdc、输出滤波网络Lo-Co以及等效负载RL。其中耦合电感原边绕组匝数为N1,副边绕组匝数N2,变比为n=N2/N1,通过合理设计耦合电感变比即可达到所需要的电压增益。通过在全桥电路中引入中间级开关管M5来移除原电路中低压侧两个换相二极管,通过所设计的逻辑控制即可实现逆变电路的正常工作。
拓扑的电路连接关系为:开关管M1、M3的源极和输入电源的负极相连并接地;输入电源的正极与耦合电感Lcp的绕组W1的同名端相连;开关管M1的漏极、M5的源极与绕组W2的同名端、W1的非同名端相连;负载RL与输出滤波电容Co并联连接并与电感Lo串联,其一端与开关管M4的源极、开关管M3的漏极连接,另一端与开关管M2的源极、开关管M5的漏极连接;开关管M2和M4的漏极与直流母线电容Cdc相连,并与二极管D的阴极相连;二极管D的阳极与耦合电感绕组W2的非同名端相连。
如图1所示,本逆变器由开关管M1~M5,耦合电感Lcp,升压二极管D,输出滤波网络Lo-Co,负载RL,解耦电容Cdc等组成。调节耦合电感变比即可达到所需要的电压增益,合理控制M1~M5的开通关断使电路正确工作从而得到所需要的输出交流电压或电流。
当输出电压为正时,开关管M4始终开通,而开关管M3始终关断,通过控制开关管M1、M2和M5的开通与关断来实现输出电压的控制。
拓扑的工作模式为:每个开关周期内有三个工作模式,当输出电压为正时,拓扑工作于模态A、B和C,当输出电压为负时,拓扑工作于模态A’、B’和C’。
当输出电压为正时,开关管M3始终关断,而开关管M4始终开通,通过控制开关管M1、M2和M5的开通与关断来实现输出电压的控制。
模态A:开关管M1和M5开通,开关管M2关断,输入电压源开始给耦合电感的初级绕组W1充电,同时开关管M4和M1的开通使得直流母线给负载端供电。该模态的电路如图2(a)
模态B:在DbkTs时刻,开关管M5关断而开关管M2开通,电流通过开关管M4和M2续流,输出电容给负载供电。输入电压源继续给耦合电感的初级绕组W1充电。图该模态的电路如2(b)
模态C:在DbstTs时刻,开关管M1关断,输入电压源和耦合电感通过两个绕组和二极管D给直流母线电容充电,其余开关管状态不变。该模态的电路如图2(c)
当输出电压为负时,开关管M2始终开通而M5始终关断,通过控制M1、M3和M4的开关来实现输出电压的控制,从而得到工作模态A’、B’与C’。
模态A’:开关管M1和M3开通,开关管M4关断,输入电压源给耦合电感的初级绕组N1充电,同时开关管M2和M3的开通使得直流母线给负载端反向供电。该模态的电路如图2(d)
模态B’:在DbkTs时刻,开关管M3关断而开关管M4开通,电流通过开关管M2和M4续流,输出电容给负载供电。输入电压源继续给耦合电感的初级绕组N1充电。该模态的电路如图2(e)
模态C’:在DbstTs时刻,开关管M1关断,输入电压源和耦合电感通过两个绕组和二极管D给直流母线电容充电,其余开关管状态不变。该模态的电路如图2(f)
其中,Dbst为升压占空比,可以根据输入输出电压关系计算得出或最大功率跟踪算法求解得出;Dbk为正弦变化的SPWM波,根据Dbk的调制即可在输出端得到正弦交流电压或电流。在本拓扑中,Dbk的最大值要小于Dbst
拓扑的开关管开关模态如表1所示。
表1所述拓扑开关模态
Figure BDA0002264797730000051
当输出电压为负时,开关管M2始终开通而M5始终关断,通过控制M1、M3和M4的开关来实现输出电压的控制,从而得到工作模态A’、B’与C’,如图2(d)、图2(e)和图2(f)所示。
拓扑的主要工作波形如图3所示,其中SM1~SM5分别为开关管M1~M5的开关信号。通过对占空比Dbst的调节,可以得到所需要的直流母线电压;通过占空比Dbk的调节,就可以得到所需要的正弦输出波形。

Claims (3)

1.一种单级式高增益五开关Boost型逆变器,其特征在于包括M1~M5开关管,Lcp耦合电感,D升压二极管,输出滤波网络Lo-Co和Cdc解耦电容;M1开关管的源极、M3开关管的源极与电源的负极相连并接地;电源的正极与Lcp耦合电感的原边绕组W1的同名端相连;M1开关管的漏极、M5开关管的源极与副边绕组W2的同名端、W1的非同名端相连;输出滤波网络Lo-Co中,Co输出滤波电容与Lo输出滤波电感串联形成串联支路,其一端与M4开关管的源极、M3开关管的漏极连接,另一端与开M2关管的源极、M5开关管的漏极连接;M2开关管的漏极和M4开关管的漏极与Cdc解耦电容的正极相连,并与D升压二极管的阴极相连,Cdc解耦电容的负极接地;D升压二极管的阳极与耦合电感绕组W2的非同名端相连;工作时,RL负载与Co输出滤波电容并联。
2.根据权利要求1所述单级式高增益五开关Boost型逆变器,其特征在于:所述Lcp耦合电感原边绕组W1匝数为N1,副边绕组W2匝数N2,变比为n=N2/N1
3.根据权利要求2所述单级式高增益五开关Boost型逆变器,其特征在于:所述变比n根据所需要的电压增益选择。
CN201911083907.8A 2019-11-07 2019-11-07 一种单级式高增益五开关Boost型逆变器 Expired - Fee Related CN110729913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911083907.8A CN110729913B (zh) 2019-11-07 2019-11-07 一种单级式高增益五开关Boost型逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911083907.8A CN110729913B (zh) 2019-11-07 2019-11-07 一种单级式高增益五开关Boost型逆变器

Publications (2)

Publication Number Publication Date
CN110729913A CN110729913A (zh) 2020-01-24
CN110729913B true CN110729913B (zh) 2020-12-08

Family

ID=69225112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911083907.8A Expired - Fee Related CN110729913B (zh) 2019-11-07 2019-11-07 一种单级式高增益五开关Boost型逆变器

Country Status (1)

Country Link
CN (1) CN110729913B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172400B (zh) * 2021-12-22 2023-10-31 西北工业大学 一种带自均衡功能的光伏逆变器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065354B2 (en) * 2011-04-27 2015-06-23 Sunpower Corporation Multi-stage power inverter for power bus communication
WO2012178056A2 (en) * 2011-06-23 2012-12-27 The Board Of Trustees Of The University Of Illinois Scalable single-stage differential power converter
CN106787900B (zh) * 2017-03-27 2019-01-18 盐城工学院 升压并网逆变器及其控制方法
CN107834886B (zh) * 2017-12-08 2019-06-25 安徽工业大学 一种单级升压逆变器及其控制方法
CN109245584B (zh) * 2018-04-04 2020-11-03 南京航空航天大学 适用于分布式光伏并网系统的高能效双输入逆变器

Also Published As

Publication number Publication date
CN110729913A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
de Melo et al. A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications
TWI672898B (zh) 雙向dc-dc轉換器
CN108123605B (zh) 电源变换电路的控制方法以及相关电源变换电路
JPWO2008020629A1 (ja) 絶縁昇圧型プッシュプル式ソフトスイッチングdc/dcコンバータ
CN113541486B (zh) 交错二极管电容网络高增益zvt直流变换器及辅助电路
CN215934730U (zh) 一种高升压比的dc-dc变换器
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
CN110829837B (zh) 一种低电压应力ZVS高增益Boost变换器
CN112350583A (zh) 一种电流型推挽桥式软开关双向直流变换器
CN112202351A (zh) 一种宽范围软开关的单级式隔离型三相ac/dc整流器
CN109818494B (zh) 一种高增益电压型准y源直流-直流变换器
WO2013134904A1 (zh) 无共模干扰单相逆变器拓扑
Muthukrishnan et al. DC–DC Boost converter for solar power application
Torrico-Bascopé et al. A new isolated dc-dc boost converter using three-state switching cell
CN212367151U (zh) 一种逆变电路
CN110572045B (zh) 一种基于双耦合电感的高增益dc-dc变换器
TWI568156B (zh) 降壓型直流轉換器
CN112968601A (zh) 一种高电压转换比的非隔离双向直流变换器
CN112737316A (zh) 准z源逆变器及供电系统
Ting et al. A soft switching power factor correction interleaved AC-DC boost converter
Chen et al. A isolated bidirectional interleaved flyback converter for battery backup system application
Alghaythi et al. A Non-Isolated High Step-Up Interleaved DC-DC Converter with Diode-Capacitor Multiplier Cells and Dual Coupled Inductors
Liu et al. A Dual Active Bridge Converter Integrating Buck-Boost for Wide Voltage Range
CN104218809A (zh) 一种集成功率因数校正和直流-直流变换的电路装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201208

Termination date: 20211107