CN109149939A - 用于低地板有轨电车辅助变流器轻量化设计方法 - Google Patents

用于低地板有轨电车辅助变流器轻量化设计方法 Download PDF

Info

Publication number
CN109149939A
CN109149939A CN201811108360.8A CN201811108360A CN109149939A CN 109149939 A CN109149939 A CN 109149939A CN 201811108360 A CN201811108360 A CN 201811108360A CN 109149939 A CN109149939 A CN 109149939A
Authority
CN
China
Prior art keywords
resonant
inductance
capacitance
converter
llc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811108360.8A
Other languages
English (en)
Other versions
CN109149939B (zh
Inventor
李骄松
夏猛
马法运
毕京斌
田以涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Original Assignee
CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd filed Critical CRRC Qingdao Sifang Rolling Stock Research Institute Co Ltd
Priority to CN201811108360.8A priority Critical patent/CN109149939B/zh
Publication of CN109149939A publication Critical patent/CN109149939A/zh
Application granted granted Critical
Publication of CN109149939B publication Critical patent/CN109149939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明涉及一种用于低地板有轨电车辅助变流器轻量化设计方法,其步骤为:将设有最小电压应力谐振单元的最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联作为辅助逆变器,充电机设有与最小电压应力Buck变换器的输出端相连的DC/DC倍流整流变换器;确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min;明确LLC定频谐振变换器设计的限制条件,选定励磁电感Lm的取值,计算出隔直电容Cb、变压器原边漏感Lk、谐振腔谐振频率fr,验证LLC定频谐振变换器是否满足验证条件;在分裂电容三相逆变器中引入中线电感Ln,三相负载不平衡时,通过引入中心电感Ln消除中性点电位uN的正弦扰动。本发明设计的辅助变流器,功率密度高,体积和重量小。

Description

用于低地板有轨电车辅助变流器轻量化设计方法
技术领域
本发明属于轨道车辆变流器技术领域,涉及有轨电车变流器,具体地说,涉及一种用于低地板有轨电车辅助变流器轻量化设计方法及基于该方法的辅助变流器。
背景技术
随着城市轨道交通的不断发展,低地板有轨电车一起运营成本低、节能环保、线路铺设简单等优点,近几年得到大力推广和发展。辅助变流器作为低地板有轨电车的重要组成部分,可将直流侧高压供电转化成AC输出和DC输出分别供给车用交、直流负载,以保障有轨电车安全稳定运行。
低地板有轨电车辅助变流器一般布置在车顶,相较于地铁车辆辅助变流器,低地板有轨电车辅助变流器内部组成设备更加紧凑且要求功率密度更大;同时低地板有轨电车辅助变流器负载复杂,客室伴热负载、司机室单相负载回应性输出电压质量,造成输出电压畸变。
参见图1,传统辅助逆变器采用工频变压器(功率:50Hz)进行隔离,工频变压器具有运行稳定的优点,且在不平衡负载下为零序电流提供回路,对不平衡电压具有抑制作用。但采用工频变压器存在体积大、重量重、成本高和效率低等缺点,与有轨电车所倡导的“绿色出行”概念相悖。
发明内容
本发明针对现有技术存在的上述问题,提供了一种用于低地板有轨电车辅助变流器轻量化设计方法及基于该方法的辅助变流器,能够减小辅助变流器的体积和重量,降低输出电压不平衡度。
为了达到上述目的,本发明提供了一种用于低地板有轨电车辅助变流器轻量化设计方法,含有以下步骤:
将设有最小电压应力谐振单元的最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联作为辅助逆变器,充电机设有DC/DC倍流整流变换器,所述DC/DC倍流整流变换器与所述最小电压应力Buck变换器的输出端相连;
确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min
明确LLC定频谐振变换器设计的限制条件,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr,并验证LLC定频谐振变换器是否满足下述验证条件:(1)是否满足变压器原边开关管的零电压导通实现条件式中,Zin为输入阻抗,Cres为IGBT并联寄生电容,Tr为谐振腔谐振周期,即Uin_min为输入电压最小值,Pin_max为输入功率最大值;(2)LLC定频谐振变换器的品质因数Q是否满足条件式中,Lrs为励磁电感Lm与原边漏感Lk的比值,即frs为谐振腔谐振频率fr与开关频率fs比值;(3)死区时间内变压器原边电流是否反向;(4)输入阻抗是否呈感性,并留有角度裕量;若上述四个验证条件不能同时满足,则需要重新选定励磁电感值Lm进行核算直至同时满足上述四个验证条件;
在分裂电容三相逆变器中引入中线电感Ln,中线电感Ln的负极与三相输出滤波电容的公共端相连,中线电感Ln的正极与两个输入分裂电容之间的中间点相连,三相负载不平衡时,通过引入中心电感Ln消除中性点电位uN的正弦扰动。
优选的,确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min的具体步骤为:
谐振电感L2的电感值选取应满足下述条件:
式中,tr为开关管S1的电流上升时间,trr为续流二极管D4的反向恢复时间,io,peak为输出电流峰值,Ui为输入电压;
谐振电容Cr和谐振电容Cs的选取包括以下步骤:
(a)任取带入公式(2),求得条件下的最小输出电流Io,min,公式(2)表示为:
式中,tr-off,max为在满足软斩波运行条件下的最大谐振关断时间,由设计者给出;
(b)将步骤(a)中的值和所求的最小输出电流Io,min带入公式(3)求得谐振电容Cr,公式(3)表示为:
式中,ω为
(c)用公式(4)验证步骤(b)中求得的谐振电容Cr,公式(4)表示为:
式中,tf为开关管S1的电流下降时间;
(d)若步骤(c)中的条件不满足,则重复步骤(a)-(c),直至满足步骤(c)中的条件,若步骤(c)中的条件满足,则选定谐振电容Cr的电容值,选定时,应大于理论值,谐振电容Cs的电容值用公式(5)求取,公式(5)表示为:
优选的,LLC定频谐振变换器的设计限制条件为:
LLC谐振腔输入阻抗必须呈现感性,即Angle(Zin)>0;
LLC定频谐振变换器的品质因数Q小于0.005,以保证LLC定频谐振变换器工作于感性II区;
LLC定频谐振变换器的死区时间大于结电容放电时间,同时小于结电容放电时间与励磁电流谐振到零时间之和。
优选的,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr的具体步骤为:
定义励磁电感Lm的取值范围为0.7mH≤Lm≤2mH,初步选定励磁电感Lm的取值;
通过下述公式(6)、(7)分别计算结电容放电时间T1和励磁电流谐振到零时间Tm
Tm=tan-1(n2×R/2πfrfrsLm)/π×Tr/2 (7)
式中,n为变压器匝比,R为变压器原边等效阻抗;
死区时间tdead≥T1,按照下述公式(8)计算电流角度
式中,Uo为LLC定频谐振变换器输出电压,Io为LLC定频谐振变换器输出电流;
保证LLC定频谐振变换器工作在感性II区,应满足以下限制:
计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr
优选的,三相负载平衡时,中性点电位uN为:
式中,udc为LLC定频谐振变换器的输出电压;
当接入不平衡负载时,中性点电位uN发生偏移,即引入时中线电感Ln,中性点电位表达式如下:
式中,um为三相输出电压最大值,Z为负载阻抗,Cin为三相输出滤波电容,θ为偏移角度;
三相负载不平衡时,中性点电位有正弦扰动,通过引入中心电感消除该扰动,使中性点电位恢复到
为了达到上述目的,本发明还提供了一种低地板有轨电车辅助逆变器,基于上述设计方法,包括辅助逆变器和充电机,所述辅助逆变器包括最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器,最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联,所述最小电压应力Buck变换器设有最小电压应力谐振单元,所述最小电压应力谐振单元由谐振电感L2、谐振电容Cr和谐振电容Cs组成;所述充电机设有DC/DC倍流整流变换器,所述DC/DC倍流整流变换器与所述最小电压应力Buck变换器的输出端相连。
优选的,所述最小电压应力Buck变换器还包括输入滤波电感L1、开关管S1、输入滤波电容C1、四个续流二极管、续流电感L3、两个串联连接的输出滤波电容和两个串联连接的均压电阻;输入滤波电容C1的正极分别与输入滤波电感L1的负极、开关管S1的C极、谐振电容Cr的正极相连,开关管S1的M极与谐振电感L2的正极相连,开关管S1的E极分别与谐振电容Cr的负极、续流二极管D1的阳极、续流二极管D3的阴极相连;续流二极管D2的阳极分别与谐振电感L2的负极、续流电感L3的正极、谐振电容Cs的负极、续流二极管D4的阳极相连;续流二极管D1的阴极分别与续流二极管D2的阳极、谐振电容的正极相连;续流二极管D2的阴极分别与续流二极管D4的阴极、输出滤波电容C3的负极相连;续流电感L3与输出滤波电容C2的正极相连,均压电阻RC1并联在输出滤波电容C2的两端,均压电阻RC2并联在输出滤波电容C3的两端。
优选的,所述DC/DC倍流整流变换器包括开关管S2、隔直电容Cc、变压器T2、续流电感La、续流电感Lb、输出滤波电容C6、防反二极管D9和两个二极管;开关管S2的M极与隔直电容Cc的正极相连,隔直电容Cc的负极与变压器T2原边的va端相连;变压器T2原边的vb端与输出滤波电容C2和输出滤波电容C3的中点相连;变压器T2副边的vc端分别与续流电感La的负极、二极管D8的阳极相连;变压器T2副边的vd端分别与续流电感Lb的负极、二极管D7的阳极相连,二极管D7和二极管D8的阴极均与输出滤波电容C6的负极相连;续流电感La和续流电感Lb的正极分别与输出滤波电容C6的正极、防反二极管D9的阳极相连。
优选的,所述LLC定频谐振变换器包括两个并联连接的开关管、隔直电容Cb、变压器T1和两个副边整流二极管,变压器T1和隔直电容Cb组成LLC谐振腔;开关管S3和开关管S4跨接在最小电压应力Buck变换器正负输出母线之间;开关管S3的M极与隔直电容Cb的正极相连,开关管S4的M极与变压器T1原边的vb端相连,隔直电容Cb的负极与变压器T1原边的va端相连;变压器T1副边的vc端与副边整流二极管D5的中间点连接,变压器T1副边的vd端与副边整流二极管D6的中间点连接。
优选的,所述分裂电容三相逆变器包括两个串联连接的输入分裂电容、三个并联连接的开关管、三个输出滤波电感、三个星形连接的输出滤波电容、中间电感Ln和中线电容Cn;输入分裂电容C4的正极与副边整流二极管D6的阳极连接,输入分裂电容C5的负极与副边整流二极管D6的阴极连接;开关管S5、开关管S6和开关管S7分别与输入分裂电容C4和输入分裂电容C5组成的串联电路并联连接,开关管S5的M极与输出滤波电感Lu的正极相连,开关管S6的M极与输出滤波电感Lv的正极相连,开关管S7的M极与输出滤波电感Lw的正极相连,输出滤波电容Cu、输出滤波电容Cv和输出滤波电容Cw的公共端与中线电容Cn的正极相连,中线电容Cn的负极与中线电感Ln的负极相连,中线电感Ln的正极与输入分裂电容C4和输入分裂电容C5之间的中间点相连。
与现有技术相比,本发明的优点和积极效果在于:
(1)本发明设计方法对低地板有轨电车辅助变流器进行轻量化设计,轻量化设计后的低地板有轨电车辅助变流器与现有传统的工频辅助变流器相比,功率密度高,体积和重量小。
(2)本发明对前级Buck变换器进行设计,前级Buck变换器为设有最小电压应力谐振单元的最小电压应力Buck变换器,利用无源软开关实现开关管零电压导通和零电压关断,并且在实现软开关的过程中没有引入额外的电压应力,减缓了开关管关断时刻的电压应力。
(3)本发明针对LLC变换器需要变频的缺陷,在前级引入Buck调压环节实现LLC变换器的定频调制,方便磁性元件设计,当遇到输入电压或者负载变化时,通过调整前级Buck变换器的输出电压适应该变化;本发明LLC变换器设计为LLC定频谐振变换器,能够实现原边功率器件的零电压导通(即ZVS)和小电流关断,实现副边整流二极管零电压关断(即ZCS),大大提升了辅助逆变器的功率密度,减小干扰(即EMI)。
(4)本发明分裂电容三相逆变器在三相逆变桥引入中线电感,抑制零序电流,降低输出电压不平衡度,提高系统对不平衡负载的适应能力,增强了系统的鲁棒性。
(5)本发明低地板有轨电车辅助变流器的辅助逆变器采用Buck+LLC+INV三级串联结构,充电机连接在Buck变换器输出侧,当后级逆变器发生故障(或充电机发生故障)时,充电机(或逆变器)可以正常工作,不受故障逆变器(或充电机)影响。
附图说明
图1为本发明现有低地板有轨电车工频隔离辅助变流器的电路图。
图2为本发明低地板有轨电车辅助变流器的电路图。
图3为本发明最小电压应力Buck变换器主要元件的状态图。
图4为本发明LLC定频谐振变换器的工作原理波形图。
图中,1、最小电压应力Buck变换器,2、LLC定频谐振变换器,3、分裂电容三相逆变器,4、DC/DC倍流整流变换器。
具体实施方式
下面,通过示例性的实施方式对本发明进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
本发明揭示了一种用于低地板有轨电车辅助变流器轻量化设计方法,含有以下步骤:
S1、将设有最小电压应力谐振单元的最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联作为辅助逆变器,充电机设有DC/DC倍流整流变换器,所述DC/DC倍流整流变换器与所述最小电压应力Buck变换器的输出端相连。
S2、确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min;其具体步骤为:
(1)谐振电感L2的电感值选取应满足下述条件:
式中,tr为开关管S1的电流上升时间,trr为续流二极管D4的反向恢复时间,io,peak为输出电流峰值,Ui为输入电压;
(2)谐振电容Cr和谐振电容Cs的选取包括以下步骤:
(a)任取带入公式(2),求得条件下的最小输出电流Io,min,公式(2)表示为:
式中,tr-off,max为在满足软斩波运行条件下的最大谐振关断时间,由设计者给出;
(b)将步骤(a)中的值和所求的最小输出电流Io,min带入公式(3)求得谐振电容Cr,公式(3)表示为:
式中,ω为
(c)用公式(4)验证步骤(b)中求得的谐振电容Cr,公式(4)表示为:
式中,tf为开关管S1的电流下降时间;
(d)若步骤(c)中的条件不满足,则重复步骤(a)-(c),直至满足步骤(c)中的条件,若步骤(c)中的条件满足,则选定谐振电容Cr的电容值,选定时,应大于理论值,谐振电容Cs的电容值用公式(5)求取,公式(5)表示为:
最小电压应力Buck变换器上述元件的工作状态图参见图3。
S3、明确LLC定频谐振变换器设计的限制条件,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr,并验证LLC定频谐振变换器是否满足下述验证条件:(1)是否满足变压器原边开关管的零电压导通实现条件式中,Zin为输入阻抗,Cres为IGBT并联寄生电容,Tr为谐振腔谐振周期,即Uin_min为输入电压最小值,Pin_max为输入功率最大值;(2)LLC定频谐振变换器的品质因数Q是否满足条件式中,Lrs为励磁电感Lm与原边漏感Lk的比值,即frs为谐振腔谐振频率fr与开关频率fs比值;(3)死区时间内变压器原边电流是否反向;(4)输入阻抗是否呈感性,并留有角度裕量;若上述四个验证条件不能同时满足,则需要重新选定励磁电感值Lm进行核算直至同时满足上述四个验证条件;
S4、在分裂电容三相逆变器中引入中线电感Ln,中线电感Ln的负极与三相输出滤波电容的公共端相连,中线电感Ln的正极与两个输入分裂电容之间的中间点相连,三相负载不平衡时,通过引入中心电感Ln消除中性点电位uN的正弦扰动。
上述步骤S3中,LLC定频谐振变换器的设计限制条件为:
LLC谐振腔输入阻抗必须呈现感性,即Angle(Zin)>0;
LLC定频谐振变换器的品质因数Q小于0.005,以保证LLC定频谐振变换器工作于感性II区;实际应用中变压器励磁电感取值范围为1mH作用,原边漏感为几个μH,两者比值Lrs约为几百,这就导致Mgain=f(frs)曲线(其中,Mgain表示谐振腔增益)在同等增益变换范围下,频率变化较大,感性、容性阻抗分界线左移,因此设计时要求品质因数Q必须很小,以保证工作与感性II区。
LLC定频谐振变换器的死区时间大于结电容放电时间,同时小于结电容放电时间与励磁电流谐振到零时间之和,以保证LLC定频谐振变换器中变压器原边开关管的零电压导通(即ZVS)实现条件。
上述步骤S3中,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr的具体步骤为:
(1)定义励磁电感Lm的取值范围为0.7mH≤Lm≤2mH,初步选定励磁电感Lm的取值;
(2)通过下述公式(6)、(7)分别计算结电容放电时间T1和励磁电流谐振到零时间Tm
Tm=tan-1(n2×R/2πfrfrsLm)/π×Tr/2 (7)
式中,n为变压器匝比,R为变压器原边等效阻抗;
(3)死区时间tdead≥T1,按照下述公式(8)计算电流角度
式中,Uo为LLC定频谐振变换器输出电压,Io为LLC定频谐振变换器输出电流;
(4)保证LLC定频谐振变换器工作在感性II区,应满足以下限制:
(5)计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr
上述步骤S4中,三相负载平衡时,中性点电位uN为:
式中,udc为LLC定频谐振变换器的输出电压;
当接入不平衡负载时,中性点电位uN发生偏移,即引入时中线电感Ln,中性点电位uN表达式如下:
式中,um为三相输出电压最大值,Z为负载阻抗,Cin为三相输出滤波电容,θ为偏移角度;
三相负载不平衡时,中性点电位uN有正弦扰动,通过引入中心电感消除该扰动,使中性点电位uN恢复到从而降低三相电压不平衡度。
Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器设计时,无先后顺序。因此,上述步骤S2、S3、S4的顺序可以互换。
参见图2,本发明还提供了一种低地板有轨电车辅助逆变器,基于上述设计方法,包括辅助逆变器和充电机,所述辅助逆变器包括最小电压应力Buck变换器1、LLC定频谐振变换器2和分裂电容三相逆变器3,最小电压应力Buck变换器1、LLC定频谐振变换器2和分裂电容三相逆变器3依次串联,所述最小电压应力Buck变换器1设有最小电压应力谐振单元,所述最小电压应力谐振单元由谐振电感L2、谐振电容Cr和谐振电容Cs组成;所述充电机设有DC/DC倍流整流变换器4,所述DC/DC倍流整流变换器4与所述最小电压应力Buck变换器1的输出端相连。
继续参见图2,所述最小电压应力Buck变换器还包括输入滤波电感L1、开关管S1、输入滤波电容C1、四个续流二极管、续流电感L3、两个串联连接的输出滤波电容和两个串联连接的均压电阻;输入滤波电容C1的正极分别与输入滤波电感L1的负极、开关管S1的C极、谐振电容Cr的正极相连,开关管S1的M极与谐振电感L2的正极相连,开关管S1的E极分别与谐振电容Cr的负极、续流二极管D1的阳极、续流二极管D3的阴极相连;续流二极管D2的阳极分别与谐振电感L2的负极、续流电感L3的正极、谐振电容Cs的负极、续流二极管D4的阳极相连;续流二极管D1的阴极分别与续流二极管D2的阳极、谐振电容的正极相连;续流二极管D2的阴极分别与续流二极管D4的阴极、输出滤波电容C3的负极相连;续流电感L3与输出滤波电容C2的正极相连,均压电阻RC1并联在输出滤波电容C2的两端,均压电阻RC2并联在输出滤波电容C3的两端。利用谐振电感L2、谐振电容Cr和谐振电容Cs对开关管S1的电压、电流波形进行整形和软化,从而达到软开关的目的。均压电阻RC1并联在输出滤波电容C2的两端,均压电阻RC2并联在输出滤波电容C3的两端,起到均压作用。
继续参见图2,所述DC/DC倍流整流变换器包括开关管S2、隔直电容Cc、变压器T2、续流电感La、续流电感Lb、输出滤波电容C6、防反二极管D9和两个二极管;开关管S2的M极与隔直电容Cc的正极相连,隔直电容Cc的负极与变压器T2原边的va端相连;变压器T2原边的vb端与输出滤波电容C2和输出滤波电容C3的中点相连;变压器T2副边的vc端分别与续流电感La的负极、二极管D8的阳极相连;变压器T2副边的vd端分别与续流电感Lb的负极、二极管D7的阳极相连,二极管D7和二极管D8的阴极均与输出滤波电容C6的负极相连;续流电感La和续流电感Lb的正极分别与输出滤波电容C6的正极、防反二极管D9的阳极相连。
继续参见图2,所述LLC定频谐振变换器包括两个并联连接的开关管、隔直电容Cb、变压器T1和两个副边整流二极管,变压器T1和隔直电容Cb组成LLC谐振腔,G1、G2、G3、G4为开关管的驱动信号;开关管S3和开关管S4跨接在最小电压应力Buck变换器正负输出母线之间;开关管S3的M极与隔直电容Cb的正极相连,开关管S4的M极与变压器T1原边的vb端相连,隔直电容Cb的负极与变压器T1原边的va端相连,变压器集成漏感Lk属于变压器T1本体;变压器T1副边的vc端与副边整流二极管D5的中间点连接,变压器T1副边的vd端与副边整流二极管D6的中间点连接。参见图4,驱动信号G1和驱动信号G4相同,驱动信号G2和驱动信号G3相同,谐振腔开关频率高于LLC定频谐振变换器的开关频率,从而保证谐振周期小于开关周期,为副边二极管零电流关断创造条件;将输出电压Uo折算到变压器T1原边,并利用该电压对变压器T1的励磁、去磁作用,实现原边开关管的零电压导通和小电流关断。
继续参见图2,所述分裂电容三相逆变器包括两个串联连接的输入分裂电容、三个并联连接的开关管、三个输出滤波电感、三个星形连接的输出滤波电容、中间电感Ln和中线电容Cn;输入分裂电容C4的正极与副边整流二极管D6的阳极连接,输入分裂电容C5的负极与副边整流二极管D6的阴极连接;开关管S5、开关管S6和开关管S7分别与输入分裂电容C4和输入分裂电容C5组成的串联电路并联连接,开关管S5的M极与输出滤波电感Lu的正极相连,开关管S6的M极与输出滤波电感Lv的正极相连,开关管S7的M极与输出滤波电感Lw的正极相连,输出滤波电容Cu、输出滤波电容Cv和输出滤波电容Cw的公共端与中线电容Cn的正极相连,中线电容Cn的负极与中线电感Ln的负极相连,中线电感Ln的正极与输入分裂电容C4和输入分裂电容C5之间的中间点相连。
上述实施例用来解释本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

1.一种用于低地板有轨电车辅助变流器轻量化设计方法,其特征在于,含有以下步骤:
将设有最小电压应力谐振单元的最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联作为辅助逆变器,充电机设有DC/DC倍流整流变换器,所述DC/DC倍流整流变换器与所述最小电压应力Buck变换器的输出端相连;
确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min
明确LLC定频谐振变换器设计的限制条件,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr,并验证LLC定频谐振变换器是否满足下述验证条件:(1)是否满足变压器原边开关管的零电压导通实现条件式中,Zin为输入阻抗,Cres为IGBT并联寄生电容,Tr为谐振腔谐振周期,即Uin_min为输入电压最小值,Pin_max为输入功率最大值;(2)LLC定频谐振变换器的品质因数Q是否满足条件式中,Lrs为励磁电感Lm与原边漏感Lk的比值,即frs为谐振腔谐振频率fr与开关频率fs比值;(3)死区时间内变压器原边电流是否反向;(4)输入阻抗是否呈感性,并留有角度裕量;若上述四个验证条件不能同时满足,则需要重新选定励磁电感值Lm进行核算直至同时满足上述四个验证条件;
在分裂电容三相逆变器中引入中线电感Ln,中线电感Ln的负极与三相输出滤波电容的公共端相连,中线电感Ln的正极与两个输入分裂电容之间的中间点相连,三相负载不平衡时,通过引入中心电感Ln消除中性点电位uN的正弦扰动。
2.如权利要求1所述的用于低地板有轨电车辅助变流器轻量化设计方法,其特征在于,确定最小电压应力Buck变换器的谐振电感L2、谐振电容Cr、谐振电容Cs和最小输出电流Io,min的具体步骤为:
谐振电感L2的电感值选取应满足下述条件:
式中,tr为开关管S1的电流上升时间,trr为续流二极管D4的反向恢复时间,io,peak为输出电流峰值,Ui为输入电压;
谐振电容Cr和谐振电容Cs的选取包括以下步骤:
(a)任取带入公式(2),求得条件下的最小输出电流Io,min,公式(2)表示为:
式中,tr-off,max为在满足软斩波运行条件下的最大谐振关断时间,由设计者给出;
(b)将步骤(a)中的值和所求的最小输出电流Io,min带入公式(3)求得谐振电容Cr,公式(3)表示为:
式中,ω为
(c)用公式(4)验证步骤(b)中求得的谐振电容Cr,公式(4)表示为:
式中,tf为开关管S1的电流下降时间;
(d)若步骤(c)中的条件不满足,则重复步骤(a)-(c),直至满足步骤(c)中的条件,若步骤(c)中的条件满足,则选定谐振电容Cr的电容值,选定时,应大于理论值,谐振电容Cs的电容值用公式(5)求取,公式(5)表示为:
3.如权利要求2所述的用于低地板有轨电车辅助变流器轻量化设计方法,其特征在于,LLC定频谐振变换器的设计限制条件为:
LLC谐振腔输入阻抗必须呈现感性,即Angle(Zin)>0;
LLC定频谐振变换器的品质因数Q小于0.005,以保证LLC定频谐振变换器工作于感性II区;
LLC定频谐振变换器的死区时间大于结电容放电时间,同时小于结电容放电时间与励磁电流谐振到零时间之和。
4.如权利要求3所述的用于低地板有轨电车辅助变流器轻量化设计方法,其特征在于,选定励磁电感Lm的取值,计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr的具体步骤为:
定义励磁电感Lm的取值范围为0.7mH≤Lm≤2mH,初步选定励磁电感Lm的取值;
通过下述公式(6)、(7)分别计算结电容放电时间T1和励磁电流谐振到零时间Tm
Tm=tan-1(n2×R/2πfrfrsLm)/π×Tr/2 (7)
式中,n为变压器匝比,R为变压器原边等效阻抗;
死区时间tdead≥T1,按照下述公式(8)计算电流角度
式中,Uo为LLC定频谐振变换器输出电压,Io为LLC定频谐振变换器输出电流;
保证LLC定频谐振变换器工作在感性II区,应满足以下限制:
计算出LLC定频谐振变换器中的隔直电容Cb、变压器原边漏感Lk以及谐振腔谐振频率fr
5.如权利要求4所述的用于低地板有轨电车辅助变流器轻量化设计方法,其特征在于,三相负载平衡时,中性点电位uN为:
式中,udc为LLC定频谐振变换器的输出电压;
当接入不平衡负载时,中性点电位uN发生偏移,即引入时中线电感Ln,中性点电位表达式如下:
式中,um为三相输出电压最大值,Z为负载阻抗,Cin为三相输出滤波电容,θ为偏移角度;
三相负载不平衡时,中性点电位有正弦扰动,通过引入中心电感消除该扰动,使中性点电位恢复到
6.一种低地板有轨电车辅助变流器,基于如权利要求1所述的用于低地板有轨电车辅助变流器轻量化设计方法,包括辅助逆变器和充电机,其特征在于,所述辅助逆变器包括最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器,最小电压应力Buck变换器、LLC定频谐振变换器和分裂电容三相逆变器依次串联,所述最小电压应力Buck变换器设有最小电压应力谐振单元,所述最小电压应力谐振单元由谐振电感L2、谐振电容Cr和谐振电容Cs组成;所述充电机设有DC/DC倍流整流变换器,所述DC/DC倍流整流变换器与所述最小电压应力Buck变换器的输出端相连。
7.如权利要求6所述的低地板有轨电车辅助变流器,其特征在于,所述最小电压应力Buck变换器还包括输入滤波电感L1、开关管S1、输入滤波电容C1、四个续流二极管、续流电感L3、两个串联连接的输出滤波电容和两个串联连接的均压电阻;输入滤波电容C1的正极分别与输入滤波电感L1的负极、开关管S1的C极、谐振电容Cr的正极相连,开关管S1的M极与谐振电感L2的正极相连,开关管S1的E极分别与谐振电容Cr的负极、续流二极管D1的阳极、续流二极管D3的阴极相连;续流二极管D2的阳极分别与谐振电感L2的负极、续流电感L3的正极、谐振电容Cs的负极、续流二极管D4的阳极相连;续流二极管D1的阴极分别与续流二极管D2的阳极、谐振电容的正极相连;续流二极管D2的阴极分别与续流二极管D4的阴极、输出滤波电容C3的负极相连;续流电感L3与输出滤波电容C2的正极相连,均压电阻RC1并联在输出滤波电容C2的两端,均压电阻RC2并联在输出滤波电容C3的两端。
8.如权利要求7所述的低地板有轨电车辅助变流器,其特征在于,所述DC/DC倍流整流变换器包括开关管S2、隔直电容Cc、变压器T2、续流电感La、续流电感Lb、输出滤波电容C6、防反二极管D9和两个二极管;开关管S2的M极与隔直电容Cc的正极相连,隔直电容Cc的负极与变压器T2原边的va端相连;变压器T2原边的vb端与输出滤波电容C2和输出滤波电容C3的中点相连;变压器T2副边的vc端分别与续流电感La的负极、二极管D8的阳极相连;变压器T2副边的vd端分别与续流电感Lb的负极、二极管D7的阳极相连,二极管D7和二极管D8的阴极均与输出滤波电容C6的负极相连;续流电感La和续流电感Lb的正极分别与输出滤波电容C6的正极、防反二极管D9的阳极相连。
9.如权利要求6所述的低地板有轨电车辅助变流器,其特征在于,所述LLC定频谐振变换器包括两个并联连接的开关管、隔直电容Cb、变压器T1和两个副边整流二极管,变压器T1和隔直电容Cb组成LLC谐振腔;开关管S3和开关管S4跨接在最小电压应力Buck变换器正负输出母线之间;开关管S3的M极与隔直电容Cb的正极相连,开关管S4的M极与变压器T1原边的vb端相连,隔直电容Cb的负极与变压器T1原边的va端相连;变压器T1副边的vc端与副边整流二极管D5的中间点连接,变压器T1副边的vd端与副边整流二极管D6的中间点连接。
10.如权利要求9所述的低地板有轨电车辅助变流器,其特征在于,所述分裂电容三相逆变器包括两个串联连接的输入分裂电容、三个并联连接的开关管、三个输出滤波电感、三个星形连接的输出滤波电容、中间电感Ln和中线电容Cn;输入分裂电容C4的正极与副边整流二极管D6的阳极连接,输入分裂电容C5的负极与副边整流二极管D6的阴极连接;开关管S5、开关管S6和开关管S7分别与输入分裂电容C4和输入分裂电容C5组成的串联电路并联连接,开关管S5的M极与输出滤波电感Lu的正极相连,开关管S6的M极与输出滤波电感Lv的正极相连,开关管S7的M极与输出滤波电感Lw的正极相连,输出滤波电容Cu、输出滤波电容Cv和输出滤波电容Cw的公共端与中线电容Cn的正极相连,中线电容Cn的负极与中线电感Ln的负极相连,中线电感Ln的正极与输入分裂电容C4和输入分裂电容C5之间的中间点相连。
CN201811108360.8A 2018-09-21 2018-09-21 用于低地板有轨电车辅助变流器轻量化设计方法 Active CN109149939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811108360.8A CN109149939B (zh) 2018-09-21 2018-09-21 用于低地板有轨电车辅助变流器轻量化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811108360.8A CN109149939B (zh) 2018-09-21 2018-09-21 用于低地板有轨电车辅助变流器轻量化设计方法

Publications (2)

Publication Number Publication Date
CN109149939A true CN109149939A (zh) 2019-01-04
CN109149939B CN109149939B (zh) 2020-06-05

Family

ID=64823340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811108360.8A Active CN109149939B (zh) 2018-09-21 2018-09-21 用于低地板有轨电车辅助变流器轻量化设计方法

Country Status (1)

Country Link
CN (1) CN109149939B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932533A (zh) * 2019-12-06 2020-03-27 合肥工业大学 共中线开绕组电机控制变流器拓扑高频共模电压抑制方法
CN113258780A (zh) * 2021-05-11 2021-08-13 中车青岛四方车辆研究所有限公司 用于有轨电车辅助电源dc/dc电路的参数选择方法及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249801A (zh) * 2008-03-31 2008-08-27 北京交通大学 一种车辆辅助变流器
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
CN206575329U (zh) * 2017-03-02 2017-10-20 深圳市斯泰迪新能源科技有限公司 一种buck变换器电路
CN206650590U (zh) * 2017-04-24 2017-11-17 株洲中车时代电气股份有限公司 低地板车辅助变流器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249801A (zh) * 2008-03-31 2008-08-27 北京交通大学 一种车辆辅助变流器
US20110090717A1 (en) * 2009-10-21 2011-04-21 Myongji University Industry And Academia Cooperation Foundation Two-stage insulated bidirectional DC/DC power converter using a constant duty ratio LLC resonant converter
CN206575329U (zh) * 2017-03-02 2017-10-20 深圳市斯泰迪新能源科技有限公司 一种buck变换器电路
CN206650590U (zh) * 2017-04-24 2017-11-17 株洲中车时代电气股份有限公司 低地板车辅助变流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
饶沛南等: "一种新型低地板车用轻量化高频辅助变流器的研制", 《机车电传动》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932533A (zh) * 2019-12-06 2020-03-27 合肥工业大学 共中线开绕组电机控制变流器拓扑高频共模电压抑制方法
CN110932533B (zh) * 2019-12-06 2021-08-10 合肥工业大学 共中线开绕组电机控制变流器拓扑高频共模电压抑制方法
CN113258780A (zh) * 2021-05-11 2021-08-13 中车青岛四方车辆研究所有限公司 用于有轨电车辅助电源dc/dc电路的参数选择方法及控制方法

Also Published As

Publication number Publication date
CN109149939B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN105610336B (zh) 基于双电容模块的mmc型多端口电力电子变压器
CN104967300B (zh) 一种预充电电路和光伏逆变器
CN106059306B (zh) 一种多单元二极管电容网络高增益全桥隔离型直流变换器
CN102301577A (zh) 用于单相和三相操作的转换器、直流电压源及电池充电器
CN103227575A (zh) 三相软切换pfc整流器
CN102891611A (zh) 五电平功率变换器及其控制方法、控制装置
CN204334330U (zh) 一种模块化高压供电电路
CN101902129A (zh) 一种电流型多谐振直流变换器
CN107800312B (zh) 一种低输出纹波pfc变换器
Na et al. Active power filter for single-phase Quasi-Z-source integrated on-board charger
CN105226957A (zh) 一种无工频变压器的三相-单相变压装置
CN106887957A (zh) 一种多绕组磁集成型混合式配电变压器
CN102361408A (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN109039038A (zh) 基于虚拟阻抗的电容储能型单相整流器二次纹波抑制方法
CN108847775A (zh) 新型电力电子变压器拓扑结构
CN109327147A (zh) 一种固态高频感应加热电源的调功装置
Indalkar et al. Comparison of AC-DC Converter Topologies Used for Battery Charging in Electric Vehicle
Sen et al. Three-phase medium voltage DC fast charger based on single-stage soft-switching topology
CN109149939A (zh) 用于低地板有轨电车辅助变流器轻量化设计方法
CN108023411A (zh) 一种具有功率因数校正功能的单相非接触供电系统
CN205847124U (zh) 一种开关电感型混合准z源逆变器
CN102832828A (zh) 磁组合式三相输入ac/dc全桥高频变换器
CN110445227A (zh) 电动汽车车载单相充电系统中高、低频纹波电流抑制方法
Strothmann et al. Common-mode-free bidirectional three-phase PFC-rectifier for non-isolated EV charger
CN101234449A (zh) 一种逆变埋弧焊电源主电路拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant