CN105489917A - Microbial fuel cell for treating domestic sewage - Google Patents

Microbial fuel cell for treating domestic sewage Download PDF

Info

Publication number
CN105489917A
CN105489917A CN201510841465.4A CN201510841465A CN105489917A CN 105489917 A CN105489917 A CN 105489917A CN 201510841465 A CN201510841465 A CN 201510841465A CN 105489917 A CN105489917 A CN 105489917A
Authority
CN
China
Prior art keywords
fuel cell
anode
negative electrode
sanitary sewage
nickel foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510841465.4A
Other languages
Chinese (zh)
Inventor
曾丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jiushidu Industrial Product Design Co Ltd
Original Assignee
Chengdu Jiushidu Industrial Product Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jiushidu Industrial Product Design Co Ltd filed Critical Chengdu Jiushidu Industrial Product Design Co Ltd
Priority to CN201510841465.4A priority Critical patent/CN105489917A/en
Publication of CN105489917A publication Critical patent/CN105489917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention discloses a microbial fuel cell for treating domestic sewage, and belongs to the field of batteries. The microbial fuel cell for treating domestic sewage disclosed by the invention comprises a reactor arranged inside a shell as well as a cell cathode and a cell anode which are arranged outside the shell, wherein the bottom of the cell cathode is connected to one end of the reactor; the bottom of the cell anode is connected to the other end of the reactor; the reactor comprises a sealing shell as well as a positive electrode and a negative electrode which are arranged in the sealing shell, the surfaces of the positive electrode and the negative electrode are attached with microorganisms, an ion exchange membrane is arranged between the positive electrode and the negative electrode, the positive electrode is connected with the cell cathode, the negative electrode is connected with the cell anode, and the sealing shell is filled with the domestic sewage. The microbial fuel cell has the characteristics that the active areas of the electrode surfaces are relatively large, the electrostatic interaction between the microorganisms and the electrode surfaces is increased, the adsorbability of the microorganisms is improved and the catalytic performance is good, so that the yield of electric quantity and the efficiency of sewage treatment are improved, and the production cost is reduced.

Description

A kind of microbiological fuel cell for the treatment of sanitary sewage
Technical field
The present invention relates to a kind of battery, particularly a kind of microbiological fuel cell for the treatment of sanitary sewage.
Background technology
Along with continuing to increase of world population number, the mankind are subject to the impact of energy resources deficiency and ecological deterioration day by day, therefore tap a new source of energy and are paid attention to widely, and utilize reproducible biomass power generation to be a kind of effective means.Microbiological fuel cell (Microbialfuelcells, MFC), as a kind of new method utilizing microbial metabolism to produce electric energy, receives the concern of more people in recent years.It is a kind of device utilizing microbe to be electric energy as catalyst by converts chemical energy, and microbe can metabolism organic substance, produces electric energy simultaneously, is paid close attention to widely in disposing of sewage.But existing microbiological fuel cell generally has the low shortcoming of electrogenesis amount; Anode surface area of the prior art is general less simultaneously, be unfavorable for a large amount of attachments of microbe, and catalysis efficiency applicable surface is narrow; In prior art, the platinum that adopts as cathod catalyst more, although excellent catalytic effect, too expensive.
Summary of the invention
Goal of the invention of the present invention is: for above-mentioned Problems existing, there is provided a kind of electrode surface active area larger, increase the electrostatic interaction between microbe and electrode surface, increase microorganism adsorption, catalytic performance is good, thus improve electricity output and sewage treating efficiency, and reduce a kind of microbiological fuel cell for the treatment of sanitary sewage of production cost.
The technical solution used in the present invention is as follows:
For the treatment of a microbiological fuel cell for sanitary sewage, comprise setting reactor in the enclosure and the anode be arranged on outside shell and battery cathode, the bottom of described anode is connected to one end of reactor; The bottom of described battery cathode is connected to the other end of reactor; Described reactor comprises capsul and the anode be arranged in capsul and negative electrode, described anode and cathode surface are attached with microbe, amberplex is provided with between described anode and negative electrode, described anode is connected with anode, described negative electrode is connected with battery cathode, is full of medium in described capsul; Described medium is sanitary sewage; The bottom of described shell is provided with media exchanger, and described media exchanger is connected with capsul inside by passage.
Owing to have employed technique scheme, reactor is separated into anode chamber and cathode chamber by amberplex, under anode chamber's anaerobic environment, organic substance in sanitary sewage decomposes and discharges electronics and proton under microbial action, electronics relies on suitable electron transfer mediator effectively to transmit between biological components and anode, and be delivered to negative electrode formation electric current by external circuit, and proton is delivered to negative electrode by proton exchange membrane, oxidant obtains electronics at negative electrode and is reduced and is combined into water with proton, by media exchanger can by process after to water exchange from reactor, new sanitary sewage is supplemented in reactor, thus the process constantly completed sanitary sewage.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described microbe comprises 26% staphylococcus, 17% Escherichia coli, 23% Shewanella putrefaciens and 34% sulphur reduction ground bacillus.
Owing to have employed technique scheme, adopt mixed bacteria to carry out the treatment effect that a little effect of sewage disposal is far longer than single culture, the organic substance type remote in can disposing of sewage is more than the process type of single culture.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described anode is the mesoporous graphene aerogel of surperficial titanium/N doping, and described negative electrode is VO 2/ S-AC nickel foam air cathode.
Owing to have employed technique scheme, anode electrode surface active area of the present invention is comparatively large, increases the electrostatic interaction between microbe and electrode surface, and increase microorganism adsorption, catalytic performance is good; Cathode catalysis performance of the present invention is good, and the price of vanadium is lower than platinum, reduces production cost.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described ionic membrane exchange membrane comprises cell nafion proton membrane one, the lower floor of described cell nafion proton membrane one is coated with silicon dioxide layer, and the lower floor of described silicon dioxide is coated with cell nafion proton membrane two; The thickness of described silicon dioxide layer is 450nm, and described cell nafion proton membrane one surface is covered with PDDA layer, and described cell nafion proton membrane two surface is covered with PSS layer.
Owing to have employed technique scheme, SiO 2the sulfonate radical on surface hydroxyl and cell nafion proton membrane surface interacts and serves physical crosslinking polymer effect, PDDA layer and PSS layer can realize being cross-linked sulfonic acid group in cell nafion proton membrane, improve the water content of film, proton is more easily freely passed through, improve proton conductivity and the energy efficiency of ionic membrane, avoid microbial metabolic products to the pollution of ionic membrane simultaneously, ensure that the proton conductivity of ionic membrane, improve energy efficiency and the sewage treating efficiency of battery.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, the mesoporous graphene aerogel of described surperficial titanium/N doping has three-dimensional netted loose structure, and pore size is 9 μm.
Owing to have employed technique scheme, three-dimensional grapheme good conductivity, biocompatibility is high, the aerogel structure that easy formation is three-dimensional porous, the mesoporous graphene aerogel of titanium/N doping has hydrophilic surface, and reduce surface of graphene oxide hydrophobicity, electrolyte more easily infiltrates, conductivity is better, improves its reactivity area in anolyte.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described VO 2the VO on/S-AC nickel foam air cathode surface 2/ S-AC layer is nanometer thin sheet, described VO 2the thickness of/S-AC layer is 300nm, described VO 2the dimethyl silicone polymer on/S-AC nickel foam air cathode surface and the load capacity of carbon black are 6.25mg/cm 2and 1.56mg/cm 2.
Owing to have employed technique scheme, VO 2/ S-AC nickel foam air cathode, VO 2there is higher redox catalysis active, by VO 2mix with S-AC as Catalytic Layer, utilize chemical reaction that carbonaceous conductive material and catalyst are formed composite material, add electro-chemical activity current potential and surface area, microbiological fuel cell can be made to obtain good electricity generation performance, in order to reduce the production cost of microorganism fuel cell cathode further, more be close to the practical application of microbiological fuel cell, select price relatively cheap, the higher nickel foam of conductivity is as current collector material, under the prerequisite of control electrode cost, obtain efficiency of fuel cell generation and the sewage treating efficiency of higher microbiological fuel cell.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described anode is prepared from by following steps:
Step one: by the concentrated sulfuric acid: graphite powder: sodium nitrate mass ratio 65:1:0.6 adds graphite powder and sodium nitrate under the condition of ice bath in the concentrated sulfuric acid, after stirring and dissolving 30min, according to graphite powder: potassium permanganate mass ratio 1:5, potassium permanganate is added in mixed solution, after stirring 10h, according to the concentrated sulfuric acid: deionized water volume ratio 1:1 adds deionized water in mixed solution, mixture being placed in vacuum degree is under the condition of 0.93, 52 DEG C are slowly warming up to according to the speed of 1.2 DEG C/h, after keeping 52 DEG C of constant temperature to continue to stir 22h, in mixed solution, hydrogen peroxide is added than hydrogen peroxide volume ratio 1:0.1 according to the concentrated sulfuric acid, centrifugal stir 2.5h at 52 DEG C of temperature after, Separation of Solid and Liquid is got solid, solid uses watery hydrochloric acid and the deionized water rinsing of 5% respectively, graphene oxide is obtained after drying,
Step 2: graphene oxide is configured to the solution that concentration is 1.3mg/mL with deionized water; in solution, tetrazotization Tritanium/Trititanium is added according to mass ratio 8:1; after the ultrasonic 2h of room temperature; after reacting 10min under the condition of microwave reaction 100W; mixed solution is placed in teflon-lined thermal response still; be filled with argon gas to seal as after protection gas; vacuumize and reach vacuum degree 0.8; be warming up to 180 DEG C of reaction 36h; normal temperature is cooled to, the obtained mesoporous graphene aerogel of surperficial titanium/N doping under argon shield gas exists.
Owing to have employed technique scheme, obtained anode---the mesoporous graphene aerogel of surperficial titanium/N doping has three-dimensional netted loose structure, and tridimensional network there will not be disintegration phenomenon; Pore size is 9 μm, and applicable bacterium enters.
A kind of microbiological fuel cell for the treatment of sanitary sewage of the present invention, described negative electrode is made by following steps:
Step one: according to mass ratio 1:1 by polyvinyl alcohol, is mixed with the catalysis emulsion that concentration is 10%, by VO after polytetrafluoroethylene mixes 2mix according to mass ratio 2:1 with S-AC, take VO according to mass ratio 1:3 2/ S-AC mixture and catalysis emulsion, by VO 2mixed solution, through ultrasonic wave mixing 40min, is heated to 65 DEG C by/S-AC mixture and catalysis emulsion, and Keep agitation 2h breakdown of emulsion, obtains Catalytic Layer raw material;
Step 2: the thin slice by tablet press machine, nickel foam being pressed into 0.6mm, by Catalytic Layer raw material equably blade coating in nickel foam upper surface, be 70kPa at pressure subsequently, power is microwave reaction 5min under the condition of 100W, powder unnecessary for sheet surface is swept gently, obtains the nickel foam being covered with Catalytic Layer;
Step 3: dimethyl silicone polymer is configured to the solution that concentration is 10% with DMF, according to dimethyl silicone polymer: carbon black mass adds carbon black than 1:4 in solution, after mixing, obtain diffusion layer raw material, diffusion layer raw material uniform application is being covered with the nickel foam lower surface of Catalytic Layer, smearing thickness is 0.1mm, puts into drying box subsequently under the condition of 80 DEG C to dry, and obtains VO 2/ S-AC nickel foam air cathode.
Owing to have employed technique scheme, the negative electrode prepared---VO 2the VO on/S-AC nickel foam air cathode surface 2/ S-AC layer is nanometer thin sheet, and the external surface area after two kinds of catalyst compounds significantly improves, and active sites increases, VO 2at the formation microcellular structure of activated carbon surface, increase considerably porosity, accelerated material Transfer.
In sum, owing to have employed technique scheme, the invention has the beneficial effects as follows:
1, electrode surface active area is comparatively large, increases the electrostatic interaction between microbe and electrode surface, and increase microorganism adsorption, catalytic performance is good, and electric energy productive rate is high, and sewage treating efficiency is high.
2, reduce the production cost of microorganism fuel cell cathode, be more close to the practical application of microbiological fuel cell, under the prerequisite of control electrode cost, obtain efficiency of fuel cell generation and the wastewater treatment rate of higher microbiological fuel cell.
3, improve proton conductivity and the energy efficiency of ionic membrane, avoid microbial metabolic products to the pollution of ionic membrane simultaneously, ensure that the proton conductivity of ionic membrane, improve the energy efficiency of battery.
Accompanying drawing explanation
Fig. 1 is a kind of structural representation of the microbiological fuel cell for the treatment of sanitary sewage;
Fig. 2 is a kind of operation principle schematic diagram of the microbiological fuel cell for the treatment of sanitary sewage;
Fig. 3 is the SEM figure of the three-dimensional netted loose structure of the mesoporous graphene aerogel of surperficial titanium/N doping;
Fig. 4 is VO 2the VO on/S-AC nickel foam air cathode surface 2the SEM figure of/S-AC layer.
Mark in figure: 1 is reactor, and 2 is anode, and 3 is negative electrode, and 4 is microbe, and 5 is medium, 6 is capsul, and 7 is amberplex, and 8 is anode, and 9 is battery cathode, and 10 is flame-resistant insulation layer, 11 is shell, and 12 is filled media, and 13 is media exchanger, and 14 is passage.
Embodiment
Below in conjunction with accompanying drawing, the present invention is described in detail.
In order to make the object of invention, technical scheme and advantage clearly understand, below in conjunction with drawings and Examples, the present invention is further elaborated.Should be appreciated that specific embodiment described herein only in order to explain the present invention, be not intended to limit the present invention.
Embodiment 1
As shown in Figures 1 to 4, a kind of microbiological fuel cell for the treatment of sanitary sewage, comprise and be arranged on reactor in shell 11 1 and the anode 8 be arranged on outside shell 11 and battery cathode 9, the bottom of anode 8 is connected to one end of reactor 1; The bottom of battery cathode 9 is connected to the other end of reactor 1; Reactor 1 comprises capsul 6 and the anode 2 be arranged in capsul 6 and negative electrode 3, anode 2 and negative electrode 3 surface attachment have microbe 4, and be provided with amberplex 7 between anode 2 and negative electrode 3, anode 2 is connected with anode 8, negative electrode 3 is connected with battery cathode 9, is full of medium 5 in capsul 6; Medium 5 is sanitary sewage; The bottom of shell 11 is provided with media exchanger 13, and media exchanger 13 is connected with capsul 6 inside by passage 14.Organic substance in sanitary sewage decomposes and discharges electronics and proton under microbe 4 acts on, electronics relies on suitable electron transfer mediator effectively to transmit between biological components and anode, and be delivered to negative electrode formation electric current by external circuit, and proton is delivered to negative electrode by proton exchange membrane, oxidant obtains electronics at negative electrode and is reduced and is combined into water with proton, by media exchanger 13 can by process after to water exchange from reactor, new sanitary sewage is supplemented in reactor, thus constantly completes the process to sanitary sewage.
Flame-resistant insulation layer 10 is provided with between anode 8 and battery cathode 9, flame-resistant insulation layer 10 is overlying on capsul 6 upper surface, flame-resistant insulation layer 10 comprises 37% vinylite, 21% silica gel, 5% plasticiser, 3% dibasic lead stearate, 3% containing oxygen silicone oil, 4% platinum complex, 5% ethynylcyclohexanol, 3% mica, 9% siloxane oligomer and 10% repefral; Filled media 12 is full of between shell 11 and capsul 6, filled media 12 is identical with the material of flame-resistant insulation layer 10, filled media 12 comprises 37% vinylite, 21% silica gel, 5% plasticiser, 3% dibasic lead stearate, 3% containing oxygen silicone oil, 4% platinum complex, 5% ethynylcyclohexanol, 3% mica, 9% siloxane oligomer and 10% repefral.
Microbe 4 comprises 26% staphylococcus, 17% Escherichia coli, 23% Shewanella putrefaciens and 34% sulphur reduction ground bacillus.
Anode 2 is the mesoporous graphene aerogel of surperficial titanium/N doping, and the mesoporous graphene aerogel of surperficial titanium/N doping has three-dimensional netted loose structure, and pore size is 9 μm.
Negative electrode 3 is VO 2/ S-AC nickel foam air cathode, VO 2the VO on/S-AC nickel foam air cathode surface 2/ S-AC layer is nanometer thin sheet, VO 2the thickness of/S-AC layer is 300nm, VO 2the dimethyl silicone polymer on/S-AC nickel foam air cathode surface and the load capacity of carbon black are 6.25mg/cm 2and 1.56mg/cm 2.
Ionic membrane exchange membrane 7 comprises cell nafion proton membrane one, and the lower floor of cell nafion proton membrane one is coated with silicon dioxide layer, and the lower floor of silicon dioxide is coated with cell nafion proton membrane two; The thickness of silicon dioxide layer is 450nm, and cell nafion proton membrane one surface is covered with PDDA layer, and cell nafion proton membrane two surface is covered with PSS layer.
Embodiment 2
Anode 2---the mesoporous graphene aerogel of surperficial titanium/N doping is prepared from by following steps:
Step one: by the concentrated sulfuric acid: graphite powder: sodium nitrate mass ratio 65:1:0.6 adds graphite powder and sodium nitrate under the condition of ice bath in the concentrated sulfuric acid, after stirring and dissolving 30min, according to graphite powder: potassium permanganate mass ratio 1:5, potassium permanganate is added in mixed solution, after stirring 10h, according to the concentrated sulfuric acid: deionized water volume ratio 1:1 adds deionized water in mixed solution, mixture being placed in vacuum degree is under the condition of 0.93, 52 DEG C are slowly warming up to according to the speed of 1.2 DEG C/h, after keeping 52 DEG C of constant temperature to continue to stir 22h, in mixed solution, hydrogen peroxide is added than hydrogen peroxide volume ratio 1:0.1 according to the concentrated sulfuric acid, centrifugal stir 2.5h at 52 DEG C of temperature after, Separation of Solid and Liquid is got solid, solid uses watery hydrochloric acid and the deionized water rinsing of 5% respectively, graphene oxide is obtained after drying,
Step 2: graphene oxide is configured to the solution that concentration is 1.3mg/mL with deionized water; in solution, tetrazotization Tritanium/Trititanium is added according to mass ratio 8:1; after the ultrasonic 2h of room temperature; after reacting 10min under the condition of microwave reaction 100W; mixed solution is placed in teflon-lined thermal response still; be filled with argon gas to seal as after protection gas; vacuumize and reach vacuum degree 0.8; be warming up to 180 DEG C of reaction 36h; normal temperature is cooled to, the obtained mesoporous graphene aerogel of surperficial titanium/N doping under argon shield gas exists.
Embodiment 3
Negative electrode 3---VO 2/ S-AC nickel foam air cathode is made by following steps:
Step one: according to mass ratio 1:1 by polyvinyl alcohol, the catalysis emulsion that concentration is 10% is mixed with after polytetrafluoroethylene mixes, VO2 and S-AC is mixed according to mass ratio 2:1, VO2/S-AC mixture and catalysis emulsion is taken according to mass ratio 1:3, by VO2/S-AC mixture and catalysis emulsion through ultrasonic wave mixing 40min, mixed solution is heated to 65 DEG C, Keep agitation 2h breakdown of emulsion, obtains Catalytic Layer raw material;
Step 2: the thin slice by tablet press machine, nickel foam being pressed into 0.6mm, by Catalytic Layer raw material equably blade coating in nickel foam upper surface, be 70kPa at pressure subsequently, power is microwave reaction 5min under the condition of 100W, powder unnecessary for sheet surface is swept gently, obtains the nickel foam being covered with Catalytic Layer;
Step 3: dimethyl silicone polymer is configured to the solution that concentration is 10% with DMF, according to dimethyl silicone polymer: carbon black mass adds carbon black than 1:4 in solution, after mixing, obtain diffusion layer raw material, diffusion layer raw material uniform application is being covered with the nickel foam lower surface of Catalytic Layer, smearing thickness is 0.1mm, puts into drying box subsequently under the condition of 80 DEG C to dry, and obtains VO 2/ S-AC nickel foam air cathode.
The foregoing is only preferred embodiment of the present invention, not in order to limit the present invention, all any amendments done within the spirit and principles in the present invention, equivalent replacement and improvement etc., all should be included within protection scope of the present invention.

Claims (8)

1. the microbiological fuel cell for the treatment of sanitary sewage, it is characterized in that: comprise the reactor (1) that is arranged in shell (11) and be arranged on shell (11) anode outward (8) and battery cathode (9), the bottom of described anode (8) is connected to one end of reactor (1); The bottom of described battery cathode (9) is connected to the other end of reactor (1); Described reactor (1) comprises capsul (6) and the anode (2) that is arranged in capsul (6) and negative electrode (3), described anode (2) and negative electrode (3) surface attachment have microbe (4), amberplex (7) is provided with between described anode (2) and negative electrode (3), described anode (2) is connected with anode (8), described negative electrode (3) is connected with battery cathode (9), is full of medium (5) in described capsul (6); Described medium (5) is sanitary sewage; The bottom of described shell (11) is provided with media exchanger (13), and described media exchanger (13) is connected with capsul (6) inside by passage (14).
2. a kind of microbiological fuel cell for the treatment of sanitary sewage as claimed in claim 1, is characterized in that: described microbe (4) comprises 26% staphylococcus, 17% Escherichia coli, 23% Shewanella putrefaciens and 34% sulphur reduction ground bacillus.
3. a kind of microbiological fuel cell for the treatment of sanitary sewage as claimed in claim 1 or 2, is characterized in that: described anode (2) is the mesoporous graphene aerogel of surperficial titanium/N doping, and described negative electrode (3) is VO 2/ S-AC nickel foam air cathode.
4. a kind of microbiological fuel cell for the treatment of sanitary sewage as claimed in claim 3, it is characterized in that: described ionic membrane exchange membrane (7) comprises cell nafion proton membrane one, the lower floor of described cell nafion proton membrane one is coated with silicon dioxide layer, and the lower floor of described silicon dioxide is coated with cell nafion proton membrane two; The thickness of described silicon dioxide layer is 450nm, and described cell nafion proton membrane one surface is covered with PDDA layer, and described cell nafion proton membrane two surface is covered with PSS layer.
5. a kind of microbiological fuel cell for the treatment of sanitary sewage as claimed in claim 4, is characterized in that: the mesoporous graphene aerogel of described surperficial titanium/N doping has three-dimensional netted loose structure, and pore size is 9 μm.
6. a kind of microbiological fuel cell for the treatment of sanitary sewage as described in claim 4 or 5, is characterized in that: described VO 2the VO on/S-AC nickel foam air cathode surface 2/ S-AC layer is nanometer thin sheet, described VO 2the thickness of/S-AC layer is 300nm, described VO 2the dimethyl silicone polymer on/S-AC nickel foam air cathode surface and the load capacity of carbon black are 6.25mg/cm 2and 1.56mg/cm 2.
7., as claim requires a kind of microbiological fuel cell for the treatment of sanitary sewage as described in 5, it is characterized in that, described anode (2) is prepared from by following steps:
Step one: by the concentrated sulfuric acid: graphite powder: sodium nitrate mass ratio 65:1:0.6 adds graphite powder and sodium nitrate under the condition of ice bath in the concentrated sulfuric acid, after stirring and dissolving 30min, according to graphite powder: potassium permanganate mass ratio 1:5, potassium permanganate is added in mixed solution, after stirring 10h, according to the concentrated sulfuric acid: deionized water volume ratio 1:1 adds deionized water in mixed solution, mixture being placed in vacuum degree is under the condition of 0.93, 52 DEG C are slowly warming up to according to the speed of 1.2 DEG C/h, after keeping 52 DEG C of constant temperature to continue to stir 22h, in mixed solution, hydrogen peroxide is added than hydrogen peroxide volume ratio 1:0.1 according to the concentrated sulfuric acid, centrifugal stir 2.5h at 52 DEG C of temperature after, Separation of Solid and Liquid is got solid, solid uses watery hydrochloric acid and the deionized water rinsing of 5% respectively, graphene oxide is obtained after drying,
Step 2: graphene oxide is configured to the solution that concentration is 1.3mg/mL with deionized water; in solution, tetrazotization Tritanium/Trititanium is added according to mass ratio 8:1; after the ultrasonic 2h of room temperature; after reacting 10min under the condition of microwave reaction 100W; mixed solution is placed in teflon-lined thermal response still; be filled with argon gas to seal as after protection gas; vacuumize and reach vacuum degree 0.8; be warming up to 180 DEG C of reaction 36h; normal temperature is cooled to, the obtained mesoporous graphene aerogel of surperficial titanium/N doping under argon shield gas exists.
8. a kind of microbiological fuel cell for the treatment of sanitary sewage as claimed in claim 6, it is characterized in that, described negative electrode (3) is made by following steps:
Step one: according to mass ratio 1:1 by polyvinyl alcohol, is mixed with the catalysis emulsion that concentration is 10%, by VO after polytetrafluoroethylene mixes 2mix according to mass ratio 2:1 with S-AC, take VO according to mass ratio 1:3 2/ S-AC mixture and catalysis emulsion, by VO 2mixed solution, through ultrasonic wave mixing 40min, is heated to 65 DEG C by/S-AC mixture and catalysis emulsion, and Keep agitation 2h breakdown of emulsion, obtains Catalytic Layer raw material;
Step 2: the thin slice by tablet press machine, nickel foam being pressed into 0.6mm, by Catalytic Layer raw material equably blade coating in nickel foam upper surface, be 70kPa at pressure subsequently, power is microwave reaction 5min under the condition of 100W, powder unnecessary for sheet surface is swept gently, obtains the nickel foam being covered with Catalytic Layer;
Step 3: dimethyl silicone polymer is configured to the solution that concentration is 10% with DMF, according to dimethyl silicone polymer: carbon black mass adds carbon black than 1:4 in solution, after mixing, obtain diffusion layer raw material, diffusion layer raw material uniform application is being covered with the nickel foam lower surface of Catalytic Layer, smearing thickness is 0.1mm, puts into drying box subsequently under the condition of 80 DEG C to dry, and obtains VO 2/ S-AC nickel foam air cathode.
CN201510841465.4A 2015-11-28 2015-11-28 Microbial fuel cell for treating domestic sewage Pending CN105489917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510841465.4A CN105489917A (en) 2015-11-28 2015-11-28 Microbial fuel cell for treating domestic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510841465.4A CN105489917A (en) 2015-11-28 2015-11-28 Microbial fuel cell for treating domestic sewage

Publications (1)

Publication Number Publication Date
CN105489917A true CN105489917A (en) 2016-04-13

Family

ID=55676761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510841465.4A Pending CN105489917A (en) 2015-11-28 2015-11-28 Microbial fuel cell for treating domestic sewage

Country Status (1)

Country Link
CN (1) CN105489917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326391A (en) * 2017-07-06 2017-11-07 太原理工大学 A kind of method that microorganism auxiliary photoelectrocatalysis reduces CO2
CN113219014A (en) * 2021-05-11 2021-08-06 四川农业大学 MFC toxicity sensor and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153883A (en) * 2011-05-04 2013-06-12 Rm泰科株式会社 Method for heavy metal elimination or precious metal recovery using microbial fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153883A (en) * 2011-05-04 2013-06-12 Rm泰科株式会社 Method for heavy metal elimination or precious metal recovery using microbial fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨斯琦等: "微生物燃料电池MnO2/S-AC泡沫镍空气阴极的制备及其性能", 《化工学报》 *
马彩霞等: "表面铁/氮掺杂介孔石墨烯气凝胶提升微生物燃料电池阳极性能的研究", 《功能材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326391A (en) * 2017-07-06 2017-11-07 太原理工大学 A kind of method that microorganism auxiliary photoelectrocatalysis reduces CO2
CN107326391B (en) * 2017-07-06 2018-10-09 太原理工大学 A kind of method of microorganism auxiliary photoelectrocatalysis reduction CO2
CN113219014A (en) * 2021-05-11 2021-08-06 四川农业大学 MFC toxicity sensor and application thereof

Similar Documents

Publication Publication Date Title
Lobyntseva et al. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies
Li et al. Voltage reversal causes bioanode corrosion in microbial fuel cell stacks
JP6184256B2 (en) Cathode for microbial fuel cell, method for producing the same, and microbial fuel cell
CN105336964B (en) A kind of preparation method and application of nitrogen-doped carbon nanometer pipe/nitridation carbon composite
CN102386421A (en) Microbial fuel cell air cathode easy to perform scale preparation and preparation method thereof
CN108511765A (en) A kind of graphene doping filtering membrane electrode and preparation method thereof suitable for microbiological fuel cell
CN106684419A (en) Photo-assisted microorganism fuel battery
CN102903938A (en) Polymer fiber film methanol fuel cell with cathode adopting non-noble metal catalyst and preparation method thereof
CN109810435A (en) A kind of preparation method of phosphate-doped graphene oxide and poly-vinylidene-fluoride composite film
CN102117918A (en) Preparation method and application of nitrogen-doped carbon nanotube to preparing cathode of microbial fuel cell of
CN105355929A (en) Microbial fuel cell based on trimethylamine oxide medium
CN106159281A (en) A kind of high-performance microbiological fuel cell based on molybdenum nitride negative electrode
Solomon et al. Enhancing power generation by maintaining operating temperature using phase change material for microbial fuel cell application
CN105161730A (en) Air cathode and microbial fuel cell
CN105355927A (en) VO2/S-AC nickel foam air cathode
CN105489917A (en) Microbial fuel cell for treating domestic sewage
CN205194785U (en) Battery of little biofuel reactor and applied this reactor
CN102306807A (en) Cathode of film-free air microbial fuel cell and manufacturing method thereof
CN106784863A (en) A kind of CoFe2O4The preparation method of/AC microbial fuel cell air cathode catalysis materials
CN104143644A (en) Microbial fuel cell, anode, anode catalyst and preparation method thereof
CN107221682A (en) A kind of microbiological fuel cell composite cathode and preparation method and application
CN205231184U (en) Microbiological fuel cell based on two tert -butyl group pyridine media of 2, 6 -
CN110890554B (en) High-power flexible single-enzyme glucose fuel cell and preparation method thereof
CN205355155U (en) Microbiological fuel cell based on to trimethyl -amine oxide medium
CN108047486B (en) Chitosan-graphene oxide sponge, preparation method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160413

RJ01 Rejection of invention patent application after publication