CN103490656B - 基于h桥的四电平逆变器拓扑结构的载波调制方法 - Google Patents

基于h桥的四电平逆变器拓扑结构的载波调制方法 Download PDF

Info

Publication number
CN103490656B
CN103490656B CN201310469744.3A CN201310469744A CN103490656B CN 103490656 B CN103490656 B CN 103490656B CN 201310469744 A CN201310469744 A CN 201310469744A CN 103490656 B CN103490656 B CN 103490656B
Authority
CN
China
Prior art keywords
bridge
diodes
derided capacitors
switching tubes
electrical level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310469744.3A
Other languages
English (en)
Other versions
CN103490656A (zh
Inventor
刘洪臣
苏振霞
周褀堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310469744.3A priority Critical patent/CN103490656B/zh
Publication of CN103490656A publication Critical patent/CN103490656A/zh
Application granted granted Critical
Publication of CN103490656B publication Critical patent/CN103490656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

基于H桥的四电平逆变器拓扑结构的载波调制方法,涉及基于H桥的四电平逆变器拓扑结构和拓扑结构的载波调制方法。解决了现有逆变器拓扑结构由于器件数量多和四电平逆变器拓扑结构的载波调制方法复杂,导致结构稳定性低的问题。该拓扑结构包括直流侧、开关组合电路和逆变侧,直流侧和逆变侧通过开关组合电路连接。该拓扑结构的载波调制方法为:首先将三个频率相同且幅值相等的三角波载波分别与一个基准正弦波进行比较,得到三个脉冲信号A1、B1和C1;然后将基准正弦波直接与零电压进行比较得到脉冲信号D1;最后将脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,该八个脉冲信号分别控制八个开关管的导通与断开。本发明适用于中高压大功率领域。

Description

基于H桥的四电平逆变器拓扑结构的载波调制方法
技术领域
本发明涉及基于H桥的四电平逆变器拓扑结构和基于H桥的四电平逆变器拓扑结构的载波调制方法。
背景技术
多电平逆变器相对于两电平逆变器具有器件电压应力低、输出电压更接近正弦波、电压总谐波畸变率(THD)低、器件的开关损耗小、输电效率高、系统电磁干扰(electromagneticinterference,EMI)小等优点,在中高压大功率应用领域多电平功率变换器成为研究的一个热点。基本的多电平拓扑结构归纳起来有3种:H桥级联型、二极管钳位型和飞跨电容型。H桥级联型的每个模块都有一个独立的直流电源,系统成本高,体积大且设计困难;飞跨电容型拓扑结构中每一相桥臂都需要跨接一个电容,开关损耗较大;其中二极管钳位型(neutralpoint clamped,NPC)多电平逆变器由于结构简单,无需复杂变压器而得到广泛应用。它通过串联的二极管将直流侧的高电压分成一系列较低的电平电压,用低压器件实现高电平输出。目前,常用的单相多电平逆变器主要是单相中点钳位电压源型三电平逆变器,如图4所示,它是由一个三电平桥臂和一个两电平桥臂组合而成的,经二极管钳位实现三电平输出,之后提出的单相五电平、单相七电平都是在此基础上增加钳位二极管和电容数目实现的,图5所示的为二极管钳位式五电平逆变器拓扑结构电路原理图,可以看出,随着电平数增加,其所需钳位二极管数目成陪增多,增加了系统成本和控制复杂度,此外,大量的器件降低了逆变器的可靠性,从而限制了多电平逆变器技术的应用。
发明内容
本发明为了解决现有的逆变器拓扑结构由于器件数量多和四电平逆变器拓扑结构的载波调制方法复杂,导致结构稳定性低的问题,提出了基于H桥的四电平逆变器拓扑结构的载波调制方法。
基于H桥的四电平逆变器拓扑结构的载波调制方法,它是基于以下基于H桥的四电平逆变器拓扑结构实现的:
所述基于H桥的四电平逆变器拓扑结构包括直流侧、开关组合电路和逆变侧,所述直流侧包括直流电源E、一号分压电容C1、二号分压电容C2和三号分压电容C3,一号分压电容C1、二号分压电容C2和三号分压电容C3的参数相同,一号分压电容C1、二号分压电容C2和三号分压电容C3依次串联连接之后并联在直流电源E的输出端,并联后的电源组合为逆变侧提供直流供电电源,直流电源E的输出电压为Vin,逆变侧为H桥电路结构,开关组合电路包括一号开关组合和二号开关组合,一号分压电容C1与二号分压电容C2的连接点通过一号开关组合以及二号分压电容C2和三号分压电容C3的连接点通过二号开关组合与逆变侧的H桥的一个电压输出端连接,
所述载波调制方法是由以下步骤实现的:
步骤一、将三个频率相同且幅值相等的三角波载波分别与一个基准正弦波进行比较,得到三个脉冲信号A1、B1和C1,所述基准正弦波的调制信号频率为50Hz,三角波载波频率为基准正弦波的调制信号频率的整数倍;
步骤二、将步骤一中的基准正弦波直接与零电压进行比较得到脉冲信号D1
步骤三、将步骤一和步骤二中得到的脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,该八个脉冲信号分别控制八个开关管的导通与断开。
有益效果:本发明中的逆变器拓扑结构省去了传统逆变器拓扑结构中常用的钳位二极管,使拓扑结构的器件数量大大减少,降低了制作成本;同时,针对本发明的逆变器拓扑结构的载波调制方法通过三个频率、幅值均相同的三角波载波与一个基准正弦波进行比较后,通过逻辑门计算即可实现,非常简便,使拓扑结构的稳定性提高了5%以上。
附图说明
图1为基于H桥的四电平逆变器拓扑结构的电路结构原理图;
图2为基于H桥的四电平逆变器拓扑结构的载波调制方法的流程图;
图3为具体实施方式二所述的三个频率相同且幅值相等的三角波载波、一个基准正弦波和四个脉冲信号的示意图;
图4为传统的单相三电平逆变器拓扑结构的电路结构原理图;
图5为二极管钳位式五电平逆变器拓扑结构的电路结构原理图。
具体实施方式
具体实施方式一、结合图1说明本具体实施方式,基于H桥的四电平逆变器拓扑结构,它包括直流侧、开关组合电路和逆变侧,所述直流侧包括直流电源E、一号分压电容C1、二号分压电容C2和三号分压电容C3,一号分压电容C1、二号分压电容C2和三号分压电容C3的参数相同,一号分压电容C1、二号分压电容C2和三号分压电容C3依次串联连接之后并联在直流电源E的输出端,并联后的电源组合为逆变侧提供直流供电电源,直流电源E的输出电压为Vin,逆变侧为H桥电路结构,开关组合电路包括一号开关组合和二号开关组合,一号分压电容C1与二号分压电容C2的连接点通过一号开关组合与逆变侧H桥的一个电压输出端连接,二号分压电容C2和三号分压电容C3的连接点通过二号开关组合与逆变侧的H桥的另一个电压输出端连接。
本实施方式中的直流电源E的输出电压为Vin,且一号分压电容C1、二号分压电容C2和三号分压电容C3的型号相同,每个分压电容两侧的电压均为Vin/3。
具体实施方式二、结合图1说明本具体实施方式,本具体实施方式与具体实施方式一所述的基于H桥的四电平逆变器拓扑结构的区别在于,所述开关组合电路的一号开关组合和二号开关组合的结构相同,其中所述一号开关组合包括五号开关管S5、六号开关管S6、五号二极管D5和六号二极管D6,
所述五号二极管D5的负极作为该一号开关的组合的一端同时与五号开关管S5的集电极和一号分压电容C1与二号分压电容C2的连接点连接,所述五号二极管D5的正极同时与五号开关管S5的发射极、六号二极管D6的正极和六号开关管S6的集电极连接,六号二极管D6的负极作为该一号开关的组合的另一端同时与六号开关管S6的发射极和逆变侧的H桥的一个电压输出端连接。
具体实施方式三、结合图1说明本具体实施方式,本具体实施方式与具体实施方式二所述的基于H桥的四电平逆变器拓扑结构的区别在于,所述逆变侧H桥包括一号开关管S1、二号开关管S2、三号开关管S3、四号开关管S4、一号二极管D1、二号二极管D2、三号二极管D3、四号二极管D4、电阻R和电感L,
所述电阻R的一端同时与一号开关管S1的发射极、一号二极管D1的正极、二号开关管S2的集电极、二号二极管D2和一号开关的组合的另一端连接,电阻R的另一端与电感L的一端连接,
电感L的另一端作为逆变侧H桥的另一个电压输出端同时与三号开关管S3的发射极、三号二极管D3的正极、四号开关管S4的集电极和四号二极管D4的负极连接,
一号开关管S1的集电极同时与一号二极管D1的负极、三号开关管S3的集电极、三号二极管D3的负极和直流电源E的正极连接,
二号开关管S2的发射极同时与二号二极管D2的正极、四号开关管S4的发射极、四号二极管D4的正极和直流电源E的负极连接。
本发明所述的逆变器拓扑结构直流侧采用三个串联的直流电压源,整个拓扑结构不需要任何钳位二极管,大大简化了逆变器的拓扑结构,降低了成本,同时也提高了逆变器工作的可靠性。
设两个桥臂间的输出电压为V0,则输出电压V0共有±Vin、±Vin/3、±2Vin/3、±0八种电平,输出电压V0与开关管的开通情况的关系为:
具体实施方式四、结合图2和图3说明本具体实施方式,具体实施方式三所述的基于H桥的四电平逆变器拓扑结构的载波调制方法,它是由以下步骤实现的:
步骤一、将三个频率相同且幅值相等的三角波载波分别与一个基准正弦波进行比较,得到三个脉冲信号A1、B1和C1,所述基准正弦波的调制信号频率为50Hz,三角波载波频率为基准正弦波的调制信号频率的整数倍;
步骤二、将步骤一中的基准正弦波直接与零电压进行比较得到脉冲信号D1
步骤三、将步骤一和步骤二中得到的脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,该八个脉冲信号分别控制八个开关管的导通与断开。
本实施方式所述三角波载波频率为基准正弦波的调制信号频率的整数倍,例如,三角波载波频率可以为500Hz或5kHz等,所述三个三角波载波的幅值为1/3,处于最下面的三角波载波的基准电压为0,处于中间的三角波载波的基准电压为1/3,处于最上面的三角波载波的基准电压为2/3,基准正弦波的电压幅值为0.85。
具体实施方式五、本具体实施方式与具体实施方式四所述的基于H桥的四电平逆变器拓扑结构的载波调制方法的区别在于,步骤三所述的脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,以及该八个脉冲信号对应控制的八个开关管和各个开关管导通时所对应的逆变侧H桥的输出电平状态的关系为:

Claims (4)

1.基于H桥的四电平逆变器拓扑结构的载波调制方法,它是基于以下基于H桥的四电平逆变器拓扑结构实现的:
所述基于H桥的四电平逆变器拓扑结构包括直流侧、开关组合电路和逆变侧,所述直流侧包括直流电源(E)、一号分压电容(C1)、二号分压电容(C2)和三号分压电容(C3),一号分压电容(C1)、二号分压电容(C2)和三号分压电容(C3)的参数相同,一号分压电容(C1)、二号分压电容(C2)和三号分压电容(C3)依次串联连接之后并联在直流电源(E)的输出端,并联后的电源组合为逆变侧提供直流供电电源,直流电源(E)的输出电压为Vin,逆变侧为H桥电路结构,开关组合电路包括一号开关组合和二号开关组合,一号分压电容(C1)与二号分压电容(C2)的连接点通过一号开关组合以及二号分压电容(C2)和三号分压电容(C3)的连接点通过二号开关组合与逆变侧的H桥的一个电压输出端连接,
其特征在于,所述载波调制方法是由以下步骤实现的:
步骤一、将三个频率相同且幅值相等的三角波载波分别与一个基准正弦波进行比较,得到三个脉冲信号A1、B1和C1,所述基准正弦波的调制信号频率为50Hz,三角波载波频率为基准正弦波的调制信号频率的整数倍;
步骤二、将步骤一中的基准正弦波直接与零电压进行比较得到脉冲信号D1
步骤三、将步骤一和步骤二中得到的脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,该八个脉冲信号分别控制八个开关管的导通与断开。
2.根据权利要求1所述的基于H桥的四电平逆变器拓扑结构的载波调制方法,其特征在于,步骤三所述的脉冲信号A1、B1、C1和D1通过逻辑门计算获得八个脉冲信号,该八个脉冲信号与对应控制的八个开关管之间的关系为:
3.根据权利要求1所述的基于H桥的四电平逆变器拓扑结构的载波调制方法,其特征在于,所述开关组合电路的一号开关组合和二号开关组合的结构相同,其中所述一号开关组合包括五号开关管(S5)、六号开关管(S6)、五号二极管(D5)和六号二极管(D6),
所述五号二极管(D5)的负极作为该一号开关的组合的一端同时与五号开关管(S5)的集电极和一号分压电容(C1)与二号分压电容(C2)的连接点连接,所述五号二极管(D5)的正极同时与五号开关管(S5)的发射极、六号二极管(D6)的正极和六号开关管(S6)的集电极连接,六号二极管(D6)的负极作为该一号开关的组合的另一端同时与六号开关管(S6)的发射极和逆变侧的H桥的一个电压输出端连接。
4.根据权利要求3所述的基于H桥的四电平逆变器拓扑结构的载波调制方法,其特征在于,所述逆变侧H桥包括一号开关管(S1)、二号开关管(S2)、三号开关管(S3)、四号开关管(S4)、一号二极管(D1)、二号二极管(D2)、三号二极管(D3)、四号二极管(D4)、电阻(R)和电感(L),
所述电阻(R)的一端同时与一号开关管(S1)的发射极、一号二极管(D1)的正极、二号开关管(S2)的集电极、二号二极管(D2)和一号开关的组合的另一端连接,电阻(R)的另一端与电感(L)的一端连接,
电感(L)的另一端作为逆变侧H桥的另一个电压输出端同时与三号开关管(S3)的发射极、三号二极管(D3)的正极、四号开关管(S4)的集电极和四号二极管(D4)的负极连接,
一号开关管(S1)的集电极同时与一号二极管(D1)的负极、三号开关管(S3)的集电极、三号二极管(D3)的负极和直流电源(E)的正极连接,
二号开关管(S2)的发射极同时与二号二极管(D2)的正极、四号开关管(S4)的发射极、四号二极管(D4)的正极和直流电源(E)的负极连接。
CN201310469744.3A 2013-10-10 2013-10-10 基于h桥的四电平逆变器拓扑结构的载波调制方法 Active CN103490656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310469744.3A CN103490656B (zh) 2013-10-10 2013-10-10 基于h桥的四电平逆变器拓扑结构的载波调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310469744.3A CN103490656B (zh) 2013-10-10 2013-10-10 基于h桥的四电平逆变器拓扑结构的载波调制方法

Publications (2)

Publication Number Publication Date
CN103490656A CN103490656A (zh) 2014-01-01
CN103490656B true CN103490656B (zh) 2015-09-09

Family

ID=49830667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310469744.3A Active CN103490656B (zh) 2013-10-10 2013-10-10 基于h桥的四电平逆变器拓扑结构的载波调制方法

Country Status (1)

Country Link
CN (1) CN103490656B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827129B (zh) * 2015-01-04 2020-06-02 华为技术有限公司 多电平拓扑的电路和功率变换器
CN106208894B (zh) * 2016-08-24 2019-01-04 清华大学 一种多相电机驱动系统
CN106533217B (zh) * 2016-12-28 2019-03-15 北京天诚同创电气有限公司 整流器、整流电路及其控制方法
CN107994794B (zh) * 2017-12-29 2019-11-08 重庆大学 一种双t型四电平逆变单元及其应用电路和调制方法
CN108667321B (zh) * 2018-04-27 2020-07-07 重庆大学 混合四电平整流器
CN108923675B (zh) * 2018-07-30 2020-08-07 安徽大学 一种七电平变频器功率变换电路
CN110098755B (zh) * 2019-05-28 2020-09-04 中国矿业大学 一种五电平混合π型变换器
CN113938041B (zh) * 2021-10-13 2024-01-12 中国石油大学(华东) 高频SiC MOSFET四电平半桥逆变器冗余驱动脉冲剔除调制

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107672A1 (de) * 2008-03-31 2009-10-07 SMA Solar Technology AG Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises
FR2952485B1 (fr) * 2009-11-10 2012-11-23 Lorraine Inst Nat Polytech Circuit convertisseur matriciel multi-niveaux multi-tensions, et procede de mise en oeuvre d'un tel circuit
KR20120117940A (ko) * 2010-02-15 2012-10-24 지멘스 코포레이션 단 위상 멀티레벨 인버터
CN102594185B (zh) * 2012-02-20 2014-06-11 阳光电源股份有限公司 四电平拓扑单元及其应用电路

Also Published As

Publication number Publication date
CN103490656A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103490656B (zh) 基于h桥的四电平逆变器拓扑结构的载波调制方法
CN103051233B (zh) 一种非隔离型单相光伏并网逆变器及其开关控制时序
CN102594187B (zh) 四电平拓扑单元及其应用电路
CN101944839B (zh) 单相五电平功率变换器
CN106301042B (zh) 一种七电平逆变器
CN105577012A (zh) 一种混合五电平变流器及其控制方法
CN103269171B (zh) 大功率级联式二极管h桥单位功率因数整流器
CN103872937B (zh) 一种飞跨电容型五电平逆变装置的控制方法
CN107196523A (zh) 一种t型结构的三电平有源三次谐波注入矩阵变换器
CN103166495A (zh) 单相不对称全桥非隔离光伏并网逆变器
CN106921306A (zh) T型有源钳位型五电平三相逆变器及并网逆变发电系统
CN102710154B (zh) 主电路基于晶闸管的四象限多电平电流源型变换器
CN102361408A (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN104617803A (zh) 多电平变流器子模块及其制作的逆变电路、mmc拓扑
CN102594185B (zh) 四电平拓扑单元及其应用电路
CN101834451A (zh) 高压背靠背变流器
CN205356152U (zh) 一种基于模块化多电平的三列式dc/dc变换器
CN105305861A (zh) 一种级联多电平逆变器
CN102594188B (zh) 四电平拓扑单元及其应用电路
CN102170244A (zh) 共享电源级联多电平变流器
CN102223098A (zh) 一种单相逆变器及其控制方法
CN103259436B (zh) 混合箝位型五电平变流器及其控制方法
CN203193538U (zh) 新能源用三电平逆变器
CN102801349A (zh) 单相九电平变换器
CN206023611U (zh) 高频隔离式五电平逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant