WO2024062633A1 - Laminate and laminate production method - Google Patents

Laminate and laminate production method Download PDF

Info

Publication number
WO2024062633A1
WO2024062633A1 PCT/JP2022/035543 JP2022035543W WO2024062633A1 WO 2024062633 A1 WO2024062633 A1 WO 2024062633A1 JP 2022035543 W JP2022035543 W JP 2022035543W WO 2024062633 A1 WO2024062633 A1 WO 2024062633A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
conductive layer
laminate
resin layer
Prior art date
Application number
PCT/JP2022/035543
Other languages
French (fr)
Japanese (ja)
Inventor
悠衣 山口
和武 藤澤
孝宏 山下
誠一 伊藤
裕二 福川
広明 庄田
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/035543 priority Critical patent/WO2024062633A1/en
Priority to PCT/JP2023/007697 priority patent/WO2024062649A1/en
Publication of WO2024062633A1 publication Critical patent/WO2024062633A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a laminate and a method for manufacturing the laminate.
  • a power module (PM) installed in a hybrid vehicle or the like includes a laminate (also called a housing) of a resin molded product and metal.
  • housings have been manufactured by arranging a conductive layer and an insulating layer in a mold, injecting resin into the mold, and performing molding (hereinafter also referred to as insert molding).
  • a heat sink to which elements and the like are brazed is bonded to a housing used for PM. From the viewpoint of improving manufacturing efficiency, it is desirable that the bonding of the heat sink to the housing and the bonding of elements and the like to the heat sink are performed at the same time. However, heat is added to the housing by brazing the elements and the like to the heat sink.
  • a problem to be solved by an embodiment of the present disclosure is to provide a laminate with excellent thermal durability and a method for manufacturing the laminate.
  • the first conductive layer, the insulating layer, and the second conductive layer are arranged in the housing section of the first resin layer.
  • ⁇ 4> The laminate according to ⁇ 1> or ⁇ 2>, wherein the area of the accommodation portion of the first resin layer is greater than or equal to the area of the first conductive layer.
  • ⁇ 5> The laminate according to any one of ⁇ 1> to ⁇ 4>, further comprising a second resin layer on the side of the second conductive layer opposite to the insulating layer.
  • An adhesive layer is provided between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer, and the adhesive layer is solid in an environment of 25°C.
  • ⁇ 7> The laminate according to any one of ⁇ 1> to ⁇ 6> above, wherein the first resin layer is a cured product of a resin composition containing a thermosetting resin.
  • ⁇ 8> The laminate according to ⁇ 7> above, wherein the thermosetting resin contains unsaturated polyester.
  • the described laminate. ⁇ 10> A preparation step of preparing a first resin layer having a housing portion on at least one surface; a laminating step of laminating a first conductive layer, an insulating layer, and a second conductive layer on the surface of the first resin layer; In the laminating step, at least the first conductive layer is disposed within the housing portion of the first resin layer.
  • FIG. 1 is a perspective view showing an embodiment of the laminate of the present disclosure.
  • FIG. 2 is a perspective view showing another embodiment of the laminate of the present disclosure.
  • FIG. 3 is a perspective view showing an embodiment of the laminate of the present disclosure.
  • FIG. 4 is a cross-sectional view showing another embodiment of the laminate of the present disclosure.
  • FIG. 5 is a cross-sectional view showing another embodiment of the laminate of the present disclosure.
  • FIG. 6 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure.
  • FIG. 7 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure.
  • FIG. 8 is a perspective view showing another embodiment of the laminate of the present disclosure.
  • step includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using “ ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • each component may contain multiple types of corresponding substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
  • the term "layer” includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
  • the configuration of the embodiments is not limited to the configuration shown in the drawings.
  • the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.
  • the laminate of the present disclosure includes a first resin layer, a first conductive layer, an insulating layer, and a second conductive layer in this order, the first resin layer having a housing portion, and the first resin layer having a housing portion; A conductive layer is disposed within the housing of the first resin layer.
  • the laminate of the present disclosure has excellent thermal durability. Although the reason for the above effect is not clear, it is presumed as follows.
  • the laminate of the present disclosure can be manufactured not by insert molding but by individually manufacturing each layer and laminating them. Therefore, in the laminate manufactured by insert molding, the first conductive layer is buried in the first resin layer and is in complete contact with it, whereas in the laminate of the present disclosure, the first resin layer is buried in the first resin layer. Since the first conductive layer is not in complete contact with the first conductive layer, internal stress generated during heating can be relaxed. It is presumed that this makes it possible to suppress the occurrence of cracks and deformation of the conductive layer and the resin layer, thereby improving thermal durability. Further, the first resin layer has a housing portion, but this is difficult to form by insert molding, and it is presumed that this improves thermal durability.
  • the laminate of the present disclosure may further include a second resin layer on the side of the second conductive layer opposite the insulating layer.
  • the laminate of the present disclosure may include an adhesive layer between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer.
  • the laminate of the present disclosure may include an adhesive layer between the first resin layer and the first conductive layer and between the second conductive layer and the second resin layer. From the viewpoint of thermal durability, the adhesive layer is preferably disposed within the housing portion of the first resin layer.
  • the laminate of the present disclosure may include a heat sink on the first resin layer side surface of the first conductive layer or the second resin layer side surface of the second conductive layer. From the viewpoint of thermal durability, it is preferable that the heat sink is disposed within the housing portion of the first resin layer.
  • the first resin layer has a housing part, and the first conductive layer is disposed within the housing part.
  • the accommodating portion preferably includes a concave portion or an uneven portion.
  • the accommodating portion includes an uneven portion, it means that the accommodating portion includes a concave portion and a convex portion.
  • the recessed portion may be stepped.
  • the first conductive layer, the insulating layer, and the second conductive layer are arranged within the housing portion of the first resin layer.
  • the accommodating portion includes a stepped recessed portion
  • the first conductive layer, the insulating layer, and the second conductive layer may be accommodated in the same level or in different levels.
  • 3 to 5 show embodiments in which the first conductive layer, the insulating layer, and the second conductive layer are housed in different levels of a stepped recess.
  • the first resin layer may have one accommodating portion, or may have two or more accommodating portions.
  • the first resin layer 100 shown in FIG. 6 has a plurality of accommodating parts 101. Each accommodating portion 101 of the first resin layer 100 shown in FIG. 6 includes a concave portion 102A and a convex portion 102B.
  • the first conductive layer 105 may be arranged in some of the accommodating parts as shown in FIG. A conductive layer 105 may also be provided.
  • the insulating layer and the second conductive layer do not need to be laminated on the first conductive layer disposed in all the accommodating parts, but as shown in FIG. may be laminated on all of the conductive layers. Note that in FIG. 8, the insulating layer is not shown, and the second conductive layer is indicated by the reference numeral 106.
  • the area of the accommodating portion of the first resin layer is preferably greater than or equal to the area of the first conductive layer.
  • the ratio of the area of the first conductive layer to the area of the housing portion of the first resin layer is 1.01 or more. is preferred. Thereby, the first resin layer of the first conductive layer can be easily placed in the housing part. Moreover, it is preferable that the area ratio is 2.00 or less. This tends to suppress the occurrence of misalignment of the first conductive layer on the first resin layer.
  • the size thereof is preferably changed as appropriate depending on the size of the first conductive layer, the use of the laminate, and the like.
  • the area of the accommodating portion can be, for example, 1 cm 2 to 1000 cm 2 .
  • the depth of the accommodating portion is preferably at least the thickness of the first conductive layer, more preferably the total thickness of the first conductive layer, the insulating layer, and the second conductive layer, More preferably, the thickness is greater than or equal to the total thickness of the first conductive layer, the insulating layer, the second conductive layer, and the adhesive layer, and the thickness of the first conductive layer, the insulating layer, the second conductive layer, the adhesive layer, and the heat sink. It is particularly preferable that the thickness is greater than or equal to the sum of the thicknesses of .
  • the thickness of the accommodating portion can be, for example, 0.1 mm to 100 mm. Note that the depth of the accommodating portion may be less than the total thickness of the first conductive layer, the insulating layer, the second conductive layer, the adhesive layer, and the heat sink.
  • the first resin layer is preferably a cured product of a resin composition containing a thermosetting resin.
  • the type of thermosetting resin is not particularly limited, and any resin may be used as long as it has one or more functional groups in one molecule that can be used for crosslinking reaction by heating.
  • the functional group include an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, a vinyl group, a carboxy group, an amino group, a maleimide group, an acid anhydride group, a thiol group, a thionyl group, an amide group, an imide group, and the like.
  • thermosetting resins include phenolic resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, acrylic resin, dicyclopentadiene resin, silicone resin, triazine resin, Examples include melamine resin, resorcinol resin, and epoxy resin.
  • the resin composition may contain only one type of thermosetting resin, or may contain two or more types of thermosetting resin.
  • Unsaturated polyesters can be obtained by polycondensation (esterification) of polyhydric alcohols with unsaturated polybasic acids, saturated polybasic acids, etc.
  • the polyhydric alcohol is not particularly limited, and conventionally known ones can be used.
  • examples of the polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydrogenated bisphenol A, bisphenol A, and glycerin. These may be used alone or in combination of two or more.
  • the unsaturated polybasic acid is not particularly limited, and conventionally known ones can be used.
  • the unsaturated polybasic acid include maleic anhydride, fumaric acid, citraconic acid, and itaconic acid. These can be used alone or in combination.
  • the saturated polybasic acid is not particularly limited, and conventionally known ones can be used.
  • saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, het acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, endomethylenetetrahydrophthalic anhydride, etc. . These may be used alone or in combination of two or more.
  • the unsaturated polyester may be one synthesized by a known method using the above-mentioned raw materials, or a commercially available one may be used.
  • Unsaturated polyester can be obtained by polycondensing a polyhydric alcohol with an unsaturated polybasic acid, a saturated polybasic acid, etc. at a temperature of 140°C to 230°C in an inert gas atmosphere such as nitrogen. can.
  • the polycondensation reaction may be performed under pressurized conditions or reduced pressure conditions. In the polycondensation reaction, a crosslinking agent and a catalyst may be used as necessary.
  • crosslinking agent examples include styrene monomer, diallyl phthalate monomer, diallyl phthalate prepolymer, methyl methacrylate, triallyl isocyanurate, and the like. These can be used alone or in combination.
  • catalyst examples include manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. These may be used alone or in combination of two or more.
  • the number average molecular weight of the thermosetting resin is preferably 1,000 to 10,000, more preferably 1,500 to 5,000.
  • the number average molecular weight is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the content of the thermosetting resin with respect to the total mass of the resin composition is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass. , more preferably 20% by mass to 40% by mass.
  • the resin composition may contain a thermoplastic resin, an elastomer, and the like.
  • thermoplastic resins include polyimide resin, polyamideimide resin, polyamide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, and acrylonitrile-styrene copolymer resin.
  • Examples include polymer resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polycarbonate resins, (meth)acrylic resins, polyester resins, polyacetal resins, polyphenylene sulfide resins (PPS), and the like.
  • Specific examples of elastomers include silicone rubber, styrene butadiene rubber (SBR), nitrile rubber (NBR), urethane rubber, and the like.
  • the resin composition contains a curing agent, a curing accelerator, a filler, a mold release agent, a flame retardant, a colorant, a plasticizer, a silane coupling agent, a rust preventive agent, a copper damage inhibitor, a reducing agent, an antioxidant, and an adhesive. It may also contain various additives such as a coating resin, an ultraviolet absorber, an antifoaming agent, a leveling regulator, and a solvent.
  • the first resin layer may have a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer.
  • the first resin layer has the fixing portion, it tends to be possible to suppress the occurrence of misalignment of the first conductive layer, the insulating layer, and the second conductive layer on the first resin layer.
  • the first resin layer and the second resin layer may have either an insertion portion or an opening.
  • the first resin layer and the second resin layer can be fitted together by inserting the insertion portion into the opening.
  • the first conductive layer and the second conductive layer can contain at least one of a metal and a metal oxide.
  • metals include silver, gold, copper, palladium, platinum, titanium, chromium, nickel, aluminum, zirconium, tungsten, vanadium, rhodium, iridium, and alloys thereof.
  • metal oxides include zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and the like.
  • the average thickness of the first conductive layer and the second conductive layer can be set as appropriate depending on the application and the like. Considering the ease of placement in the concave portions or uneven portions of the first resin layer, the thickness is preferably 0.1 mm to 10 mm. In the present disclosure, the average thickness is the average value of the thicknesses measured at two points on the layer using a measuring device.
  • the materials contained in the first conductive layer and the second conductive layer, the average thickness of the layers, etc. may be the same or different.
  • the insulating layer is preferably a cured product of a resin composition containing an insulating resin.
  • the insulating resin include curable resins such as thermoplastic resins, thermosetting resins, and photocurable resins.
  • the photocurable resin may be any resin having one or more unsaturated bonds in one molecule that undergo a crosslinking reaction when exposed to light.
  • Specific examples of the photocurable resin include acrylic resin, urethane resin, polyester resin, polyether resin, epoxy resin, polybutadiene resin, polyimide resin, polyamide resin, silicone resin, and fluororesin.
  • the thermoplastic resin and the thermosetting resin have been described above, so a description thereof will be omitted here.
  • the resin composition contains a curing agent, a curing accelerator, a photopolymerization initiator, a filler, a mold release agent, a flame retardant, a coloring agent, a plasticizer, a silane coupling agent, a rust preventive agent, a copper damage inhibitor, a reducing agent, It may also contain various additives such as antioxidants, tackifying resins, ultraviolet absorbers, antifoaming agents, leveling regulators, and solvents.
  • the average thickness of the insulating layer can be set as appropriate depending on the application and the like. In consideration of ease of placement in the concave portions or uneven portions of the first resin layer, the thickness is preferably 0.01 mm to 10 mm.
  • the laminate of the present disclosure can further include a second resin layer on the side of the second conductive layer opposite to the insulating layer.
  • the second resin layer may have a concave portion, a convex portion, or an uneven portion.
  • the concave portion, convex portion, or uneven portion provided in the second resin layer may be provided corresponding to the shape of the second conductive layer. Since the concave portion of the second resin layer corresponds to the shape of the second conductive layer, the position of the second conductive layer can be fixed by the second resin layer.
  • the recess conforms to the shape of the second conductive layer.
  • the second resin layer may be provided in the second resin layer.
  • the area of the concave portion of the second resin layer is preferably greater than or equal to the area of the second conductive layer, and the total thickness of the first conductive layer, insulating layer, and second conductive layer is
  • the second resin layer may be provided with a convex portion at a position corresponding to the second conductive layer.
  • the number of convex portions may be one or two or more.
  • the second resin layer is preferably a cured product of a resin composition containing a thermosetting resin. Since the thermosetting resin and the resin composition have been described above, their description will be omitted here.
  • the second resin layer may have a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer. Since the second resin layer has the fixing portion, it tends to be possible to suppress the positions of the first conductive layer, the insulating layer, and the second conductive layer from shifting on the first resin layer. .
  • the laminate of the present disclosure can include an adhesive layer between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer.
  • the laminate of the present disclosure can include an adhesive layer between the first resin layer and the first conductive layer and between the second conductive layer and the second resin layer. The first resin layer and the second resin layer may be bonded together by adjusting the size of the adhesive layer provided between either layer.
  • the adhesive layer preferably contains a resin that is solid in an environment of 25°C. This makes it possible to suppress changes in the thickness of the adhesive layer when laminating the first conductive layer, adhesive layer, insulating layer, etc. on the surface of the first resin layer. Changes in the distance between the layer and the insulating layer, the distance between the first conductive layer and the second conductive layer, the distance between the second conductive layer and the insulating layer, etc. can be suppressed.
  • - Styrene copolymer resin polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polycarbonate resin, (meth)acrylic resin, polyester resin, polyacetal resin, polyphenylene sulfide resin (PPS) phenol resin, etc.
  • the solid resin content of the adhesive layer at 25°C is preferably 10% to 100% by mass, and more preferably 60% to 80% by mass, relative to the total mass of the adhesive layer.
  • the adhesive layer contains fillers, mold release agents, flame retardants, colorants, plasticizers, silane coupling agents, rust inhibitors, copper damage inhibitors, reducing agents, antioxidants, tackifying resins, ultraviolet absorbers, and erasers. It may also contain various additives such as foaming agents, leveling regulators, and solvents.
  • the average thickness of the adhesive layer is preferably 1 ⁇ m to 5000 ⁇ m, more preferably 20 ⁇ m to 1000 ⁇ m, and even more preferably 50 ⁇ m to 800 ⁇ m.
  • the laminate of the present disclosure may include a heat sink on the first resin layer side surface of the first conductive layer or the second resin layer side surface of the second conductive layer.
  • a heat sink any conventionally known heat sink may be used, and elements etc. may be bonded thereto.
  • the laminate of the present disclosure can be suitably used for producing a power module (PM).
  • the use of the laminate of the present disclosure is not limited to PM use, but can also be used for other electrical system parts, control system parts, drive system parts, light electrical equipment, home appliances, cosmetic parts, etc.
  • FIG. 1 is a perspective view showing one embodiment of a laminate of the present disclosure
  • FIG. 2 is a perspective view showing another embodiment of a laminate of the present disclosure. 1 and 2, the adhesive layers between the layers are not shown.
  • the laminate 10 shown in FIG. 1 includes a first resin layer 11, a first conductive layer 12, an insulating layer 13, a second conductive layer 14, and a second resin layer 16, in this order.
  • the laminate 20 shown in FIG. 2 includes a first resin layer 21, a first conductive layer 22, an insulating layer 23, a second conductive layer 24, and a second resin layer 26 in this order. 1 and 2, the second resin layer may have an opening. This allows a heat sink or the like to be disposed on the surface of the second conductive layer, etc.
  • the shape of the opening is not particularly limited, and is preferably adjusted appropriately depending on the application. 1 and 2, the first conductive layer and the second conductive layer may protrude from the outer periphery of the first resin layer and the second resin layer, respectively, so that they can be connected to another member such as a wiring.
  • FIG. 3 is a cross-sectional view showing one embodiment of a laminate of the present disclosure.
  • the laminate 30 shown in FIG. 3 comprises a first resin layer 31, an adhesive layer 35, a first conductive layer 32, an adhesive layer 35, an insulating layer 33, an adhesive layer 35, a second conductive layer 34, an adhesive layer 35, and a second resin layer 36.
  • the first resin layer 31 has a accommodating portion including a stepped recessed portion, and an adhesive layer 35, a first conductive layer 32, an adhesive layer 35, an insulating layer 33, an adhesive layer 35, a second conductive layer 34 and an adhesive layer 35 are arranged within the accommodating portion.
  • the first conductive layer, the insulating layer and the second conductive layer are accommodated in different levels of a stepped recess, thereby improving heat durability.
  • the first resin layer 31 and the second resin layer 36 are bonded together by an adhesive layer 35 .
  • FIG. 4 is a cross-sectional view showing another embodiment of a laminate according to the present disclosure.
  • the laminate 40 shown in FIG. 4 comprises a first resin layer 41, an adhesive layer 45, a first conductive layer 42, an adhesive layer 45, an insulating layer 43, an adhesive layer 45, a second conductive layer 44, an adhesive layer 45, and a second resin layer 46.
  • the first resin layer 41 has a accommodating portion including a stepped recessed portion, and an adhesive layer 45, a first conductive layer 42, an adhesive layer 45, an insulating layer 43, an adhesive layer 45, a second conductive layer 44 and an adhesive layer 45 are arranged within the accommodating portion.
  • the first conductive layer, the insulating layer and the second conductive layer are accommodated in different levels of a stepped recess, thereby improving heat durability.
  • the first resin layer 41 has an insertion portion 47 which is inserted into an opening (not shown) of the second resin layer 46 .
  • the first resin layer 41 and the second resin layer 46 are bonded together by an adhesive layer 45 .
  • FIG. 5 is a cross-sectional view showing another embodiment of the laminate of the present disclosure.
  • the laminate 50 shown in FIG. 5 includes a first resin layer 51, a heat sink 57, an adhesive layer 55, a first conductive layer 52, an adhesive layer 55, an insulating layer 53, an adhesive layer 55, It includes a second conductive layer 54, an adhesive layer 55, and a second resin layer 56.
  • the first resin layer 51 has an accommodating part including a stepped recessed part, and the accommodating part includes a heat dissipation plate 57, an adhesive layer 55, a first conductive layer 52, an adhesive A layer 55, an insulating layer 53, an adhesive layer 55, a second conductive layer 54 and an adhesive layer 55 are arranged.
  • FIG. 5 is a cross-sectional view showing another embodiment of the laminate of the present disclosure.
  • the laminate 50 shown in FIG. 5 includes a first resin layer 51, a heat sink 57, an adhesive layer 55, a first conductive layer 52, an adhesive layer 55, an insul
  • the first conductive layer, the insulating layer, and the second conductive layer are housed in different levels of the stepped recess. Thereby, thermal durability can be improved. Further, in the laminate 50 shown in FIG. 5, the first resin layer 51 and the second resin layer 56 are bonded together by an adhesive layer 55.
  • FIG. 6 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure.
  • the first resin layer 100 has a plurality of accommodating parts 101, and the accommodating parts 101 include a concave part 102A and a convex part 102B. Further, the first resin layer 100 includes a fixing part 103 and an opening part 104. As shown in FIG. 6 , the first resin layer 100 may have openings between the accommodating portions 101 . Thereby, other members such as wiring can be connected to the first resin layer and the like disposed on the first resin layer 100.
  • the sizes of the outer peripheries of the adhesive layer, the first conductive layer, the insulating layer, and the second conductive layer may be different.
  • the size of the outer periphery of the adhesive layer, the first conductive layer, the insulating layer, and the second conductive layer is different, the size of the inner periphery of the concave portion of the first resin layer is the same as that of the adhesive layer and the first conductive layer. It is preferable that the size is equal to or larger than the outer circumference of the layer having the largest outer circumference among the layers, the insulating layer, and the second conductive layer.
  • the method for producing a laminate according to the present disclosure includes a preparation step of preparing a first resin layer having a storage portion on at least one surface thereof; a lamination step of laminating a first conductive layer, an insulating layer and a second conductive layer on a surface of the first resin layer, In the lamination step, at least the first conductive layer is disposed in the housing portion of the first resin layer.
  • a laminate with excellent thermal durability can be manufactured.
  • the method for manufacturing a laminate of the present disclosure is not performed by insert molding, but is manufactured by individually manufacturing each layer and laminating them. Therefore, in the laminate manufactured by insert molding, the first conductive layer is buried in the first resin layer and is in complete contact with the first resin layer, whereas in the laminate manufactured by the manufacturing method of the present disclosure, the first Since the resin layer and the first conductive layer are not in perfect contact with each other, it is possible to alleviate internal stress generated during heating. It is presumed that this makes it possible to suppress the occurrence of cracks and deformation of the conductive layer and the resin layer, thereby improving thermal durability.
  • the method for manufacturing a laminate of the present disclosure can include a second lamination step of further laminating a second resin layer on the side of the second conductive layer opposite to the insulating layer.
  • the method for producing the first resin layer is not particularly limited, and can be produced by insert molding or the like.
  • the method for manufacturing a laminate of the present disclosure includes a lamination step of laminating a first conductive layer, an insulating layer, and a second conductive layer on a surface of a first resin layer.
  • a lamination step at least the first conductive layer is placed in the housing portion of the first resin layer. It is preferable that the first insulating layer and the second conductive layer are disposed in the housing portion of the resin layer.
  • Lamination of the first conductive layer, insulating layer, and second conductive layer on the surface of the first resin layer can be performed by disposing an adhesive layer between each layer and heating.
  • an adhesive layer is disposed between each layer, it is preferable that the adhesive layer is disposed in the accommodation portion of the first resin layer together with the first conductive layer, the insulating layer, and the second conductive layer in the lamination step.
  • a heat sink may be placed on the opposite side of the first conductive layer to the insulating layer or on the opposite side of the second conductive layer to the insulating layer.
  • the heat sink is placed in the accommodation portion of the first resin layer together with the first conductive layer, the insulating layer, and the second conductive layer in the lamination step.
  • first conductive layer, second conductive layer, insulating layer, adhesive layer, and heat sink have been described above, their description will be omitted here.
  • the first conductive layer, the second conductive layer, the insulating layer, the adhesive layer, and the heat sink may be prepared by a conventionally known method, or may be commercially available.
  • the method for producing the second resin layer is not particularly limited, and can be produced by insert molding or the like.
  • Lamination of the second resin layer can be performed by disposing an adhesive layer between the second resin layer and the second conductive layer and heating the adhesive layer.
  • the first resin layer and the second resin layer may be bonded together using an adhesive layer.
  • the first resin layer has either an insertion portion or an opening
  • the second resin layer has at least the other, inserting the insertion portion into the opening allows the first resin layer and the second The resin layers can be fitted together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a laminate with excellent thermal durability, and a laminate production method. [Solution] A laminate, etc., comprising a first resin layer, a first conductive layer, an insulation layer, a second conductive layer, and a second resin layer in the stated order, in which the first resin layer has a housing section.

Description

積層体及び積層体の製造方法Laminate and method for manufacturing the laminate
 本開示は、積層体及び積層体の製造方法に関する。 The present disclosure relates to a laminate and a method for manufacturing the laminate.
 ハイブリッド自動車等に搭載されるパワーモジュール(PM)は、樹脂成形品と金属との積層体(ハウジングとも呼ばれる)を備えている。
 従来、ハウジングは、導電層及び絶縁層を金型内に、配置し、樹脂を金型内に射出し、成形(以下、インサート成形ともいう。)することにより製造されている。
A power module (PM) installed in a hybrid vehicle or the like includes a laminate (also called a housing) of a resin molded product and metal.
Conventionally, housings have been manufactured by arranging a conductive layer and an insulating layer in a mold, injecting resin into the mold, and performing molding (hereinafter also referred to as insert molding).
 通常、PMに用いるハウジングには、素子等がろう付けされた放熱板が接着される。
 製造効率向上の観点から、放熱板のハウジングへの接着と、素子等の放熱板への接着とは同時に行われることが望まれる。しかしながら、素子等の放熱板へのろう付けにより、ハウジングに熱が加えられることとなる。
 今般、本発明者らは、特許文献1において開示される従来のインサート成形により製造されるハウジングは、導電層が樹脂層に埋没しているため、積層体が高温環境下に静置された場合、加熱された場合等において、導電層と樹脂層との線膨張係数の差により生じる内部応力を十分に緩和することができず、クラックの発生、導電層及び樹脂層の変形等が生じ、その熱耐久性には改善の余地があることを見出した。
Usually, a heat sink to which elements and the like are brazed is bonded to a housing used for PM.
From the viewpoint of improving manufacturing efficiency, it is desirable that the bonding of the heat sink to the housing and the bonding of elements and the like to the heat sink are performed at the same time. However, heat is added to the housing by brazing the elements and the like to the heat sink.
Recently, the present inventors have discovered that in the housing manufactured by conventional insert molding disclosed in Patent Document 1, since the conductive layer is buried in the resin layer, when the laminate is left still in a high-temperature environment, , when heated, the internal stress caused by the difference in linear expansion coefficient between the conductive layer and the resin layer cannot be sufficiently alleviated, resulting in cracks, deformation of the conductive layer and the resin layer, etc. It was found that there is room for improvement in thermal durability.
 本開示の一実施形態が解決しようとする課題は、熱耐久性に優れる積層体、並びに積層体の製造方法を提供することである。 A problem to be solved by an embodiment of the present disclosure is to provide a laminate with excellent thermal durability and a method for manufacturing the laminate.
<1> 第1の樹脂層と、
 第1の導電層と、
 絶縁層と、
 第2の導電層と、
をこの順に備え、
 上記第1の樹脂層が収容部を有し、
 上記第1の導電層が、上記第1の樹脂層の上記収容部内に配置される、積層体。
<2> 上記収容部が、凹状部又は凹凸状部を含む、上記<1>に記載の積層体。
<3> 上記第1の導電層、上記絶縁層及び上記第2の導電層が、上記第1の樹脂層の上記収容部内に配置される、上記<1>に記載の積層体。
<4> 上記第1の樹脂層が有する上記収容部の面積は、上記第1の導電層の面積以上である、上記<1>又は<2>に記載の積層体。
<5> 上記第2の導電層の上記絶縁層とは反対側に第2の樹脂層を更に備える、上記<1>~<4>のいずれか1つに記載の積層体。
<6> 上記第1の導電層と上記絶縁層との間、及び上記絶縁層と上記第2の導電層との間に、接着層を備え、上記接着層が、25℃の環境下において固体の樹脂を含有する、上記<1>~<5>のいずれか1つに記載の積層体。
<7> 上記第1の樹脂層が、熱硬化性樹脂を含む樹脂組成物の硬化物である、上記<1>~<6>のいずれか1つに記載の積層体。
<8> 上記熱硬化性樹脂が、不飽和ポリエステルを含む、上記<7>に記載の積層体。
<9> 上記第1の樹脂層が、上記第1の導電層、上記絶縁層及び上記第2の導電層を固定する固定部を有する、上記<1>~<8>のいずれか1つに記載の積層体。
<10> 少なくとも一方の表面に収容部を有する第1の樹脂層を準備する準備工程と、
 上記第1の樹脂層の表面に、第1の導電層、絶縁層及び第2の導電層を積層する積層工程と、含み、
 上記積層工程において、上記第1の樹脂層の上記収容部内に、少なくとも上記第1の導電層を配置する、積層体の製造方法。
<1> A first resin layer,
a first conductive layer;
an insulating layer;
a second conductive layer;
in this order,
the first resin layer has a housing part,
A laminate, wherein the first conductive layer is disposed within the housing portion of the first resin layer.
<2> The laminate according to <1> above, wherein the accommodating portion includes a recessed portion or an uneven portion.
<3> The laminate according to <1> above, wherein the first conductive layer, the insulating layer, and the second conductive layer are arranged in the housing section of the first resin layer.
<4> The laminate according to <1> or <2>, wherein the area of the accommodation portion of the first resin layer is greater than or equal to the area of the first conductive layer.
<5> The laminate according to any one of <1> to <4>, further comprising a second resin layer on the side of the second conductive layer opposite to the insulating layer.
<6> An adhesive layer is provided between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer, and the adhesive layer is solid in an environment of 25°C. The laminate according to any one of <1> to <5> above, containing a resin.
<7> The laminate according to any one of <1> to <6> above, wherein the first resin layer is a cured product of a resin composition containing a thermosetting resin.
<8> The laminate according to <7> above, wherein the thermosetting resin contains unsaturated polyester.
<9> Any one of <1> to <8> above, wherein the first resin layer has a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer. The described laminate.
<10> A preparation step of preparing a first resin layer having a housing portion on at least one surface;
a laminating step of laminating a first conductive layer, an insulating layer, and a second conductive layer on the surface of the first resin layer;
In the laminating step, at least the first conductive layer is disposed within the housing portion of the first resin layer.
 本開示の一実施形態によれば、熱耐久性に優れる積層体、並びに積層体の製造方法を提供することができる。 According to an embodiment of the present disclosure, it is possible to provide a laminate with excellent thermal durability and a method for manufacturing the laminate.
図1は、本開示の積層体の一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the laminate of the present disclosure. 図2は、本開示の積層体の他の実施形態を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the laminate of the present disclosure. 図3は、本開示の積層体の一実施形態を示す斜視図である。FIG. 3 is a perspective view showing an embodiment of the laminate of the present disclosure. 図4は、本開示の積層体の他の実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing another embodiment of the laminate of the present disclosure. 図5は、本開示の積層体の他の実施形態を示す断面図である。FIG. 5 is a cross-sectional view showing another embodiment of the laminate of the present disclosure. 図6は、本開示の積層体が備える第1の樹脂層の一実施形態を示す斜視図である。FIG. 6 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure. 図7は、本開示の積層体が備える第1の樹脂層の一実施形態を示す斜視図である。FIG. 7 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure. 図8は、本開示の積層体の他の実施形態を示す斜視図である。FIG. 8 is a perspective view showing another embodiment of the laminate of the present disclosure.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明表した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless explicitly stated. The same applies to numerical values and their ranges, and they do not limit the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい
 また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. . In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of corresponding substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In this disclosure, the term "layer" includes not only the case where the layer is formed in the entire area when observing the area where the layer exists, but also the case where the layer is formed only in a part of the area. included.
In the present disclosure, when embodiments are described with reference to drawings, the configuration of the embodiments is not limited to the configuration shown in the drawings. Furthermore, the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.
[積層体]
 本開示の積層体は、第1の樹脂層と、第1の導電層と、絶縁層と、第2の導電層とをこの順に備え、第1の樹脂層が収容部を有し、第1の導電層が、第1の樹脂層の収容部内に配置される。
[Laminated body]
The laminate of the present disclosure includes a first resin layer, a first conductive layer, an insulating layer, and a second conductive layer in this order, the first resin layer having a housing portion, and the first resin layer having a housing portion; A conductive layer is disposed within the housing of the first resin layer.
 本開示の積層体は熱耐久性に優れる。上記効果が奏される理由は明らかではないが、以下のように推測される。
 本開示の積層体は、インサート成形ではなく、各層を個別に作製し、積層することによる製造が可能である。そのため、インサート成形により製造した積層体では、第1の樹脂層に第1の導電層が埋没し、完全に密着しているのに対し、本開示の積層体では、第1の樹脂層が収容部を有しているため、第1の導電層との間が完全には密着しておらず、加熱時において生じる内部応力の緩和が可能となる。これにより、クラックの発生、及び導電層及び樹脂層の変形を抑制することができ、熱耐久性が向上すると推測される。
 また、第1の樹脂層は、収容部を有するが、これは、インサート成形では形成することが難しく、これにより熱耐久性が向上すると推測される。
The laminate of the present disclosure has excellent thermal durability. Although the reason for the above effect is not clear, it is presumed as follows.
The laminate of the present disclosure can be manufactured not by insert molding but by individually manufacturing each layer and laminating them. Therefore, in the laminate manufactured by insert molding, the first conductive layer is buried in the first resin layer and is in complete contact with it, whereas in the laminate of the present disclosure, the first resin layer is buried in the first resin layer. Since the first conductive layer is not in complete contact with the first conductive layer, internal stress generated during heating can be relaxed. It is presumed that this makes it possible to suppress the occurrence of cracks and deformation of the conductive layer and the resin layer, thereby improving thermal durability.
Further, the first resin layer has a housing portion, but this is difficult to form by insert molding, and it is presumed that this improves thermal durability.
 本開示の積層体は、第2の導電層の絶縁層とは反対側に第2の樹脂層を更に備えることができる。 The laminate of the present disclosure may further include a second resin layer on the side of the second conductive layer opposite the insulating layer.
 本開示の積層体は、第1の導電層と絶縁層との間、及び絶縁層と第2の導電層との間に、接着層を備えていてもよい。
 本開示の積層体は、第1の樹脂層と第1の導電層との間、及び第2の導電層と第2の樹脂層との間に、接着層を備えていてもよい。
 熱耐久性の観点から、接着層は、第1の樹脂層の収容部内に配置されることが好ましい。
The laminate of the present disclosure may include an adhesive layer between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer.
The laminate of the present disclosure may include an adhesive layer between the first resin layer and the first conductive layer and between the second conductive layer and the second resin layer.
From the viewpoint of thermal durability, the adhesive layer is preferably disposed within the housing portion of the first resin layer.
 本開示の積層体は、第1の導電層の第1の樹脂層側表面又は第2の導電層の第2の樹脂層側表面に放熱板を備えていてもよい。
 熱耐久性の観点から、放熱板は、第1の樹脂層の収容部内に配置されることが好ましい。
The laminate of the present disclosure may include a heat sink on the first resin layer side surface of the first conductive layer or the second resin layer side surface of the second conductive layer.
From the viewpoint of thermal durability, it is preferable that the heat sink is disposed within the housing portion of the first resin layer.
(第1の樹脂層)
 第1の樹脂層は、収容部を有し、第1の導電層は収容部内に配置される、
 熱耐久性の観点から、収容部は、凹状部又は凹凸状部を含むことが好ましい。
 収容部が凹凸状部を含むとは、収容部が凹状部及び凸状部を含むことを意味する。凹状部は、階段状であってもよい。
(First resin layer)
The first resin layer has a housing part, and the first conductive layer is disposed within the housing part.
From the viewpoint of thermal durability, the accommodating portion preferably includes a concave portion or an uneven portion.
When the accommodating portion includes an uneven portion, it means that the accommodating portion includes a concave portion and a convex portion. The recessed portion may be stepped.
 熱耐久性の観点から、第1の導電層、絶縁層及び第2の導電層は、第1の樹脂層の収容部内に配置されることが好ましい。
 収容部が階段状の凹状部を含む場合、第1の導電層、絶縁層及び第2の導電層は、同一の階層に収容されていてもよく、異なる階層に収容されていてもよい。
 図3~図5においては、第1の導電層と、絶縁層及び第2の導電層とが階段状の凹状部の異なる階層に収容された態様について示す。
From the viewpoint of thermal durability, it is preferable that the first conductive layer, the insulating layer, and the second conductive layer are arranged within the housing portion of the first resin layer.
When the accommodating portion includes a stepped recessed portion, the first conductive layer, the insulating layer, and the second conductive layer may be accommodated in the same level or in different levels.
3 to 5 show embodiments in which the first conductive layer, the insulating layer, and the second conductive layer are housed in different levels of a stepped recess.
 また、第1の樹脂層は、収容部を1つ有していてもよく、2つ以上有していてもよい。
 図6に示す第1の樹脂層100は、複数の収容部101を有している。
 図6に示す第1の樹脂層100が有する各収容部101は、凹状部102A及び凸状部102Bを含む。
 第1の樹脂層が複数の収容部を有している場合、図7に示すように一部の収容部に第1の導電層105を配置してもよく、すべての収容部に第1の導電層105を配置してもよい。
 また、絶縁層及び第2の導電層は、すべての収容部に配置された第1の導電層に積層されている必要はないが、図8に示すように、収容部に配置された第1の導電層のすべてに積層されていてもよい。なお、図8において、絶縁層は図示せず、第2の導電層を符号106で示す。
Further, the first resin layer may have one accommodating portion, or may have two or more accommodating portions.
The first resin layer 100 shown in FIG. 6 has a plurality of accommodating parts 101.
Each accommodating portion 101 of the first resin layer 100 shown in FIG. 6 includes a concave portion 102A and a convex portion 102B.
When the first resin layer has a plurality of accommodating parts, the first conductive layer 105 may be arranged in some of the accommodating parts as shown in FIG. A conductive layer 105 may also be provided.
Further, the insulating layer and the second conductive layer do not need to be laminated on the first conductive layer disposed in all the accommodating parts, but as shown in FIG. may be laminated on all of the conductive layers. Note that in FIG. 8, the insulating layer is not shown, and the second conductive layer is indicated by the reference numeral 106.
 第1の樹脂層が有する収容部の面積は、第1の導電層の面積以上あることが好ましい。第1の樹脂層が有する収容部の面積に対する、第1の導電層の面積の比(第1の導電層の面積/第1の樹脂層が有する収容部)は、1.01以上であることが好ましい。これにより、第1の導電層の第1の樹脂層の収容部への配置を容易に行うことができる。また、面積比は、2.00以下であることが好ましい。これにより、第1の導電層の第1の樹脂層上における位置ずれの発生を抑制することができる傾向にある。
 第1の樹脂層が収容部を有する場合、その大きさは、第1の導電層の大きさ、積層体の用途等に応じ適宜変更することが好ましい。収容部の面積は、例えば、1cm~1000cmとすることができる。
 収容部の深さは、少なくとも第1の導電層の厚さ以上であることが好ましく、第1の導電層、絶縁層及び第2の導電層の厚さの合計以上であることがより好ましく、第1の導電層、絶縁層、第2の導電層及び接着層の厚さの合計以上であることが更に好ましく、第1の導電層、絶縁層、第2の導電層、接着層及び放熱板の厚さの合計以上であることが特に好ましい。収容部の厚さは、例えば、0.1mm~100mmとすることができる。
 なお、収容部の深さは、1の導電層、絶縁層、第2の導電層、接着層及び放熱板の厚さの合計未満であってもよい。
The area of the accommodating portion of the first resin layer is preferably greater than or equal to the area of the first conductive layer. The ratio of the area of the first conductive layer to the area of the housing portion of the first resin layer (area of first conductive layer/accommodation portion of first resin layer) is 1.01 or more. is preferred. Thereby, the first resin layer of the first conductive layer can be easily placed in the housing part. Moreover, it is preferable that the area ratio is 2.00 or less. This tends to suppress the occurrence of misalignment of the first conductive layer on the first resin layer.
When the first resin layer has a housing part, the size thereof is preferably changed as appropriate depending on the size of the first conductive layer, the use of the laminate, and the like. The area of the accommodating portion can be, for example, 1 cm 2 to 1000 cm 2 .
The depth of the accommodating portion is preferably at least the thickness of the first conductive layer, more preferably the total thickness of the first conductive layer, the insulating layer, and the second conductive layer, More preferably, the thickness is greater than or equal to the total thickness of the first conductive layer, the insulating layer, the second conductive layer, and the adhesive layer, and the thickness of the first conductive layer, the insulating layer, the second conductive layer, the adhesive layer, and the heat sink. It is particularly preferable that the thickness is greater than or equal to the sum of the thicknesses of . The thickness of the accommodating portion can be, for example, 0.1 mm to 100 mm.
Note that the depth of the accommodating portion may be less than the total thickness of the first conductive layer, the insulating layer, the second conductive layer, the adhesive layer, and the heat sink.
 熱耐久性の観点から、第1の樹脂層は、熱硬化性樹脂を含む樹脂組成物の硬化物であることが好ましい。
 熱硬化性樹脂の種類は、特に限定されるものではなく、加熱による架橋反応に利用できる官能基を1分子中に1つ以上有する樹脂であればよい。官能基としては、エポキシ基、アクリロイル基、メタクリロイル基、ヒドロキシ基、ビニル基、カルボキシ基、アミノ基、マレイミド基、酸無水物基、チオール基、チオニル基、アミド基、イミド基等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂、レゾルシノール樹脂、エポキシ樹脂等が挙げられる。上記した中でも、熱耐久性の観点から、不飽和ポリエステル、及びフェノール樹脂の中から選択される1つ以上を含むことが好ましく、不飽和ポリエステルを含むことがより好ましい。
 樹脂組成物は、熱硬化性樹脂を1種単独で含んでも、2種以上含んでいてもよい。
From the viewpoint of thermal durability, the first resin layer is preferably a cured product of a resin composition containing a thermosetting resin.
The type of thermosetting resin is not particularly limited, and any resin may be used as long as it has one or more functional groups in one molecule that can be used for crosslinking reaction by heating. Examples of the functional group include an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, a vinyl group, a carboxy group, an amino group, a maleimide group, an acid anhydride group, a thiol group, a thionyl group, an amide group, an imide group, and the like.
Examples of thermosetting resins include phenolic resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, acrylic resin, dicyclopentadiene resin, silicone resin, triazine resin, Examples include melamine resin, resorcinol resin, and epoxy resin. Among the above, from the viewpoint of thermal durability, it is preferable to contain one or more selected from unsaturated polyester and phenol resin, and it is more preferable to contain unsaturated polyester.
The resin composition may contain only one type of thermosetting resin, or may contain two or more types of thermosetting resin.
 不飽和ポリエステルは、多価アルコールと、不飽和多塩基酸、飽和多塩基酸等とを重縮合(エステル化)させることにより得ることができる。 Unsaturated polyesters can be obtained by polycondensation (esterification) of polyhydric alcohols with unsaturated polybasic acids, saturated polybasic acids, etc.
 多価アルコールは、特に限定されるものではなく、従来公知のものを用いることができる。多価アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等が挙げられる。これらは、1種単独で用いても、又は2種以上を組み合わせて用いてもよい。 The polyhydric alcohol is not particularly limited, and conventionally known ones can be used. Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydrogenated bisphenol A, bisphenol A, and glycerin. These may be used alone or in combination of two or more.
 不飽和多塩基酸としては、特に限定されるものではなく、従来公知のものを用いることができる。不飽和多塩基酸としては、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。
 飽和多塩基酸としては、特に限定されるものではなく、従来公知のものを用いることができる。飽和多塩基酸としては、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が挙げられる。これらは、1種単独で用いても、又は2種以上を組み合わせて用いてもよい。
The unsaturated polybasic acid is not particularly limited, and conventionally known ones can be used. Examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, citraconic acid, and itaconic acid. These can be used alone or in combination.
The saturated polybasic acid is not particularly limited, and conventionally known ones can be used. Examples of saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, het acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, endomethylenetetrahydrophthalic anhydride, etc. . These may be used alone or in combination of two or more.
 不飽和ポリエステルは、上記原料を用いて公知の方法で合成したものを使用してもよく、市販されるものを使用してもよい。
 不飽和ポリエステルは、窒素等の不活性ガス雰囲気において、140℃~230℃の温度にて、多価アルコールと、不飽和多塩基酸、飽和多塩基酸等とを重縮合させることにより得ることができる。重縮合反応は、加圧条件下又は減圧条件下で行ってもよい。
 重縮合反応において、必要に応じて架橋剤、触媒を使用してもよい。
 架橋剤としては、スチレンモノマー、ジアリルフタレートモノマー、ジアリルフタレートプレポリマー、メタクリル酸メチル、トリアリルイソシアヌレート等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。
 触媒としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、酢酸コバルト等が挙げられる。これらは、1種単独で用いても、又は2種以上を組み合わせて用いてもよい。
The unsaturated polyester may be one synthesized by a known method using the above-mentioned raw materials, or a commercially available one may be used.
Unsaturated polyester can be obtained by polycondensing a polyhydric alcohol with an unsaturated polybasic acid, a saturated polybasic acid, etc. at a temperature of 140°C to 230°C in an inert gas atmosphere such as nitrogen. can. The polycondensation reaction may be performed under pressurized conditions or reduced pressure conditions.
In the polycondensation reaction, a crosslinking agent and a catalyst may be used as necessary.
Examples of the crosslinking agent include styrene monomer, diallyl phthalate monomer, diallyl phthalate prepolymer, methyl methacrylate, triallyl isocyanurate, and the like. These can be used alone or in combination.
Examples of the catalyst include manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. These may be used alone or in combination of two or more.
 熱耐久性の観点からは、熱硬化性樹脂の数平均分子量は、1,000~10,000であることが好ましく、1,500~5,000であることがより好ましい。
 本開示において、数平均分子量は、ゲル浸透クロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
From the viewpoint of thermal durability, the number average molecular weight of the thermosetting resin is preferably 1,000 to 10,000, more preferably 1,500 to 5,000.
In the present disclosure, the number average molecular weight is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 熱耐久性の観点から、樹脂組成物の総質量に対する、熱硬化性樹脂の含有率は、10質量%~60質量%であることが好ましく、20質量%~50質量%であることがより好ましく、20質量%~40質量%であることが更に好ましい。 From the viewpoint of thermal durability, the content of the thermosetting resin with respect to the total mass of the resin composition is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass. , more preferably 20% by mass to 40% by mass.
 樹脂組成物は、熱可塑性樹脂、エラストマー等を含んでいてもよい。
 熱可塑性樹脂の具体例としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂、アクリロニトリル・スチレン共重合樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂(PPS)等が挙げられる。
 エラストマーの具体例としては、シリコーンゴム、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、ウレタンゴム等が挙げられる。
The resin composition may contain a thermoplastic resin, an elastomer, and the like.
Specific examples of thermoplastic resins include polyimide resin, polyamideimide resin, polyamide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, and acrylonitrile-styrene copolymer resin. Examples include polymer resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, polyvinylidene chloride resins, polycarbonate resins, (meth)acrylic resins, polyester resins, polyacetal resins, polyphenylene sulfide resins (PPS), and the like.
Specific examples of elastomers include silicone rubber, styrene butadiene rubber (SBR), nitrile rubber (NBR), urethane rubber, and the like.
 樹脂組成物は、硬化剤、硬化促進剤、充填剤、離型剤、難燃剤、着色剤、可塑剤、シランカップリング剤、防錆剤、銅害防止剤、還元剤、酸化防止剤、粘着付与樹脂、紫外線吸収剤、消泡剤、レベリング調整剤、溶剤等の各種添加剤を含んでもよい。 The resin composition contains a curing agent, a curing accelerator, a filler, a mold release agent, a flame retardant, a colorant, a plasticizer, a silane coupling agent, a rust preventive agent, a copper damage inhibitor, a reducing agent, an antioxidant, and an adhesive. It may also contain various additives such as a coating resin, an ultraviolet absorber, an antifoaming agent, a leveling regulator, and a solvent.
 第1の樹脂層は、第1の導電層、絶縁層及び第2の導電層を固定する固定部を有していてもよい。第1の樹脂層が固定部を有することにより、第1の導電層、絶縁層及び第2の導電層の第1の樹脂層上における位置ずれの発生を抑制することができる傾向にある。 The first resin layer may have a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer. When the first resin layer has the fixing portion, it tends to be possible to suppress the occurrence of misalignment of the first conductive layer, the insulating layer, and the second conductive layer on the first resin layer.
 第1の樹脂層及び第2の樹脂層は、挿入部及び開口部のいずれか一方を有していてもよい。
 第1の樹脂層が挿入部及び開口部のいずれか一方を有し、第2の樹脂層が少なくとも他方を有する場合、挿入部を開口部へ挿入することにより、第1の樹脂層及び第2の樹脂層の嵌め合わせを行うことができる。
The first resin layer and the second resin layer may have either an insertion portion or an opening.
When the first resin layer has either an insertion portion or an opening, and the second resin layer has at least the other, the first resin layer and the second resin layer can be fitted together by inserting the insertion portion into the opening.
(第1の導電層及び第2の導電層)
 第1の導電層及び第2の導電層は、金属及び金属酸化物の少なくとも一方を含むことができる。
 金属としては、銀、金、銅、パラジウム、白金、チタン、クロム、ニッケル、アルミニウム、ジルコニウム、タングステン、バナジウム、ロジウム、イリジウム、これらの合金等が挙げられる。
 金属酸化物としては、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化インジウムスズ(ITO)、酸化アルミニウム(Al)、酸化チタン(TiO)等が挙げられる。
(First conductive layer and second conductive layer)
The first conductive layer and the second conductive layer can contain at least one of a metal and a metal oxide.
Examples of metals include silver, gold, copper, palladium, platinum, titanium, chromium, nickel, aluminum, zirconium, tungsten, vanadium, rhodium, iridium, and alloys thereof.
Examples of metal oxides include zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), and the like.
 導電性の観点から、第1の導電層及び第2の導電層の平均厚さは、用途等に応じ適宜設定することができる。第1の樹脂層が有する凹状部又は凹凸状部への配置の容易性を考慮すると、0.1mm~10mmであることが好ましい。
 本開示において、平均厚さは、測定器により、層の2点において厚さを測定し、これらの平均値とする。
From the viewpoint of conductivity, the average thickness of the first conductive layer and the second conductive layer can be set as appropriate depending on the application and the like. Considering the ease of placement in the concave portions or uneven portions of the first resin layer, the thickness is preferably 0.1 mm to 10 mm.
In the present disclosure, the average thickness is the average value of the thicknesses measured at two points on the layer using a measuring device.
 第1の導電層及び第2の導電層が含む材料、層の平均厚さ等は、同一であっても、異なっていてもよい。 The materials contained in the first conductive layer and the second conductive layer, the average thickness of the layers, etc. may be the same or different.
(絶縁層)
 絶縁層は、絶縁性樹脂を含む樹脂組成物の硬化物であることが好ましい。
 絶縁性樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等の硬化性樹脂などが挙げられる。
(insulating layer)
The insulating layer is preferably a cured product of a resin composition containing an insulating resin.
Examples of the insulating resin include curable resins such as thermoplastic resins, thermosetting resins, and photocurable resins.
 光硬化性樹脂としては、光により架橋反応を起こす不飽和結合を1分子中に1つ以上有する樹脂であればよい。光硬化性樹脂の具体例としては、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ポリブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。
 熱可塑性樹脂及び熱硬化性樹脂については上記したためここでは記載を省略する。
The photocurable resin may be any resin having one or more unsaturated bonds in one molecule that undergo a crosslinking reaction when exposed to light. Specific examples of the photocurable resin include acrylic resin, urethane resin, polyester resin, polyether resin, epoxy resin, polybutadiene resin, polyimide resin, polyamide resin, silicone resin, and fluororesin.
The thermoplastic resin and the thermosetting resin have been described above, so a description thereof will be omitted here.
 樹脂組成物は、硬化剤、硬化促進剤、光重合開始剤、充填剤、離型剤、難燃剤、着色剤、可塑剤、シランカップリング剤、防錆剤、銅害防止剤、還元剤、酸化防止剤、粘着付与樹脂、紫外線吸収剤、消泡剤、レベリング調整剤、溶剤等の各種添加剤を含んでもよい。 The resin composition contains a curing agent, a curing accelerator, a photopolymerization initiator, a filler, a mold release agent, a flame retardant, a coloring agent, a plasticizer, a silane coupling agent, a rust preventive agent, a copper damage inhibitor, a reducing agent, It may also contain various additives such as antioxidants, tackifying resins, ultraviolet absorbers, antifoaming agents, leveling regulators, and solvents.
 絶縁性の観点から、絶縁層の平均厚さは、用途等に応じ適宜設定することができる。第1の樹脂層が有する凹状部又は凹凸状部への配置の容易性を考慮すると、0.01mm~10mmであることが好ましい。 From the viewpoint of insulation, the average thickness of the insulating layer can be set as appropriate depending on the application and the like. In consideration of ease of placement in the concave portions or uneven portions of the first resin layer, the thickness is preferably 0.01 mm to 10 mm.
(第2の樹脂層)
 本開示の積層体は、第2の導電層の絶縁層とは反対側に第2の樹脂層を更に備えることができる。第2の樹脂層を備えることにより、第1の導電層、絶縁層及び第2の導電層の第1の樹脂層上における位置がずれてしまうことを抑制することができる。
 第2の樹脂層は、凹状部、凸状部又は凹凸状部を有していてもよい。第2の樹脂層に設けられる凹状部、凸状部又は凹凸状部は、第2の導電層の形状に対応して設けられていてもよい。第2の樹脂層の凹状部と、第2の導電層の形状が対応することで、第2の樹脂層によって第2の導電層の位置を固定することができる。
 例えば、第1の導電層、絶縁層及び第2の導電層の厚さの合計が第1の樹脂層の凹部の深さよりも大きい場合には、第2の導電層の形状に合わせた凹状部を第2の樹脂層に設けてもよい。この場合の第2の樹脂層の凹状部の面積は、第2の導電層の面積以上であることが好ましい
 また、第1の導電層、絶縁層及び第2の導電層の厚さの合計が第1の樹脂層の凹部の深さよりも小さい場合には、第2の樹脂層には第2の導電層に対応する位置に凸状部を設けてもよい。凸状部は1個でも2以上の複数個であってもよい。
(Second resin layer)
The laminate of the present disclosure can further include a second resin layer on the side of the second conductive layer opposite to the insulating layer. By providing the second resin layer, it is possible to suppress misalignment of the first conductive layer, the insulating layer, and the second conductive layer on the first resin layer.
The second resin layer may have a concave portion, a convex portion, or an uneven portion. The concave portion, convex portion, or uneven portion provided in the second resin layer may be provided corresponding to the shape of the second conductive layer. Since the concave portion of the second resin layer corresponds to the shape of the second conductive layer, the position of the second conductive layer can be fixed by the second resin layer.
For example, if the total thickness of the first conductive layer, the insulating layer, and the second conductive layer is greater than the depth of the recess in the first resin layer, the recess conforms to the shape of the second conductive layer. may be provided in the second resin layer. In this case, the area of the concave portion of the second resin layer is preferably greater than or equal to the area of the second conductive layer, and the total thickness of the first conductive layer, insulating layer, and second conductive layer is When the depth is smaller than the depth of the recessed portion of the first resin layer, the second resin layer may be provided with a convex portion at a position corresponding to the second conductive layer. The number of convex portions may be one or two or more.
 第2の樹脂層は、熱硬化性樹脂を含む樹脂組成物の硬化物であることが好ましい。熱硬化性樹脂及び樹脂組成物については、上記したためここでは記載を省略する。 The second resin layer is preferably a cured product of a resin composition containing a thermosetting resin. Since the thermosetting resin and the resin composition have been described above, their description will be omitted here.
 第2の樹脂層は、第1の導電層、絶縁層及び第2の導電層を固定する固定部を有していてもよい。第2の樹脂層が固定部を有することにより、第1の導電層、絶縁層及び第2の導電層の第1の樹脂層上における位置がずれてしまうことを抑制することができる傾向にある。 The second resin layer may have a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer. Since the second resin layer has the fixing portion, it tends to be possible to suppress the positions of the first conductive layer, the insulating layer, and the second conductive layer from shifting on the first resin layer. .
(接着層)
 本開示の積層体は、第1の導電層と絶縁層との間、及び絶縁層と第2の導電層との間に、接着層を備えることができる。
 本開示の積層体は、第1の樹脂層と第1の導電層との間、及び第2の導電層と第2の樹脂層との間に、接着層を備えることができる。
 いずれかの層間に設けた接着層のサイズを調整することにより、第1の樹脂層と第2の樹脂層とを接着してもよい。
(Adhesive layer)
The laminate of the present disclosure can include an adhesive layer between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer.
The laminate of the present disclosure can include an adhesive layer between the first resin layer and the first conductive layer and between the second conductive layer and the second resin layer.
The first resin layer and the second resin layer may be bonded together by adjusting the size of the adhesive layer provided between either layer.
 接着層は、25℃の環境下において固体の樹脂を含有することが好ましい。これにより、第1の樹脂層の表面に第1の導電層、接着層、絶縁層等を積層する際に、接着層の厚みが変化してしまうことを抑制することができ、第1の導電層と絶縁層との距離、第1の導電層と第2の導電層との距離、第2の導電層と絶縁層との距離等が変化してしまうこと抑制することができる。 The adhesive layer preferably contains a resin that is solid in an environment of 25°C. This makes it possible to suppress changes in the thickness of the adhesive layer when laminating the first conductive layer, adhesive layer, insulating layer, etc. on the surface of the first resin layer. Changes in the distance between the layer and the insulating layer, the distance between the first conductive layer and the second conductive layer, the distance between the second conductive layer and the insulating layer, etc. can be suppressed.
 25℃の環境下において固体の樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂、アクリロニトリル・スチレン共重合樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂(PPS)フェノール樹脂等が挙げられる。 Examples of resins that are solid in an environment of 25°C include polyimide resin, polyamideimide resin, polyamide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, and acrylonitrile. - Styrene copolymer resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polycarbonate resin, (meth)acrylic resin, polyester resin, polyacetal resin, polyphenylene sulfide resin (PPS) phenol resin, etc.
 接着層の総質量に対する25℃の環境下において固体の樹脂の含有率は、10質量%~100質量%であることが好ましく、60質量%~80質量%であることがより好ましい。 The solid resin content of the adhesive layer at 25°C is preferably 10% to 100% by mass, and more preferably 60% to 80% by mass, relative to the total mass of the adhesive layer.
 接着層は、充填剤、離型剤、難燃剤、着色剤、可塑剤、シランカップリング剤、防錆剤、銅害防止剤、還元剤、酸化防止剤、粘着付与樹脂、紫外線吸収剤、消泡剤、レベリング調整剤、溶剤等の各種添加剤を含んでもよい。 The adhesive layer contains fillers, mold release agents, flame retardants, colorants, plasticizers, silane coupling agents, rust inhibitors, copper damage inhibitors, reducing agents, antioxidants, tackifying resins, ultraviolet absorbers, and erasers. It may also contain various additives such as foaming agents, leveling regulators, and solvents.
 接着性の観点から、接着層の平均厚さは、1μm~5000μmであることが好ましく、20μm~1000μmであることがより好ましく、50μm~800μmであることが更に好ましい。 From the viewpoint of adhesiveness, the average thickness of the adhesive layer is preferably 1 μm to 5000 μm, more preferably 20 μm to 1000 μm, and even more preferably 50 μm to 800 μm.
(放熱板)
 本開示の積層体は、第1の導電層の第1の樹脂層側表面又は第2の導電層の第2の樹脂層側表面に放熱板を備えていてもよい。
 放熱板としては、従来公知のものを使用することができ、素子等が接着されていてもよい。
(heat sink)
The laminate of the present disclosure may include a heat sink on the first resin layer side surface of the first conductive layer or the second resin layer side surface of the second conductive layer.
As the heat sink, any conventionally known heat sink may be used, and elements etc. may be bonded thereto.
(用途)
 本開示の積層体は、パワーモジュール(PM)の作製に好適に使用することができる。
 本開示の積層体の用途は、PM用途に限定されるものではなく、その他電装系部品、制御系部品、駆動系部品、弱電関係、家電、化粧部品等に使用することができる。
(Application)
The laminate of the present disclosure can be suitably used for producing a power module (PM).
The use of the laminate of the present disclosure is not limited to PM use, but can also be used for other electrical system parts, control system parts, drive system parts, light electrical equipment, home appliances, cosmetic parts, etc.
 以下、図1~図6を参照して、本開示の積層体等の一実施形態を説明する。なお、開示の積層体は、図1~図6に示す形態に限定されるものではない。 Hereinafter, one embodiment of the laminate etc. of the present disclosure will be described with reference to FIGS. 1 to 6. Note that the disclosed laminate is not limited to the forms shown in FIGS. 1 to 6.
 図1は、本開示の積層体の一実施形態を示す斜視図であり、図2は、本開示の積層体の他の実施形態を示す斜視図である。
 図1及び図2については、層間の接着層の表示を省略している。
 図1に示す積層体10は、第1の樹脂層11と、第1の導電層12と、絶縁層13と、第2の導電層14と、第2の樹脂層16とをこの順に備える。
 図2に示す積層体20は、第1の樹脂層21と、第1の導電層22と、絶縁層23と、第2の導電層24と、第2の樹脂層26とをこの順に備える。
 図1及び図2に示すように、第2の樹脂層は、開口を有していてもよい。これにより、第2の導電層等の表面に、放熱板等を配置することができる。開口の形状は、特に限定されるものではなく、用途に応じ適宜調整することが好ましい。
 図1及び図2に示すように、第1の導電層及び第2の導電層は、第1の樹脂層及び第2の樹脂層の外周から外に突出していてもよい。これにより、配線等の別部材と接続することができる。
FIG. 1 is a perspective view showing one embodiment of a laminate of the present disclosure, and FIG. 2 is a perspective view showing another embodiment of a laminate of the present disclosure.
1 and 2, the adhesive layers between the layers are not shown.
The laminate 10 shown in FIG. 1 includes a first resin layer 11, a first conductive layer 12, an insulating layer 13, a second conductive layer 14, and a second resin layer 16, in this order.
The laminate 20 shown in FIG. 2 includes a first resin layer 21, a first conductive layer 22, an insulating layer 23, a second conductive layer 24, and a second resin layer 26 in this order.
1 and 2, the second resin layer may have an opening. This allows a heat sink or the like to be disposed on the surface of the second conductive layer, etc. The shape of the opening is not particularly limited, and is preferably adjusted appropriately depending on the application.
1 and 2, the first conductive layer and the second conductive layer may protrude from the outer periphery of the first resin layer and the second resin layer, respectively, so that they can be connected to another member such as a wiring.
 図3は、本開示の積層体の一実施形態を示す断面図である。
 図3に示す積層体30は、第1の樹脂層31と、接着層35と、第1の導電層32と、接着層35と、絶縁層33と、接着層35と、第2の導電層34と、接着層35と、第2の樹脂層36とを備える。
 図3に示すように、第1の樹脂層31は、階段状の凹状部を含む収容部を有しており、収容部内に、接着層35、第1の導電層32、接着層35、絶縁層33、接着層35、第2の導電層34及び接着層35が配置される。
 図3においては、第1の導電層と、絶縁層及び第2の導電層とが階段状の凹状部の異なる階層に収容される。これにより、熱耐久性を向上することができる。
 図3に示す積層体30において、第1の樹脂層31と第2の樹脂層36とは、接着層35により接着される。
FIG. 3 is a cross-sectional view showing one embodiment of a laminate of the present disclosure.
The laminate 30 shown in FIG. 3 comprises a first resin layer 31, an adhesive layer 35, a first conductive layer 32, an adhesive layer 35, an insulating layer 33, an adhesive layer 35, a second conductive layer 34, an adhesive layer 35, and a second resin layer 36.
As shown in FIG. 3, the first resin layer 31 has a accommodating portion including a stepped recessed portion, and an adhesive layer 35, a first conductive layer 32, an adhesive layer 35, an insulating layer 33, an adhesive layer 35, a second conductive layer 34 and an adhesive layer 35 are arranged within the accommodating portion.
3, the first conductive layer, the insulating layer and the second conductive layer are accommodated in different levels of a stepped recess, thereby improving heat durability.
In the laminate 30 shown in FIG. 3, the first resin layer 31 and the second resin layer 36 are bonded together by an adhesive layer 35 .
 図4は、本開示の積層体の他の実施形態を示す断面図である。
 図4に示す積層体40は、第1の樹脂層41と、接着層45と、第1の導電層42と、接着層45と、絶縁層43と、接着層45と、第2の導電層44と、接着層45と、第2の樹脂層46とを備える。
 図4に示すように、第1の樹脂層41は、階段状の凹状部を含む収容部を有しており、収容部内に、接着層45、第1の導電層42、接着層45、絶縁層43、接着層45、第2の導電層44及び接着層45が配置される。
 図4においては、第1の導電層と、絶縁層及び第2の導電層とが階段状の凹状部の異なる階層に収容される。これにより、熱耐久性を向上することができる。
 また、図4に示すように、第1の樹脂層41は挿入部47を有しており、第2の樹脂層46が有する開口部(図示せず)に挿入されている。
 また、図4に示す積層体40において、第1の樹脂層41と第2の樹脂層46とは、接着層45により接着される。
FIG. 4 is a cross-sectional view showing another embodiment of a laminate according to the present disclosure.
The laminate 40 shown in FIG. 4 comprises a first resin layer 41, an adhesive layer 45, a first conductive layer 42, an adhesive layer 45, an insulating layer 43, an adhesive layer 45, a second conductive layer 44, an adhesive layer 45, and a second resin layer 46.
As shown in FIG. 4, the first resin layer 41 has a accommodating portion including a stepped recessed portion, and an adhesive layer 45, a first conductive layer 42, an adhesive layer 45, an insulating layer 43, an adhesive layer 45, a second conductive layer 44 and an adhesive layer 45 are arranged within the accommodating portion.
4, the first conductive layer, the insulating layer and the second conductive layer are accommodated in different levels of a stepped recess, thereby improving heat durability.
As shown in FIG. 4, the first resin layer 41 has an insertion portion 47 which is inserted into an opening (not shown) of the second resin layer 46 .
In the laminate 40 shown in FIG. 4 , the first resin layer 41 and the second resin layer 46 are bonded together by an adhesive layer 45 .
 図5は、本開示の積層体の他の実施形態を示す断面図である。
 図5に示す積層体50は、第1の樹脂層51と、放熱板57と、接着層55と、第1の導電層52と、接着層55と、絶縁層53と、接着層55と、第2の導電層54と、接着層55と、第2の樹脂層56とを備える。
 図5に示すように、第1の樹脂層51は、階段状の凹状部を含む収容部を有しており、収容部内に、放熱板57、接着層55、第1の導電層52、接着層55、絶縁層53、接着層55、第2の導電層54及び接着層55が配置される。
 図5においては、第1の導電層と、絶縁層及び第2の導電層とが階段状の凹状部の異なる階層に収容される。これにより、熱耐久性を向上することができる。
 また、図5に示す積層体50において、第1の樹脂層51と第2の樹脂層56とは、接着層55により接着される。
FIG. 5 is a cross-sectional view showing another embodiment of the laminate of the present disclosure.
The laminate 50 shown in FIG. 5 includes a first resin layer 51, a heat sink 57, an adhesive layer 55, a first conductive layer 52, an adhesive layer 55, an insulating layer 53, an adhesive layer 55, It includes a second conductive layer 54, an adhesive layer 55, and a second resin layer 56.
As shown in FIG. 5, the first resin layer 51 has an accommodating part including a stepped recessed part, and the accommodating part includes a heat dissipation plate 57, an adhesive layer 55, a first conductive layer 52, an adhesive A layer 55, an insulating layer 53, an adhesive layer 55, a second conductive layer 54 and an adhesive layer 55 are arranged.
In FIG. 5, the first conductive layer, the insulating layer, and the second conductive layer are housed in different levels of the stepped recess. Thereby, thermal durability can be improved.
Further, in the laminate 50 shown in FIG. 5, the first resin layer 51 and the second resin layer 56 are bonded together by an adhesive layer 55.
 図6は、本開示の積層体が備える第1の樹脂層の一実施形態を示す斜視図である。
 図6に示すように、第1の樹脂層100は、複数の収容部101を有しており、該収容部101は、凹状部102A及び凸状部102Bを含む。
 また、第1の樹脂層100は、固定部103、開口部104を備える。
 図6に示すように、第1の樹脂層100は、収容部101間に開口を有していてもよい。これにより、第1の樹脂層100に配置される第1の樹脂層等に対し、配線等の別部材を接続することができる。
FIG. 6 is a perspective view showing an embodiment of the first resin layer included in the laminate of the present disclosure.
As shown in FIG. 6, the first resin layer 100 has a plurality of accommodating parts 101, and the accommodating parts 101 include a concave part 102A and a convex part 102B.
Further, the first resin layer 100 includes a fixing part 103 and an opening part 104.
As shown in FIG. 6 , the first resin layer 100 may have openings between the accommodating portions 101 . Thereby, other members such as wiring can be connected to the first resin layer and the like disposed on the first resin layer 100.
 図3~図6に示すように、接着層、第1の導電層、絶縁層及び第2の導電層の外周の大きさは異なっていてもよい。接着層、第1の導電層、絶縁層及び第2の導電層の外周の大きさは異なる場合、第1の樹脂層が有する凹状部を内周の大きさは、接着層、第1の導電層、絶縁層及び第2の導電層の中で最も大きい外周を有する層の外周の大きさ以上であることが好ましい。 As shown in FIGS. 3 to 6, the sizes of the outer peripheries of the adhesive layer, the first conductive layer, the insulating layer, and the second conductive layer may be different. When the size of the outer periphery of the adhesive layer, the first conductive layer, the insulating layer, and the second conductive layer is different, the size of the inner periphery of the concave portion of the first resin layer is the same as that of the adhesive layer and the first conductive layer. It is preferable that the size is equal to or larger than the outer circumference of the layer having the largest outer circumference among the layers, the insulating layer, and the second conductive layer.
[積層体の製造方法]
 本開示の積層体の製造方法は、少なくとも一方の表面に収容部を有する第1の樹脂層を準備する準備工程と、
 上記第1の樹脂層の表面に、第1の導電層、絶縁層及び第2の導電層を積層する積層工程と、含み、
 上記積層工程において、上記第1の樹脂層の上記収容部に、少なくとも上記第1の導電層を配置する。
[Method of manufacturing laminate]
The method for producing a laminate according to the present disclosure includes a preparation step of preparing a first resin layer having a storage portion on at least one surface thereof;
a lamination step of laminating a first conductive layer, an insulating layer and a second conductive layer on a surface of the first resin layer,
In the lamination step, at least the first conductive layer is disposed in the housing portion of the first resin layer.
 本開示の積層体の製造方法によれば、熱耐久性に優れる積層体を製造することができる。上記効果が奏される理由は明らかではないが、以下のように推測される。
 本開示の積層体の製造方法は、インサート成形ではなく、各層を個別に作製し、積層することにより製造する。そのため、インサート成形により製造した積層体では、第1の樹脂層に第1の導電層が埋没し、完全に密着しているのに対し、本開示の製造方法により製造した積層体では、第1の樹脂層と第1の導電層との間が完全には密着しておらず、加熱時において生じる内部応力の緩和が可能となる。これにより、クラックの発生、及び導電層及び樹脂層の変形を抑制することができ、熱耐久性が向上すると推測される。
According to the method for manufacturing a laminate of the present disclosure, a laminate with excellent thermal durability can be manufactured. Although the reason for the above effect is not clear, it is presumed as follows.
The method for manufacturing a laminate of the present disclosure is not performed by insert molding, but is manufactured by individually manufacturing each layer and laminating them. Therefore, in the laminate manufactured by insert molding, the first conductive layer is buried in the first resin layer and is in complete contact with the first resin layer, whereas in the laminate manufactured by the manufacturing method of the present disclosure, the first Since the resin layer and the first conductive layer are not in perfect contact with each other, it is possible to alleviate internal stress generated during heating. It is presumed that this makes it possible to suppress the occurrence of cracks and deformation of the conductive layer and the resin layer, thereby improving thermal durability.
 本開示の積層体の製造方法は、第2の導電層の絶縁層とは反対側に第2の樹脂層を更に積層する第2の積層工程を含むことができる。 The method for manufacturing a laminate of the present disclosure can include a second lamination step of further laminating a second resin layer on the side of the second conductive layer opposite to the insulating layer.
(準備工程)
 第1の樹脂層については、上記したためここでは記載を省略する。
 第1の樹脂層の作製方法は特に限定されるものではなく、インサート成形等により作製することができる。
(Preparation process)
Since the first resin layer has been described above, the description thereof will be omitted here.
The method for producing the first resin layer is not particularly limited, and can be produced by insert molding or the like.
(積層工程)
 本開示の積層体の製造方法は、第1の樹脂層の表面に、第1の導電層、絶縁層及び第2の導電層を積層する積層工程を含む。
 積層工程においては、第1の樹脂層の収容部に、少なくとも第1の導電層を配置する。樹脂層の収容部に、第1の絶縁層及び第2の導電層を配置することが好ましい。
(Lamination process)
The method for manufacturing a laminate of the present disclosure includes a lamination step of laminating a first conductive layer, an insulating layer, and a second conductive layer on a surface of a first resin layer.
In the lamination step, at least the first conductive layer is placed in the housing portion of the first resin layer. It is preferable that the first insulating layer and the second conductive layer are disposed in the housing portion of the resin layer.
 第1の樹脂層表面への第1の導電層、絶縁層及び第2の導電層の積層は、各層間に接着層を配置し、加熱することにより行うことができる。
 各層間に接着層を配置する場合、積層工程において、第1の導電層、絶縁層及び第2の導電層と共に、接着層を第1の樹脂層の収容部に配置することが好ましい。
Lamination of the first conductive layer, insulating layer, and second conductive layer on the surface of the first resin layer can be performed by disposing an adhesive layer between each layer and heating.
When an adhesive layer is disposed between each layer, it is preferable that the adhesive layer is disposed in the accommodation portion of the first resin layer together with the first conductive layer, the insulating layer, and the second conductive layer in the lamination step.
 積層工程において、第1の導電層の絶縁層とは反対側又は第2の導電層の絶縁層とは反対側に、放熱板を配置してもよい。
 放熱板を配置する場合、積層工程において、第1の導電層、絶縁層及び第2の導電層と共に、放熱板を第1の樹脂層の収容部に配置することが好ましい。
In the lamination process, a heat sink may be placed on the opposite side of the first conductive layer to the insulating layer or on the opposite side of the second conductive layer to the insulating layer.
When arranging a heat sink, it is preferable that the heat sink is placed in the accommodation portion of the first resin layer together with the first conductive layer, the insulating layer, and the second conductive layer in the lamination step.
 第1の導電層、第2の導電層、絶縁層、接着層及び放熱板については上記したためここでは記載を省略する。
 第1の導電層、第2の導電層、絶縁層、接着層及び放熱板は、従来公知の方法により作製したものを使用してもよく、市販されるものを使用してもよい。
Since the first conductive layer, second conductive layer, insulating layer, adhesive layer, and heat sink have been described above, their description will be omitted here.
The first conductive layer, the second conductive layer, the insulating layer, the adhesive layer, and the heat sink may be prepared by a conventionally known method, or may be commercially available.
(第2の積層工程)
 第2の樹脂層については、上記したためここでは記載を省略する。
 第2の樹脂層の作製方法は特に限定されるものではなく、インサート成形等により作製することができる。
(Second lamination process)
Since the second resin layer has been described above, the description thereof will be omitted here.
The method for producing the second resin layer is not particularly limited, and can be produced by insert molding or the like.
 第2の樹脂層の積層は、第2の樹脂層と第2の導電層との間に接着層を配置し、加熱することにより行うことができる。
 また、接着層により第1の樹脂層と第2の樹脂層とを接着してもよい。
Lamination of the second resin layer can be performed by disposing an adhesive layer between the second resin layer and the second conductive layer and heating the adhesive layer.
Alternatively, the first resin layer and the second resin layer may be bonded together using an adhesive layer.
 第1の樹脂層が挿入部及び開口部のいずれか一方を有し、第2の樹脂層が少なくとも他方を有する場合、挿入部を開口部へ挿入することにより、第1の樹脂層及び第2の樹脂層の嵌め合わせを行うことができる。 When the first resin layer has either an insertion portion or an opening, and the second resin layer has at least the other, inserting the insertion portion into the opening allows the first resin layer and the second The resin layers can be fitted together.
10、20、30、40、50:積層体、11、21、31、41、51:第1の樹脂層、12、22、32、42、52:第1の導電層、13、23、33、43、53:絶縁層、14、24、34、44、54:第2の導電層、35、45、55:接着層、16、26、36、46、56:第2の樹脂層、47:挿入部、57:放熱板、100:第1の樹脂層、101:収容部、102A:凹状部、102B:凸状部、103:固定部、104:開口部、105:第1の導電層、106:第2の導電層 10, 20, 30, 40, 50: laminate, 11, 21, 31, 41, 51: first resin layer, 12, 22, 32, 42, 52: first conductive layer, 13, 23, 33, 43, 53: insulating layer, 14, 24, 34, 44, 54: second conductive layer, 35, 45, 55: adhesive layer, 16, 26, 36, 46, 56: second resin layer, 47: insertion portion, 57: heat sink, 100: first resin layer, 101: storage portion, 102A: concave portion, 102B: convex portion, 103: fixing portion, 104: opening, 105: first conductive layer, 106: second conductive layer

Claims (10)

  1.  第1の樹脂層と、
     第1の導電層と、
     絶縁層と、
     第2の導電層と、
    をこの順に備え、
     前記第1の樹脂層が収容部を有し、
     前記第1の導電層が、前記第1の樹脂層の前記収容部内に配置される、積層体。
    a first resin layer;
    a first conductive layer;
    an insulating layer;
    a second conductive layer;
    in this order,
    the first resin layer has a housing part,
    A laminate, wherein the first conductive layer is disposed within the accommodating portion of the first resin layer.
  2.  前記収容部が、凹状部又は凹凸状部を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the accommodating portion includes a concave portion or an uneven portion.
  3.  前記第1の導電層、前記絶縁層及び前記第2の導電層が、前記第1の樹脂層の前記収容部内に配置される、請求項1に記載の積層体。 The laminate according to claim 1, wherein the first conductive layer, the insulating layer, and the second conductive layer are arranged within the accommodation section of the first resin layer.
  4.  前記第1の樹脂層が有する前記収容部の面積は、前記第1の導電層の面積以上である、請求項1又は請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein the area of the accommodation portion of the first resin layer is greater than or equal to the area of the first conductive layer.
  5.  前記第2の導電層の前記絶縁層とは反対側に第2の樹脂層を更に備える、請求項1~請求項4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, further comprising a second resin layer on a side of the second conductive layer opposite to the insulating layer.
  6.  前記第1の導電層と前記絶縁層との間、及び前記絶縁層と前記第2の導電層との間に、接着層を備え、前記接着層が、25℃の環境下において固体の樹脂を含有する、請求項1~請求項5のいずれか一項に記載の積層体。 An adhesive layer is provided between the first conductive layer and the insulating layer and between the insulating layer and the second conductive layer, and the adhesive layer is made of a solid resin in an environment of 25°C. The laminate according to any one of claims 1 to 5, comprising:
  7.  前記第1の樹脂層が、熱硬化性樹脂を含む樹脂組成物の硬化物である、請求項1~請求項6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the first resin layer is a cured product of a resin composition containing a thermosetting resin.
  8.  前記熱硬化性樹脂が、不飽和ポリエステルを含む、請求項7に記載の積層体。 The laminate according to claim 7, wherein the thermosetting resin contains unsaturated polyester.
  9.  前記第1の樹脂層が、前記第1の導電層、前記絶縁層及び前記第2の導電層を固定する固定部を有する、請求項1~請求項8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the first resin layer has a fixing part that fixes the first conductive layer, the insulating layer, and the second conductive layer. .
  10.  少なくとも一方の表面に収容部を有する第1の樹脂層を準備する準備工程と、
     前記第1の樹脂層の表面に、第1の導電層、絶縁層及び第2の導電層を積層する積層工程と、含み、
     前記積層工程において、前記第1の樹脂層の前記収容部内に、少なくとも前記第1の導電層を配置する、積層体の製造方法。
     
     
    a preparation step of preparing a first resin layer having a housing portion on at least one surface;
    a laminating step of laminating a first conductive layer, an insulating layer, and a second conductive layer on the surface of the first resin layer;
    In the laminating step, at least the first conductive layer is disposed within the accommodating portion of the first resin layer.

PCT/JP2022/035543 2022-09-22 2022-09-22 Laminate and laminate production method WO2024062633A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/035543 WO2024062633A1 (en) 2022-09-22 2022-09-22 Laminate and laminate production method
PCT/JP2023/007697 WO2024062649A1 (en) 2022-09-22 2023-03-01 Laminate, method for manufacturing laminate, and conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035543 WO2024062633A1 (en) 2022-09-22 2022-09-22 Laminate and laminate production method

Publications (1)

Publication Number Publication Date
WO2024062633A1 true WO2024062633A1 (en) 2024-03-28

Family

ID=90454175

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/035543 WO2024062633A1 (en) 2022-09-22 2022-09-22 Laminate and laminate production method
PCT/JP2023/007697 WO2024062649A1 (en) 2022-09-22 2023-03-01 Laminate, method for manufacturing laminate, and conductive laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007697 WO2024062649A1 (en) 2022-09-22 2023-03-01 Laminate, method for manufacturing laminate, and conductive laminate

Country Status (1)

Country Link
WO (2) WO2024062633A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186035A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Semiconductor device
WO2015016017A1 (en) * 2013-07-31 2015-02-05 富士電機株式会社 Semiconductor device
JP2020088053A (en) * 2018-11-20 2020-06-04 三菱電機株式会社 Semiconductor device, manufacturing method of the same, and electric power conversion device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530823B1 (en) * 2010-01-27 2018-03-14 Hitachi, Ltd. Power distribution mounting component and inverter apparatus using same
JP5335868B2 (en) * 2011-08-30 2013-11-06 日立オートモティブシステムズ株式会社 Power converter
JP2013090529A (en) * 2011-10-21 2013-05-13 Hitachi Constr Mach Co Ltd Power conversion apparatus
JP2013150389A (en) * 2012-01-17 2013-08-01 Denso Corp Power conversion device
JP7054309B2 (en) * 2018-10-25 2022-04-13 東芝三菱電機産業システム株式会社 Power converter
JP7156105B2 (en) * 2019-03-11 2022-10-19 株式会社デンソー semiconductor module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186035A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Semiconductor device
WO2015016017A1 (en) * 2013-07-31 2015-02-05 富士電機株式会社 Semiconductor device
JP2020088053A (en) * 2018-11-20 2020-06-04 三菱電機株式会社 Semiconductor device, manufacturing method of the same, and electric power conversion device

Also Published As

Publication number Publication date
WO2024062649A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
KR101228534B1 (en) Heat radiating sheet for back sheet for photovoltaic module and photovoltaic module using the same
CA2559707C (en) Heating element and production method therefor
EP2118978B1 (en) Laminated bus bars and methods of manufacture thereof
JP2011523221A (en) Lightweight and rigid self-supporting solar module and manufacturing method thereof
WO2007043587A1 (en) Membrane electrode joint product and solid polymer electrolyte fuel battery
JP6492497B2 (en) Battery packaging materials
EP2044155A1 (en) Vibration damping material, structural laminates, and processes for making same
EP1849580B1 (en) Plastic bonding method
WO2024062633A1 (en) Laminate and laminate production method
JP5376954B2 (en) SOLAR CELL MODULE, LAMINATE, AND SOLAR CELL MODULE MANUFACTURING METHOD
JP6420094B2 (en) Thermoplastic resin composite molded body and method for producing thermoplastic resin composite molded body
JP5485817B2 (en) Adhesive resin composition, coverlay, adhesive film, metal-clad laminate and flexible printed wiring board
KR20090115053A (en) Complex Sheet
JPH1120095A (en) Electronic device sealing film
JP2011241294A (en) Adhesive resin composition, coverlay, adhesive film, metal-clad laminate, and flexible printed wiring board
JPWO2018026007A1 (en) Battery packaging material and battery
JP2012007134A (en) Adhesive resin composition, cover lay, adhesive film, metal-clad laminate and flexible printed circuit board
JP2005271583A (en) Injection molding mold and composite injection molding
US20230142691A1 (en) Hybrid composite materials systems for battery housings having improved thermal performance
JP6327243B2 (en) Insulation sheet and flat cable
JP2008030392A (en) In-mold molded body and its manufacturing method
JP2022175137A (en) Metal terminal adhesive film, method of manufacturing the same, metal terminal with metal terminal adhesive film, power storage device, and method of manufacturing the power storage device
JP3467616B2 (en) Manufacturing method of laminate
JP2000025144A (en) Fiber-reinforced resin unit plate
US20230402685A1 (en) Composite materials systems for battery housings and covers having improved thermal performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959597

Country of ref document: EP

Kind code of ref document: A1