WO2023227515A1 - Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle - Google Patents

Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle Download PDF

Info

Publication number
WO2023227515A1
WO2023227515A1 PCT/EP2023/063624 EP2023063624W WO2023227515A1 WO 2023227515 A1 WO2023227515 A1 WO 2023227515A1 EP 2023063624 W EP2023063624 W EP 2023063624W WO 2023227515 A1 WO2023227515 A1 WO 2023227515A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage system
hybrid energy
supercapacitor
battery cell
Prior art date
Application number
PCT/EP2023/063624
Other languages
German (de)
French (fr)
Inventor
Uwe Schwedhelm
Original Assignee
Next.E.Go Mobile SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next.E.Go Mobile SE filed Critical Next.E.Go Mobile SE
Publication of WO2023227515A1 publication Critical patent/WO2023227515A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/20Driver interactions by driver identification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a method for operating a hybrid energy storage system, in particular for a motor vehicle.
  • the invention further relates to such a hybrid energy storage system and a motor vehicle equipped therewith.
  • the object of the present invention is to enable improved longevity, robustness and performance when using an electrical energy storage device.
  • the method according to the invention can be used to operate a hybrid energy storage system comprising at least one conventional rechargeable battery cell and at least one supercapacitor.
  • the at least one supercapacitor is prioritized over the at least one battery cell when charging and discharging the hybrid energy storage system.
  • the at least one supercapacitor which in the following can represent several or all supercapacitors of the hybrid energy storage system, i.e. in a charging mode in which the hybrid energy storage system is charged, can preferably be charged and during load, i.e. when discharging the hybrid energy storage system, i.e. when retrieving of energy from the hybrid energy storage system, are preferably discharged.
  • This can mean, for example, that when charging, the supercapacitor is first charged and only when it is fully charged is the at least one battery cell, which can hereinafter represent several or all battery cells of the hybrid energy storage system, charged.
  • the hybrid energy storage system is under load, i.e.
  • prioritizing the supercapacitor in the sense of the present invention can mean that as much energy as possible is always supplied to the supercapacitor during charging and a load is covered as much as possible by the supercapacitor and a remaining energy inflow is supplied to the battery cell or a remaining, part of the load that cannot be covered or operated by the supercapacitor alone, i.e. a respective energy requirement from the battery cell is served, i.e. covered. This can happen or be the case at least up to a predetermined limit value.
  • a lower threshold value or minimum state of charge can be specified for the supercapacitor and a load on the hybrid energy storage system can then only be served or prioritized from this until this lower threshold value or minimum state of charge of the supercapacitor is reached.
  • the charging and discharging of the hybrid energy storage system with prioritization of the supercapacitor can be controlled or regulated, for example, by an appropriately configured control device.
  • a control device can be part of the hybrid energy storage system, in particular integrated into it.
  • supercapacitors Compared to chemical battery cells available today, supercapacitors have a greater power density, meaning they can absorb and deliver correspondingly greater currents or power. In contrast to battery cells, this is also possible without significantly increased degradation.
  • the supercapacitor has a longer service life and cycle stability than the battery cell. This means that the battery cell can be relieved and protected by prioritizing the supercapacitor.
  • the aging or degradation of the battery cell can be minimized, in particular without restricting the overall performance of the hybrid energy storage system compared to a conventional, exclusively cell-based battery.
  • relatively short loads can be operated entirely from the supercapacitor, so that the battery cell, which is more susceptible to aging, is not loaded at all and therefore does not degrade or only degrades to the inevitable minimal extent.
  • supercapacitors are less sensitive to environmental or operational conditions, such as temperature, in terms of their properties and performance. This means that by prioritizing the supercapacitor under different environmental or operating conditions, a constant performance of the hybrid energy storage system can be achieved or ensured right from the start, i.e. immediately from the start of operation of the hybrid energy storage system.
  • prioritizing the supercapacitor can also provide additional time for temperature control or conditioning of the battery cell. As a result, even if the respective load cannot be permanently served from the supercapacitor alone, the battery cell can degrade less severely during its final use than if it was already initially used to serve the load.
  • the hybrid energy storage system proposed or used here can comprise a large number of battery cells connected in parallel and/or series as well as a large number of supercapacitors connected in parallel and/or series.
  • the present invention can therefore be used flexibly and as required for a wide range of different applications.
  • the hybrid energy storage system and the method according to the invention can be used to operate a motor vehicle.
  • the hybrid energy storage system can therefore be designed as a traction energy storage system for a motor vehicle.
  • an expected time or duration until the next load after the end of the respective charging, at which the hybrid energy storage system is discharged, i.e. energy is retrieved from the hybrid energy storage system is first determined or estimated. Only if this time corresponds at most to a predetermined threshold value, i.e. a predetermined maximum time or maximum duration, will the at least one supercapacitor be charged during the current charging. In other words, if the determined or estimated time or duration is greater than the predetermined threshold value, only the at least one battery cell is charged and the at least one supercapacitor is not charged, i.e. left in its current state of charge, for example.
  • the supercapacitor may not be charged or not fully charged, but this can be compensated for by initially having correspondingly more free capacity in the supercapacitor, for example for recuperation, i.e. energy recovery Available.
  • at least part of the loss of range caused by not charging the supercapacitor can be compensated for overall, i.e.
  • a greater overall efficiency can be achieved.
  • a deployment plan for the hybrid energy storage system for example, a usage history, previous or typical user behavior, a deployment plan for the hybrid energy storage system, a user's appointment schedule, a time of day, a day of the week, environmental or weather conditions and / or the like are taken into account more, for example, retrieved or determined and evaluated.
  • a corresponding prediction model or a corresponding prediction algorithm or a tabular assignment or the like can be specified.
  • the hybrid energy storage system is for a certain continuous power output, i.e. normal or continuous operation, and a peak power output that is larger in comparison to this but is limited in time, i.e. only available for a limited time, i.e. for example an overboost function or an overboost - Operation, designed or set up.
  • a request for the peak power output from the at least one supercapacitor, i.e. by energy output from the at least one supercapacitor, is then served. This can be done in particular without placing a greater load on the at least one battery cell than is maximum intended within the scope of the continuous power output.
  • the load i.e.
  • the power output of the battery cells can also be limited to a value specified for the continuous power output or continuous operation during the time-limited peak power output, i.e. in the overboost operation of the hybrid energy storage system. Accordingly, the peak power output, i.e. the overboost operation or the overboost function, can only be available here, i.e. usable or accessible, when the at least one supercapacitor is at least partially charged. In this way, peak power output can be made possible at least temporarily, but at the same time the at least one battery cell can be protected. This can enable a particularly useful compromise between appropriate performance and comfortable use of the hybrid energy storage system and the longest possible service life and the greatest possible sustainability of the hybrid energy storage system.
  • the embodiment of the present invention proposed here can be understood in a sense as maximum or complete prioritization of the supercapacitor over the battery cell with respect to peak power output.
  • the peak power output is only released, i.e. only made available, when the state of charge of the at least one supercapacitor corresponds to at least a predetermined threshold value, i.e. a predetermined minimum state of charge. If there is appropriate availability, i.e. usability, of the peak power output, a corresponding signal, for example a predetermined control signal, is output to indicate this, in particular in several stages depending on the current state of charge of the at least one supercapacitor.
  • the availability or the level of availability can be displayed, for example, using a combination instrument or the like.
  • the different levels can, for example, represent or display different available durations and/or power levels for the peak power output.
  • the respective signal can be output, for example, by a control unit of the hybrid energy storage system.
  • the hybrid energy storage system itself can include a corresponding display device to which the signal can be output.
  • the threshold value provided here from which the peak power output is made possible, ensures that the peak power output can be used in a particularly practical manner and thus enables particularly comfortable use of the hybrid energy storage system.
  • the at least one supercapacitor in a normal or continuous operation in which the peak power output is not called up or not provided if the state of charge of the at least one battery cell corresponds to at least a predetermined minimum value, the at least one supercapacitor is only charged up to a predetermined value Threshold value of the state of charge of the supercapacitor is prioritized, i.e. discharged. This ensures, if possible, availability of the peak power output, i.e. the overboost function, at least once per usage or charging cycle. When using the peak power output, a complete discharge of the at least one supercapacitor is then permitted.
  • the advantages of the supercapacitor or the prioritization of the supercapacitor can be at least partially used even in normal operation and, in addition, relatively frequent and reliable availability of the peak power output can be achieved.
  • the peak power output when used, can be used particularly effectively by allowing the supercapacitor to be completely discharged. Since a correspondingly large power output, as is the case when using the Peak power output occurs, which would place a particularly high load on the battery cell, so the battery cell can be protected particularly effectively and a particularly favorable compromise can be achieved overall between maximum performance and maximum longevity of the hybrid energy storage system.
  • hybrid energy storage system comprising at least one rechargeable battery cell, at least one also rechargeable supercapacitor, and a controller for controlling charging and discharging of the hybrid energy storage system.
  • the hybrid energy storage system according to the invention is set up for operation according to the method according to the invention.
  • the control device can, for example, comprise a process device, such as a microchip, microprocessor or microcontroller or the like, and a computer-readable data memory coupled to it.
  • a corresponding operating or computer program can then be stored in this data memory, which encodes or implements the method steps, measures or processes or corresponding control instructions described in connection with the method according to the invention.
  • the hybrid energy storage system according to the invention can in particular be or correspond to the hybrid energy storage system mentioned in connection with the method according to the invention.
  • the hybrid energy storage system according to the invention can in particular comprise an electronic or digital switch circuit or the like. This makes it possible to control or switch, for example according to a predetermined characteristic map, whether, how or when the supercapacitor and/or the battery cell is used, i.e. charged or discharged.
  • a switch circuit can, for example, be part of the control device or can be controlled or switched by it.
  • the hybrid energy storage system according to the invention can be particularly compact, powerful, long-lasting and sustainable compared to conventional purely cell-based energy storage systems.
  • the hybrid energy storage system according to the invention can advantageously be produced with fewer materials, which are problematic in terms of their rarity and environmental impact, compared to similarly powerful purely cell-based energy storage devices, such as supercapacitors for example, do not rely on rare earths, precious metals, cobalt or the like.
  • the supercapacitors make up 10% to 20% of the total capacity of the hybrid energy storage system.
  • the remaining 90% to 80% of the total capacity can be made up, i.e. provided or formed, by the battery cells.
  • the proportion of supercapacitors proposed here can be particularly favorable for an application of the hybrid energy storage system as a traction energy storage device for a motor vehicle, not least because weight and space requirements must also be taken into account.
  • the hybrid energy storage system comprises a temperature control system through which a liquid temperature control medium can flow.
  • This temperature control system is arranged for temperature control, in particular for cooling, of the at least one battery cell, i.e. in particular for temperature control of all battery cells of the hybrid energy storage system, but not for temperature control of the at least one supercapacitor.
  • the battery cells can be liquid-cooled by means of the temperature control system, while the supercapacitors can, for example, be air-cooled or passively or radiatively cooled.
  • the temperature control system proposed here allows the battery cells to be tempered particularly effectively, efficiently and quickly, i.e. in particular cooled or heated if necessary.
  • the temperature control system can be designed or designed to be correspondingly smaller and less powerful because it leaves out the supercapacitors.
  • the approach proposed here is based on the knowledge that active temperature control of the battery cells increases the performance of the battery cells despite the associated energy expenditure can improve and reduce the aging or degradation of the battery cells to such an extent that there is an overall positive effect, while the supercapacitors are far less temperature sensitive, so that the corresponding temperature control effort can be saved without significant losses in performance or comfort.
  • Another aspect of the present invention is a motor vehicle that has a hybrid energy storage system according to the invention.
  • the hybrid energy storage system can in particular be designed as a traction energy storage system of the motor vehicle, that is to say it can be set up to supply an electric drive of the motor vehicle.
  • the motor vehicle according to the invention can in particular be or correspond to the motor vehicle mentioned in connection with the method according to the invention and/or in connection with the hybrid energy storage system according to the invention.
  • the motor vehicle is set up for recuperation.
  • an electric motor of the motor vehicle can be operated or controlled or switched as a generator for feeding energy into the hybrid energy storage system.
  • the motor vehicle is then further set up to control a distribution of a corresponding electrical energy flow into the hybrid energy storage system to the at least one supercapacitor and the at least one battery cell depending on a current state of the at least one battery cell.
  • This state can be given or defined in particular by the current temperature and/or the current state of charge of the at least one battery cell.
  • the motor vehicle can be set up here to direct the energy flow, i.e.
  • recuperated energy completely into the at least one supercapacitor, i.e. to feed it if, on the one hand, it still has free capacity and, on the other hand, the temperature of the at least one battery cell is outside a predetermined temperature interval and / or the state of charge of the at least one battery cell is greater than a predetermined state of charge threshold value.
  • an optimal compromise can be achieved between maximum recuperation and minimum stress or aging of the battery cell. For example, if the current state of the battery cell allows recuperation in the battery cell with minimal degradation, a A larger proportion of the repaired energy flow can be directed into the battery cell or recuperation can be made possible or carried out when the supercapacitor is fully charged.
  • the recuperated energy flow can be directed completely or to a large extent into the supercapacitor.
  • the drawing shows a partial, schematic side view of a motor vehicle with a hybrid energy storage system.
  • a chemical storage device such as a lithium-ion battery or the like, or a physical storage device, such as a capacitor, can be used to store electrical energy.
  • these two mechanisms or principles can be used in combination with each other to take advantage of the different advantages of both approaches and at least partially compensate for the different disadvantages of both approaches.
  • FIG. 1 shows a partial, schematic side view of a motor vehicle 1 that is equipped with a hybrid energy storage system 2.
  • the hybrid energy storage system 2 here includes, for example, a main housing 3 in which a plurality of electrochemical rechargeable battery cells 4 are arranged. For the sake of clarity, only a representative selection of the battery cells 4 is explicitly marked here.
  • the hybrid energy storage system 2 further comprises a secondary housing 5 in which a plurality of supercapacitors 6 are arranged.
  • the supercapacitors 6 are also rechargeable, but use a different principle for energy storage than the battery cells 4 and therefore have different properties than these.
  • the secondary housing 5 is arranged here, for example, on the main housing 3.
  • the battery cells 4 and the supercapacitors 6 can be arranged in a single, i.e. common, housing. Likewise, the supercapacitors 6 or the secondary housing 5 can be arranged at a distance from the battery cells 4 or the main housing 3. Likewise, the battery cells 4 and/or the supercapacitors 6 can be distributed or divided into several groups, i.e. arranged at different locations. This results in particularly flexible arrangement options, for example due to the different requirements of the battery cells 4 and the supercapacitors 6, for example with regard to cooling or temperature control, fire protection and/or the like. This can, for example, enable particularly efficient use of installation space, particularly favorable weight distribution and/or the like.
  • the hybrid energy storage system 2 also includes a liquid cooling system 7 for cooling or temperature control of the battery cells 4.
  • the hybrid energy storage system 2 includes a control device 8 for controlling charging and discharging of the hybrid energy storage system 2, i.e. the battery cells 4 and the supercapacitors 6.
  • the control device 8 - as indicated schematically here - can include, for example, a processor 9 and a computer-readable data memory 10.
  • the hybrid energy storage system 2, in particular the control device 8, is set up to prioritize the supercapacitors 6 over the battery cells 4 when charging and discharging.
  • the control unit 8 can, for example, control a switch circuit 11, indicated schematically here, in order to allow, i.e. enable, or interrupt, i.e. prevent, a respective energy flow to or from the supercapacitors 6 and the battery cells 4.
  • the prioritization of the supercapacitors 6 over the battery cells 4 can be coupled to one or more predetermined conditions, circumstances or states, for example a temperature of the battery cells 4 and/or a state of charge of the battery cells 4 and/or the supercapacitors 6 or the like.
  • Corresponding data, control instructions and/or a corresponding characteristic map can, for example, be stored in the data memory 10.

Abstract

The invention relates to a method for operating a hybrid energy storage system (2) comprising at least one rechargeable battery cell (4) and at least one supercapacitor (6), the at least one supercapacitor (6) being prioritized over the at least one battery cell (4) when the hybrid energy storage system (2) is charged or discharged. The invention further relates to a corresponding hybrid energy storage system (2) and to a motor vehicle (1) equipped therewith.

Description

Verfahren zum Betreiben eines Hybridenergiespeichersystems, Method for operating a hybrid energy storage system,
Hybridenergiespeichersystem und Kraftfahrzeug Hybrid energy storage system and motor vehicle
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Hybridenergiespeichersystems, insbesondere für ein Kraftfahrzeug. Die Erfindung betrifft weiter ein solches Hybridenergiespeichersystem und ein damit ausgestattetes Kraftfahrzeug. The present invention relates to a method for operating a hybrid energy storage system, in particular for a motor vehicle. The invention further relates to such a hybrid energy storage system and a motor vehicle equipped therewith.
In vielerlei verschiedenen Bereichen wird heutzutage eine Elektrifizierung angestrebt. Dafür sind entsprechend leistungsfähige Energiespeicher notwendig. Dabei gibt es eine Vielzahl von Herausforderungen und Problemen, beispielsweise hinsichtlich der Leistungsfähigkeit, der Lebensdauer bzw. Zyklenfestigkeit, der Energie- und Leistungsdichte, der Sicherheit, der zulässigen oder geeigneten Einsatz- oder Umgebungsbedingungen und dergleichen mehr. Keine Art von bisher bekanntem Energiespeicher stellt in allen diesen Bereichen eine optimale Lösung dar, sodass stets Kompromisse notwendig sind. So werden für elektrische Kraftfahrzeuge heutzutage oftmals Lithium-Ionen-Akkus eingesetzt. Diese verlieren jedoch beispielsweise bei niedrigen Temperaturen an Leistungsfähigkeit und haben zudem eine vergleichsweise geringe Leistungsdichte. Ein anderer Ansatz besteht in der Verwendung von Superkondensatoren, die im Vergleich zu herkömmlichen Akkumulatoren zwar eine deutlich größere Leistungsdichte, allerdings nur eine deutlich geringere Energiedichte als Akkumulatoren gleichen Gewichts aufweisen. Electrification is being sought in many different areas these days. This requires correspondingly powerful energy storage devices. There are a variety of challenges and problems, for example with regard to performance, service life or cycle stability, energy and power density, safety, permissible or suitable operating or environmental conditions and the like. No type of energy storage system known to date represents an optimal solution in all of these areas, so compromises are always necessary. Lithium-ion batteries are often used for electric vehicles these days. However, these lose performance at low temperatures, for example, and also have a comparatively low power density. Another approach is to use supercapacitors, which have a significantly greater power density compared to conventional accumulators, but only a significantly lower energy density than accumulators of the same weight.
Eine Herstellung von Superkondensatoren ist beispielsweise in der US 9,779,882 B2 beschrieben. Dort ist auch ein Einsatz von Superkondensatoren in einem Kraftfahrzeug beschrieben. The production of supercapacitors is described, for example, in US 9,779,882 B2. The use of supercapacitors in a motor vehicle is also described there.
Aufgabe der vorliegenden Erfindung ist es, eine verbesserte Langlebigkeit, Robustheit und Leistungsfähigkeit bei der Verwendung eines elektrischen Energiespeichers zu ermöglichen. The object of the present invention is to enable improved longevity, robustness and performance when using an electrical energy storage device.
Diese Aufgabe wird erfindungsgemäß durch die Gegenstände der unabhängigen Patentansprüche gelöst. Mögliche Ausgestaltungen und Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Patentansprüchen, in der Beschreibung und in der Figur offenbart. Das erfindungsgemäße Verfahren kann angewendet werden zum Betreiben eines Hybridenergiespeichersystems, das wenigstens eine herkömmliche wiederaufladbare Batteriezelle und wenigstens einen Superkondensator umfasst. Erfindungsgemäß wird dabei der wenigstens eine Superkondensator beim Laden und Entladen des Hybridenergiespeichersystems über die wenigstens eine Batteriezelle priorisiert. This object is achieved according to the invention by the subject matter of the independent patent claims. Possible refinements and further developments of the present invention are disclosed in the dependent claims, in the description and in the figure. The method according to the invention can be used to operate a hybrid energy storage system comprising at least one conventional rechargeable battery cell and at least one supercapacitor. According to the invention, the at least one supercapacitor is prioritized over the at least one battery cell when charging and discharging the hybrid energy storage system.
Mit anderen Worten kann der wenigstens eine Superkondensator, der im Folgenden stellvertretend für mehrere oder alle Superkondensatoren des Hybridenergiespeichersystems stehen kann, also in einem Ladebetrieb, in dem das Hybridenergiespeichersystem aufgeladen wird, bevorzugt aufgeladen und bei Belastung, also beim Entladen des Hybridenergiespeichersystems, also beim Abrufen von Energie aus dem Hybridenergiespeichersystem, bevorzugt entladen werden. Dies kann beispielsweise bedeuten, dass beim Laden zunächst der Superkondensator aufgeladen wird und erst wenn dieser voll aufgeladen ist, die wenigstens eine Batteriezelle, die im Folgenden stellvertretend für mehrere oder alle Batteriezellen des Hybridenergiespeichersystems stehen kann, aufgeladen wird. Analog kann bei einer Belastung, also beim Entladen des Hybridenergiespeichersystems zunächst nur Energie aus dem Superkondensator und erst anschließend Energie aus der Batteriezelle bereitgestellt werden. Ebenso kann eine Priorisierung des Superkondensators im Sinne der vorliegenden Erfindung bedeuten, dass stets so viel Energie wie möglich beim Laden dem Superkondensator zugeführt wird und eine Belastung so weit wie möglich aus dem Superkondensator gedeckt wird und ein verbleibender Energiezustrom der Batteriezelle zugeführt bzw. ein restlicher, nicht aus dem Superkondensator allein deckbarer oder bedienbarer Teil der Belastung, also einer jeweiligen Energieanforderung aus der Batteriezelle bedient, also gedeckt wird. Dies kann zumindest jeweils bis zu einem vorgegebenen Grenzwert erfolgen bzw. der Fall sein. So kann beispielsweise - zumindest für bestimmte vorgegebene Betriebszustände oder Bedingungen - ein unterer Schwellenwert oder Minimalladezustand für den Superkondensator vorgegeben sein und eine Belastung des Hybridenergiespeichersystems dann nur bis zum Erreichen dieses unteren Schwellenwerts bzw. Minimalladezustands des Superkondensators nur oder priorisiert aus diesem bedient werden. In other words, the at least one supercapacitor, which in the following can represent several or all supercapacitors of the hybrid energy storage system, i.e. in a charging mode in which the hybrid energy storage system is charged, can preferably be charged and during load, i.e. when discharging the hybrid energy storage system, i.e. when retrieving of energy from the hybrid energy storage system, are preferably discharged. This can mean, for example, that when charging, the supercapacitor is first charged and only when it is fully charged is the at least one battery cell, which can hereinafter represent several or all battery cells of the hybrid energy storage system, charged. Similarly, when the hybrid energy storage system is under load, i.e. when discharging, energy can initially only be provided from the supercapacitor and only then energy from the battery cell. Likewise, prioritizing the supercapacitor in the sense of the present invention can mean that as much energy as possible is always supplied to the supercapacitor during charging and a load is covered as much as possible by the supercapacitor and a remaining energy inflow is supplied to the battery cell or a remaining, part of the load that cannot be covered or operated by the supercapacitor alone, i.e. a respective energy requirement from the battery cell is served, i.e. covered. This can happen or be the case at least up to a predetermined limit value. For example - at least for certain predetermined operating states or conditions - a lower threshold value or minimum state of charge can be specified for the supercapacitor and a load on the hybrid energy storage system can then only be served or prioritized from this until this lower threshold value or minimum state of charge of the supercapacitor is reached.
Das Laden und Entladen des Hybridenergiespeichersystems unter Priorisierung des Superkondensators kann beispielsweise durch ein entsprechend eingerichtetes Steuergerät gesteuert oder geregelt werden. Ein solches Steuergerät kann Teil des Hybridenergiespeichersystems, insbesondere in dieses integriert, sein. Superkondensatoren weisen im Vergleich zu heutzutage verfügbaren chemischen Batteriezellen eine größere Leistungsdichte auf, sodass sie entsprechend größere Ströme bzw. Leistungen aufnehmen und abgeben können. Dies ist im Gegensatz zu Batteriezellen zudem ohne signifikant gesteigerte Degradation möglich. Zudem weist der Superkondensator im Vergleich zu der Batteriezelle eine höhere Lebensdauer und Zyklenfestigkeit auf. Somit kann durch die Priorisierung des Superkondensators die Batteriezelle entlastet und geschont werden. Dadurch kann also die Alterung oder Degradierung der Batteriezelle minimiert werden, insbesondere ohne die Leistungsfähigkeit des Hybridenergiespeichersystems insgesamt im Vergleich zu einer herkömmlichen, ausschließlich zellbasierten Batterie einzuschränken. Beispielsweise können durch die Priorisierung des Superkondensators relativ kurze Belastungen vollständig aus dem Superkondensator bedienbar sein, sodass dann die alterungsanfälligere Batteriezelle überhaupt nicht belastet wird und somit auch nicht oder nur im unvermeidlichen minimalen Maße degradiert. The charging and discharging of the hybrid energy storage system with prioritization of the supercapacitor can be controlled or regulated, for example, by an appropriately configured control device. Such a control device can be part of the hybrid energy storage system, in particular integrated into it. Compared to chemical battery cells available today, supercapacitors have a greater power density, meaning they can absorb and deliver correspondingly greater currents or power. In contrast to battery cells, this is also possible without significantly increased degradation. In addition, the supercapacitor has a longer service life and cycle stability than the battery cell. This means that the battery cell can be relieved and protected by prioritizing the supercapacitor. This means that the aging or degradation of the battery cell can be minimized, in particular without restricting the overall performance of the hybrid energy storage system compared to a conventional, exclusively cell-based battery. For example, by prioritizing the supercapacitor, relatively short loads can be operated entirely from the supercapacitor, so that the battery cell, which is more susceptible to aging, is not loaded at all and therefore does not degrade or only degrades to the inevitable minimal extent.
Zudem sind Superkondensatoren hinsichtlich ihrer Eigenschaften und Leistungsfähigkeit weniger empfindlich auf Umgebungs- oder Einsatzbedingungen, wie etwa eine Temperatur. Damit kann durch die Priorisierung des Superkondensators unter verschiedenen Umgebungs- oder Einsatzbedingungen bereits von Anfang an, also unmittelbar ab Inbetriebnahme des Hybridenergiespeichersystems eine konstante Leistungsfähigkeit des Hybridenergiespeichersystems erreicht bzw. sich sichergestellt werden. In addition, supercapacitors are less sensitive to environmental or operational conditions, such as temperature, in terms of their properties and performance. This means that by prioritizing the supercapacitor under different environmental or operating conditions, a constant performance of the hybrid energy storage system can be achieved or ensured right from the start, i.e. immediately from the start of operation of the hybrid energy storage system.
Gegebenenfalls kann durch die Priorisierung des Superkondensators zudem zusätzliche Zeit für die Temperierung oder Konditionierung der Batteriezelle gewonnen werden. Dadurch kann die Batteriezelle auch dann, wenn die jeweilige Belastung nicht dauerhaft aus dem Superkondensator allein bedient werden kann, die Batteriezelle bei ihrer letztendlichen Nutzung weniger stark degradieren als wenn sie bereits initial zum Bedienen der Belastung verwendet wurde. If necessary, prioritizing the supercapacitor can also provide additional time for temperature control or conditioning of the battery cell. As a result, even if the respective load cannot be permanently served from the supercapacitor alone, the battery cell can degrade less severely during its final use than if it was already initially used to serve the load.
Somit kann insgesamt eine verbesserte Langlebigkeit, Robustheit, Konsistenz der Leistungsentfaltung unter verschiedenen Umgebungs- oder Einsatzbedingungen und eine verbesserte Nachhaltigkeit des Hybridenergiespeichersystems im Vergleich zu herkömmlichen rein zellbasierten Energiespeichern erreicht werden. Darüber hinaus kann aufgrund der vergleichsweise hohen Leistungsdichte des Superkondensators eine vorgegebene Spitzenleistung mit einem Hybridenergiespeichersystem erzielt bzw. bereitgestellt werden, das kleiner, also bauraumsparender als eine herkömmliche rein zellbasierte Batterie gleicher Spitzenleistung sein kann, die dafür mehr Zellen benötigen würde als das hier vorgeschlagene bzw. verwendete Hybridenergiespeichersystem. Overall, improved longevity, robustness, consistency of power development under different environmental or operational conditions and improved sustainability of the hybrid energy storage system can be achieved compared to conventional purely cell-based energy storage systems. In addition, due to the comparatively high power density of the supercapacitor, a specified peak performance can be achieved or provided with a hybrid energy storage system that can be smaller, i.e. more space-saving, than a conventional purely cell-based battery of the same peak performance, which would require more cells than the hybrid energy storage system proposed or used here.
Das hier vorgeschlagene bzw. verwendete Hybridenergiespeichersystem kann eine Vielzahl von parallel und/oder seriell verschalteten Batteriezellen sowie eine Vielzahl von parallel und/oder seriell verschalteten Superkondensatoren umfassen. Damit kann die vorliegende Erfindung je nach Ausgestaltung flexibel und bedarfsgerecht für vielfältige unterschiedliche Anwendungen eingesetzt werden. Beispielsweise kann das Hybridenergiespeichersystem und das erfindungsgemäße Verfahren für einen Betrieb eines Kraftfahrzeugs eingesetzt werden. Das Hybridenergiespeichersystem kann also als Traktionsenergiespeichersystem für ein Kraftfahrzeug ausgestaltet sein. The hybrid energy storage system proposed or used here can comprise a large number of battery cells connected in parallel and/or series as well as a large number of supercapacitors connected in parallel and/or series. Depending on the design, the present invention can therefore be used flexibly and as required for a wide range of different applications. For example, the hybrid energy storage system and the method according to the invention can be used to operate a motor vehicle. The hybrid energy storage system can therefore be designed as a traction energy storage system for a motor vehicle.
In einer möglichen Ausgestaltung der vorliegenden Erfindung wird zu Beginn eines Ladens des Hybridenergiespeichersystems zunächst eine voraussichtliche Zeit bzw. Dauer bis zur nächsten Belastung nach dem Ende des jeweiligen Ladens, bei der das Hybridenergiespeichersystem Entladen wird, also Energie aus dem Hybridenergiespeichersystem abgerufen wird, ermittelt bzw. abgeschätzt. Nur wenn diese Zeit höchstens einem vorgegebenen Schwellenwert, also einer vorgegebenen Maximalzeit bzw. Maximaldauer entspricht, wird dann der wenigstens eine Superkondensator bei dem jeweils aktuellen Laden mit aufgeladen. Mit anderen Worten wird also dann, wenn die ermittelte bzw. abgeschätzte Zeit bzw. Dauer größer als der vorgegebene Schwellenwert ist, nur die wenigstens eine Batteriezelle aufgeladen und der wenigstens eine Superkondensator nicht aufgeladen, also beispielsweise in seinem aktuellen Ladezustand belassen. Dadurch kann die im Vergleich zu heutigen Batteriezellen größere Selbstentladung des Superkondensators berücksichtigt und ein entsprechender Energieverlust in der Zeit zwischen dem Ende des Aufladens und dem Beginn der nächsten Belastung vermieden oder reduziert werden. Bei der nächsten Belastung, also dem nächsten Einsatz des Hybridenergiespeichersystems ist der Superkondensator dann zwar gegebenenfalls nicht oder nicht vollständig aufgeladen, was jedoch dadurch ausgeglichen werden kann, dass dann bereits initial entsprechend mehr freie Kapazität in dem Superkondensator beispielsweise für eine Rekuperation, also eine Energierückgewinnung zur Verfügung steht. Im Falle eines Kraftfahrzeugs kann dadurch gegebenenfalls zumindest ein Teil des Reichweitenverlustes durch das Nichtaufladen des Superkondensators ausgeglichen und insgesamt, also unter Berücksichtigung der Selbstentladung des Superkondensators eine größere Gesamteffizienz erreicht werden. Zum Abschätzen der voraussichtlichen Zeit bis zur nächsten Belastung nach dem jeweils aktuellen Laden können beispielsweise eine Nutzungshistorie, ein bisheriges oder typisches Nutzerverhalten, eine Einsatzplanung für das Hybridenergiespeichersystem, eine Terminplanung eines Nutzers, eine Tageszeit, ein Wochentag, Umgebungs- oder Wetterbedingungen und/oder dergleichen mehr berücksichtigt, also beispielsweise abgerufen oder ermittelt und ausgewertet werden. Dazu kann beispielsweise ein entsprechendes Vorhersagemodell oder ein entsprechender Vorhersagealgorithmus oder eine tabellarische Zuordnung oder dergleichen vorgegeben sein. In a possible embodiment of the present invention, at the beginning of charging the hybrid energy storage system, an expected time or duration until the next load after the end of the respective charging, at which the hybrid energy storage system is discharged, i.e. energy is retrieved from the hybrid energy storage system, is first determined or estimated. Only if this time corresponds at most to a predetermined threshold value, i.e. a predetermined maximum time or maximum duration, will the at least one supercapacitor be charged during the current charging. In other words, if the determined or estimated time or duration is greater than the predetermined threshold value, only the at least one battery cell is charged and the at least one supercapacitor is not charged, i.e. left in its current state of charge, for example. This allows the greater self-discharge of the supercapacitor to be taken into account compared to today's battery cells and a corresponding energy loss in the time between the end of charging and the start of the next load can be avoided or reduced. During the next load, i.e. the next use of the hybrid energy storage system, the supercapacitor may not be charged or not fully charged, but this can be compensated for by initially having correspondingly more free capacity in the supercapacitor, for example for recuperation, i.e. energy recovery Available. In the case of a motor vehicle, at least part of the loss of range caused by not charging the supercapacitor can be compensated for overall, i.e. taking into account the self-discharge of the supercapacitor, a greater overall efficiency can be achieved. To estimate the expected time until the next load after the current charging, for example, a usage history, previous or typical user behavior, a deployment plan for the hybrid energy storage system, a user's appointment schedule, a time of day, a day of the week, environmental or weather conditions and / or the like are taken into account more, for example, retrieved or determined and evaluated. For this purpose, for example, a corresponding prediction model or a corresponding prediction algorithm or a tabular assignment or the like can be specified.
In einer weiteren möglichen Ausgestaltung der vorliegenden Erfindung ist das Hybridenergiespeichersystem für eine gewisse Dauerleistungsabgabe, also einen Normaloder Dauerbetrieb, und eine im Vergleich dazu größere, aber zeitlich begrenzte, also nur zeitlich begrenzt zur Verfügung stehende Spitzenleistungsabgabe, also beispielsweise eine Overboost-Funktion oder einen Overboost- Betrieb, ausgelegt bzw. eingerichtet. Es wird dann eine Anforderung für die Spitzenleistungsabgabe aus dem wenigstens einen Superkondensator, also durch Energieabgabe aus dem wenigstens einen Superkondensator, bedient. Dies kann insbesondere erfolgen, ohne die wenigstens eine Batteriezelle stärker zu belasten als dies im Rahmen der Dauerleistungsabgabe maximal vorgesehen ist. Die Belastung, also die Leistungsabgabe der Batteriezellen kann also auch während der zeitlich begrenzten Spitzenleistungsabgabe, also in dem Overboost-Betrieb des Hybridenergiespeichersystems auf einen für die Dauerleistungsabgabe bzw. den Dauerbetrieb vorgegebenen Wert begrenzt werden. Dementsprechend kann die Spitzenleistungsabgabe, also der Overboost-Betrieb bzw. die Overboost-Funktion hier also nur dann verfügbar, also nutzbar oder abrufbar sein, wenn der wenigstens eine Superkondensator zumindest teilweise geladen ist. Auf diese Weise kann zwar die Spitzenleistungsabgabe zumindest zeitweise ermöglicht, gleichzeitig aber die wenigstens eine Batteriezelle geschont werden. Dies kann einen besonders nützlichen Kompromiss aus einer entsprechenden Leistungsfähigkeit und komfortablen Nutzung des Hybridenergiespeichersystems und einer möglichst langen Lebensdauer und einer möglichst großen Nachhaltigkeit des Hybridenergiespeichersystems ermöglichen. Die hier vorgeschlagene Ausgestaltung der vorliegenden Erfindung kann in gewisser Weise als maximale oder vollständige Priorisierung des Superkondensators über die Batteriezelle bezüglich der Spitzenleistungsabgabe aufgefasst werden. In einer möglichen Weiterbildung der vorliegenden Erfindung wird die Spitzenleistungsabgabe nur freigegeben, also nur dann verfügbar gemacht, wenn der Ladezustand des wenigstens einen Superkondensators wenigstens einem vorgegebenen Schwellenwert, also einem vorgegebenen Mindestladezustand entspricht. Bei entsprechender Verfügbarkeit, also Nutzbarkeit der Spitzenleistungsabgabe wird ein entsprechendes Signal, beispielsweise ein vorgegebenes Steuersignal, ausgegeben, um dies anzuzeigen, insbesondere in mehreren Stufen abhängig vom jeweils aktuellen Ladezustand des wenigstens einen Superkondensators. Im Falle eines Kraftfahrzeugs kann die Verfügbarkeit bzw. die Stufe der Verfügbarkeit beispielsweise mittels eines Kombiinstruments oder dergleichen angezeigt werden. Die verschiedenen Stufen können beispielsweise verschiedene verfügbare Dauern und/oder Leistungsniveaus für die Spitzenleistungsabgabe repräsentieren bzw. anzeigen. Das jeweilige Signal kann beispielsweise durch ein Steuergerät des Hybridenergiespeichersystems ausgegeben werden. Ebenso kann das Hybridenergiespeichersystem selbst eine entsprechende Anzeigeeinrichtung umfassen, an welche das Signal ausgegeben werden kann. Durch den hier vorgesehenen Schwellenwert, ab dem die Spitzenleistungsabgabe ermöglicht wird, kann eine besonders praktikable Nutzbarkeit der Spitzenleistungsabgabe sichergestellt und somit eine besonders komfortable Nutzung des Hybridenergiespeichersystems ermöglicht werden. In a further possible embodiment of the present invention, the hybrid energy storage system is for a certain continuous power output, i.e. normal or continuous operation, and a peak power output that is larger in comparison to this but is limited in time, i.e. only available for a limited time, i.e. for example an overboost function or an overboost - Operation, designed or set up. A request for the peak power output from the at least one supercapacitor, i.e. by energy output from the at least one supercapacitor, is then served. This can be done in particular without placing a greater load on the at least one battery cell than is maximum intended within the scope of the continuous power output. The load, i.e. the power output of the battery cells, can also be limited to a value specified for the continuous power output or continuous operation during the time-limited peak power output, i.e. in the overboost operation of the hybrid energy storage system. Accordingly, the peak power output, i.e. the overboost operation or the overboost function, can only be available here, i.e. usable or accessible, when the at least one supercapacitor is at least partially charged. In this way, peak power output can be made possible at least temporarily, but at the same time the at least one battery cell can be protected. This can enable a particularly useful compromise between appropriate performance and comfortable use of the hybrid energy storage system and the longest possible service life and the greatest possible sustainability of the hybrid energy storage system. The embodiment of the present invention proposed here can be understood in a sense as maximum or complete prioritization of the supercapacitor over the battery cell with respect to peak power output. In a possible development of the present invention, the peak power output is only released, i.e. only made available, when the state of charge of the at least one supercapacitor corresponds to at least a predetermined threshold value, i.e. a predetermined minimum state of charge. If there is appropriate availability, i.e. usability, of the peak power output, a corresponding signal, for example a predetermined control signal, is output to indicate this, in particular in several stages depending on the current state of charge of the at least one supercapacitor. In the case of a motor vehicle, the availability or the level of availability can be displayed, for example, using a combination instrument or the like. The different levels can, for example, represent or display different available durations and/or power levels for the peak power output. The respective signal can be output, for example, by a control unit of the hybrid energy storage system. Likewise, the hybrid energy storage system itself can include a corresponding display device to which the signal can be output. The threshold value provided here, from which the peak power output is made possible, ensures that the peak power output can be used in a particularly practical manner and thus enables particularly comfortable use of the hybrid energy storage system.
In einer möglichen Weiterbildung der vorliegenden Erfindung wird in einem Normal- bzw. Dauerbetrieb, in dem die Spitzenleistungsabgabe nicht abgerufen bzw. nicht bereitgestellt wird, wenn der Ladezustand der wenigstens einen Batteriezelle wenigstens einem vorgegebenen Minimalwert entspricht, der wenigstens eine Superkondensator nur bis zu einem vorgegebenen Schwellenwert des Ladezustands des Superkondensators priorisiert, also entladen. Damit wird möglichst eine - zumindest je Nutzungs- oder Ladezyklus einmalige - Verfügbarkeit der Spitzenleistungsabgabe, also der auf Overboost-Funktion sichergestellt. Bei Nutzung der Spitzenleistungsabgabe wird dann ein vollständiges Entladen des wenigstens einen Superkondensators zugelassen. Durch die hier vorgeschlagene Ausgestaltung der vorliegenden Erfindung können die Vorteile des Superkondensators bzw. der Priorisierung des Superkondensators auch im Normalbetrieb zumindest teilweise genutzt und zudem eine relativ häufige und zuverlässige Verfügbarkeit der Spitzenleistungsabgabe erreicht werden. Dabei kann die Spitzenleistungsabgabe, wenn sie genutzt wird, durch das dann zugelassene vollständige Entladen des Superkondensators besonders effektiv genutzt werden. Da eine entsprechend große Leistungsabgabe, wie sie bei der Nutzung der Spitzenleistungsabgabe auftritt, die Batteriezelle besonders stark belasten würde, kann somit die Batteriezelle besonders effektiv geschont werden und somit insgesamt ein besonders günstiger Kompromiss aus maximaler Leistungsfähigkeit und maximaler Langlebigkeit des Hybridenergiespeichersystems erreicht werden. In a possible development of the present invention, in a normal or continuous operation in which the peak power output is not called up or not provided if the state of charge of the at least one battery cell corresponds to at least a predetermined minimum value, the at least one supercapacitor is only charged up to a predetermined value Threshold value of the state of charge of the supercapacitor is prioritized, i.e. discharged. This ensures, if possible, availability of the peak power output, i.e. the overboost function, at least once per usage or charging cycle. When using the peak power output, a complete discharge of the at least one supercapacitor is then permitted. Through the embodiment of the present invention proposed here, the advantages of the supercapacitor or the prioritization of the supercapacitor can be at least partially used even in normal operation and, in addition, relatively frequent and reliable availability of the peak power output can be achieved. The peak power output, when used, can be used particularly effectively by allowing the supercapacitor to be completely discharged. Since a correspondingly large power output, as is the case when using the Peak power output occurs, which would place a particularly high load on the battery cell, so the battery cell can be protected particularly effectively and a particularly favorable compromise can be achieved overall between maximum performance and maximum longevity of the hybrid energy storage system.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Hybridenergiespeichersystem, das wenigstens eine wiederaufladbare Batteriezelle, wenigstens einen ebenfalls wiederaufladbare Superkondensator und ein Steuergerät zum Steuern des Ladens und Entladens des Hybridenergiespeichersystems umfasst. Das erfindungsgemäße Hybridenergiespeichersystem ist dabei für einen Betrieb gemäß dem erfindungsgemäßen Verfahren eingerichtet. Dazu kann das Steuergerät beispielsweise eine Prozesseinrichtung, also etwa einen Mikrochip, Mikroprozessor oder Mikrocontroller oder dergleichen, und einen damit gekoppelten computerlesbaren Datenspeicher umfassen. In diesem Datenspeicher kann dann ein entsprechendes Betriebs- oder Computerprogramm gespeichert sein, das die im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Verfahrensschritte, Maßnahmen oder Abläufe oder entsprechende Steueranweisungen codiert oder implementiert. Dieses Betriebs- oder Computerprogramm kann dann durch die Prozesseinrichtung ausführbar sein, um das Hybridenergiespeichersystem gemäß dem entsprechenden Verfahren zu betreiben bzw. zu steuern. Das erfindungsgemäße Hybridenergiespeichersystem kann insbesondere das im Zusammenhang mit dem erfindungsgemäßen Verfahren genannte Hybridenergiespeichersystem sein oder diesem entsprechen. Zum Steuern des Ladens und, also zum Lenken oder Zuteilen von Energieströmen zu oder von dem Superkondensator und der Batteriezelle, kann das erfindungsgemäße Hybridenergiespeichersystem insbesondere eine elektronische oder digitale Weichenschaltung oder dergleichen umfassen. Damit kann, beispielsweise gemäß einem vorgegebenen Kennfeld, gesteuert oder geschaltet werden, ob, wie oder wann der Superkondensator und/oder die Batteriezelle verwendet, also geladen bzw. entladen wird. Eine solche Weichenschaltung kann beispielsweise Teil des Steuergeräts oder durch dieses ansteuerbar bzw. schaltbar sein. Das erfindungsgemäße Hybridenergiespeichersystem kann im Vergleich zu herkömmlichen rein zellbasierten Energiespeichern besonders kompakt, leistungsfähig, langlebig und nachhaltig sein. Beispielsweise kann das erfindungsgemäße Hybridenergiespeichersystem im Vergleich zu ähnlich leistungsfähigen rein zellbasierten Energiespeichern vorteilhaft mit weniger Materialien, die hinsichtlich ihrer Seltenheit und Umweltbilanz problematisch sind, hergestellt werden, da Superkondensatoren beispielsweise nicht auf seltene Erden, Edelmetalle, Kobalt oder dergleichen angewiesen sind. Another aspect of the present invention is a hybrid energy storage system comprising at least one rechargeable battery cell, at least one also rechargeable supercapacitor, and a controller for controlling charging and discharging of the hybrid energy storage system. The hybrid energy storage system according to the invention is set up for operation according to the method according to the invention. For this purpose, the control device can, for example, comprise a process device, such as a microchip, microprocessor or microcontroller or the like, and a computer-readable data memory coupled to it. A corresponding operating or computer program can then be stored in this data memory, which encodes or implements the method steps, measures or processes or corresponding control instructions described in connection with the method according to the invention. This operating or computer program can then be executable by the process device in order to operate or control the hybrid energy storage system according to the corresponding method. The hybrid energy storage system according to the invention can in particular be or correspond to the hybrid energy storage system mentioned in connection with the method according to the invention. To control the charging and, therefore, to direct or allocate energy flows to or from the supercapacitor and the battery cell, the hybrid energy storage system according to the invention can in particular comprise an electronic or digital switch circuit or the like. This makes it possible to control or switch, for example according to a predetermined characteristic map, whether, how or when the supercapacitor and/or the battery cell is used, i.e. charged or discharged. Such a switch circuit can, for example, be part of the control device or can be controlled or switched by it. The hybrid energy storage system according to the invention can be particularly compact, powerful, long-lasting and sustainable compared to conventional purely cell-based energy storage systems. For example, the hybrid energy storage system according to the invention can advantageously be produced with fewer materials, which are problematic in terms of their rarity and environmental impact, compared to similarly powerful purely cell-based energy storage devices, such as supercapacitors for example, do not rely on rare earths, precious metals, cobalt or the like.
In einer möglichen Weiterbildung der vorliegenden Erfindung machen die Superkondensatoren 10 % bis 20 % der Gesamtkapazität des Hybridenergiespeichersystems aus die restlichen 90 % bis 80 % der Gesamtkapazität können durch die Batteriezellen ausgemacht, also bereitgestellt oder gebildet werden. Durch die hier vorgeschlagene Ausgestaltung der vorliegenden Erfindung kann ein erfahrungsgemäß besonders günstiger Kompromiss erreicht werden, insbesondere hinsichtlich der größeren Kosten pro Kapazität bzw. Energieinhalt, der geringeren Energiedichte und der größeren Leistungsdichte der Superkondensatoren im Vergleich zu den Batteriezellen. Die hier vorgeschlagene Anteil der Superkondensatoren kann insbesondere für eine Anwendung des Hybridenergiespeichersystems als Traktionsenergiespeicher für ein Kraftfahrzeug günstig sein, nicht zuletzt, da dort auch Gewicht und Bauraumbedarf berücksichtigt werden müssen. In a possible development of the present invention, the supercapacitors make up 10% to 20% of the total capacity of the hybrid energy storage system. The remaining 90% to 80% of the total capacity can be made up, i.e. provided or formed, by the battery cells. Through the embodiment of the present invention proposed here, experience has shown that a particularly favorable compromise can be achieved, in particular with regard to the greater costs per capacity or energy content, the lower energy density and the greater power density of the supercapacitors in comparison to the battery cells. The proportion of supercapacitors proposed here can be particularly favorable for an application of the hybrid energy storage system as a traction energy storage device for a motor vehicle, not least because weight and space requirements must also be taken into account.
In einer weiteren möglichen Ausgestaltung der vorliegenden Erfindung umfasst das Hybridenergiespeichersystem ein von einem flüssigen Temperierungsmedium durchströmbares Temperierungssystem. Dieses Temperierungssystem ist dabei zwar zum Temperieren, insbesondere zum Kühlen, der wenigstens einen Batteriezelle, also insbesondere zum Temperieren aller Batteriezellen des Hybridenergiespeichersystems, aber nicht zum Temperieren des wenigstens einen Superkondensators angeordnet. Mit anderen Worten können also die Batteriezellen mittels des Temperierungssystem flüssiggekühlt sein, während die Superkondensatoren beispielsweise luftgekühlt oder passiv bzw. radiativ gekühlt sein können. Einerseits können durch das hier vorgeschlagene Temperierungssystem die Batteriezellen besonders effektiv, effizient und schnell temperiert, also insbesondere gekühlt oder bei Bedarf erwärmt, werden. Andererseits kann das Temperierungssystem dadurch, dass es die Superkondensatoren ausspart, entsprechend kleiner und leistungsschwächer ausgelegt bzw. ausgestaltet sein. Dadurch kann Material, Kostenaufwand, Gewicht, Bauraumbedarf und Energie - beispielsweise für eine entsprechend schwächere Pumpe des Temperierungssystems - eingespart und somit die Gesamtbilanz des erfindungsgemäßen Hybridenergiespeichersystems hinsichtlich Energieeffizienz und Nachhaltigkeit weiter verbessert werden. Der hier vorgeschlagene Ansatz beruht dabei auf der Erkenntnis, dass eine aktive Temperierung der Batteriezellen trotz des damit verbundenen Energieaufwands die Leistungsfähigkeit der Batteriezellen soweit verbessern und die Alterung oder Degradierung der Batteriezellen soweit mindern kann, dass sich ein insgesamt positiver Effekt ergibt, während die Superkondensatoren weitaus weniger temperaturempfindlich sind, sodass dort entsprechender Temperierungsaufwand ohne signifikante Leistungs- oder Komforteinbußen eingespart werden kann. In a further possible embodiment of the present invention, the hybrid energy storage system comprises a temperature control system through which a liquid temperature control medium can flow. This temperature control system is arranged for temperature control, in particular for cooling, of the at least one battery cell, i.e. in particular for temperature control of all battery cells of the hybrid energy storage system, but not for temperature control of the at least one supercapacitor. In other words, the battery cells can be liquid-cooled by means of the temperature control system, while the supercapacitors can, for example, be air-cooled or passively or radiatively cooled. On the one hand, the temperature control system proposed here allows the battery cells to be tempered particularly effectively, efficiently and quickly, i.e. in particular cooled or heated if necessary. On the other hand, the temperature control system can be designed or designed to be correspondingly smaller and less powerful because it leaves out the supercapacitors. This makes it possible to save material, costs, weight, space requirements and energy - for example for a correspondingly weaker pump for the temperature control system - and thus further improve the overall balance of the hybrid energy storage system according to the invention in terms of energy efficiency and sustainability. The approach proposed here is based on the knowledge that active temperature control of the battery cells increases the performance of the battery cells despite the associated energy expenditure can improve and reduce the aging or degradation of the battery cells to such an extent that there is an overall positive effect, while the supercapacitors are far less temperature sensitive, so that the corresponding temperature control effort can be saved without significant losses in performance or comfort.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Kraftfahrzeug, das ein erfindungsgemäßes Hybridenergiespeichersystem aufweist. Das Hybridenergiespeichersystem kann dabei insbesondere als Traktionsenergiespeichersystem des Kraftfahrzeugs ausgestaltet, also zur Versorgung eines elektrischen Antriebs des Kraftfahrzeugs eingerichtet sein. Das erfindungsgemäße Kraftfahrzeug kann insbesondere das im Zusammenhang mit dem erfindungsgemäßen Verfahren und/oder im Zusammenhang mit dem erfindungsgemäßen Hybridenergiespeichersystem genannte Kraftfahrzeug sein oder diesem entsprechen. Another aspect of the present invention is a motor vehicle that has a hybrid energy storage system according to the invention. The hybrid energy storage system can in particular be designed as a traction energy storage system of the motor vehicle, that is to say it can be set up to supply an electric drive of the motor vehicle. The motor vehicle according to the invention can in particular be or correspond to the motor vehicle mentioned in connection with the method according to the invention and/or in connection with the hybrid energy storage system according to the invention.
In einer möglichen Weiterbildung der vorliegenden Erfindung ist das Kraftfahrzeug für eine Rekuperation eingerichtet. Dazu kann beispielsweise beim Verlangsamen des Kraftfahrzeugs ein Elektromotor des Kraftfahrzeugs als Generator zum Einspeisen von Energie in das Hybridenergiespeichersystem betrieben bzw. angesteuert oder geschaltet werden. Das Kraftfahrzeug ist dann weiter dazu eingerichtet, bei einer solchen Rekuperation eine Verteilung eines entsprechenden elektrischen Energieflusses in das Hybridenergiespeichersystem auf den wenigstens einen Superkondensator und die wenigstens eine Batteriezelle in Abhängigkeit von einem jeweils aktuellen Zustand der wenigstens einen Batteriezelle zu steuern. Dieser Zustand kann dabei insbesondere durch die aktuelle Temperatur und/oder den aktuellen Ladezustand der wenigstens einen Batteriezelle gegeben oder definiert sein. Insbesondere kann das Kraftfahrzeug hier dazu eingerichtet sein, den Energiefluss, also rekuperierte Energie vollständig in den wenigstens einen Superkondensator zu lenken, also einzuspeisen, wenn zum einen dieser noch freie Kapazität aufweist und zum anderen die Temperatur der wenigstens einen Batteriezelle außerhalb eines vorgegebenen Temperaturintervalls liegt und/oder der Ladezustand der wenigstens einen Batteriezelle größer als ein vorgegebener Ladezustandsschwellenwert ist. Durch die Berücksichtigung des Zustands der Batteriezelle kann jeweils ein optimaler Kompromiss zwischen maximaler Rekuperation und minimaler Belastung oder Alterung der Batteriezelle erreicht werden. Beispielsweise kann dann, wenn der aktuelle Zustand der Batteriezelle eine Rekuperation in die Batteriezelle mit minimaler Degradierung zulässt, ein größerer Anteil des reparierten Energiestroms in die Batteriezelle geleitet oder auch eine Rekuperation bei vollständig geladenem Superkondensator ermöglicht bzw. durchgeführt werden. Bei einem Zustand der Batteriezelle, in dem eine Einspeisung von Energie in die Batteriezelle zu einer verstärkten Alterung oder Degradierung führen würde, kann hingegen der rekuperierte Energiefluss vollständig oder zu einem größeren Teil in den Superkondensator gelenkt werden. In a possible development of the present invention, the motor vehicle is set up for recuperation. For this purpose, for example, when the motor vehicle slows down, an electric motor of the motor vehicle can be operated or controlled or switched as a generator for feeding energy into the hybrid energy storage system. During such recuperation, the motor vehicle is then further set up to control a distribution of a corresponding electrical energy flow into the hybrid energy storage system to the at least one supercapacitor and the at least one battery cell depending on a current state of the at least one battery cell. This state can be given or defined in particular by the current temperature and/or the current state of charge of the at least one battery cell. In particular, the motor vehicle can be set up here to direct the energy flow, i.e. recuperated energy, completely into the at least one supercapacitor, i.e. to feed it if, on the one hand, it still has free capacity and, on the other hand, the temperature of the at least one battery cell is outside a predetermined temperature interval and / or the state of charge of the at least one battery cell is greater than a predetermined state of charge threshold value. By taking the condition of the battery cell into account, an optimal compromise can be achieved between maximum recuperation and minimum stress or aging of the battery cell. For example, if the current state of the battery cell allows recuperation in the battery cell with minimal degradation, a A larger proportion of the repaired energy flow can be directed into the battery cell or recuperation can be made possible or carried out when the supercapacitor is fully charged. However, if the battery cell is in a state in which feeding energy into the battery cell would lead to increased aging or degradation, the recuperated energy flow can be directed completely or to a large extent into the supercapacitor.
Weitere Merkmale der Erfindung können sich aus der nachfolgenden Figurenbeschreibung sowie anhand der Zeichnung ergeben. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung und/oder in den Figuren allein gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Further features of the invention can be seen from the following description of the figures and from the drawing. The features and combinations of features mentioned above in the description as well as the features and combinations of features shown below in the description of the figures and/or in the figures alone can be used not only in the combination specified in each case, but also in other combinations or on their own, without the scope of the invention to leave.
Die Zeichnung zeigt in der einzigen Figur eine ausschnittweise schematische Seitendarstellung eines Kraftfahrzeugs mit einem Hybridenergiespeichersystem. In the single figure, the drawing shows a partial, schematic side view of a motor vehicle with a hybrid energy storage system.
Für die Speicherung elektrischer Energie kann ein chemischer Speicher, wie beispielsweise eine Lithium-Ionen-Batterie oder dergleichen, oder ein physikalischer Speicher, wie etwa ein Kondensator, verwendet werden. Insbesondere können diese beiden Mechanismen oder Prinzipien in Kombination miteinander genutzt werden, um die unterschiedlichen Vorteile beider Ansätze zu nutzen und die unterschiedlichen Nachteile beider Ansätze zumindest teilweise auszugleichen. A chemical storage device, such as a lithium-ion battery or the like, or a physical storage device, such as a capacitor, can be used to store electrical energy. In particular, these two mechanisms or principles can be used in combination with each other to take advantage of the different advantages of both approaches and at least partially compensate for the different disadvantages of both approaches.
Als Anwendungsbeispiel dafür zeigt Fig. 1 eine ausschnittweise schematische Seitendarstellung eines Kraftfahrzeugs 1 , das mit einem Hybridenergiespeichersystem 2 ausgestattet ist. Das Hybridenergiespeichersystem 2 umfasst hier beispielhaft ein Hauptgehäuse 3, in dem eine Vielzahl von elektrochemischen wiederaufladbaren Batteriezellen 4 angeordnet sind. Der Übersichtlichkeit halber ist hier nur eine repräsentative Auswahl der Batteriezellen 4 explizit gekennzeichnet. Weiter umfasst das Hybridenergiespeichersystem 2 hier ein Nebengehäuse 5, in dem mehrere Superkondensatoren 6 angeordnet sind. Die Superkondensatoren 6 sind ebenfalls wiederaufladbar, nutzen jedoch ein anderes Prinzip zur Energiespeicherung als die Batteriezellen 4 und weisen dementsprechend andere Eigenschaften als diese auf. Das Nebengehäuse 5 ist hier beispielhaft auf dem Hauptgehäuse 3 angeordnet. Ebenso können die Batteriezellen 4 und die Superkondensatoren 6 in einem einzigen, also gemeinsamen Gehäuse angeordnet sein. Ebenso können die Superkondensatoren 6 bzw. das Nebengehäuse 5 von den Batteriezellen 4 bzw. dem Hauptgehäuse 3 beabstandet angeordnet sein. Ebenso können die Batteriezellen 4 und/oder die Superkondensatoren 6 verteilt bzw. in mehrere Gruppen aufgeteilt, also an unterschiedlichen Orten angeordnet sein. Damit ergeben sich, beispielsweise auch aufgrund der unterschiedlichen Anforderungen der Batteriezellen 4 und der Superkondensatoren 6, etwa hinsichtlich der Kühlung bzw. Temperierung, der Brandsicherung und/oder dergleichen mehr, besonders flexible Anordnungsmöglichkeiten. Dies kann beispielsweise eine besonders effiziente Bauraumausnutzung, eine besonders günstige Gewichtsverteilung und/oder dergleichen mehr ermöglichen. As an application example for this, FIG. 1 shows a partial, schematic side view of a motor vehicle 1 that is equipped with a hybrid energy storage system 2. The hybrid energy storage system 2 here includes, for example, a main housing 3 in which a plurality of electrochemical rechargeable battery cells 4 are arranged. For the sake of clarity, only a representative selection of the battery cells 4 is explicitly marked here. The hybrid energy storage system 2 further comprises a secondary housing 5 in which a plurality of supercapacitors 6 are arranged. The supercapacitors 6 are also rechargeable, but use a different principle for energy storage than the battery cells 4 and therefore have different properties than these. The secondary housing 5 is arranged here, for example, on the main housing 3. Likewise, the battery cells 4 and the supercapacitors 6 can be arranged in a single, i.e. common, housing. Likewise, the supercapacitors 6 or the secondary housing 5 can be arranged at a distance from the battery cells 4 or the main housing 3. Likewise, the battery cells 4 and/or the supercapacitors 6 can be distributed or divided into several groups, i.e. arranged at different locations. This results in particularly flexible arrangement options, for example due to the different requirements of the battery cells 4 and the supercapacitors 6, for example with regard to cooling or temperature control, fire protection and/or the like. This can, for example, enable particularly efficient use of installation space, particularly favorable weight distribution and/or the like.
Beispielhaft umfasst das Hybridenergiespeichersystem 2 auch ein Flüssigkeitskühlsystem 7 zum Kühlen bzw. Temperieren der Batteriezellen 4. By way of example, the hybrid energy storage system 2 also includes a liquid cooling system 7 for cooling or temperature control of the battery cells 4.
Darüber hinaus umfasst das Hybridenergiespeichersystem 2 ein Steuergerät 8 zum Steuern eines Ladens und Entladens des Hybridenergiespeichersystems 2, also der Batteriezellen 4 und der Superkondensatoren 6. Dazu kann das Steuergerät 8 - wie hier schematisch angedeutet - beispielsweise einen Prozessor 9 und einen computerlesbaren Datenspeicher 10 umfassen. Das Hybridenergiespeichersystem 2, insbesondere das Steuergerät 8, ist dazu eingerichtet, beim Laden und Entladen die Superkondensatoren 6 über die Batteriezellen 4 zu priorisieren. Dazu kann das Steuergerät 8 beispielsweise eine hier schematisch angedeutete Weichenschaltung 11 ansteuern, um einen jeweiligen Energiestrom zu oder von den Superkondensatoren 6 und den Batteriezellen 4 zuzulassen, also zu ermöglichen, oder zu unterbrechen, also zu verhindern. Das Priorisieren der Superkondensatoren 6 über die Batteriezellen 4 kann an eine oder mehrere vorgegebene Bedingungen, Umstände oder Zustände, beispielsweise eine Temperatur der Batteriezellen 4 und/oder einen Ladezustand der Batteriezellen 4 und/oder der Superkondensatoren 6 oder dergleichen, gekoppelt sein. Entsprechende Daten, Steueranweisungen und/oder ein entsprechendes Kennfeld können beispielsweise in dem Datenspeicher 10 hinterlegt sein. In addition, the hybrid energy storage system 2 includes a control device 8 for controlling charging and discharging of the hybrid energy storage system 2, i.e. the battery cells 4 and the supercapacitors 6. For this purpose, the control device 8 - as indicated schematically here - can include, for example, a processor 9 and a computer-readable data memory 10. The hybrid energy storage system 2, in particular the control device 8, is set up to prioritize the supercapacitors 6 over the battery cells 4 when charging and discharging. For this purpose, the control unit 8 can, for example, control a switch circuit 11, indicated schematically here, in order to allow, i.e. enable, or interrupt, i.e. prevent, a respective energy flow to or from the supercapacitors 6 and the battery cells 4. The prioritization of the supercapacitors 6 over the battery cells 4 can be coupled to one or more predetermined conditions, circumstances or states, for example a temperature of the battery cells 4 and/or a state of charge of the battery cells 4 and/or the supercapacitors 6 or the like. Corresponding data, control instructions and/or a corresponding characteristic map can, for example, be stored in the data memory 10.
Insbesondere kann es hier vorgesehen sein, dass im Betrieb des Kraftfahrzeugs 1 rekuperierte Energie priorisiert in die Superkondensatoren 6 eingeleitet wird. Ebenso kann hier vorgesehen sein, dass eine Overboost-Funktion, welche eine zeitlich begrenzte Bereitstellung bzw. Abgabe einer überdurchschnittlich hohen Spitzenleistung bzw. eine überdurchschnittlich, nur zeitlich begrenzt zulässige Stromstärke ermöglicht, priorisiert oder ausschließlich aus den Superkondensatoren 6 bedient wird. Ein solches Hybridenergiespeichersystem 2 kann im Vergleich zu herkömmlichen, rein batteriezellenbasierten Energiespeichern kleiner, langlebiger, leistungsfähiger und nachhaltiger sein. In particular, it can be provided here that energy recuperated during operation of the motor vehicle 1 is prioritized into the supercapacitors 6. It can also be provided here that an overboost function, which has a time-limited function Provision or delivery of an above-average peak power or an above-average current that is only permissible for a limited time is made possible, prioritized or served exclusively from the supercapacitors 6. Such a hybrid energy storage system 2 can be smaller, more durable, more powerful and more sustainable compared to conventional, purely battery cell-based energy storage systems.
BEZUGSZEICHEN LISTE REFERENCE MARKS LIST
I Kraftfahrzeug 2 Hybridenergiespeichersystem I Motor vehicle 2 hybrid energy storage system
3 Hauptgehäuse 3 main body
4 Batteriezelle 4 battery cell
5 Nebengehäuse 5 secondary housings
6 Superkondensator 7 Flüssigkeitskühlsystem 6 super capacitor 7 liquid cooling system
8 Steuergerät 8 control unit
9 Prozessor 9 processor
10 Datenspeicher 10 data storage
I I Weichenschaltung I I Switch switching

Claims

PATENTANSPRÜCHE Verfahren zum Betreiben eines Hybridenergiespeichersystems (2), das wenigstens eine wiederaufladbare Batteriezelle (4) und wenigstens einen Superkondensator (6) umfasst, wobei der wenigstens eine Superkondensator (6) beim Laden und Entladen des Hybridenergiespeichersystems (2) über die wenigstens eine Batteriezelle (4) priorisiert wird. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zu Beginn eines Ladens des Hybridenergiespeichersystems (2) zunächst eine voraussichtliche Zeit bis zur nächsten Belastung nach dem Ende des Ladens abgeschätzt wird und nur wenn diese Zeit höchstens einem vorgegebenen Schwellenwert entspricht, der wenigstens eine Superkondensator (6) mit aufgeladen wird. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hybridenergiespeichersystem (2) für eine gewisse Dauerleistungsabgabe und eine im Vergleich dazu größere aber zeitlich begrenzte Spitzenleistungsabgabe eingerichtet ist und eine Anforderung für die Spitzenleistungsabgabe aus dem wenigstens einen Superkondensator (6) bedient wird, insbesondere ohne die wenigstens eine Batteriezelle (4) stärker als im Rahmen der Dauerleistungsabgabe zu belasten. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Spitzenleistungsabgabe nur freigegeben wird, wenn der Ladezustand des wenigstens einen Superkondensators (6) wenigstens einem vorgegebenen Schwellenwert entspricht und dann bei entsprechender Verfügbarkeit der Spitzenleistungsabgabe ein Signal ausgegeben wird, um dies anzuzeigen, insbesondere in mehreren Stufen abhängig vom jeweils aktuellen Ladezustand des wenigstens einen Superkondensators (6). Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass in einem Normalbetrieb, in dem die Spitzenleistungsabgabe nicht abgerufen wird und der Ladezustand der wenigstens einen Batteriezelle (4) wenigstens einem vorgegebenen Minimalwert entspricht, der wenigstens eine Superkondensator (6) nur bis zu einem vorgegebenen Schwellenwert entladen wird, um eine Verfügbarkeit der Spitzenleistungsabgabe sicherzustellen, und bei Nutzung der Spitzenleistungsabgabe ein vollständiges Entladen des wenigstens einen Superkondensators (6) zugelassen wird. Hybridenergiespeichersystem (2), das wenigstens eine wiederaufladbare Batteriezelle (4), wenigstens einen Superkondensator (6) und ein Steuergerät (8) zum Steuern des Ladens und Entladens des Hybridenergiespeichersystems (2) umfasst, wobei das Hybridenergiespeichersystem (2) für einen Betrieb gemäß einem Verfahren nach einem der vorhergehenden Ansprüche eingerichtet ist. Hybridenergiespeichersystem (2) nach Anspruch 6, dadurch gekennzeichnet, dass die Superkondensatoren (6) 10% bis 20% der Gesamtkapazität des Hybridenergiespeichersystems (2) ausmachen. Hybridenergiespeichersystem (2) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Hybridenergiespeichersystem (2) ein von einem flüssigen Temperierungsmedium durchströmbares Temperierungssystem (7) umfasst, das zwar zum Temperieren der wenigstens einen Batteriezelle (4) aber nicht zum Temperieren des wenigstens einen Superkondensators (6) angeordnet ist. Kraftfahrzeug (1), aufweisend ein Hybridenergiespeichersystem (2) nach einem der Ansprüche 6 bis 8, insbesondere als Traktionsenergiespeichersystem (2). Kraftfahrzeug (1) nach Anspruch 9, dadurch gekennzeichnet, dass das Kraftfahrzeug (1) für eine Rekuperation eingerichtet ist und dazu eingerichtet ist, bei einer Rekuperation eine Verteilung eines Energieflusses in das Hybridenergiespeichersystem (2) auf den wenigstens einen Superkondensator (6) und die wenigstens eine Batteriezelle (4) in Abhängigkeit von einem jeweils aktuellen Zustand der wenigstens einen Batteriezelle (4) zu steuern, insbesondere den Energiefluss vollständig in den wenigstens einen Superkondensator (6) zu lenken, wenn zum einen dieser noch freie Kapazität aufweist und zum anderen diePATENT CLAIMS Method for operating a hybrid energy storage system (2), which comprises at least one rechargeable battery cell (4) and at least one supercapacitor (6), wherein the at least one supercapacitor (6) when charging and discharging the hybrid energy storage system (2) via the at least one battery cell ( 4) is prioritized. Method according to claim 1, characterized in that at the beginning of charging of the hybrid energy storage system (2) an expected time until the next load after the end of charging is first estimated and only if this time corresponds at most to a predetermined threshold value, the at least one supercapacitor (6 ) is charged with. Method according to one of the preceding claims, characterized in that the hybrid energy storage system (2) is set up for a certain continuous power output and a comparatively larger but time-limited peak power output and a request for the peak power output is served from the at least one supercapacitor (6), in particular without loading the at least one battery cell (4) more than the continuous power output. Method according to claim 3, characterized in that the peak power output is only released if the charge state of the at least one supercapacitor (6) corresponds to at least a predetermined threshold value and then, if the peak power output is available, a signal is output to indicate this, in particular in several stages depending on the current state of charge of the at least one supercapacitor (6). Method according to claim 3 or 4, characterized in that in normal operation, in which the peak power output is not called up and the state of charge of the at least one battery cell (4) corresponds to at least a predetermined minimum value, the at least one supercapacitor (6) only up to a predetermined one Threshold value is discharged in order to ensure availability of the peak power output, and when using the peak power output, a complete discharge of the at least one supercapacitor (6) is permitted. Hybrid energy storage system (2), comprising at least one rechargeable battery cell (4), at least one supercapacitor (6) and a control device (8) for controlling the charging and discharging of the hybrid energy storage system (2), wherein the hybrid energy storage system (2) is designed for operation according to one Method according to one of the preceding claims is set up. Hybrid energy storage system (2) according to claim 6, characterized in that the supercapacitors (6) make up 10% to 20% of the total capacity of the hybrid energy storage system (2). Hybrid energy storage system (2) according to claim 6 or 7, characterized in that the hybrid energy storage system (2) comprises a temperature control system (7) through which a liquid temperature control medium can flow, which is used for temperature control of the at least one battery cell (4) but not for temperature control of the at least one supercapacitor (6) is arranged. Motor vehicle (1), having a hybrid energy storage system (2) according to one of claims 6 to 8, in particular as a traction energy storage system (2). Motor vehicle (1) according to claim 9, characterized in that the motor vehicle (1) is set up for recuperation and is set up to distribute an energy flow in the recuperation Hybrid energy storage system (2) to control the at least one supercapacitor (6) and the at least one battery cell (4) depending on a current state of the at least one battery cell (4), in particular the energy flow completely into the at least one supercapacitor (6). steer if, on the one hand, it still has free capacity and, on the other hand, the
Temperatur der wenigstens einen Batteriezelle (4) außerhalb eines vorgegebenen Temperaturintervalls liegt und/oder der Ladezustand der wenigstens einen Batteriezelle (4) größer als ein vorgegebener Ladezustandsschwellenwert ist. Temperature of the at least one battery cell (4) is outside a predetermined temperature interval and / or the state of charge of the at least one battery cell (4) is greater than a predetermined state of charge threshold value.
PCT/EP2023/063624 2022-05-23 2023-05-22 Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle WO2023227515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022112907.1 2022-05-23
DE102022112907.1A DE102022112907B3 (en) 2022-05-23 2022-05-23 Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle

Publications (1)

Publication Number Publication Date
WO2023227515A1 true WO2023227515A1 (en) 2023-11-30

Family

ID=86771306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/063624 WO2023227515A1 (en) 2022-05-23 2023-05-22 Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle

Country Status (2)

Country Link
DE (1) DE102022112907B3 (en)
WO (1) WO2023227515A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167217A1 (en) * 2006-07-10 2009-07-02 Toyota Jidosha Kabushiki Kaisha Vehicle Power Controller
DE102012022646A1 (en) * 2012-11-20 2014-05-22 Daimler Ag Power supply system for drive system of electrically operated vehicle, comprises control or regulating unit, which carries out selection of power source devices and passes current to electric motor depending on operating modes of vehicle
DE112014001587T5 (en) * 2013-03-22 2016-01-21 Toyota Jidosha Kabushiki Kaisha Power source control device
US9779882B2 (en) 2015-11-23 2017-10-03 Nanotek Instruments, Inc. Method of producing supercapacitor electrodes and cells having high active mass loading
EP3689665A1 (en) * 2019-01-31 2020-08-05 Audi AG Method for operating a main energy storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791216B2 (en) 2004-11-01 2010-09-07 Ford Global Technologies, Llc Method and system for use with a vehicle electric storage system
DE102009000222A1 (en) 2009-01-14 2010-07-15 Robert Bosch Gmbh Vehicle electrical system and method for saving energy
DE102010052964A1 (en) 2010-11-30 2012-05-31 Valeo Schalter Und Sensoren Gmbh Method for operating a vehicle and driver assistance device
DE102014202922A1 (en) 2014-02-18 2015-08-20 Robert Bosch Gmbh Battery system and vehicle, comprising a battery system
DE102014208999A1 (en) 2014-05-13 2015-11-19 Robert Bosch Gmbh Apparatus and method for driving an energy storage
DE202019105978U1 (en) 2019-06-05 2019-11-20 Johannes Köhler Electric vehicle with additional traction batteries
DE102019132394A1 (en) 2019-11-28 2021-06-02 Audi Ag Method and control circuit for operating an additional electrical storage device in a motor vehicle and a corresponding motor vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167217A1 (en) * 2006-07-10 2009-07-02 Toyota Jidosha Kabushiki Kaisha Vehicle Power Controller
DE102012022646A1 (en) * 2012-11-20 2014-05-22 Daimler Ag Power supply system for drive system of electrically operated vehicle, comprises control or regulating unit, which carries out selection of power source devices and passes current to electric motor depending on operating modes of vehicle
DE112014001587T5 (en) * 2013-03-22 2016-01-21 Toyota Jidosha Kabushiki Kaisha Power source control device
US9779882B2 (en) 2015-11-23 2017-10-03 Nanotek Instruments, Inc. Method of producing supercapacitor electrodes and cells having high active mass loading
EP3689665A1 (en) * 2019-01-31 2020-08-05 Audi AG Method for operating a main energy storage device

Also Published As

Publication number Publication date
DE102022112907B3 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
EP2210326B1 (en) Onboard power supply and method for operating an onboard power supply
DE102011116127B4 (en) Method for operating a fuel cell device of a fuel cell hybrid vehicle
DE102011089962A1 (en) Method for controlling the temperature of at least one battery element, battery and motor vehicle with such a battery
EP3720733B1 (en) Method for controlling an electrical system of an electrically drivable motor vehicle having a plurality of batteries, and electrical system of an electrically drivable motor vehicle
EP2617115B1 (en) Method for charging a battery of a motor vehicle
DE102009029335A1 (en) Accumulator for two-battery electrical system in vehicle, particularly in micro-hybrid vehicle, is charged with electric power by generator when electrical energy supply from generator is interrupted
EP2673161B1 (en) Method for monitoring the use of an electrochemical energy accumulator in a motor vehicle and motor vehicle
DE102014221482A1 (en) Method for controlling a voltage source for charging a battery of a motor vehicle
DE102022112907B3 (en) Method for operating a hybrid energy storage system, hybrid energy storage system and motor vehicle
EP1358693B1 (en) Fuel cell arrangement and method for operating a fuel cell arrangement
EP2977256B1 (en) Method for controlling a lithium ion battery of an industrial truck
DE102016006526A1 (en) Electrical system for an electrically driven motor vehicle
DE19903082C2 (en) Battery system and method for operating a battery system
EP1044852A2 (en) Power supply network for vehicles
DE102017202650A1 (en) Energy storage system for a motor vehicle and operating method
WO2019020446A1 (en) Method for operating an electric overall onboard power supply, control unit, and vehicle
DE102013009991A1 (en) Externally launchable integration of a battery in a motor vehicle electrical system
DE102009000952A1 (en) Battery for motor vehicle has integrated latent heat storage which contains medium, where medium has certain temperature which is selected from region limited by minimum and maximum operating temperature of used battery type
DE102020109210A1 (en) Method for determining a capacity of battery cells, capacity determining device and motor vehicle with a capacity determining device
DE102018217389A1 (en) Electrical energy storage device with a housing and at least two pole connections led out of the housing and its use
DE102017215137A1 (en) Battery assembly for a vehicle
WO2018095726A1 (en) System and method for storing a battery
DE102022102785B3 (en) Battery locking electronics for enabling and locking a battery and method therefor
DE102017211001A1 (en) Hybrid battery system and method of operating a hybrid battery system
EP3220469B1 (en) Industrial truck with traction battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23730719

Country of ref document: EP

Kind code of ref document: A1