WO2023216004A1 - Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors - Google Patents

Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors Download PDF

Info

Publication number
WO2023216004A1
WO2023216004A1 PCT/CL2022/050051 CL2022050051W WO2023216004A1 WO 2023216004 A1 WO2023216004 A1 WO 2023216004A1 CL 2022050051 W CL2022050051 W CL 2022050051W WO 2023216004 A1 WO2023216004 A1 WO 2023216004A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
electrodes
filtration
electrical energy
biocarbon
Prior art date
Application number
PCT/CL2022/050051
Other languages
Spanish (es)
French (fr)
Inventor
Juan MATOS LALE
Po Shan POON
Oscar PINTO BURGOS
Julio URZÚA AHUMADA
Original Assignee
Universidad de Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Concepción filed Critical Universidad de Concepción
Priority to PCT/CL2022/050051 priority Critical patent/WO2023216004A1/en
Publication of WO2023216004A1 publication Critical patent/WO2023216004A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present application focuses on energy storage, using graphene-based materials as double-layer electrochemical capacitors, its production process, and its use in the electrical industry.
  • batteries can suffer mechanical expansion due to the generation of vapors when subjected to continuous and abrupt energy charges and discharges; They have low energy efficiency (65 - 75%), which decreases with high power consumption; as well as they have a short useful life, since they present losses of over 50% of their storage capacity over 1000 charge/discharge cycles, which can be equivalent to a useful life of no more than 5 years, depending on their use [3 ].
  • batteries contain materials hazardous to the environment, which complicates their final disposal. This is how electrochemical capacitors, called supercapacitors or supercapacitors (SC), have shown great potential to solve the limitations of current batteries, being a complement and even a replacement for them [3].
  • the component of greatest interest is the electrode.
  • This component is responsible for the accumulation of electrical charge. This property is conditioned by the material's ability to adsorb charges from the electrolyte used in the SC.
  • the global market for electrodes for implementation in SC is growing rapidly to address intermittent renewable sources, short-term applications or rapid regeneration in hybrid and electric vehicles [4],
  • the charge storage in SC occurs through the generation of an electrostatic double layer (EDL) by the interaction of the ions of an electrolyte with the surface of the electrode that is characterized by having two specific properties, high porosity and conductivity [5 ].
  • EDL electrostatic double layer
  • SCs Several approaches have been proposed, such as the development of nanoporous carbon (NC) materials with high surface area and hierarchical porosity to increase capacitance and reduce diffusion resistance through non-tortuous channels, thereby obtaining high-speed capabilities [ 6].
  • NC nanoporous carbon
  • document US8784764B2 describes a method for the production of activated carbon for use as high energy density capacitors.
  • This material is produced from an aqueous phase mixture of a non-lignocellulosic carbon precursor and an inorganic compound.
  • This mixture is probably mineral coal in the presence of mineral coal's own inorganic impurities.
  • This document does not describe forms of graphene as the component of interest in the capacitor, so it does not affect the present application.
  • this patent application proposes “A process for the production of graphene-based materials and their use in the manufacture of electrochemical capacitor electrodes”, which is composed of two stages.
  • the first related to the production of the graphene material and the second stage consists of the preparation of the electrode for electrochemical capacitor, using graphene-based material as raw material.
  • this patent describes the development of eco-friendly and sustainable synthesis protocols for graphene-based materials, so that they can be used as electrodes for double-layer electrical capacitors for the storage of electrical energy.
  • Figure 1 Production scheme of graphene-based materials, composed of activation (1 a) and exfoliation (1 b) sub-stages to obtain a mixture of micro- and nanometric carbons, which subsequently undergo phase separation. micro- and nanometric by filtration (1 c) followed by the decantation of the nanomethca phase in solution (1 d), and finally a second filtration for the extraction of the nanomethca phase (1 e) that corresponds to the graphene-based material.
  • Figure 2a shows the adsorbed amount of nitrogen (cm 3 g -1 , STP) at -196 °C versus the relative pressure (P/Po);
  • Figure (2b) shows the pore volume distribution [dV/dW, (cm 3 g -1 nm -1 )] versus the pore width W (nm);
  • Figure (2c) shows the adsorbed volume of accumulated nitrogen [Vcum (cm 3 g' 1 )] versus the pore width W (nm).
  • Figure 3. RAMAN spectra of the graphene-based material, showing the intensity (counts) versus the Raman shift (cm' 1 ). The carbon and atomic oxygen content (At wt.
  • Figure 4 Electrochemical characterization of the graphene-based material.
  • Figure (4a) shows the generated current density (A g 1 ) versus the applied voltage (V);
  • Figure (4b) shows capacitance accumulated by the electrochemical cell Cceii (F g' 1 ) versus the applied voltage.
  • Figure 5 Electrochemical results of the electrode made with the graphene-based material.
  • Figure (5a) shows the specific capacitance of the electrode (Ceiec), in (F g' 1 ) versus the sweep rate of the applied voltage (mV s' 1 );
  • Figure (5b) shows Ceiec (F g' 1 ) versus current density (A g' 1 );
  • Figure (5c) shows the Ragone graph where the energy density E (Wh kg' 1 ) versus the power density P (W kg' 1 ) is observed;
  • Figure (5d) shows the percentage of electrode capacitance retention Cretention (%) versus the number of charge/discharge cycles applied.
  • This technology corresponds to the development of a material for its implementation as a storage and disposal device for electrical energy.
  • the graphene-based materials were manufactured by simultaneous activation/exfoliation by the thermochemical intercalation method, using different weight ratios of KOH/biocarbon (between 0.3 - 3.6) to introduce modifications in the texture and surface chemistry of the graphene. graphene and improve electrochemical performance.
  • KOH/biocarbon weight ratio between 0.3 - 3.6
  • the graphene-based materials were characterized in terms of their texture and porosimetry (Figure 2), Raman spectroscopy ( Figure 3), and then used for the preparation of electrodes for their implementation as SC in aqueous acid medium (1 M H2SO4) and electrochemically analyzed by cyclic voltammetry (CV) methods (Figure 4), and energy efficiency ( Figure 5) by making Ragone plots and verifying long-term capacitance retention was analyzed by consecutive cycles of galvanostatic charge/discharge (GCD).
  • GCD galvanostatic charge/discharge
  • the graphene-based materials presented high surface areas, greater than 900 m 2 g -1 ( Figure 2a) and a high total pore volume of 0.455 cm 3 g -1 ( Figure 2b), indicating that their porosity is mainly constituted by supermicropores. with pore diameter values less than 1 nm ( Figure 2b).
  • a porosimetry composition characterized by a mixture of 76% and 24% micro- and mesopores, respectively (Figure 2c), was achieved, which guarantees the correct diffusion of electrolyte ions through the mesoporous structure for its storage in micropores.
  • the RAMAN spectrum ( Figure 3) shows that the material obtained is an amorphous material whose intensity in the vibration bands corresponding to the defects (D1, D2, D3, and D4) and the graphitic mode (G), which allows us to conclude that the present material is graphene oxide. Additionally, it was possible to verify by X-ray photoelectron spectroscopy that the surface of this material is made up of 88.8% and 12.2% carbon and oxygen atoms, respectively. That is, for every 1 oxygen atom, this material has 7.3 carbon atoms for each oxygen atom.
  • the process to make the electrochemical capacitor includes a stage of synthesis of the graphene-based material, and a second stage of making the electrode, which are detailed below:
  • Nano Settlement transfer the filtration water obtained in (c) to a settling funnel, filter nanomechanical particles smaller than 100 nm in particle size, and rest slowly between 20 - 28 h;
  • Filtration-2 Nano Extraction: filter the decanted liquid from step (d) using a filtration system with membrane filters between 0.1 - 0.45 micrometers pitch; This configuration allows the retention of graphene-based material; dry said material in an electric oven under static air between 80 - 120 °C for 1 - 3 h.
  • Electrochemical measurements after sub-stage (i), the electrochemical characteristics of the graphene-based materials were analyzed in a potentiostat/galvanostat, using a system of two symmetrical Swagelok cell-type electrodes, at 25 °C.
  • the traditional three-electrode system was also used in the cyclic voltammetry (CV) study ( Figure 4a) for a better estimation of the pseudocapacitive behavior of the material in the cell ( Figure 4b).
  • the normalized results of the capacitance of the fabricated electrode as a function of scanning speed and current density are shown in Figure 5a and Figure 5b, respectively.
  • These electrodes are useful in electrical energy storage processes, according to the graph of Ragone (Figure 5c) and to the stability in the retention of the capacitance (Figure 5d), where after 10000 galvanostatic charge/discharge cycles.
  • the technological solution presented proposes the use of low-cost and eco-friendly graphene-based materials for incorporation into electrochemical capacitors.
  • the process to make an electrical capacitor included a synthesis of graphene-based materials by activation/exfoliation by thermochemical intercalation and a synthesis of the electrode, which are detailed below: 1 Synthesis of the graphene-based material: composed of 5 sub -stages.
  • a solid paste is prepared by mechanically mixing a biochar followed by KOH for 8 - 12 min. The mixture is prepared at different KOH/Biocarbon mass ratios between 0.3 - 3.6.
  • the paste is introduced into a sample holder in the center of a quartz tubular reactor and inside an electric oven. It is closed hermetically and under a nitrogen flow between 80 - 120 mL/min, the system is purged for 10 - 30 min, at room temperature, and then heated between 8 - 12 °C min until the final temperature between 600 - 800 ° C and is maintained between 0.5 - 1.5 h. After that, the system is allowed to cool for 3 - 5 h, and then the sample is removed from the tubular furnace and weighed.
  • Electrolyte filling the film obtained in sub-stage 2.2. is subjected to a bath with an aqueous solution of the electrolyte H2SO41 M between 6
  • Example 2 Evaluation of graphene-based material as electrodes for the storage of electrical energy.
  • FIG. 4a shows the results obtained from the current density observed at different scanning speeds between 5 and 300 mV s -1 using a potential window between 0 - 0.9 V for the graphene-based material. From the current density data at each scan speed, the cell capacitance values (Cceii, F g -1 ) are obtained and are plotted in Figure 4b as a function of the scan speed.
  • the present invention provides an extremely useful, simple, economical, eco-friendly, and scalable process for the production of graphene-based materials for 5 their use as electrodes in electrochemical capacitors for the storage of electrical energy.

Abstract

The present invention relates to a method for producing a graphene-based material useful for storing electrical energy for the incorporation thereof into electrochemical capacitors. The method comprises the synthesis of the graphene-based material that comprises 5 sub-steps: feeding, activation/exfoliation, micro-nano separation, nano-decanting and nano-extraction. After this graphene-based material has been obtained, the electrode is manufactured in a process which is made up of 4 sub-steps: mixing, film preparation, filling with the electrolyte, and electrode cutting process. In light of the fact that the reported results regarding the manufactured electrodes show better electrochemical performance than those disclosed in the prior art, it can be concluded that the technological solution presented, which proposes the use of graphene-based materials produced from forestry waste, is a low-cost and eco-friendly solution for use thereof in the construction of electrodes for electrochemical capacitors.

Description

PROCESO PARA LA PRODUCCIÓN DE MATERIALES A BASE DE GRAFENO Y SU USO EN LA FABRICACIÓN DE ELECTRODOS DE CAPACITORES ELECTROQUÍMICOS PROCESS FOR THE PRODUCTION OF GRAPHENE-BASED MATERIALS AND THEIR USE IN THE MANUFACTURE OF ELECTROCHEMICAL CAPACITOR ELECTRODES
CAMPO TÉCNICO TECHNICAL FIELD
La presente solicitud se enfoca en el almacenamiento de energía, empleando materiales a base de grafeno como capacitores electroquímicos de doble capa, su proceso de producción, y su uso en la industria eléctrica. The present application focuses on energy storage, using graphene-based materials as double-layer electrochemical capacitors, its production process, and its use in the electrical industry.
ESTADO DEL ARTE STATE OF THE ART
La demanda de energía eléctrica a nivel mundial ha incrementado de forma sustancial en las últimas décadas. Se ha estimado [1 ] que se requerirá aproximadamente 28 TW de energía en el año 2050. Alcanzar esta demanda mundial de energía eléctrica no sólo radica en desarrollar tecnologías de producción de energías limpias y renovables, como la solar fotovoltaica y la eólica, sino también, requiere ineludiblemente, de dispositivos eficientes de almacenamiento de energía eléctrica. The demand for electrical energy worldwide has increased substantially in recent decades. It has been estimated [1] that approximately 28 TW of energy will be required in the year 2050. Reaching this global demand for electrical energy not only lies in developing clean and renewable energy production technologies, such as solar photovoltaics and wind, but also , inevitably requires efficient electrical energy storage devices.
En este contexto, el sistema de almacenamiento de energía eléctrica más utilizado en la actualidad es la batería. Sin embargo, las baterías convencionales tienen desventajas operativas importantes que las hacen inviables para el nuevo modelo energético que requiere alta densidad energética y alta capacidad de carga [2], Por ejemplo, las baterías pueden sufrir expansión mecánica debido a la generación de vapores al someterse a cargas y descargas de energía de forma continua y abruptas; presentan baja eficiencia energética (65 - 75%), la cual disminuye frente a altas potencia de consumo; así como tienen una vida útil corta, ya que presentan pérdidas sobre el 50% de su capacidad de almacenamiento sobre los 1000 ciclos de carga/descarga, lo que puede equivaler a una vida útil no mayor a 5 años, dependiendo de su uso [3]. Sumado a lo anterior, las baterías contienen materiales peligrosos para el medio ambiente lo que complica su disposición final. Es así como los capacitores electroquímicos, llamados supercondensadores o supercapacitores (SC), han mostrado un gran potencial para solventar las limitaciones de las baterías actuales, siendo un complemento y hasta un reemplazo de estas [3]. In this context, the most used electrical energy storage system today is the battery. However, conventional batteries have important operational disadvantages that make them unviable for the new energy model that requires high energy density and high charge capacity [2]. For example, batteries can suffer mechanical expansion due to the generation of vapors when subjected to continuous and abrupt energy charges and discharges; They have low energy efficiency (65 - 75%), which decreases with high power consumption; as well as they have a short useful life, since they present losses of over 50% of their storage capacity over 1000 charge/discharge cycles, which can be equivalent to a useful life of no more than 5 years, depending on their use [3 ]. In addition to the above, batteries contain materials hazardous to the environment, which complicates their final disposal. This is how electrochemical capacitors, called supercapacitors or supercapacitors (SC), have shown great potential to solve the limitations of current batteries, being a complement and even a replacement for them [3].
Ahora bien, sin despreciar el rol de todas las partes que componen un SC, el componente de mayor interés es el electrodo. Este componente es el responsable de la acumulación de carga eléctrica. Esta propiedad, está condicionada por la capacidad del material para adsorber cargas desde el electrolito empleado en el SC. De esta forma, el mercado mundial de electrodos para su implementación en SC está creciendo rápidamente para hacer frente a fuentes renovables intermitentes, aplicaciones a corto plazo o regeneración rápida en vehículos híbridos y eléctricos [4], Now, without neglecting the role of all the parts that make up a SC, the component of greatest interest is the electrode. This component is responsible for the accumulation of electrical charge. This property is conditioned by the material's ability to adsorb charges from the electrolyte used in the SC. Thus, the global market for electrodes for implementation in SC is growing rapidly to address intermittent renewable sources, short-term applications or rapid regeneration in hybrid and electric vehicles [4],
El almacenamiento de carga en SC se produce a través de la generación de una doble capa electrostática (EDL) por la interacción de los iones de un electrolito con la superficie del electrodo que se caracteriza por poseer dos propiedades específicas, alta porosidad y conductividad [5]. En los últimos años, se han hecho muchos esfuerzos para desarrollar SC altamente eficientes. Se han propuesto varios enfoques, como el desarrollo de materiales de carbono nanoporosos (NC) con un área superficial alta y porosidad jerárquica para aumentar la capacitancia y reducir la resistencia a la difusión gracias a canales no tortuosos, y así obtener capacidades de alta velocidad [6]. Las altas áreas superficiales de los NC y la corta distancia entre el ion y el electrodo proporcionan a la nueva generación de SC una mayor capacitancia que los dispositivos convencionales, al tiempo que son capaces de liberar la carga más rápidamente que las baterías [4], Sin embargo, la principal desventaja de los SC es su baja energía específica en comparación con las baterías [4,6]. The charge storage in SC occurs through the generation of an electrostatic double layer (EDL) by the interaction of the ions of an electrolyte with the surface of the electrode that is characterized by having two specific properties, high porosity and conductivity [5 ]. In recent years, many efforts have been made to develop highly efficient SCs. Several approaches have been proposed, such as the development of nanoporous carbon (NC) materials with high surface area and hierarchical porosity to increase capacitance and reduce diffusion resistance through non-tortuous channels, thereby obtaining high-speed capabilities [ 6]. The high surface areas of NCs and the short distance between the ion and the electrode provide the new generation of SCs with higher capacitance than conventional devices, while being able to release charge faster than batteries [4], However, the main disadvantage of SCs is their low specific energy compared to batteries [4,6].
La modificación de la química superficial de los electrodos de carbono mediante la introducción de heteroátomos (como O, N o S) también se ha explorado como una estrategia para mejorar el rendimiento de las reacciones redox superficiales (carga de pseudocapacitancia) [4,7], Sin embargo, la síntesis de estos materiales de carbono avanzados a menudo requiere metodologías complejas, largas, costosas y algunas incluso tóxicas, que involucran altas temperaturas de carbonización y precursores petroquímicos como carbón mineral, hidrocarburos, entre otros, que limitan su comercialización generalizada. Un intento por desarrollar SC más "verdes" y competitivos corresponde al uso de NC derivados de residuos agrícolas o forestales [8,9], los cuales se han utilizado con éxito para desarrollar SC del tipo EDL. Al mismo tiempo, la formulación de materiales carbonosos nanoporosos desde materias primas de tipo fenólica como la lignina, cortezas, o resinas fenólicas, han aumentado considerablemente dentro de la comunidad científica dado que proveen valores de capacitancia entre 190-300 F g 1 y una alta estabilidad que puede alcanzar sobre el 90% de eficiencia hasta después de más 5000 ciclos de carga/descarga [10-12], Modifying the surface chemistry of carbon electrodes by introducing heteroatoms (such as O, N or S) has also been explored as a strategy to improve the performance of surface redox reactions (pseudocapacitance charging) [4,7] However, the synthesis of these advanced carbon materials often requires complex, long, expensive and some even toxic methodologies, which involve high carbonization temperatures and petrochemical precursors such as mineral coal, hydrocarbons, among others, which limit their widespread commercialization. An attempt to Developing more "green" and competitive SC corresponds to the use of NC derived from agricultural or forestry waste [8,9], which have been successfully used to develop SC of the EDL type. At the same time, the formulation of nanoporous carbonaceous materials from phenolic raw materials such as lignin, bark, or phenolic resins, have increased considerably within the scientific community since they provide capacitance values between 190-300 F g 1 and a high stability that can reach over 90% efficiency even after more than 5000 charge/discharge cycles [10-12],
En este contexto, Chile tiene una oportunidad única para el desarrollo de materiales óptimos para la construcción de electrodos con aplicaciones en SC principalmente a base de grafeno cuyas propiedades físicas y químicas pueden ser diseñadas para tal aplicación. Un precursor de carbono abundante para producir materiales a base de grafeno a costos competitivos son los materiales o residuos lignocelulósicos de origen forestal como el pino, roble, caoba, apamate, algarrobo, entre otros; lo cual es de claro interés en Chile dada la alta cantidad de plantaciones forestales que existen en el país, siendo la corteza de Pinus Radiata, uno de los residuos de mayor interés. Nuestro grupo ha reportado que las propiedades de materiales del tipo grafeno producidos desde residuos de biomasa pueden ser diseñadas para el control de las interacciones de fuerzas electrostáticas y dispersivas, que son necesarias para la movilidad de cargas electrónicas [13]. Este diseño garantizaría una alta conductividad eléctrica y sitios accesibles para el almacenamiento de carga eléctrica. El elemento principal y diferenciador de la presente patente, consiste en la formulación y producción de materiales a base de grafeno para la construcción de electrodos y su aplicación como superconductores eléctricos. In this context, Chile has a unique opportunity for the development of optimal materials for the construction of electrodes with SC applications, mainly based on graphene, whose physical and chemical properties can be designed for such an application. An abundant carbon precursor to produce graphene-based materials at competitive costs are lignocellulosic materials or residues of forest origin such as pine, oak, mahogany, apamate, carob, among others; which is of clear interest in Chile given the high number of forest plantations that exist in the country, with the bark of Pinus Radiata being one of the wastes of greatest interest. Our group has reported that the properties of graphene-type materials produced from biomass waste can be designed to control the interactions of electrostatic and dispersive forces, which are necessary for the mobility of electronic charges [13]. This design would guarantee high electrical conductivity and accessible sites for electrical charge storage. The main and differentiating element of this patent consists of the formulation and production of graphene-based materials for the construction of electrodes and their application as electrical superconductors.
El mejor material obtenido a base de grafeno y presentado en esta patente se diferencia totalmente de los documentos reportados en la literatura porque hemos utilizado como precursor un biocarbono obtenido previamente de la pirólisis de taninos extraídos de materiales o residuos forestales como la corteza de pino, roble, caoba, apamate, algarrobo, entre otros. En resumen, este biocarbono ha sido sometido a un proceso simultáneo de activación y exfoliación intercalación termoquímica en presencia de KOH a temperaturas moderadas. No existen reportes a la fecha de capacitores electroquímicos preparados a base de materiales de grafeno desde biocarbonos derivados de la pirólisis de taninos de residuos forestales ("cortezas de árboles). The best material obtained from graphene and presented in this patent is totally different from the documents reported in the literature because we have used as a precursor a biocarbon previously obtained from the pyrolysis of tannins extracted from forest materials or residues such as pine and oak bark. , mahogany, apamate, carob, among others. In summary, this biocarbon has been subjected to a simultaneous process of activation and thermochemical intercalation exfoliation in the presence of KOH at moderate temperatures. No There are reports to date of electrochemical capacitors prepared from graphene materials from biocarbons derived from the pyrolysis of tannins from forest residues ("tree barks").
Por ejemplo, el documento US8784764B2, describe un método para la producción de carbón activado para su empleo como capacitores de alta densidad de energía. Este material se produce a partir de una mezcla en fase acosa de un precursor de carbono no lignocelulósico y un compuesto inorgánico. Probablemente esta mezcla sea de carbón mineral en presencia de las propias impurezas inorgánicas del carbón mineral. Este documento no describe formas de grafeno como el componente de interés en el capacitor, por lo que no afecta a la presente solicitud. For example, document US8784764B2 describes a method for the production of activated carbon for use as high energy density capacitors. This material is produced from an aqueous phase mixture of a non-lignocellulosic carbon precursor and an inorganic compound. This mixture is probably mineral coal in the presence of mineral coal's own inorganic impurities. This document does not describe forms of graphene as the component of interest in the capacitor, so it does not affect the present application.
El documento US6060424, describe la producción de carbón activado derivado de materiales lignocelulósicos (madera) por activación química útiles como dispositivos de doble capa para el almacenamiento de alta densidad de energía. Aun a pesar de que el precursor es lignocelulósico, el documento no describe los procesos de exfoliación por intercalación termoquímica de biocarbonos, ni sobre la producción de grafeno, por lo que no afecta a la presente solicitud. Document US6060424 describes the production of activated carbon derived from lignocellulosic materials (wood) by chemical activation useful as double-layer devices for high energy density storage. Even though the precursor is lignocellulosic, the document does not describe the exfoliation processes by thermochemical intercalation of biocarbons, nor the production of graphene, so it does not affect the present application.
El documento US8940145B1 describe la producción de un electrodo supercapacitor que comprende un sustrato conductor poroso compuesto por una superficie depositados de uno o más óxidos metálicos y un óxido de grafeno químicamente reducido depositado como una segunda superficie, proporcionando así la composición de doble capa eléctrica asociada al sustrato. Las capas del supercapacitor se enrollan de forma cilindrica. Aun a pesar de las buenas prestaciones electroquímicas del dispositivo, este documento no está centrada en la producción del grafeno y además se caracteriza por poseer mezclas de óxidos metálicos conductores, y en consecuencia, no afecta la presente solicitud. Document US8940145B1 describes the production of a supercapacitor electrode comprising a porous conductive substrate composed of a surface deposited of one or more metal oxides and a chemically reduced graphene oxide deposited as a second surface, thus providing the electrical double layer composition associated with the substratum. The layers of the supercapacitor are wound cylindrically. Even despite the good electrochemical performance of the device, this document is not focused on the production of graphene and is also characterized by having mixtures of conductive metal oxides, and consequently, it does not affect the present application.
En base a los antecedentes descritos, en la presente solicitud de patente se propone “Un proceso para la producción de materiales a base de grafeno y su uso en la fabricación de electrodos de capacitores electroquímicos”, que se compone de dos etapas. La primera relacionada a la producción del material de grafeno y la segunda etapa consiste en la elaboración del electrodo para capacitor electroquímico, empleando como materia prima el material a base de grafeno. Based on the background described, this patent application proposes “A process for the production of graphene-based materials and their use in the manufacture of electrochemical capacitor electrodes”, which is composed of two stages. The first related to the production of the graphene material and the second stage consists of the preparation of the electrode for electrochemical capacitor, using graphene-based material as raw material.
Asimismo, esta patente describe el desarrollo de protocolos de síntesis eco- amigables y sustentables de materiales a base de grafeno, de forma que sean empleados como electrodos de capacitores eléctricos de doble capa para el almacenamiento de energía eléctrica. Likewise, this patent describes the development of eco-friendly and sustainable synthesis protocols for graphene-based materials, so that they can be used as electrodes for double-layer electrical capacitors for the storage of electrical energy.
Referencias. References.
[1 ] https://about.bnef.com/new-energy-outlook/ [1 ] https://about.bnef.com/new-energy-outlook/
[2] R. Hemmati, H. Saboori, Emergence of hybrid energy storage systems in renewable energy and transport applications - A review, Renew. Sustain. Energy Rev. 65 (2016) 1 1-23. [2] R. Hemmati, H. Saboori, Emergence of hybrid energy storage systems in renewable energy and transport applications - A review, Renew. Sustain. Energy Rev. 65 (2016) 1 1-23.
[3] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources. 157 (2006) 1 1 -27. [3] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources. 157 (2006) 1 1 -27.
[5] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/C5CS00303B. [5] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484- 7539. https://doi.org/10.1039/C5CS00303B.
[5] P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors,[5] P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors,
Energy Convers. Manag. 51 (2010) 2901 -2912. https://doi.Org/10.1016/j.enconman.2010.06.031 . Energy Convers. Manag. 51 (2010) 2901 -2912. https://doi.Org/10.1016/j.enconman.2010.06.031.
[6] Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Biomass derived carbon as binder-free electrode materials for supercapacitors, Carbon. 155 (2019) 706-726. https://doi.Org/10.1016/j.carbon.2019.09.018. [6] Y. Wang, Q. Qu, S. Gao, G. Tang, K. Liu, S. He, C. Huang, Biomass derived carbon as binder-free electrode materials for supercapacitors, Carbon. 155 (2019) 706-726. https://doi.Org/10.1016/j.carbon.2019.09.018.
[7] J. Zhang, X.S. Zhao, On the Configuration of Supercapacitors for Maximizing[7] J. Zhang, X.S. Zhao, On the Configuration of Supercapacitors for Maximizing
Electrochemical Performance, ChemSusChem. 5 (2012) 818-841. https://doi.Org/10.1002/cssc.201100571 . Electrochemical Performance, ChemSusChem. 5 (2012) 818-841. https://doi.Org/10.1002/cssc.201100571.
[8] H. Lu, X.S. Zhao, Biomass-derived carbon electrode materials for supercapacitors, Sustain. Energy Fuels. 1 (2017) 1265-1281. https://doi.Org/10.1039/C7SE00099E. [8] H. Lu, X.S. Zhao, Biomass-derived carbon electrode materials for supercapacitors, Sustain. Energy Fuels. 1 (2017) 1265-1281. https://doi.Org/10.1039/C7SE00099E.
[9] Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.-M. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, J. Mater. Chem. A. 7 (2019) 16028-16045. https://doi.Org/10.1039/C9TA04436A. [9] Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.-M. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, J. Mater. Chem. A. 7 (2019) 16028-16045. https://doi.Org/10.1039/C9TA04436A.
[10] C. Wang, T. Liu, Activated carbon materials derived from liquefied bark- phenol formaldehyde resins for high performance supercapacitors, RSC Adv. 6 (2016) 105540-105549. [10] C. Wang, T. Liu, Activated carbon materials derived from liquefied bark-phenol formaldehyde resins for high performance supercapacitors, RSC Adv. 6 (2016) 105540-105549.
[1 1 ] W. Zhang, M. Zhao, R. Liu, X. Wang, H. Lin, Hierarchical porous carbon derived from lignin for high performance supercapacitor, Coll. Surf. A Physicochem. Eng. Asp. 484 (2015) 518-527. [1 1 ] W. Zhang, M. Zhao, R. Liu, X. Wang, H. Lin, Hierarchical porous carbon derived from lignin for high performance supercapacitor, Coll. Surf. To Physicochem. Eng. Asp. 484 (2015) 518-527.
[12] B. Yu, Z. Chang, C. Wang, The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors, Mater. Chem. Phys. 181 (2016) 187-193 [12] B. Yu, Z. Chang, C. Wang, The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors, Mater. Chem. Phys. 181 (2016) 187-193
[13] A. Dasgupta, J. Matos, H. Muramatsu, Y. Ono, V. González, H. Liu, C. Rotella, K. Fujizawa, R. Cruz-Silva, Y. Hashimoto, M. Endo, K. Kaneko, L. Radovic, M. Terrones. Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. Chemical surface properties. Carbon 139 (2018) 833-844. [13] A. Dasgupta, J. Matos, H. Muramatsu, Y. Ono, V. González, H. Liu, C. Rotella, K. Fujizawa, R. Cruz-Silva, Y. Hashimoto, M. Endo, K Kaneko, L. Radovic, M. Terrones. Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. Chemical surface properties. Carbon 139 (2018) 833-844.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. Esquema de producción de materiales a base de grafeno, compuesta por sub-etapas de activación (1 a) y exfoliación (1 b) para obtener una mezcla de carbonos micro- y nanométricos, que posteriormente se someten a una separación de fases micro- y nanométricas por filtración (1 c) seguida de la decantación de la fase nanométhca en solución (1 d), y finalmente una segunda filtración para la extracción de la fase nanométhca (1 e) que corresponde al material a base de grafeno. Figure 1. Production scheme of graphene-based materials, composed of activation (1 a) and exfoliation (1 b) sub-stages to obtain a mixture of micro- and nanometric carbons, which subsequently undergo phase separation. micro- and nanometric by filtration (1 c) followed by the decantation of the nanomethca phase in solution (1 d), and finally a second filtration for the extraction of the nanomethca phase (1 e) that corresponds to the graphene-based material.
Figura 2. Caracterización textural del material a base de grafeno. La figura (2a) muestra la cantidad adsorbida de nitrógeno (cm3 g-1, STP) a -196 °C versus la presión relativa (P/Po); la figura (2b) muestra la distribución de volumen de poro [dV/dW, (cm3 g-1 nm-1)] versus el ancho de poros W (nm); la figura (2c) muestra el volumen adsorbido de nitrógeno acumulado [Vcum (cm3 g’1)] versus el ancho de poros W (nm). Figura 3. Espectros RAMAN del material a base de grafeno, donde se muestra la intensidad (conteos) versus el desplazamiento Raman (cm’1). El contenido de carbono y oxigeno atómico (At wt. %) insertos en la figura muestra que el material está compuesto por óxido de grafeno con una proporción de C/O = 7.3. Las deconvoluciones del pico asociados a los defectos del material, indicados como D1 , D2, D3 y D4, están asociados a las distorsiones del plano grafitico (G) lo que sugiere la formación de láminas aisladas de grafeno. Figure 2. Textural characterization of the graphene-based material. Figure (2a) shows the adsorbed amount of nitrogen (cm 3 g -1 , STP) at -196 °C versus the relative pressure (P/Po); Figure (2b) shows the pore volume distribution [dV/dW, (cm 3 g -1 nm -1 )] versus the pore width W (nm); Figure (2c) shows the adsorbed volume of accumulated nitrogen [Vcum (cm 3 g' 1 )] versus the pore width W (nm). Figure 3. RAMAN spectra of the graphene-based material, showing the intensity (counts) versus the Raman shift (cm' 1 ). The carbon and atomic oxygen content (At wt. %) inserted in the figure shows that the material is composed of graphene oxide with a C/O ratio = 7.3. The deconvolutions of the peak associated with the material defects, indicated as D1, D2, D3 and D4, are associated with the distortions of the graphite plane (G), which suggests the formation of isolated graphene sheets.
Figura 4. Caracterización electroquímica del material a base de grafeno. La Figura (4a) muestra la densidad de corriente generada (A g 1) versus el voltaje aplicado (V); la figura (4b) muestra capacitancia acumulada por la celda electroquímica Cceii (F g’1) versus el voltaje aplicado. Figure 4. Electrochemical characterization of the graphene-based material. Figure (4a) shows the generated current density (A g 1 ) versus the applied voltage (V); Figure (4b) shows capacitance accumulated by the electrochemical cell Cceii (F g' 1 ) versus the applied voltage.
Figura 5. Resultados electroquímicos del electrodo elaborado con el material a base de grafeno. La figura (5a) muestra la capacitancia específica del electrodo (Ceiec), en (F g’1) versus la velocidad de barrido del voltaje aplicado (mV s’1); la figura (5b) muestra Ceiec (F g’1) versus densidad de corriente (A g’1); la figura (5c) muestra el gráfico de Ragone donde se observa la densidad de energía E (W.h kg’1) versus la densidad de potencia P (W kg’1); la figura (5d) muestra el porcentaje de retención de la capacitancia del electrodo Cretención (%) versus el número de ciclos de carga/descarga aplicados. Figure 5. Electrochemical results of the electrode made with the graphene-based material. Figure (5a) shows the specific capacitance of the electrode (Ceiec), in (F g' 1 ) versus the sweep rate of the applied voltage (mV s' 1 ); Figure (5b) shows Ceiec (F g' 1 ) versus current density (A g' 1 ); Figure (5c) shows the Ragone graph where the energy density E (Wh kg' 1 ) versus the power density P (W kg' 1 ) is observed; Figure (5d) shows the percentage of electrode capacitance retention Cretention (%) versus the number of charge/discharge cycles applied.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente tecnología corresponde al desarrollo de un material para su implementación como dispositivo de almacenamiento y disposición de energía eléctrica. Los materiales a base de grafeno se fabricaron por activación/exfoliación simultánea por el método de intercalación termoquímica, empleando diferentes proporciones en peso de KOH/biocarbono (entre 0,3 - 3,6) para introducir modificaciones en la textura y la química superficial del grafeno y mejorar el rendimiento electroquímico. En las siguientes partes, haremos referencia al material a base de grafeno obtenido con la proporción en peso KOH/biocarbono igual a 1 ,1 . This technology corresponds to the development of a material for its implementation as a storage and disposal device for electrical energy. The graphene-based materials were manufactured by simultaneous activation/exfoliation by the thermochemical intercalation method, using different weight ratios of KOH/biocarbon (between 0.3 - 3.6) to introduce modifications in the texture and surface chemistry of the graphene. graphene and improve electrochemical performance. In the following parts, we will refer to the graphene-based material obtained with the KOH/biocarbon weight ratio equal to 1.1.
Se empleó un biocarbono derivado como subproducto de la pirólisis de taninos extraídos de corteza de pino como materia prima. Luego del proceso de activación/exfoliación simultánea (Figura 1a-b) por intercalación termoquímica se obtuvo un material espumoso de geometría cilindrica y composición monolítica compuesto por una mezcla de micro- y nanocarbonos. Este material monolítico fue separado en dos partes, realizando en primer lugar una filtración y lavado en agua caliente (60 °C - 80 °C), empleando embudos Buchner de tamaño medio de paso de filtración. Este paso lo hemos llamado “separación Micro-Nano” (Figura 1c). Los carbonos de tamaño micrométrico quedan retenidos en el filtro mientras que la fracción de material a base de grafeno se localiza en las aguas de filtrado. Esta agua de filtración, conteniendo fracciones de material a base de grafeno, se dejó decantar lentamente entre 20 - 28 horas (Figura 1d), y posteriormente filtrada empleando filtros de membrana comerciales entre 0,1 - 0,45 micrómetros de paso, que permiten la separación de los carbonos nanométñcos, es de decir aquellos materiales a base de grafeno. Esta etapa la hemos llamado “Extracción Nano” (Figura 1e). Los materiales a base de grafeno fueron caracterizados en cuanto a su textura y porosimetría (Figura 2), espectroscopia Raman (Figura 3), y luego empleados para la elaboración de electrodos para su implementación como SC en medio ácido acuoso (H2SO4 1 M) y analizados electroquímicamente por métodos de voltamperometría cíclica (CV) (Figura 4), y de eficiencia energética (Figura 5) haciendo gráficos de Ragone y verificando la retención de capacitancia a largo plazo fue analizada por ciclos consecutivos de carga/descarga galvanostática (GCD). A biocarbon derived as a byproduct of the pyrolysis of tannins extracted from pine bark was used as raw material. After the process of Simultaneous activation/exfoliation (Figure 1a-b) by thermochemical intercalation, a foamy material with cylindrical geometry and monolithic composition composed of a mixture of micro- and nanocarbons was obtained. This monolithic material was separated into two parts, first performing a filtration and washing in hot water (60 °C - 80 °C), using medium-sized Buchner funnels with a filtration pass. We have called this step “Micro-Nano separation” (Figure 1c). The micrometer-sized carbons are retained in the filter while the fraction of graphene-based material is located in the filter waters. This filtration water, containing fractions of graphene-based material, was allowed to decant slowly between 20 - 28 hours (Figure 1d), and subsequently filtered using commercial membrane filters between 0.1 - 0.45 micrometers of passage, which allow the separation of nanometric carbons, that is, those materials based on graphene. We have called this stage “Nano Extraction” (Figure 1e). The graphene-based materials were characterized in terms of their texture and porosimetry (Figure 2), Raman spectroscopy (Figure 3), and then used for the preparation of electrodes for their implementation as SC in aqueous acid medium (1 M H2SO4) and electrochemically analyzed by cyclic voltammetry (CV) methods (Figure 4), and energy efficiency (Figure 5) by making Ragone plots and verifying long-term capacitance retention was analyzed by consecutive cycles of galvanostatic charge/discharge (GCD).
Los materiales a base de grafeno presentaron altas áreas superficiales, mayores a 900 m2 g-1 (Figura 2a) y alto volumen total de poros de 0,455 cm3 g-1 (Figura 2b), indicando que su porosidad está principalmente constituida por supermicroporos con valores de diámetro de poros menores a 1 nm (Figura 2b). Al mismo tiempo, se logró una composición de porosimetría caracterizada por una mezcla de 76% y 24% de micro- y mesoporos, respectivamente (Figura 2c), lo que garantiza la difusión correcta de iones de electrolito a través de la estructura mesoporosa para su almacenamiento en los microporos. Ventajosamente, el espectro RAMAN (Figura 3), muestra que el material obtenido es un material amorfo cuya intensidad en las bandas de vibración correspondientes a los defectos (D1 , D2, D3, y D4) y al modo grafitico (G), que permite concluir que el presente material es óxido de grafeno. Adicionalmente, se pudo verificar por espectroscopia fotoelectrónica de rayos-X que la superficie de este material está constituida por un 88,8 % y 12,2 % de átomos de carbono y oxígeno, respectivamente. Es decir, por cada 1 átomo de oxígeno, este material presenta 7,3 átomos de carbono por cada átomo de oxígeno. The graphene-based materials presented high surface areas, greater than 900 m 2 g -1 (Figure 2a) and a high total pore volume of 0.455 cm 3 g -1 (Figure 2b), indicating that their porosity is mainly constituted by supermicropores. with pore diameter values less than 1 nm (Figure 2b). At the same time, a porosimetry composition characterized by a mixture of 76% and 24% micro- and mesopores, respectively (Figure 2c), was achieved, which guarantees the correct diffusion of electrolyte ions through the mesoporous structure for its storage in micropores. Advantageously, the RAMAN spectrum (Figure 3) shows that the material obtained is an amorphous material whose intensity in the vibration bands corresponding to the defects (D1, D2, D3, and D4) and the graphitic mode (G), which allows us to conclude that the present material is graphene oxide. Additionally, it was possible to verify by X-ray photoelectron spectroscopy that the surface of this material is made up of 88.8% and 12.2% carbon and oxygen atoms, respectively. That is, for every 1 oxygen atom, this material has 7.3 carbon atoms for each oxygen atom.
El proceso para elaborar el capacitor electroquímico comprende una etapa de síntesis del material a base de grafeno, y una segunda etapa de elaboración del electrodo, que se detallan a continuación: The process to make the electrochemical capacitor includes a stage of synthesis of the graphene-based material, and a second stage of making the electrode, which are detailed below:
1.- Síntesis del material a base de grafeno: que se compone a su vez de 5 sub-etapas. 1.- Synthesis of the graphene-based material: which is in turn composed of 5 sub-stages.
(a) Alimentación: Mezclar y triturar, en ausencia de solvente, un biocarbono y KOH en una relación de masa KOH/Biocarbono entre 0,3 y 3,6, hasta obtener una pasta; en donde dicho biocarbono se obtiene de la pirólisis de materiales o residuos lignocelulósicos; dichos materiales o residuos lignocelulósicos se obtienen sin limitación desde corteza de pino, roble, caoba, apamate, algarrobo; o más específicamente dicho biocarbono es producido por pirólisis de taninos extraído de corteza de pino: Pinus Radiata. (a) Feed: Mix and grind, in the absence of solvent, a biocarbon and KOH in a KOH/Biocarbon mass ratio between 0.3 and 3.6, until obtaining a paste; wherein said biocarbon is obtained from the pyrolysis of lignocellulosic materials or waste; Said lignocellulosic materials or residues are obtained without limitation from pine, oak, mahogany, apamate, carob bark; or more specifically said biocarbon is produced by pyrolysis of tannins extracted from pine bark: Pinus Radiata.
(b) Activación/Exfoliación: Introducir la pasta obtenida en (a) en un reactor dentro de un horno y cerrar herméticamente bajo flujo de nitrógeno (entre 80 - 120 mL/min); purgar el sistema por 10 - 30 min a temperatura ambiente; calentar a velocidades de calentamiento entre 8 - 12 °C/min, hasta alcanzar una temperatura entre 600 - 800 °C por 0,5 - 1 ,5 h; enfriar el sistema lentamente (3(b) Activation/Exfoliation: Introduce the paste obtained in (a) into a reactor inside an oven and hermetically close it under a nitrogen flow (between 80 - 120 mL/min); purge the system for 10 - 30 min at room temperature; heat at heating rates between 8 - 12 °C/min, until reaching a temperature between 600 - 800 °C for 0.5 - 1.5 h; cool the system slowly (3
- 5 h) hasta temperatura ambiente; extraer la pasta exfoliada del horno; - 5 h) until room temperature; remove the exfoliated paste from the oven;
(c) Filtración-1 , Separación Micro-Nano: separar el material obtenido en (b) en dos partes, realizando una primera filtración de partículas mayores a 100 nm de tamaño de partícula, y lavado en agua destilada caliente (60 °C - 80 °C), (Figura 1 c); secar el material sólido obtenido a una temperatura entre 80 - 120 °C por 1(c) Filtration-1, Micro-Nano Separation: separate the material obtained in (b) into two parts, performing a first filtration of particles larger than 100 nm in particle size, and washing in hot distilled water (60 °C - 80 °C), (Figure 1 c); dry the solid material obtained at a temperature between 80 - 120 °C for 1
- 3 h; colectar el agua de filtración, la cual se utiliza para la siguiente etapa;- 3 hours; collect the filtration water, which is used for the next stage;
(d) Decantación Nano: trasvasar el agua de filtración obtenida en (c) a un embudo de decantación, filtrar partículas nanométñcas menores a 100 nm de tamaño de partícula, y reposar lentamente entre 20 - 28 h; (e) Filtración-2, Extracción Nano: filtrar el líquido decantado de la etapa (d) empleando un sistema de filtración con filtros de membrana entre 0,1 - 0,45 micrómetros de paso; esta configuración permite la retención de material a base de grafeno; secar dicho material en estufa eléctrica bajo aire estático entre 80 - 120 °C por 1 - 3 h. (d) Nano Settlement: transfer the filtration water obtained in (c) to a settling funnel, filter nanomechanical particles smaller than 100 nm in particle size, and rest slowly between 20 - 28 h; (e) Filtration-2, Nano Extraction: filter the decanted liquid from step (d) using a filtration system with membrane filters between 0.1 - 0.45 micrometers pitch; This configuration allows the retention of graphene-based material; dry said material in an electric oven under static air between 80 - 120 °C for 1 - 3 h.
2.- Fabricación del electrodo: compuesta por 4 sub-etapas: 2.- Manufacturing of the electrode: composed of 4 sub-stages:
(f) Mezclado: Mezclar el material a base de grafeno de la etapa 1 finamente granulado, con politetrafluoroetileno como aglutinante y negro de humo, en una relación de peso igual a 85:10:5, empleando N-metilpirrolidona como solvente; someter esta mezcla a agitación vigorosa entre 125 - 175 rpm entre 10 - 30 minutos; (f) Mixing: Mix the finely granulated graphene-based material from stage 1, with polytetrafluoroethylene as a binder and carbon black, in a weight ratio equal to 85:10:5, using N-methylpyrrolidone as a solvent; subject this mixture to vigorous stirring between 125 - 175 rpm for 10 - 30 minutes;
(g) Elaboración de película: desplegar con varilla de vidrio mezcla obtenida en (f) sobre un soporte inerte, según técnica de Dr. Blade; luego, verificar la calidad de la película obtenida, a través de su observación en un microscopio óptico. Comprobar que la película no tiene fracturas y que es homogénea; (g) Film preparation: deploy the mixture obtained in (f) with a glass rod on an inert support, according to Dr. Blade's technique; then, verify the quality of the film obtained, through observation in an optical microscope. Check that the film has no fractures and is homogeneous;
(h) Llenado del Electrolito: Someter película obtenida en (g) a un baño con una solución acuosa del electrolito H2SO41 M entre 6 - 8 días; (h) Filling the Electrolyte: Subject the film obtained in (g) to a bath with an aqueous solution of the electrolyte H2SO41 M between 6 - 8 days;
(i) Proceso de corte: de la película de material a base de grafeno obtenida en (h), cortar discos de 5 mm de diámetro, con una relación de masa a área de superficie entre 8-10 mg cm-2. Dichos discos son los denominados “electrodos". (i) Cutting process: from the graphene-based material film obtained in (h), cut discs of 5 mm diameter, with a mass to surface area ratio between 8-10 mg cm -2 . These discs are called "electrodes".
Medidas electroquímicas: después de la sub-etapa (i), se analizaron las características electroquímicas de los materiales a base de grafeno en un potenciostato/galvanostato, empleando un sistema de dos electrodos simétricos tipo celdas Swagelok, a 25 °C. También se empleó el sistema tradicional de tres electrodos en el estudio de voltametría cíclica (CV) (Figura 4a) para una mejor estimación del comportamiento pseudocapacitivo del material en la celda (Figura 4b). Los resultados normalizados de la capacitancia del electrodo fabricado en función de la velocidad de barrido y de la densidad de corriente se muestran en la Figura 5a y Figura 5b, respectivamente. Estos electrodos, son útiles en procesos de almacenamiento de energía eléctrica, de acuerdo al gráfico de Ragone (Figura 5c) y a la estabilidad en la retención de la capacitancia (Figura 5d), donde luego de 10000 ciclos de carga/descarga galvanostática.Electrochemical measurements: after sub-stage (i), the electrochemical characteristics of the graphene-based materials were analyzed in a potentiostat/galvanostat, using a system of two symmetrical Swagelok cell-type electrodes, at 25 °C. The traditional three-electrode system was also used in the cyclic voltammetry (CV) study (Figure 4a) for a better estimation of the pseudocapacitive behavior of the material in the cell (Figure 4b). The normalized results of the capacitance of the fabricated electrode as a function of scanning speed and current density are shown in Figure 5a and Figure 5b, respectively. These electrodes are useful in electrical energy storage processes, according to the graph of Ragone (Figure 5c) and to the stability in the retention of the capacitance (Figure 5d), where after 10000 galvanostatic charge/discharge cycles.
En conclusión, la solución tecnológica presentada, propone el empleo de materiales a base de grafeno de bajo costo y eco-amigables para su incorporación en capacitores electroquímicos. In conclusion, the technological solution presented proposes the use of low-cost and eco-friendly graphene-based materials for incorporation into electrochemical capacitors.
EJEMPLOS DE APLICACIÓN APPLICATION EXAMPLES
Ejemplo 1. Elaboración de electrodos como capacitores eléctricos. Example 1. Preparation of electrodes as electrical capacitors.
El proceso para elaborar un capacitor eléctrico comprendió una síntesis de materiales a base de grafeno por activación/exfoliación por intercalación termoquímica y una de síntesis del electrodo, las que se detallan a continuación: 1 Síntesis del material a base de grafeno: compuesta por 5 sub-etapas. The process to make an electrical capacitor included a synthesis of graphene-based materials by activation/exfoliation by thermochemical intercalation and a synthesis of the electrode, which are detailed below: 1 Synthesis of the graphene-based material: composed of 5 sub -stages.
1 .1 Alimentación. Se prepara una pasta sólida mezclando mecánicamente un biocarbono seguido de KOH por 8 - 12 min. La mezcla se prepara a diferentes relaciones de masa KOH/Biocarbono entre 0,3 - 3,6. 1 .1 Food. A solid paste is prepared by mechanically mixing a biochar followed by KOH for 8 - 12 min. The mixture is prepared at different KOH/Biocarbon mass ratios between 0.3 - 3.6.
1.2.- Activación/Exfoliación: La pasta se introduce en una porta muestra en el centro de un reactor tubular de cuarzo y este dentro de un horno eléctrico. Se cierra herméticamente y bajo flujo de nitrógeno entre 80 - 120 mL/min, se purga el sistema por 10 - 30 min, a temperatura ambiente, y luego se calienta entre 8 - 12 °C min hasta la temperatura final entre 600 - 800 °C y se mantiene entre 0,5 - 1 ,5 h. Luego de ello, se deja enfriar el sistema entre 3 - 5 h, y luego la muestra se extrae del horno tubular y se pesa. 1.2.- Activation/Exfoliation: The paste is introduced into a sample holder in the center of a quartz tubular reactor and inside an electric oven. It is closed hermetically and under a nitrogen flow between 80 - 120 mL/min, the system is purged for 10 - 30 min, at room temperature, and then heated between 8 - 12 °C min until the final temperature between 600 - 800 ° C and is maintained between 0.5 - 1.5 h. After that, the system is allowed to cool for 3 - 5 h, and then the sample is removed from the tubular furnace and weighed.
1 .3.- Filtración- 1 , Separación Micro-Nano: el material obtenido fue separado en dos partes, realizando una primera filtración y lavado en agua caliente entre 60°C - 80°C con un volumen entre 500 - 800 mL de agua destilada, empleando alícuotas de 80 - 120 mL cada una. El material sólido obtenido sobre el filtro es secado entre 80 - 120°C por 1 - 3 h en un horno eléctrico. El agua de filtración colectada se utiliza para la siguiente etapa. 1 .3.- Filtration- 1, Micro-Nano Separation: the material obtained was separated into two parts, performing a first filtration and washing in hot water between 60°C - 80°C with a volume between 500 - 800 mL of water distilled, using aliquots of 80 - 120 mL each. The solid material obtained on the filter is dried between 80 - 120°C for 1 - 3 h in an electric oven. The collected filtration water is used for the next stage.
1.4.- Decantación Nano: El agua de filtración conteniendo fracciones de grafeno, se trasvasó a un embudo de decantación, y se dejó reposar entre 20 - 28 h. Este proceso permite observar la decantación progresiva de las fases de carbono nanométricos a base de grafeno. 1.5.- Filtración-2, Extracción Nano: Se procede a la filtración del líquido decantado empleando filtros de membrana comerciales entre 0,1 - 0,45 pm de paso. El material a base de grafeno retenido se seca en estufa entre 801.4.- Nano Settlement: The filtration water containing graphene fractions was transferred to a settling funnel, and allowed to rest for 20 - 28 h. This process allows us to observe the progressive decantation of the nanometric carbon phases based on graphene. 1.5.- Filtration-2, Nano Extraction: The decanted liquid is filtered using commercial membrane filters between 0.1 - 0.45 pm passage. The retained graphene-based material is dried in an oven between 80
- 120 °C por 1 - 3 h. Estas condiciones de trabajo permiten obtener rendimientos de síntesis de grafeno entre el 10 - 35%. - 120 °C for 1 - 3 h. These working conditions allow obtaining graphene synthesis yields between 10 - 35%.
2.- Síntesis del electrodo a base del material de grafeno. Está compuesta por 4 sub-etapas: 2.- Synthesis of the electrode based on graphene material. It is made up of 4 sub-stages:
2.1 . Mezclado. Se mezcla el material a base de grafeno obtenido de la etapa 1 , politetrafluoroetileno, y negro de humo, en una relación de peso igual a 85:10:5, suspendido en el solvente N-metilpirrolidona. Esta mezcla se somete a agitación vigorosa entre 125 - 175 rpm, y entre 10 - 30 minutos;2.1. Mixed. The graphene-based material obtained from stage 1, polytetrafluoroethylene, and carbon black are mixed in a weight ratio equal to 85:10:5, suspended in the solvent N-methylpyrrolidone. This mixture is subjected to vigorous stirring between 125 - 175 rpm, and between 10 - 30 minutes;
2.2. Elaboración de película: se coloca la mezcla anterior (sub-etapa 2.1.) sobre un soporte inerte y desplegar con varilla de vidrio según técnica de Dr. Blade. Luego, verificar la calidad de la película obtenida, a través de su observación en un microscopio óptico. Comprobar que la película no tiene fracturas y que es homogénea; 2.2. Film preparation: the previous mixture is placed (sub-stage 2.1.) on an inert support and deployed with a glass rod according to the Dr. Blade technique. Then, verify the quality of the film obtained, through observation in an optical microscope. Check that the film has no fractures and is homogeneous;
2.3. Llenado del electrolito: la película obtenida en la sub-etapa 2.2. se somete a un baño con una solución acuosa del electrolito H2SO41 M entre 623. Electrolyte filling: the film obtained in sub-stage 2.2. is subjected to a bath with an aqueous solution of the electrolyte H2SO41 M between 6
- 8 días; - 8 days;
2.4. Proceso de corte: se saca la película obtenida de la sub-etapa 2.3 y se corta discos de 5 mm de diámetro, empleando una relación de masa a superficie entre 8 -10 mg cnr2. Dichos discos son los denominados “electrodos”. 2.4. Cutting process: the film obtained from sub-stage 2.3 is removed and 5 mm diameter discs are cut, using a mass to surface ratio between 8 -10 mg cnr 2 . These discs are called “electrodes”.
Ejemplo 2. Evaluación del material a base de grafeno como electrodos para el almacenamiento de energía eléctrica. Example 2. Evaluation of graphene-based material as electrodes for the storage of electrical energy.
1 . Voltametría cíclica y capacitancia de celda. 1 . Cyclic voltammetry and cell capacitance.
Las medidas electroquímicas del material se hicieron empleando el sistema de dos electrodos simétricos tipo celdas Swagelok, a 25 °C en el estudio de voltametría cíclica (CV) y de la capacitancia de la celda. En la Figura 4a se muestran los resultados obtenidos de la densidad de corriente observada a diferentes velocidades de barrido entre 5 y 300 mV s-1 empleando una ventana de potencial entre 0 - 0,9 V para el material a base de grafeno. A partir de los datos de densidad de corriente en cada velocidad de barrido, se obtienen los valores de capacitancia de celda (Cceii, F g-1) que se representan en la Figura 4b como una función de la velocidad de barrido. The electrochemical measurements of the material were made using the system of two symmetrical Swagelok cell-type electrodes, at 25 °C in the study of cyclic voltammetry (CV) and the cell capacitance. Figure 4a shows the results obtained from the current density observed at different scanning speeds between 5 and 300 mV s -1 using a potential window between 0 - 0.9 V for the graphene-based material. From the current density data at each scan speed, the cell capacitance values (Cceii, F g -1 ) are obtained and are plotted in Figure 4b as a function of the scan speed.
2. Capacitancia del electrodo, gráficos de Ragone y estabilidad del electrodo. Esta configuración de dos electrodos simétricos tipo celdas Swagelok permite obtener directamente la capacitancia específica del electrodo (Ceiec) desde los datos obtenidos en la celda (Cceii), dado que Ceiec = 4 Cceii. De esta forma, los resultados normalizados de la capacitancia del electrodo en función de la velocidad de barrido y de la densidad de corriente se muestran en la Figura 5a y Figura 5b, respectivamente. Se puede apreciar que empleando una velocidad de barrido de 5 mV s-1, la Ceiec máxima observada por el electrodo es de cerca de 157 F g 1 (Figura 5a) mientras que empleando densidades de corriente de 0,2 A g-1, se observó una Ceiec máxima de 194 F g-1. 2. Electrode capacitance, Ragone plots and electrode stability. This configuration of two symmetrical Swagelok cell-type electrodes allows the specific capacitance of the electrode (Ceiec) to be directly obtained from the data obtained in the cell (Cceii), given that Ceiec = 4 Cceii. In this way, the normalized results of the electrode capacitance as a function of the scanning speed and current density are shown in Figure 5a and Figure 5b, respectively. It can be seen that using a scanning speed of 5 mV s -1 , the maximum Ceiec observed by the electrode is close to 157 F g 1 (Figure 5a) while using current densities of 0.2 A g -1 , A maximum Ceiec of 194 F g -1 was observed.
Para demostrar que los electrodos fabricados son útiles en el almacenamiento de energía eléctrica, se realizó un gráfico tipo Ragone (Figure 5c) el cual muestra que empleando densidades de corriente de 1 A g 1, comparable a la de algunos dispositivos electrónicos comerciales, se obtienen densidades de energía entre 3,8 - 4,0 Wh kg 1 empleando densidades de potencia entre 210 — 220 W kg 1. Al mismo tiempo, se comprobó la estabilidad de trabajo en la retención de la capacitancia del material a base de grafeno a largo plazo (Figura 5d), donde luego de 10000 ciclos de carga/descarga galvanostática, el material retuvo entre 76 - 78 % de su capacitancia específica original. To demonstrate that the manufactured electrodes are useful in the storage of electrical energy, a Ragone-type graph was made (Figure 5c) which shows that using current densities of 1 A g 1 , comparable to that of some commercial electronic devices, we obtain energy densities between 3.8 - 4.0 Wh kg 1 using power densities between 210 - 220 W kg 1 . At the same time, the work stability in the long-term capacitance retention of the graphene-based material was verified (Figure 5d), where after 10,000 galvanostatic charge/discharge cycles, the material retained between 76 - 78% of its original specific capacitance.
De esta forma, las prestaciones electroquímicas observadas, tanto en capacitancia específica, densidad de corriente y ciclabilidad, muestran que los electrodos elaborados son claramente superiores a la mayoría de los capacitores electroquímicos reportados en publicaciones [2-12] y/o en los documentos US8784764B2, US6060424, US8940145B1 , indicados anteriormente. In this way, the electrochemical performances observed, both in specific capacitance, current density and cyclability, show that the elaborated electrodes are clearly superior to the majority of electrochemical capacitors reported in publications [2-12] and/or in documents US8784764B2 , US6060424, US8940145B1, indicated above.
En conclusión, en base a estos antecedentes, se puede concluir que la presente invención proporciona un proceso sumamente útil, sencillo, económico, eco- amigable, y escalable, para la producción de materiales a base de grafeno para 5 su empleo como electrodos en capacitores electroquímicos para el almacenamiento de energía eléctrica. In conclusion, based on this background, it can be concluded that the present invention provides an extremely useful, simple, economical, eco-friendly, and scalable process for the production of graphene-based materials for 5 their use as electrodes in electrochemical capacitors for the storage of electrical energy.

Claims

REIVINDICACIONES
1.- Un proceso para elaborar un material potencial para la construcción de electrodos para el almacenamiento de energía eléctrica, CARACTERIZADO porque comprende al menos las siguientes etapas: 1.- A process to prepare a potential material for the construction of electrodes for the storage of electrical energy, CHARACTERIZED because it includes at least the following stages:
(a) Alimentación: mezclar un biocarbono obtenido de la pirólisis de materiales o residuos lignocelulósicos, con KOH a diferentes relaciones de masa KOH/Biocarbono entre 0,3 - 3,6; para obtener una mezcla; (a) Feed: mix a biocarbon obtained from the pyrolysis of lignocellulosic materials or waste, with KOH at different KOH/Biocarbon mass ratios between 0.3 - 3.6; to obtain a mixture;
(b) Activación/Exfoliación: someter la mezcla obtenida en etapa (a), a flujo de nitrógeno entre 80 - 120 mL/min a temperatura final entre 600 - 800 °C; (b) Activation/Exfoliation: subject the mixture obtained in stage (a) to a nitrogen flow between 80 - 120 mL/min at a final temperature between 600 - 800 °C;
(c) Filtración-1 , Separación Micro-Nanol: someter el material obtenido en etapa (b), a procesos sucesivos de filtración de material micrométrico, con filtración de partículas mayor a 100 nm de tamaño de partícula;(c) Filtration-1, Micro-Nanol Separation: subject the material obtained in step (b) to successive filtration processes of micrometric material, with filtration of particles greater than 100 nm in particle size;
(d) Decantación Nano: decantar y filtrar el material nanométñco con filtración de partículas menor a 100 nm de tamaña de partícula; (d) Nano Decantation: decant and filter the nanometric material with filtration of particles less than 100 nm in particle size;
(e) Filtración-2, Extracción Nano: filtrar el líquido decantado de la etapa (d) empleando un sistema de filtración con filtros de membrana entre 0,1 - 0,45 micrómetros de paso, y luego secar el material obtenido entre 80 - 120°C por 1 - 3 h; estas condiciones de trabajo permiten obtener rendimientos de síntesis de grafeno entre el 10 - 35%. (e) Filtration-2, Nano Extraction: filter the decanted liquid from step (d) using a filtration system with membrane filters between 0.1 - 0.45 micrometers of passage, and then dry the material obtained between 80 - 120°C for 1 - 3 h; These working conditions allow obtaining graphene synthesis yields between 10 - 35%.
2. El proceso para elaborar un material potencial para la construcción de electrodos para el almacenamiento de energía eléctrica según la reivindicación 1 , CARACTERIZADO porque dicho biocarbono es producido por pirólisis de materiales o residuos lignocelulósicos, en donde dichos materiales o residuos lignocelulósicos se obtienen sin limitación desde corteza de pino, roble, caoba, apamate, algarrobo. 2. The process to prepare a potential material for the construction of electrodes for the storage of electrical energy according to claim 1, CHARACTERIZED because said biocarbon is produced by pyrolysis of lignocellulosic materials or waste, where said lignocellulosic materials or waste are obtained without limitation from pine bark, oak, mahogany, apamate, carob.
3. El proceso para elaborar un material potencial para la construcción de electrodos para el almacenamiento de energía eléctrica según la reivindicación 1 -2, CARACTERIZADO porque dicho biocarbono es producido por pirólisis de taninos extraído de corteza de pino: Pinus Radiata. 3. The process to prepare a potential material for the construction of electrodes for the storage of electrical energy according to claim 1 -2, CHARACTERIZED because said biocarbon is produced by pyrolysis of tannins extracted from pine bark: Pinus Radiata.
4. Un proceso para elaborar un electrodo para el almacenamiento de energía eléctrica, CARACTERIZADO porque comprende las etapas de: 4. A process to make an electrode for the storage of electrical energy, CHARACTERIZED because it includes the stages of:
(f) Mezclar el material obtenido según reivindicaciones 1 -3, politetrafluoroetileno y negro de humo, en una relación de peso igual a 85:10:5; (f) Mix the material obtained according to claims 1-3, polytetrafluoroethylene and carbon black, in a weight ratio equal to 85:10:5;
(g) Desplegar con varilla de vidrio la mezcla obtenida en (f), sobre una superficie inerte; (g) Spread the mixture obtained in (f) with a glass rod on an inert surface;
(h) Someter la película obtenida en (g) a un baño de solución acuosa del electrolito H2SO4 1 M, entre 6 - 8 días; (h) Subject the film obtained in (g) to a bath of aqueous solution of the electrolyte H2SO4 1 M, between 6 - 8 days;
(i) Cortar discos de 5 mm de diámetro, a entenderse electrodos, con una relación de masa a área de superficie entre 8 -10 mg cm-2. (i) Cut 5 mm diameter discs, meaning electrodes, with a mass to surface area ratio between 8 -10 mg cm-2.
PCT/CL2022/050051 2022-05-13 2022-05-13 Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors WO2023216004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050051 WO2023216004A1 (en) 2022-05-13 2022-05-13 Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050051 WO2023216004A1 (en) 2022-05-13 2022-05-13 Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors

Publications (1)

Publication Number Publication Date
WO2023216004A1 true WO2023216004A1 (en) 2023-11-16

Family

ID=88729301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050051 WO2023216004A1 (en) 2022-05-13 2022-05-13 Method for producing graphene-based materials and use thereof in the manufacture of electrodes for electrochemical capacitors

Country Status (1)

Country Link
WO (1) WO2023216004A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478365B2 (en) * 2013-05-03 2016-10-25 The Governors Of The University Of Alberta Carbon nanosheets
US20170194105A1 (en) * 2016-01-04 2017-07-06 Aruna Zhamu Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode
US20210028442A1 (en) * 2017-10-16 2021-01-28 Sekisui Chemical Co., Ltd. Composite body, electrode material for electricity storage devices, and electricity storage device
KR102333731B1 (en) * 2021-04-29 2021-12-02 한국지질자원연구원 Electrodes for supercapacitor comprising reduced graphene oxide, method of manufacturing the electrodes, and super capacitor comprising the electrodes
US20220064536A1 (en) * 2020-08-28 2022-03-03 Hempax, LLC Biomass-based method and composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478365B2 (en) * 2013-05-03 2016-10-25 The Governors Of The University Of Alberta Carbon nanosheets
US20170194105A1 (en) * 2016-01-04 2017-07-06 Aruna Zhamu Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode
US20210028442A1 (en) * 2017-10-16 2021-01-28 Sekisui Chemical Co., Ltd. Composite body, electrode material for electricity storage devices, and electricity storage device
US20220064536A1 (en) * 2020-08-28 2022-03-03 Hempax, LLC Biomass-based method and composition
KR102333731B1 (en) * 2021-04-29 2021-12-02 한국지질자원연구원 Electrodes for supercapacitor comprising reduced graphene oxide, method of manufacturing the electrodes, and super capacitor comprising the electrodes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PEREZ_RODRIGUEZ, S. ET AL.: "Upgrading of pine tannin biochars as electrochemical capacitor electrodes", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 601, November 2021 (2021-11-01), pages 863 - 876, XP086719498, DOI: https://doi.org/10.1016/j.jcis. 2021.05.16 2 *
PURKAIT TANIYA, SINGH GUNEET, SINGH MANDEEP, KUMAR DINESH, DEY RAMENDRA SUNDAR: "Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 7, no. 1, US , XP093111078, ISSN: 2045-2322, DOI: 10.1038/s41598-017-15463-w *
YU, B. ET AL.: "The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors", MATERIALS CHEMISTRY AND PHYSICS, vol. 181, 15 September 2016 (2016-09-15), pages 187 - 193, XP029665366, DOI: https://doi.org/10.1 016/j.matchemphys. 2016.06.04 8 *
YUN, Y. ET AL.: "Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors", ADVANCED MATERIALS, vol. 25, 2013, pages 1993 - 1998, XP071812423, DOI: 10.1002/adma.201204692 *

Similar Documents

Publication Publication Date Title
Rajesh et al. Pinecone biomass‐derived activated carbon: the potential electrode material for the development of symmetric and asymmetric supercapacitors
Wang et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors
Karaman et al. Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways
Guo et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities
Zhou et al. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction
Cao et al. Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance
Pontiroli et al. Super-activated biochar from poultry litter for high-performance supercapacitors
Wang et al. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications
Tian et al. Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors
Biswal et al. From dead leaves to high energy density supercapacitors
Nguyen et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications
Panmand et al. Unique perforated graphene derived from Bougainvillea flowers for high-power supercapacitors: a green approach
Bai et al. Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes
Yadav et al. Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors
Yan et al. Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems
Li et al. β‐Ni (OH) 2 Nanosheet Arrays Grown on Biomass‐Derived Hollow Carbon Microtubes for High‐Performance Asymmetric Supercapacitors
Su et al. Highly Doped Carbon Nanobelts with Ultrahigh Nitrogen Content as High‐Performance Supercapacitor Materials
Le et al. Porous carbon materials derived from areca palm leaves for high performance symmetrical solid-state supercapacitors
Nazari et al. The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors
US20140291587A1 (en) N-Doped Carbon Materials
Cao et al. Preparation of oxygen-rich hierarchical porous carbon for supercapacitors through the co-carbonization of pitch and biomass
Choudhury et al. Biomass blend derived porous carbon for aqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyte
Meng et al. Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors
Farma et al. Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor
Ortiz-Olivares et al. Production of nanoarchitectonics corncob activated carbon as electrode material for enhanced supercapacitor performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940979

Country of ref document: EP

Kind code of ref document: A1