WO2023200133A1 - Vehicular solar power control system - Google Patents

Vehicular solar power control system Download PDF

Info

Publication number
WO2023200133A1
WO2023200133A1 PCT/KR2023/003802 KR2023003802W WO2023200133A1 WO 2023200133 A1 WO2023200133 A1 WO 2023200133A1 KR 2023003802 W KR2023003802 W KR 2023003802W WO 2023200133 A1 WO2023200133 A1 WO 2023200133A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
voltage battery
battery
module
Prior art date
Application number
PCT/KR2023/003802
Other languages
French (fr)
Korean (ko)
Inventor
하용호
고원일
안창환
김지수
Original Assignee
엘에스오토모티브테크놀로지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스오토모티브테크놀로지스 주식회사 filed Critical 엘에스오토모티브테크놀로지스 주식회사
Publication of WO2023200133A1 publication Critical patent/WO2023200133A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle power control system, and more specifically, to a vehicle solar power control system that stably charges a vehicle battery using a plurality of solar panels mounted on the vehicle.
  • Electric vehicles are vehicles that run on power supplied from secondary batteries instead of fossil fuels, and the driving distance and speed are increasing. These electric vehicles are emerging as a means of solving the problem of fossil fuel depletion, and are positioned as a next-generation means of transportation.
  • the present invention was proposed to solve the above-mentioned problems, and its purpose is to provide a solar power control system for vehicles that can stably charge a vehicle battery by generating large amounts of solar power using a plurality of solar panels. There is.
  • another object of the present invention is to provide a vehicle solar power control system that can charge a vehicle battery with high efficiency by controlling converter modules connected to each of a plurality of solar panels in parallel.
  • a solar power control system for a vehicle includes a plurality of converter modules that are connected one to one to each of a plurality of solar panels and convert the voltage obtained from each solar panel to charge a low-voltage battery and a high-voltage battery.
  • the plurality of converter modules include one master converter module and one or more slave converter modules, and the control unit of the master converter module controls the operation of the master converter module according to a charging command received from the battery management system. Control or transmit the charging command to the control unit of the corresponding slave converter module.
  • the control unit of the master converter module transmits the current value and voltage value of each of the plurality of solar panels and the current value and voltage value of the low-voltage battery and the high-voltage battery to the battery management system, and based on this, the A charging command can be received.
  • Each of the plurality of converter modules includes: a low-voltage battery charging converter that converts the voltage obtained from the corresponding solar panel to charge the low-voltage battery; A buck converter for step-down converting the voltage obtained from the corresponding solar panel; And it may include a high-voltage battery charging converter that converts the voltage supplied from the buck converter to charge the high-voltage battery.
  • the control unit of each of the plurality of converter modules may control a pair of switches included in the buck converter through a Maximum Power Point Tracking (MPPT)-based PWM (Pulse Width Modulation) signal.
  • MPPT Maximum Power Point Tracking
  • PWM Pulse Width Modulation
  • the control unit of each of the plurality of converter modules may control a pair of switches included in the high-voltage battery charging converter through a fixed PWM signal.
  • the high-voltage battery charging converter may be a push-pull converter.
  • the high-voltage battery charging converter includes a transformer module that transforms the voltage supplied from the buck converter to a predetermined voltage through control of a pair of switches; a rectifier module that rectifies the voltage transformed by the transformer module; and an inductor that stores the voltage rectified in the rectifier module and supplies it to the high voltage battery.
  • the present invention can stably charge a vehicle battery by performing large-capacity solar power generation using a plurality of solar panels.
  • the present invention can charge a vehicle battery with high efficiency by controlling converter modules connected to each of a plurality of solar panels in parallel.
  • the present invention can simultaneously secure power stability and efficiency by charging the high-voltage battery through a buck converter and a push-pull type high-voltage battery charging converter in each converter module.
  • the present invention has the advantage of preventing fire due to electric shock or short circuit that occurs due to a vehicle accident, etc. by discharging the high voltage charged in the high voltage battery charging converter when an emergency situation occurs.
  • FIG. 1 is a diagram showing a solar power control system for a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the detailed configuration of the master converter module of FIG. 1.
  • FIG. 3 is a diagram showing the detailed configuration of each converter in FIG. 2.
  • the solar power control system for a vehicle according to an embodiment of the present invention includes a plurality of solar panels 110: 110-1,..., 110-N, a plurality of solar panels.
  • BMS Battery Management System
  • the plurality of solar panels 110 convert solar energy into electrical energy and output it.
  • the plurality of solar panels 110 are installed in areas of the vehicle that can obtain the most sunlight, such as the roof, bonnet, and trunk of the vehicle.
  • Each solar panel 110 transfers the converted electrical energy to the corresponding converter module 120 connected to each solar panel 110.
  • Each of the plurality of converter modules 120 converts the electrical energy transmitted from the corresponding solar panel 110 into a preset voltage power source to charge the first battery 130 and the second battery 140.
  • each converter module 120 converts the electrical energy delivered from each solar panel 110 into a preset low voltage power source (e.g., 12V) to charge the first battery 130 or to a preset high voltage power source. Convert the power source (e.g., 360 to 825 V) to charge the second battery 140.
  • the first battery 130 is a battery mounted in a vehicle.
  • the first battery 240 can supply power to various load devices in a vehicle that operates at low voltage.
  • the first battery 130 may be a 12V lithium ion battery.
  • the first battery 130 is referred to as a low voltage (LV) battery.
  • the second battery 140 is another battery mounted in the vehicle and can supply power to various load devices in the vehicle that operate at high voltage.
  • the second battery 140 can supply power in conjunction with braking devices.
  • the second battery 140 may be a 360 to 825V lithium ion battery.
  • the second battery 140 is referred to as a high voltage (HV) battery.
  • the converter module that communicates with the BMS 150 is called the master converter module 120-1, and the remaining converter modules are called slave converter modules 120-2,..., 120-N. .
  • Each converter module 120 is equipped with a control unit (e.g., MCU, Micro Controller Unit). Only the control unit of the master converter module 120-1 communicates directly with the BMS 150, and the remaining slave converter modules 120-2 ,..., The control unit of 120-N) does not communicate directly with the BMS 150, but communicates with the control unit of the master converter module 120-1. That is, the control unit of the master converter module 120-1 transmits a command to the slave converter modules 120-2,..., 120-N according to the command of the BMS 150.
  • a control unit e.g., MCU, Micro Controller Unit
  • Each of the slave converter modules (120-2,..., 120-N) converts the current and voltage values measured from each corresponding solar panel (110-2,..., 110-N) to the master converter. It is transmitted to the control unit of module 120-1.
  • the control unit of the master converter module 120-1 transmits the current and voltage values measured in the corresponding solar panel 110-1 to the BMS 150, and also to the slave converter modules 120-2.
  • the current and voltage values measured in each solar panel (110-2,..., 110-N) transmitted from .., 120-N) are transmitted to the BMS 150. Additionally, the control unit of the master converter module 120-1 transmits the current and voltage values measured in the batteries 130 and 140 to the BMS 150.
  • the BMS 150 controls and manages the charging and discharging of the batteries 130 and 140 through direct communication (eg, CAN communication) with the master converter module 120-1.
  • the BMS 150 receives the current and voltage values measured at each solar panel 110 and the current and voltage values measured at the batteries 130 and 140, which are received from the control unit of the master converter module 120-1. Based on the value, the solar panel 110 to be used for charging the batteries 130 and 140 is determined and the corresponding charging command is transmitted to the control unit of the master converter module 120-1.
  • the control unit of the master converter module 120-1 charges the batteries 130 and 140 with the electrical energy of the solar panel 110 connected to itself according to the received charging command, or responds according to the received charging command.
  • a charging command is transmitted to the control unit of the slave converter module (120-2,..., 120-N) to charge electricity to the solar panel 110 from the corresponding slave converter module (120-2,..., 120-N).
  • the batteries 130 and 140 are charged with energy.
  • FIG. 2 is a diagram showing the detailed configuration of the master converter module of FIG. 1.
  • the master converter module 120-1 includes a low voltage (LV) battery charging converter 210, a buck converter 220, a high voltage battery charging converter 230, an MCU 240, and a CAN transceiver. (CAN transiver) (250).
  • the low voltage (LV) battery charging converter 210, buck converter 220, and high voltage battery charging converter 230 operate under the control of the MCU 240, which is a control unit.
  • the low-voltage battery charging converter 210 converts the electrical energy input from solar panel #1 (110-1) into a preset low-voltage power source (e.g., 12V power source) to charge the low-voltage (LV) battery 130. .
  • the low-voltage battery charging converter 210 includes a pair of switches, an inductor, and a capacitor, and the pair of switches alternately performs a switching operation according to a PWM (Pulse Width Modulation) signal received from a separate PWM IC.
  • PWM Pulse Width Modulation
  • the buck converter 220 steps down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter 230.
  • the buck converter 220 includes a pair of switches, an inductor, and a capacitor that are switched to operate in buck mode, and a pair of switches according to the PWM signals (PWM 1 and PWM 2 ) received from the MCU 240. alternately performs a switching operation to step down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter (230).
  • the high voltage battery charging converter 230 charges the high voltage (HV) battery 140 in a push-pull method using the voltage provided by the buck converter 220.
  • the high-voltage battery charging converter 230 includes a pair of switches, a transformer, an inductor, and a capacitor, and the pair of switches alternately performs a switching operation according to the PWM signals (PWM 3 and PWM 4 ) received from the MCU 240.
  • the high-voltage battery 140 is charged using a push-pull method.
  • the flyback method is used when charging the high-voltage battery 140.
  • the solar power control system for vehicles ensures that stable power is output from the buck converter 220 and the high-voltage battery charging converter 230 uses a push-pull method to charge the high-voltage battery 140. Efficiency and stability are secured by charging.
  • the MCU 240 which is a control unit, communicates directly with the BMS 150 through the CAN transceiver 250, and operates the low-voltage (LV) battery charging converter 210 and the buck converter 220 according to the charging command received from the BMS 150. ) and the high-voltage battery charging converter 230, or transmit charging commands to the MCU, which is the control unit of the slave converter modules 120-2,..., 120-N.
  • the charging command includes identification information of the converter module (120-1,..., 120-N), so you can check which converter module (120-1,..., 120-N) the charging command is for. there is.
  • the MCU 240 transmits the current and voltage values measured at solar panel #1 (110-1) and the current and voltage values measured at the batteries 130 and 140 to the BMS through the transceiver 250. Forward to (150). In addition, the MCU 240 measures measurements at each solar panel (110-2,..., 110-N) transmitted from the MCU of each slave converter module (120-2,..., 120-N). The current and voltage values are received and transmitted to the BMS (150) through the CAN transceiver (250).
  • the low-voltage (LV) battery charging converter 210, buck converter 220, high-voltage battery charging converter 230, and MCU 240 shown in FIG. 2 are each slave converter module 120-2,..., 120- N) is also included in the same way.
  • the MCU of each slave converter module (120-2,..., 120-N) does not communicate directly with the BMS (150), but communicates with the BMS (240) through the MCU (240) of the master converter module (120-1).
  • 150 communicates indirectly. That is, the MCU 240 of the master converter module 120-1 relays data transmission and reception between the BMS 150 and the MCU of each slave converter module 120-2,..., 120-N.
  • FIG. 3 is a diagram showing the detailed configuration of each converter in FIG. 2.
  • the low-voltage (LV) battery charging converter 210 converts the electrical energy input from solar panel #1 (110-1) into a preset low-voltage power source (e.g., 12V power source) to charge the low-voltage (LV) battery ( 130) is charged.
  • the low-voltage battery charging converter 210 includes a pair of switches Q3 and Q4, an inductor 211, and a capacitor 212.
  • the pair of switches Q3 and Q4 alternately perform switching operations according to the PWM signal received from the PWM IC 215 and operate in buck mode.
  • a Field Effect Transistor (FET) switch is used as the pair of switches (Q3 and Q4).
  • the source terminal of the switch Q3 is connected to the positive terminal (Solar_panel_volt) on the solar panel #1 (110-1) side, and the drain terminal is connected to the inductor 211.
  • the source terminal of the switch Q4 is connected to the negative electrode of the low-voltage battery 130, and the drain terminal is connected to the path formed between the switch Q3 and the inductor 211.
  • the inductor 211 is disposed on a path connecting the switch Q3 and the anode of the low-voltage battery 130, accumulates energy when current flows, and supplies it to the low-voltage battery 130.
  • the capacitor 212 is for output smoothing. Since the low-voltage (LV) battery charging converter 210 operates by the PWM IC 215, it further includes another switch (Q5) so that charging of the low-voltage battery 130 can be controlled by the MCU 240. That is, the MCU 240 controls the charging of the low-voltage battery 130 by the low-voltage (LV) battery charging converter 210 on/off by controlling the on/off of the switch Q5.
  • the low voltage (LV) battery charging converter 210 includes a pair of resistors 214a and 214b connected in parallel to the low voltage battery 130. This pair of resistors 214a and 214b is for measuring the voltage of the low-voltage battery 130. The voltage between this pair of resistors 214a and 214b is measured by the MCU 240, and the MCU 240 measures the voltage between the resistors 214a and 214b. The voltage value (V LV ) of the low-voltage battery 130 is transmitted to the BMS (150).
  • the low-voltage (LV) battery charging converter 210 further includes a current sensor 213 connected between the switch Q5 and the positive terminal of the low-voltage battery 130.
  • the current sensor 213 measures the current value (I LV ) flowing into the low-voltage battery 130 and the measured current value (I LV ) is transmitted to the MCU 240, and the MCU 240 measures the measured current value (I LV ) is transmitted to the BMS (150).
  • Current sensor 213 may be a Hall sensor or a shunt resistor.
  • the buck converter 220 steps down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter 230. That is, the voltage (Buck_Vout) output from the buck converter 220 is provided to the high voltage battery charging converter 230.
  • Buck converter 220 includes a pair of switches (Q1, Q2), an inductor 221, and a capacitor 222 that are switched to operate in buck mode.
  • the pair of switches (Q1, Q2) alternately perform switching operations according to PWM signals (PWM 1 , PWM 2 ) received from the MCU 240.
  • a FET (Field Effect Transistor) switch is used as the pair of switches (Q1, Q2).
  • the source terminal of the switch Q1 is connected to the anode terminal of solar panel #1 (110-1), and the drain terminal is connected to the inductor 221.
  • the source terminal of the switch Q2 is connected to the cathode terminal of solar panel #1 (110-1), and the drain terminal is connected to the path formed between the switch Q1 and the inductor 221.
  • the inductor 221 is connected to the switch Q1 and accumulates energy when current flows and supplies it to the high voltage charging converter 230.
  • the capacitor 222 is for output smoothing.
  • a switch 225 is connected to the positive terminal on the solar panel #1 (110-1) side, and the MCU (240) controls the on/off of the switch 225 from solar panel #1 (110-1). Controls the on/off voltage supply to the low-voltage battery charging converter 210 and buck converter 220. That is, when the switch 225 is turned off, charging of the batteries 130 and 140 is all blocked.
  • the switch 225 may be a Field Effect Transistor (FET) switch.
  • FET Field Effect Transistor
  • Buck converter 220 includes two pairs of resistors.
  • a pair of resistors 223a and 223b is connected in parallel to the capacitor 222 and is used to measure the voltage provided from the buck converter 220 to the high voltage battery charging converter 210.
  • the voltage between this pair of resistors 223a and 223b is measured by the MCU 240, and the MCU 240 can transmit the measured voltage value (V buck ) to the BMS 150.
  • the remaining pair of resistors 224a and 224b are connected in parallel to solar panel #1 (110-1).
  • This pair of resistors (224a, 224b) is for measuring the voltage of solar panel #1 (110-1), and the voltage between this pair of resistors (224a, 224b) is the MCU (240) of the buck converter (220). ), and the MCU 240 transmits the measured voltage value (V solar ) of solar panel #1 (110-1) to the BMS (150).
  • the buck converter 220 further includes a current sensor 226 connected between the switch 225 and the switch Q1.
  • the current sensor 226 measures the current value (I SOlar ) flowing on the solar panel #1 (110-1), and the measured current value (I SOlar ) is transmitted to the MCU 240. ) transmits the measured current value (I SOlar ) to the BMS (150).
  • Current sensor 226 may be a Hall sensor or a shunt resistor.
  • the high voltage battery charging converter 230 charges the high voltage (HV) battery 140 in a push-pull method using the voltage (Buck_Vout) provided by the buck converter 220.
  • the high-voltage battery charging converter 230 includes a pair of switches (Q6, Q7), a transformer module 231, a rectifier module 232, an inductor 233, a capacitor 234, a diode 236, and a current sensor 237. ), and a voltage sensor 238.
  • the pair of switches Q6 and Q7 are turned on or off under the control of the MCU 240. As the pair of switches Q6 and Q7 are alternately turned on and operated, the voltage applied from the buck converter 220 passes through the transformer module 231.
  • the transformer module 231 converts the voltage supplied from the buck converter 220 into a voltage of a predetermined size according to the operation of the switches Q6 and Q7. Since the high-voltage battery charging converter 230 operates as a push-pull converter, the magnitude of the input voltage is not reduced by half, and the magnitude of the input voltage is output as is from the transformer module 231 and transmitted to the rectifier module 232. You can.
  • the rectifier module 232 includes a plurality of diodes and allows the current of the voltage output from the transformer module 231 to flow through the diodes to the path where the inductor 233 is arranged.
  • the inductor 233 accumulates energy when current flows and supplies it to the high voltage battery 140.
  • the capacitor 234 is for output smoothing.
  • the diode 236 is arranged so that the current generated in the capacitor 234 or the rectifier module 232 flows only to the high voltage battery 140.
  • the diode 236 also functions to block reverse polarity current that may occur in the high voltage battery 140.
  • the current sensor 237 measures the current value (I HV ) flowing into the high-voltage battery 140 , and the measured current value (I HV ) is transmitted to the MCU (240).
  • Current sensor 237 may be a Hall sensor or a shunt resistor.
  • the MCU 240 of the buck converter 220 transfers the received current value (I HV ) to the BMS 150.
  • the voltage sensor 238 measures the voltage value (V HV ) of the high voltage battery 240, and the measured voltage value (V HV ) is transmitted to the MCU 240.
  • the MCU 240 transfers the received voltage value (V HV ) to the BMS 150.
  • the high-voltage battery charging converter 230 may further include a discharge unit 240.
  • the discharge unit 240 includes a photocoupler 241, a discharge switch Q8, and a discharge resistor 242.
  • the photo coupler 241 When the photo coupler 241 receives an input signal from the MCU 240, it generates an output signal and turns on the discharge switch Q8.
  • the input part of the photo coupler 241 is connected to the MCU 240, and the output part of the photo coupler 241 is connected to the gate terminal of the discharge switch Q8. That is, when an input signal is applied through the input unit, the port coupler 241 generates an output signal to the output unit and turns on the discharge switch Q8.
  • the MCU 240 may be directly connected to the discharge switch Q8 without using the photo coupler 241, and may directly turn on the discharge switch Q8. When the MCU 240 turns on the discharge switch Q8 using the photo coupler 241, the discharge switch Q8 can be turned on more quickly.
  • the discharge switch Q8 is turned on during rapid discharge and performs the function of quickly discharging the voltage accumulated in the capacitor 234. That is, a discharge path branching from the path in which power is supplied from the capacitor 234 to the high voltage battery 140 is formed, and a discharge resistor 242 and a discharge switch Q8 are disposed in this discharge path.
  • the discharge resistor 242 is designed to have a resistance value that sufficiently discharges the voltage discharged from the capacitor 234. Additionally, the source terminal of the discharge switch Q8 is grounded, and the drain terminal is connected to one end of the discharge resistor 242. Additionally, the other end of the discharge resistor 242 is connected to one end of the capacitor 234.
  • the MCU 240 generates a PWM signal based on MPPT (Maximum Power Point Tracking) with the switches (Q1, Q2) of the buck converter 220, supplies stable power to the high-voltage battery charging converter 230, and supplies stable power to the high-voltage battery.
  • the switches (Q3, Q4) of the charge converter 230 are controlled with a fixed PWM signal to charge the high-voltage battery 140.
  • MPPT control is performed by a single converter for the input of a single solar panel, it is difficult to estimate the rapidly changing solar characteristics while driving the vehicle.
  • MPPT control is performed separately for the input of each solar panel 110. Because of this, solar characteristics can be quickly tracked.
  • efficiency since the efficiency is better than the conventional flyback converter method, efficiency and controllability can be secured at the same time.

Abstract

Disclosed is a vehicular solar power control system capable of stably charging a vehicle battery by performing large-capacity solar power generation through a plurality of solar panels. The vehicular solar power control system according to one aspect comprises a plurality of converter modules which are connected, one to one, to each of a plurality of solar panels so as to convert the voltage obtained from the respective solar panels, thereby charging a low-voltage battery and a high-voltage battery, and which include one master converter module and one or more slave converter modules, wherein a control unit of the master converter module controls the operation of a corresponding master converter module according to a charging command received from a battery management system, or transmits the charging command to a control unit of a corresponding slave converter module.

Description

차량용 태양광 전력 제어 시스템Automotive solar power control system
본 출원은, 2022년 4월 11일자로 출원된 한국 특허출원번호 제10-2022-0044743호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application is a priority application for Korean Patent Application No. 10-2022-0044743 filed on April 11, 2022, and all contents disclosed in the specification and drawings of the application are incorporated by reference into this application. .
본 발명은 차량용 전력 제어 시스템에 관한 것으로서, 더욱 상세하게는 차량에 장착된 복수의 태양광 패널들을 이용하여 차량용 배터리를 안정적으로 충전하는 차량용 태양광 전력 제어 시스템에 관한 것이다.The present invention relates to a vehicle power control system, and more specifically, to a vehicle solar power control system that stably charges a vehicle battery using a plurality of solar panels mounted on the vehicle.
오늘날 지구 온난화, 자원 고갈 등의 문제로 인하여, 대체 에너지에 대한 연구가 활발해지고 있는 추세이다. 특히, 대기오염의 주범으로 지적되는 자동차 에너지원에 대한 연구가 활발하다. 이러한 연구 중에서 대표적인 것은 자동차 에너지원인 화석원료를 전기 에너지로 대체하는 전기 자동차 연구 분야이다. Today, due to problems such as global warming and resource depletion, research on alternative energy is becoming more active. In particular, research is active on automobile energy sources, which are pointed out as the main culprit of air pollution. A representative example of such research is the field of electric vehicle research, which replaces fossil fuels, the energy source for automobiles, with electrical energy.
전기 자동차는 화석원료 대신에 2차 전지의 전원을 동력으로 공급받아 주행하는 차량으로서, 주행거리가 점점 늘어가고 속력도 향상되고 있는 추세이다. 이러한 전기 자동차는 화석연료 고갈의 문제점을 해결할 수 있는 수단으로서 부각되고 있으며, 차세대 이동수단으로 자리매김하고 있다.Electric vehicles are vehicles that run on power supplied from secondary batteries instead of fossil fuels, and the driving distance and speed are increasing. These electric vehicles are emerging as a means of solving the problem of fossil fuel depletion, and are positioned as a next-generation means of transportation.
나아가, 태양광을 이용하여 차량 주행중 또는 정차중에 2차 전지를 충전하는 기술이 등장하였다. 즉, 차량의 지붕에 태양광 패널을 설치하고 이 태양광 패널을 이용하여 차량의 2차 전지를 충전한다. 그런데 종래에는 차량에 단일 태양광 패널만을 설치하여 태양광 발전을 수행하기 때문에 대용량의 태양광 발전이 어려운 문제점이 있다.Furthermore, technology has emerged that uses solar energy to charge secondary batteries while the vehicle is running or stopped. In other words, a solar panel is installed on the roof of the vehicle and the vehicle's secondary battery is charged using the solar panel. However, conventionally, solar power generation is performed by installing only a single solar panel on a vehicle, so there is a problem in that large-capacity solar power generation is difficult.
본 발명은 상술한 문제점을 해결하기 위하여 제안된 것으로, 복수의 태양광 패널을 이용하여 대용량의 태양광 발전을 수행하여 안정적으로 차량용 배터리를 충전할 수 있는 차량용 태양광 전력 제어 시스템을 제공하는데 그 목적이 있다.The present invention was proposed to solve the above-mentioned problems, and its purpose is to provide a solar power control system for vehicles that can stably charge a vehicle battery by generating large amounts of solar power using a plurality of solar panels. There is.
특히, 본 발명은 복수의 태양광 패널 각각에 연결된 컨버터 모듈들을 병렬 제어하여 고효율로 차량용 배터리를 충전할 수 있는 차량용 태양광 전력 제어 시스템을 제공하는데 다른 목적이 있다.In particular, another object of the present invention is to provide a vehicle solar power control system that can charge a vehicle battery with high efficiency by controlling converter modules connected to each of a plurality of solar panels in parallel.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood from the following description and will be more clearly understood by practicing the present invention. Additionally, it will be readily apparent that the objects and advantages of the present invention can be realized by the means and combinations thereof indicated in the patent claims.
일 측면에 따른, 차량용 태양광 전력 제어 시스템은, 복수의 태양광 패널 각각에 1대1로 연결되어 각각 태양광 패널에서 획득된 전압을 변환하여 저전압 배터리 및 고전압 배터리를 충전하는 복수의 컨버터 모듈을 포함하고, 상기 복수의 컨버터 모듈은, 하나의 마스터 컨버터 모듈과 하나 이상의 슬레이브 컨버터 모듈을 포함하며, 상기 마스터 컨버터 모듈의 제어부는, 배터리 관리 시스템으로부터 수신되는 충전 명령에 따라 해당 마스터 컨버터 모듈의 동작을 제어하거나 해당 충전 명령을 대응하는 슬레이브 컨버터 모듈의 제어부로 전달한다.According to one aspect, a solar power control system for a vehicle includes a plurality of converter modules that are connected one to one to each of a plurality of solar panels and convert the voltage obtained from each solar panel to charge a low-voltage battery and a high-voltage battery. The plurality of converter modules include one master converter module and one or more slave converter modules, and the control unit of the master converter module controls the operation of the master converter module according to a charging command received from the battery management system. Control or transmit the charging command to the control unit of the corresponding slave converter module.
상기 마스터 컨버터 모듈의 제어부는, 상기 복수의 태양광 패널 각각의 전류값 및 전압값과, 상기 저전압 배터리 및 상기 고전압 배터리의 전류값 및 전압값을, 상기 배터리 관리 시스템으로 전달하고, 이에 기초하여 상기 충전 명령을 수신할 수 있다.The control unit of the master converter module transmits the current value and voltage value of each of the plurality of solar panels and the current value and voltage value of the low-voltage battery and the high-voltage battery to the battery management system, and based on this, the A charging command can be received.
상기 복수의 컨버터 모듈 각각은, 대응하는 태양광 패널에서 획득된 전압을 변환하여 상기 저전압 배터리를 충전하는 저전압 배터리 충전 컨버터; 대응하는 태양광 패널에서 획득된 전압을 강압 변환하는 벅 컨버터; 및 상기 벅 컨버터로부터 공급되는 전압을 변환하여 상기 고전압 배터리를 충전하는 고전압 배터리 충전 컨버터를 포함할 수 있다.Each of the plurality of converter modules includes: a low-voltage battery charging converter that converts the voltage obtained from the corresponding solar panel to charge the low-voltage battery; A buck converter for step-down converting the voltage obtained from the corresponding solar panel; And it may include a high-voltage battery charging converter that converts the voltage supplied from the buck converter to charge the high-voltage battery.
상기 복수의 컨버터 모듈 각각의 제어부는, 상기 벅 컨버터에 포함된 한 쌍의 스위치를 MPPT(Maximum Power Point Tracking) 기반의 PWM(Pulse Width Modulation) 신호를 통해 제어할 수 있다.The control unit of each of the plurality of converter modules may control a pair of switches included in the buck converter through a Maximum Power Point Tracking (MPPT)-based PWM (Pulse Width Modulation) signal.
상기 복수의 컨버터 모듈 각각의 제어부는, 상기 고전압 배터리 충전 컨버터에 포함된 한 쌍의 스위치를 고정 PWM 신호를 통해 제어할 수 있다.The control unit of each of the plurality of converter modules may control a pair of switches included in the high-voltage battery charging converter through a fixed PWM signal.
상기 고전압 배터리 충전 컨버터는, 푸시풀 컨버터일 수 있다.The high-voltage battery charging converter may be a push-pull converter.
상기 고전압 배터리 충전 컨버터는, 한 쌍의 스위치의 제어를 통해서 상기 벅 컨버터로부터 공급되는 전압을 소정의 전압으로 변압하는 변압 모듈; 상기 변압 모듈에서 변압된 전압을 정류하는 정류 모듈; 및 상기 정류 모듈에서 정류된 전압을 저장하고 상기 고전압 배터리로 공급하는 인덕터;를 포함할 수 있다.The high-voltage battery charging converter includes a transformer module that transforms the voltage supplied from the buck converter to a predetermined voltage through control of a pair of switches; a rectifier module that rectifies the voltage transformed by the transformer module; and an inductor that stores the voltage rectified in the rectifier module and supplies it to the high voltage battery.
본 발명은, 복수의 태양광 패널을 이용하여 대용량의 태양광 발전을 수행하여 안정적으로 차량용 배터리를 충전할 수 있다.The present invention can stably charge a vehicle battery by performing large-capacity solar power generation using a plurality of solar panels.
또한, 본 발명은, 복수의 태양광 패널 각각에 연결된 컨버터 모듈들을 병렬 제어하여 고효율로 차량용 배터리를 충전할 수 있다.Additionally, the present invention can charge a vehicle battery with high efficiency by controlling converter modules connected to each of a plurality of solar panels in parallel.
또한, 본 발명은, 각 컨버터 모듈에서 벅 컨버터와 푸시 풀 방식의 고전압 배터리 충전 컨버터를 통해 고전압 배터리를 충전함으로써 전원 안정성과 효율을 동시에 확보할 수 있다.In addition, the present invention can simultaneously secure power stability and efficiency by charging the high-voltage battery through a buck converter and a push-pull type high-voltage battery charging converter in each converter module.
또한, 본 발명은, 긴급 상황이 발생하면 고전압 배터리 충전 컨버터에 충전된 고전압을 방전함으로써, 차량 사고 등으로 인해서 발생하는 감전 또는 쇼트로 인한 화재를 예방하는 장점이 있다.In addition, the present invention has the advantage of preventing fire due to electric shock or short circuit that occurs due to a vehicle accident, etc. by discharging the high voltage charged in the high voltage battery charging converter when an emergency situation occurs.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명을 실시하기 위한 구체적인 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification illustrate preferred embodiments of the present invention, and serve to further understand the technical idea of the present invention along with specific details for carrying out the invention. Therefore, the present invention is described in such drawings. It should not be interpreted as limited to the specific details.
도 1은 본 발명의 일 실시예에 따른 차량용 태양광 전력 제어 시스템을 나타내는 도면이다.1 is a diagram showing a solar power control system for a vehicle according to an embodiment of the present invention.
도 2는 도 1의 마스터 컨버터 모듈의 세부 구성을 나타낸 도면이다.FIG. 2 is a diagram showing the detailed configuration of the master converter module of FIG. 1.
도 3은 도 2의 각 컨버터의 세부 구성을 나타낸 도면이다.FIG. 3 is a diagram showing the detailed configuration of each converter in FIG. 2.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일 실시예를 상세히 설명하기로 한다.The above-described purpose, features and advantages will become clearer through the following detailed description in conjunction with the accompanying drawings, and accordingly, those skilled in the art will be able to easily implement the technical idea of the present invention. There will be. Additionally, in describing the present invention, if it is determined that a detailed description of known technologies related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, a preferred embodiment according to the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 일 실시예에 따른 차량용 태양광 전력 제어 시스템을 나타내는 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 차량용 태양광 전력 제어 시스템은, 복수의 태양광 패널(110: 110-1,..., 110-N), 복수의 태양광 패널(110: 110-1,..., 110-N)과 연결되는 복수의 컨버터 모듈(120: 120-1,..., 120-N), 제1배터리(130), 제2배터리(140) 및 배터리 관리 시스템(BMS : Battery Management System)(150)을 포함한다.1 is a diagram showing a solar power control system for a vehicle according to an embodiment of the present invention. As shown in FIG. 1, the solar power control system for a vehicle according to an embodiment of the present invention includes a plurality of solar panels 110: 110-1,..., 110-N, a plurality of solar panels. A plurality of converter modules (120: 120-1,..., 120-N) connected to (110: 110-1,..., 110-N), a first battery (130), and a second battery (140) ) and a battery management system (BMS: Battery Management System) 150.
복수의 태양광 패널(110)은, 태양광 에너지를 전기 에너지로 변환하여 출력한다. 복수의 태양광 패널(110)은 차량의 루프, 보닛, 트렁크 등과 같이 태양광을 가장 많이 획득할 수 있는 차량의 부위에 설치된다. 각 태양광 패널(110)은 변환된 전기 에너지를 각 태양광 패널(110)에 연결된 대응하는 컨버터 모듈(120)로 전달한다.The plurality of solar panels 110 convert solar energy into electrical energy and output it. The plurality of solar panels 110 are installed in areas of the vehicle that can obtain the most sunlight, such as the roof, bonnet, and trunk of the vehicle. Each solar panel 110 transfers the converted electrical energy to the corresponding converter module 120 connected to each solar panel 110.
복수의 컨버터 모듈(120) 각각은 대응하는 각 태양광 패널(110)로부터 전달되는 전기 에너지를 사전에 설정된 전압 전원으로 변환하여 제1배터리(130) 및 제2배터리(140)를 충전한다. 예를 들어, 각 컨버터 모듈(120)은 각 태양광 패널(110)로부터 전달되는 전기 에너지를 사전에 설정된 저전압 전원(예, 12V)으로 변환하여 제1배터리(130)를 충전하거나 사전에 설정된 고전압 전원(예, 360 ~ 825V)으로 변환하여 제2배터리(140)를 충전한다.Each of the plurality of converter modules 120 converts the electrical energy transmitted from the corresponding solar panel 110 into a preset voltage power source to charge the first battery 130 and the second battery 140. For example, each converter module 120 converts the electrical energy delivered from each solar panel 110 into a preset low voltage power source (e.g., 12V) to charge the first battery 130 or to a preset high voltage power source. Convert the power source (e.g., 360 to 825 V) to charge the second battery 140.
제1배터리(130)는 차량 내에 탑재되는 배터리이다. 상기 제1배터리(240)는 저전압으로 동작하는 차량 내의 각종 부하 장치로 전원을 공급할 수 있다. 상기 제1배터리(130)는 12V의 리튬 이온 배터리가 사용될 수 있다. 이하에서는 제1배터리(130)를 저전압(LV, Low Voltage) 배터리라 한다.The first battery 130 is a battery mounted in a vehicle. The first battery 240 can supply power to various load devices in a vehicle that operates at low voltage. The first battery 130 may be a 12V lithium ion battery. Hereinafter, the first battery 130 is referred to as a low voltage (LV) battery.
제2배터리(140)는 차량 내에 탑재되는 또 다른 배터리로서, 고전압으로 동작하는 차량 내의 각종 부하 장치로 전원을 공급할 수 있다. 상기 제2배터리(140)는 제동 장치들과 연계되어 전원을 공급할 수 있다. 상기 제2배터리(140)는 360 ~ 825V의 리튬 이온 배터리가 사용될 수 있다. 이하에서는 제2배터리(140)를 고전압(HV, High Voltage) 배터리라 한다.The second battery 140 is another battery mounted in the vehicle and can supply power to various load devices in the vehicle that operate at high voltage. The second battery 140 can supply power in conjunction with braking devices. The second battery 140 may be a 360 to 825V lithium ion battery. Hereinafter, the second battery 140 is referred to as a high voltage (HV) battery.
복수의 컨버터 모듈(120) 중 BMS(150)와 통신하는 컨버터 모듈을 마스터 컨버터 모듈(120-1)이라 하고 나머지 컨버터 모듈들을 슬레이브 컨버터 모듈(120-2,..., 120-N)이라 한다. 각 컨버터 모듈(120)에는 제어부(예, MCU, Micro Controller Unit)가 구비되는데, 마스터 컨버터 모듈(120-1)의 제어부만이 BMS(150)와 직접 통신하고, 나머지 슬레이브 컨버터 모듈(120-2,..., 120-N)의 제어부는 BMS(150)와 직접 통신하지 않고 마스터 컨버터 모듈(120-1)의 제어부와 통신한다. 즉, 마스터 컨버터 모듈(120-1)의 제어부가 BMS(150)의 명령에 따라 슬레이브 컨버터 모듈(120-2,..., 120-N)에 명령을 전달한다.Among the plurality of converter modules 120, the converter module that communicates with the BMS 150 is called the master converter module 120-1, and the remaining converter modules are called slave converter modules 120-2,..., 120-N. . Each converter module 120 is equipped with a control unit (e.g., MCU, Micro Controller Unit). Only the control unit of the master converter module 120-1 communicates directly with the BMS 150, and the remaining slave converter modules 120-2 ,..., The control unit of 120-N) does not communicate directly with the BMS 150, but communicates with the control unit of the master converter module 120-1. That is, the control unit of the master converter module 120-1 transmits a command to the slave converter modules 120-2,..., 120-N according to the command of the BMS 150.
슬레이브 컨버터 모듈(120-2,..., 120-N) 각각은, 대응하는 각 태양광 패널(110-2,..., 110-N))에서 측정된 전류값 및 전압값을 마스터 컨버터 모듈(120-1)의 제어부로 전달한다. 마스터 컨버터 모듈(120-1)의 제어부는, 대응하는 태양광 패널(110-1)에서 측정된 전류값 및 전압값을 BMS(150)로 전달하고, 또한 슬레이브 컨버터 모듈들(120-2,..., 120-N)로부터 전달되는 각 태양광 패널(110-2,..., 110-N))에서 측정된 전류값 및 전압값을 BMS(150)로 전달한다. 또한, 마스터 컨버터 모듈(120-1)의 제어부는 배터리(130, 140)에서 측정된 전류값 및 전압값을 BMS(150)로 전달한다.Each of the slave converter modules (120-2,..., 120-N) converts the current and voltage values measured from each corresponding solar panel (110-2,..., 110-N) to the master converter. It is transmitted to the control unit of module 120-1. The control unit of the master converter module 120-1 transmits the current and voltage values measured in the corresponding solar panel 110-1 to the BMS 150, and also to the slave converter modules 120-2. The current and voltage values measured in each solar panel (110-2,..., 110-N) transmitted from .., 120-N) are transmitted to the BMS 150. Additionally, the control unit of the master converter module 120-1 transmits the current and voltage values measured in the batteries 130 and 140 to the BMS 150.
BMS(150)는 마스터 컨버터 모듈(120-1)과 직접 통신(예, CAN 통신)에 의해 배터리(130, 140)의 충방전을 제어 및 관리한다. BMS(150)는, 마스터 컨버터 모듈(120-1)의 제어부로부터 수신되는, 각 태양광 패널(110)에서 측정된 전류값 및 전압값과, 배터리(130, 140)에서 측정된 전류값 및 전압값을 기초로, 배터리(130, 140)를 충전하는데 사용할 태양광 패널(110)을 결정하고 이에 따른 충전 명령을 마스터 컨버터 모듈(120-1)의 제어부로 전달한다. The BMS 150 controls and manages the charging and discharging of the batteries 130 and 140 through direct communication (eg, CAN communication) with the master converter module 120-1. The BMS 150 receives the current and voltage values measured at each solar panel 110 and the current and voltage values measured at the batteries 130 and 140, which are received from the control unit of the master converter module 120-1. Based on the value, the solar panel 110 to be used for charging the batteries 130 and 140 is determined and the corresponding charging command is transmitted to the control unit of the master converter module 120-1.
마스터 컨버터 모듈(120-1)의 제어부는 상기 수신되는 충전 명령에 따라 자신과 연결된 태양광 패널(110)의 전기 에너지로 배터리(130, 140)를 충전하거나 또는 상기 수신되는 충전 명령에 따라 대응하는 슬레이브 컨버터 모듈(120-2,..., 120-N)의 제어부로 충전 명령을 전달하여 해당 슬레이브 컨버터 모듈(120-2,..., 120-N)에서 태양광 패널(110)의 전기 에너지로 배터리(130, 140)를 충전하도록 한다.The control unit of the master converter module 120-1 charges the batteries 130 and 140 with the electrical energy of the solar panel 110 connected to itself according to the received charging command, or responds according to the received charging command. A charging command is transmitted to the control unit of the slave converter module (120-2,..., 120-N) to charge electricity to the solar panel 110 from the corresponding slave converter module (120-2,..., 120-N). The batteries 130 and 140 are charged with energy.
도 2는 도 1의 마스터 컨버터 모듈의 세부 구성을 나타낸 도면이다. 도 2에 도시된 바와 같이, 마스터 컨버터 모듈(120-1)은, 저전압(LV) 배터리 충전 컨버터(210), 벅 컨버터(220), 고전압 배터리 충전 컨버터(230), MCU(240) 및 캔 송수신기(CAN transiver)(250)를 포함한다. 저전압(LV) 배터리 충전 컨버터(210), 벅 컨버터(220) 및 고전압 배터리 충전 컨버터(230)는, 제어부인 MCU(240)의 제어에 따라 동작한다. FIG. 2 is a diagram showing the detailed configuration of the master converter module of FIG. 1. As shown in Figure 2, the master converter module 120-1 includes a low voltage (LV) battery charging converter 210, a buck converter 220, a high voltage battery charging converter 230, an MCU 240, and a CAN transceiver. (CAN transiver) (250). The low voltage (LV) battery charging converter 210, buck converter 220, and high voltage battery charging converter 230 operate under the control of the MCU 240, which is a control unit.
저전압 배터리 충전 컨버터(210)는, 태양광 패널 #1(110-1)에서 입력된 전기 에너지를 사전에 설정된 저전압 전원(예컨대, 12V 전원)으로 변환하여 저전압(LV) 배터리(130)를 충전한다. 저전압 배터리 충전 컨버터(210)는, 한 쌍의 스위치, 인덕터, 및 캐패시터를 포함하여, 별도의 PWM IC로부터 수신되는 PWM(Pulse Width Modulation) 신호에 따라 한 쌍의 스위치가 교번하여 스위칭 동작을 수행하여 태양광 패널 #1(110-1)에서 입력된 전기 에너지로 저전압(LV) 배터리(130)를 충전한다.The low-voltage battery charging converter 210 converts the electrical energy input from solar panel #1 (110-1) into a preset low-voltage power source (e.g., 12V power source) to charge the low-voltage (LV) battery 130. . The low-voltage battery charging converter 210 includes a pair of switches, an inductor, and a capacitor, and the pair of switches alternately performs a switching operation according to a PWM (Pulse Width Modulation) signal received from a separate PWM IC. The low voltage (LV) battery 130 is charged with electrical energy input from solar panel #1 (110-1).
벅 컨버터(220)는, 태양광 패널 #1(110-1)에서 입력된 전기 에너지를 강압하여 고전압 배터리 충전 컨버터(230)로 제공한다. 벅 컨버터(220)는, 벅 모드로 동작하기 위해 스위칭되는 한 쌍의 스위치, 인덕터, 및 캐패시터를 포함하여, MCU(240)로부터 수신되는 PWM 신호(PWM1, PWM2)에 따라 한 쌍의 스위치가 교번하여 스위칭 동작을 수행하여 태양광 패널 #1(110-1)에서 입력된 전기 에너지를 강압하여 고전압 배터리 충전 컨버터(230)로 제공한다.The buck converter 220 steps down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter 230. The buck converter 220 includes a pair of switches, an inductor, and a capacitor that are switched to operate in buck mode, and a pair of switches according to the PWM signals (PWM 1 and PWM 2 ) received from the MCU 240. alternately performs a switching operation to step down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter (230).
고전압 배터리 충전 컨버터(230)는, 상기 벅 컨버터(220)에서 제공되는 전압을 이용하여 푸시풀(Push-pull) 방식으로 고전압(HV) 배터리(140)를 충전한다. 고전압 배터리 충전 컨버터(230)는 한 쌍의 스위치, 변압기, 인덕터, 및 캐패시터를 포함하여, MCU(240)로부터 수신되는 PWM 신호(PWM3, PWM4)에 따라 한 쌍의 스위치가 교번하여 스위칭 동작을 수행하여 푸시풀 방식으로 고전압 배터리(140)를 충전한다.The high voltage battery charging converter 230 charges the high voltage (HV) battery 140 in a push-pull method using the voltage provided by the buck converter 220. The high-voltage battery charging converter 230 includes a pair of switches, a transformer, an inductor, and a capacitor, and the pair of switches alternately performs a switching operation according to the PWM signals (PWM 3 and PWM 4 ) received from the MCU 240. The high-voltage battery 140 is charged using a push-pull method.
기존에는 고전압 배터리(140)의 충전시 플라이백(Flyback) 방식을 이용한다. 그러나 이러한 플라이백 방식으로 고전압 배터리(140)를 충전하는 경우 안정적이지 않고 제품 효율이 낮아진다. 이러한 단점을 극복하기 위하여, 본 발명의 실시예에 따른 차량용 태양광 전력 제어 시스템은 벅 컨버터(220)에서 안정적인 전원이 출력되도록 하고 고전압 배터리 충전 컨버터(230)에서 푸시풀 방식으로 고전압 배터리(140)를 충전함으로써 효율과 안정성을 확보한다.Conventionally, the flyback method is used when charging the high-voltage battery 140. However, when charging the high-voltage battery 140 using this flyback method, it is not stable and product efficiency is lowered. In order to overcome these shortcomings, the solar power control system for vehicles according to an embodiment of the present invention ensures that stable power is output from the buck converter 220 and the high-voltage battery charging converter 230 uses a push-pull method to charge the high-voltage battery 140. Efficiency and stability are secured by charging.
제어부인 MCU(240)는, 캔 송수신기(250)를 통해 BMS(150)와 직접 통신하고, BMS(150)로부터 수신되는 충전 명령에 따라 저전압(LV) 배터리 충전 컨버터(210), 벅 컨버터(220) 및 고전압 배터리 충전 컨버터(230)를 제어하거나, 슬레이브 컨버터 모듈(120-2,..., 120-N)의 제어부인 MCU로 충전 명령을 전달한다. 충전 명령에는 컨버터 모듈(120-1,..., 120-N)의 식별정보가 포함되어, 해당 충전 명령이 어느 컨버터 모듈(120-1,..., 120-N)에 대한 것인지 확인할 수 있다.The MCU 240, which is a control unit, communicates directly with the BMS 150 through the CAN transceiver 250, and operates the low-voltage (LV) battery charging converter 210 and the buck converter 220 according to the charging command received from the BMS 150. ) and the high-voltage battery charging converter 230, or transmit charging commands to the MCU, which is the control unit of the slave converter modules 120-2,..., 120-N. The charging command includes identification information of the converter module (120-1,..., 120-N), so you can check which converter module (120-1,..., 120-N) the charging command is for. there is.
상기 MCU(240)는, 태양광 패널 #1(110-1)에서 측정된 전류값 및 전압값, 그리고 배터리(130, 140)에서 측정된 전류값 및 전압값을 캔 송수신기(250)를 통해 BMS(150)로 전달한다. 또한 상기 MCU(240)는, 각 슬레이브 컨버터 모듈(120-2,..., 120-N)의 MCU로부터 전달되는 각 태양광 패널(110-2,..., 110-N))에서 측정된 전류값 및 전압값을 수신하여 캔 송수신기(250)를 통해 BMS(150)로 전달한다. The MCU 240 transmits the current and voltage values measured at solar panel #1 (110-1) and the current and voltage values measured at the batteries 130 and 140 to the BMS through the transceiver 250. Forward to (150). In addition, the MCU 240 measures measurements at each solar panel (110-2,..., 110-N) transmitted from the MCU of each slave converter module (120-2,..., 120-N). The current and voltage values are received and transmitted to the BMS (150) through the CAN transceiver (250).
도 2에 도시된 저전압(LV) 배터리 충전 컨버터(210), 벅 컨버터(220), 고전압 배터리 충전 컨버터(230) 및 MCU(240)는 각 슬레이브 컨버터 모듈(120-2,..., 120-N)에도 동일하게 포함된다. 다만, 각 슬레이브 컨버터 모듈(120-2,..., 120-N)의 MCU는 BMS(150)와 직접 통신하지 않고 마스터 컨버터 모듈(120-1)의 MCU(240)를 매개로 하여 BMS(150)와 간접 통신한다. 즉, 마스터 컨버터 모듈(120-1)의 MCU(240)가 BMS(150)와 각 슬레이브 컨버터 모듈(120-2,..., 120-N)의 MCU 간의 데이터 송수신을 중계한다.The low-voltage (LV) battery charging converter 210, buck converter 220, high-voltage battery charging converter 230, and MCU 240 shown in FIG. 2 are each slave converter module 120-2,..., 120- N) is also included in the same way. However, the MCU of each slave converter module (120-2,..., 120-N) does not communicate directly with the BMS (150), but communicates with the BMS (240) through the MCU (240) of the master converter module (120-1). 150) communicates indirectly. That is, the MCU 240 of the master converter module 120-1 relays data transmission and reception between the BMS 150 and the MCU of each slave converter module 120-2,..., 120-N.
도 3은 도 2의 각 컨버터의 세부 구성을 나타낸 도면이다. 먼저, 저전압(LV) 배터리 충전 컨버터(210)는, 태양광 패널 #1(110-1)에서 입력된 전기 에너지를 사전에 설정된 저전압 전원(예컨대, 12V 전원)으로 변환하여 저전압(LV) 배터리(130)를 충전한다. 저전압 배터리 충전 컨버터(210)는, 한 쌍의 스위치(Q3, Q4), 인덕터(211), 및 캐패시터(212)를 포함한다. FIG. 3 is a diagram showing the detailed configuration of each converter in FIG. 2. First, the low-voltage (LV) battery charging converter 210 converts the electrical energy input from solar panel #1 (110-1) into a preset low-voltage power source (e.g., 12V power source) to charge the low-voltage (LV) battery ( 130) is charged. The low-voltage battery charging converter 210 includes a pair of switches Q3 and Q4, an inductor 211, and a capacitor 212.
상기 한 쌍의 스위치(Q3, Q4)는 PWM IC(215)로부터 수신되는 PWM 신호에 따라 교번하여 스위칭 동작하여 벅 모드로 동작한다. 상기 한 쌍의 스위치(Q3 및 Q4)로서 FET(Field Effect Transistor) 스위치를 이용한다. 스위치(Q3)는 소스 단자가 태양광 패널 #1(110-1) 측의 양극 단자(Solar_panel_volt)에 연결되고 드레인 단자가 상기 인덕터(211)와 연결된다. 또한, 스위치(Q4)의 소스 단자는 저전압 배터리(130)의 음극과 연결되고 드레인 단자는 상기 스위치(Q3)와 상기 인덕터(211) 간에 형성된 경로에 연결된다.The pair of switches Q3 and Q4 alternately perform switching operations according to the PWM signal received from the PWM IC 215 and operate in buck mode. As the pair of switches (Q3 and Q4), a Field Effect Transistor (FET) switch is used. The source terminal of the switch Q3 is connected to the positive terminal (Solar_panel_volt) on the solar panel #1 (110-1) side, and the drain terminal is connected to the inductor 211. Additionally, the source terminal of the switch Q4 is connected to the negative electrode of the low-voltage battery 130, and the drain terminal is connected to the path formed between the switch Q3 and the inductor 211.
상기 인덕터(211)는, 스위치(Q3)와 저전압 배터리(130)의 양극이 연결되는 경로 상에 배치되어 전류가 흐를 때 에너지를 축적하였다가 저전압 배터리(130)로 공급한다. 캐패시터(212)는 출력 평활용이다. 저전압(LV) 배터리 충전 컨버터(210)는 PWM IC(215)에 의해 동작하므로 저전압 배터리(130)의 충전을 MCU(240)에서 제어할 수 있도록 또 다른 스위치(Q5)를 더 포함한다. 즉, MCU(240)는 스위치(Q5)의 온/오프를 제어함으로써 저전압(LV) 배터리 충전 컨버터(210)에 의한 저전압 배터리(130)의 충전을 온/오프 제어한다.The inductor 211 is disposed on a path connecting the switch Q3 and the anode of the low-voltage battery 130, accumulates energy when current flows, and supplies it to the low-voltage battery 130. The capacitor 212 is for output smoothing. Since the low-voltage (LV) battery charging converter 210 operates by the PWM IC 215, it further includes another switch (Q5) so that charging of the low-voltage battery 130 can be controlled by the MCU 240. That is, the MCU 240 controls the charging of the low-voltage battery 130 by the low-voltage (LV) battery charging converter 210 on/off by controlling the on/off of the switch Q5.
저전압(LV) 배터리 충전 컨버터(210)는, 저전압 배터리(130)에 병렬 연결된 한 쌍의 저항(214a, 214b)을 포함한다. 이 한 쌍의 저항(214a, 214b)은 저전압 배터리(130)의 전압 측정용으로서 이 한 쌍의 저항(214a, 214b) 사이의 전압이 MCU(240)에 의해 측정되고, MCU(240)는 측정된 저전압 배터리(130)의 전압값(VLV)을 BMS(150)로 전달한다.The low voltage (LV) battery charging converter 210 includes a pair of resistors 214a and 214b connected in parallel to the low voltage battery 130. This pair of resistors 214a and 214b is for measuring the voltage of the low-voltage battery 130. The voltage between this pair of resistors 214a and 214b is measured by the MCU 240, and the MCU 240 measures the voltage between the resistors 214a and 214b. The voltage value (V LV ) of the low-voltage battery 130 is transmitted to the BMS (150).
저전압(LV) 배터리 충전 컨버터(210)는, 스위치(Q5)와 저전압 배터리(130)의 양극 단자 사이에 연결되는 전류 센서(213)를 더 포함한다. 전류 센서(213)는 저전압 배터리(130)로 흐르는 전류값(ILV)을 측정하고 측정된 전류값(ILV)은 MCU(240)로 전달되며, MCU(240)는 측정된 전류값(ILV)을 BMS(150)로 전달한다. 전류 센서(213)는 홀 센서 또는 션트 저항일 수 있다.The low-voltage (LV) battery charging converter 210 further includes a current sensor 213 connected between the switch Q5 and the positive terminal of the low-voltage battery 130. The current sensor 213 measures the current value (I LV ) flowing into the low-voltage battery 130 and the measured current value (I LV ) is transmitted to the MCU 240, and the MCU 240 measures the measured current value (I LV ) is transmitted to the BMS (150). Current sensor 213 may be a Hall sensor or a shunt resistor.
다음으로, 벅 컨버터(220)는, 태양광 패널 #1(110-1)에서 입력된 전기 에너지를 강압하여 고전압 배터리 충전 컨버터(230)로 제공한다. 즉, 벅 컨버터(220)에서 출력되는 전압(Buck_Vout)은 고전압 배터리 충전 컨버터(230)로 제공된다. 벅 컨버터(220)는, 벅 모드로 동작하기 위해 스위칭되는 한 쌍의 스위치(Q1, Q2), 인덕터(221), 및 캐패시터(222)를 포함한다. Next, the buck converter 220 steps down the electrical energy input from solar panel #1 (110-1) and provides it to the high voltage battery charging converter 230. That is, the voltage (Buck_Vout) output from the buck converter 220 is provided to the high voltage battery charging converter 230. Buck converter 220 includes a pair of switches (Q1, Q2), an inductor 221, and a capacitor 222 that are switched to operate in buck mode.
상기 한 쌍의 스위치(Q1, Q2)는, MCU(240)로부터 수신되는 PWM 신호(PWM1, PWM2)에 따라 교번하여 스위칭 동작한다. 상기 한 쌍의 스위치(Q1, Q2)로서 FET(Field Effect Transistor) 스위치를 이용한다. 스위치(Q1)는 소스 단자가 태양광 패널 #1(110-1) 측의 양극 단자에 연결되고 드레인 단자가 상기 인덕터(221)와 연결된다. 또한, 스위치(Q2)의 소스 단자는 태양광 패널 #1(110-1) 측의 음극 단자와 연결되고 드레인 단자는 상기 스위치(Q1)와 상기 인덕터(221) 간에 형성된 경로에 연결된다.The pair of switches (Q1, Q2) alternately perform switching operations according to PWM signals (PWM 1 , PWM 2 ) received from the MCU 240. A FET (Field Effect Transistor) switch is used as the pair of switches (Q1, Q2). The source terminal of the switch Q1 is connected to the anode terminal of solar panel #1 (110-1), and the drain terminal is connected to the inductor 221. Additionally, the source terminal of the switch Q2 is connected to the cathode terminal of solar panel #1 (110-1), and the drain terminal is connected to the path formed between the switch Q1 and the inductor 221.
상기 인덕터(221)는, 스위치(Q1)에 연결되어 전류가 흐를 때 에너지를 축적하였다가 고전압 충전 컨버터(230)로 공급한다. 캐패시터(222)는 출력 평활용이다. 태양광 패널 #1(110-1) 측의 양극 단자에 스위치(225)가 연결되고 MCU(240)는 그 스위치(225)의 온/오프를 제어하여 태양광 패널 #1(110-1)로부터 저전압 배터리 충전 컨버터(210) 및 벅 컨버터(220)로의 전압 공급 온/오프를 제어한다. 즉 스위치(225)의 오프시 배터리(130, 140)의 충전은 모두 차단된다. 스위치(225)는 FET(Field Effect Transistor) 스위치일 수 있다.The inductor 221 is connected to the switch Q1 and accumulates energy when current flows and supplies it to the high voltage charging converter 230. The capacitor 222 is for output smoothing. A switch 225 is connected to the positive terminal on the solar panel #1 (110-1) side, and the MCU (240) controls the on/off of the switch 225 from solar panel #1 (110-1). Controls the on/off voltage supply to the low-voltage battery charging converter 210 and buck converter 220. That is, when the switch 225 is turned off, charging of the batteries 130 and 140 is all blocked. The switch 225 may be a Field Effect Transistor (FET) switch.
벅 컨버터(220)는, 두 쌍의 저항을 포함한다. 한 쌍의 저항(223a, 223b)은, 캐패시터(222)에 병렬 연결되어 벅 컨버터(220)에서 고전압 배터리 충전 컨버터(210)로 제공되는 전압을 측정하는데 사용된다. 이 한 쌍의 저항(223a, 223b) 사이의 전압이 MCU(240)에 의해 측정되고, MCU(240)는 측정된 전압값(Vbuck)을 BMS(150)로 전달할 수 있다. 나머지 한 쌍의 저항(224a, 224b)은, 태양광 패널 #1(110-1) 측에 병렬 연결된다. 이 한 쌍의 저항(224a, 224b)은 태양광 패널 #1(110-1)의 전압 측정용으로서, 이 한 쌍의 저항(224a, 224b) 사이의 전압이 벅 컨버터(220)의 MCU(240)에 의해 측정되고, MCU(240)는 측정된 태양광 패널 #1(110-1)의 전압값(Vsolar)을 BMS(150)로 전달한다. Buck converter 220 includes two pairs of resistors. A pair of resistors 223a and 223b is connected in parallel to the capacitor 222 and is used to measure the voltage provided from the buck converter 220 to the high voltage battery charging converter 210. The voltage between this pair of resistors 223a and 223b is measured by the MCU 240, and the MCU 240 can transmit the measured voltage value (V buck ) to the BMS 150. The remaining pair of resistors 224a and 224b are connected in parallel to solar panel #1 (110-1). This pair of resistors (224a, 224b) is for measuring the voltage of solar panel #1 (110-1), and the voltage between this pair of resistors (224a, 224b) is the MCU (240) of the buck converter (220). ), and the MCU 240 transmits the measured voltage value (V solar ) of solar panel #1 (110-1) to the BMS (150).
벅 컨버터(220)는, 스위치(225)와 스위치(Q1) 사이에 연결되는 전류 센서(226)를 더 포함한다. 전류 센서(226)는 태양광 패널 #1(110-1) 측에 흐르는 전류값(ISOlar)을 측정하고, 그 측정된 전류값(ISOlar)은 MCU(240)로 전달되며, MCU(240)는 측정된 전류값(ISOlar)을 BMS(150)로 전달한다. 전류 센서(226)는 홀 센서 또는 션트 저항일 수 있다.The buck converter 220 further includes a current sensor 226 connected between the switch 225 and the switch Q1. The current sensor 226 measures the current value (I SOlar ) flowing on the solar panel #1 (110-1), and the measured current value (I SOlar ) is transmitted to the MCU 240. ) transmits the measured current value (I SOlar ) to the BMS (150). Current sensor 226 may be a Hall sensor or a shunt resistor.
한편, 상기 전류 센서(26)와 상기 스위치(Q1) 사이의 경로에는 전원 분기점(Solar_ panel_volt)이 존재하고 이 전원 분기점을 통해서 저전압 배터리 충전 컨버터(210)로 태양광 패널 #1(110-1)의 전원이 공급된다.Meanwhile, there is a power branch point (Solar_panel_volt) in the path between the current sensor 26 and the switch (Q1), and solar panel #1 (110-1) is connected to the low-voltage battery charging converter 210 through this power branch point. power is supplied.
다음으로, 고전압 배터리 충전 컨버터(230)는 상기 벅 컨버터(220)에서 제공되는 전압(Buck_Vout)을 이용하여 푸시풀(Push-pull) 방식으로 고전압(HV) 배터리(140)를 충전한다. 고전압 배터리 충전 컨버터(230)는, 한 쌍의 스위치(Q6, Q7), 변압 모듈(231), 정류 모듈(232), 인덕터(233), 커패시터(234), 다이오드(236), 전류 센서(237), 및 전압 센서(238)를 포함한다.Next, the high voltage battery charging converter 230 charges the high voltage (HV) battery 140 in a push-pull method using the voltage (Buck_Vout) provided by the buck converter 220. The high-voltage battery charging converter 230 includes a pair of switches (Q6, Q7), a transformer module 231, a rectifier module 232, an inductor 233, a capacitor 234, a diode 236, and a current sensor 237. ), and a voltage sensor 238.
상기 한 쌍의 스위치(Q6, Q7)는 MCU(240)의 제어에 따라 턴 온되거나 턴 오프된다. 상기 한 쌍의 스위치(Q6, Q7)가 교번하여 턴 온되어 동작함에 따라 벅 컨버터(220)로부터 인가된 전압은 변압 모듈(231)을 통과한다.The pair of switches Q6 and Q7 are turned on or off under the control of the MCU 240. As the pair of switches Q6 and Q7 are alternately turned on and operated, the voltage applied from the buck converter 220 passes through the transformer module 231.
변압 모듈(231)은 스위치(Q6, Q7)의 동작에 따라, 벅 컨버터(220)에서 공급받은 전압을 소정의 크기의 전압으로 변환한다. 고전압 배터리 충전 컨버터(230)가 푸시풀 컨버터로서 동작하기 때문에, 입력된 전압 크기는 절반으로 감소되지 않고, 입력된 전압의 크기가 그대로 변압 모듈(231)에서 출력되어 정류 모듈(232)로 전달될 수 있다.The transformer module 231 converts the voltage supplied from the buck converter 220 into a voltage of a predetermined size according to the operation of the switches Q6 and Q7. Since the high-voltage battery charging converter 230 operates as a push-pull converter, the magnitude of the input voltage is not reduced by half, and the magnitude of the input voltage is output as is from the transformer module 231 and transmitted to the rectifier module 232. You can.
정류 모듈(232)은 복수의 다이오드를 구비하고 있으며 이 다이오드를 통해서 변압 모듈(231)에서 출력된 전압의 전류가 인덕터(233)가 배치된 경로로 흐르게 한다. 인덕터(233)는 전류가 흐를 때 에너지를 축적하였다가 고전압 배터리(140)로 공급한다. 캐패시터(234)는 출력 평활용이다.The rectifier module 232 includes a plurality of diodes and allows the current of the voltage output from the transformer module 231 to flow through the diodes to the path where the inductor 233 is arranged. The inductor 233 accumulates energy when current flows and supplies it to the high voltage battery 140. The capacitor 234 is for output smoothing.
다이오드(236)는 커패시터(234) 또는 정류 모듈(232)에서 발생한 전류가 고전압 배터리(140)로만 흐르도록 배치된다. 상기 다이오드(236)는 고전압 배터리(140)에서 발생할 수 있는 역극성 전류를 차단하는 기능도 수행한다.The diode 236 is arranged so that the current generated in the capacitor 234 or the rectifier module 232 flows only to the high voltage battery 140. The diode 236 also functions to block reverse polarity current that may occur in the high voltage battery 140.
전류 센서(237)는 고전압 배터리(140)로 흐르는 전류값(IHV)을 측정하고, 측정된 전류값(IHV)은 MCU(240)로 전달된다. 전류 센서(237)는 홀 센서 또는 션트 저항일 수 있다. 벅 컨버터(220)의 MCU(240)는, 수신된 전류값(IHV)을 BMS(150)로 전달한다. 전압 센서(238)는 고전압 배터리(240)의 전압값(VHV)을 측정하고, 측정된 전압값(VHV)은 MCU(240)로 전달된다. MCU(240)는, 수신된 전압값(VHV)을 BMS(150)로 전달한다. The current sensor 237 measures the current value (I HV ) flowing into the high-voltage battery 140 , and the measured current value (I HV ) is transmitted to the MCU (240). Current sensor 237 may be a Hall sensor or a shunt resistor. The MCU 240 of the buck converter 220 transfers the received current value (I HV ) to the BMS 150. The voltage sensor 238 measures the voltage value (V HV ) of the high voltage battery 240, and the measured voltage value (V HV ) is transmitted to the MCU 240. The MCU 240 transfers the received voltage value (V HV ) to the BMS 150.
고전압 배터리 충전 컨버터(230)는 방전부(240)를 더 포함할 수 있다. 상기 방전부(240)는 포토커플러(241) 및 방전 스위치(Q8) 및 방전 저항(242)을 포함한다.The high-voltage battery charging converter 230 may further include a discharge unit 240. The discharge unit 240 includes a photocoupler 241, a discharge switch Q8, and a discharge resistor 242.
상기 포토 커플러(241)는 MCU(240)로부터 입력 신호를 수신하면 출력 신호를 발생시켜 방전 스위치(Q8)를 턴 온시킨다. 상기 포토 커플러(241)의 입력부는 MCU(240)와 연결되고, 포토 커플러(241)의 출력부는 방전 스위치(Q8)의 게이트 단자와 연결된다. 즉, 포트 커플러(241)는 입력부를 통해서 입력 신호가 인가되면 출력부로 출력 신호를 발생시켜 방전 스위치(Q8)를 턴 온시킨다. 한편, MCU(240)는 포토 커플러(241)를 이용하지 않고, 방전 스위치(Q8)와 다이렉트로 연결하여, 직접 방전 스위치(Q8)를 턴 온할 수도 있다. MCU(240)가 포토 커플러(241)를 이용하여 방전 스위치(Q8)를 턴 온하는 경우, 보다 빠르게 방전 스위치(Q8)를 턴 온할 수 있다. When the photo coupler 241 receives an input signal from the MCU 240, it generates an output signal and turns on the discharge switch Q8. The input part of the photo coupler 241 is connected to the MCU 240, and the output part of the photo coupler 241 is connected to the gate terminal of the discharge switch Q8. That is, when an input signal is applied through the input unit, the port coupler 241 generates an output signal to the output unit and turns on the discharge switch Q8. Meanwhile, the MCU 240 may be directly connected to the discharge switch Q8 without using the photo coupler 241, and may directly turn on the discharge switch Q8. When the MCU 240 turns on the discharge switch Q8 using the photo coupler 241, the discharge switch Q8 can be turned on more quickly.
방전 스위치(Q8)는 급속 방전시에 턴 온되어 캐패시터(234)에서 축적된 전압을 신속하게 방전시키는 기능을 수행한다. 즉, 캐패시터(234)에서 고전압 배터리(140)로 전원이 공급되는 경로에서 분기되는 방전 경로가 형성되고, 이 방전 경로에 방전 저항(242)와 방전 스위치(Q8)가 배치된다. 상기 방전 저항(242)은 캐패시터(234)에서 방전되는 전압을 충분히 방전시키는 저항값을 갖도록 설계된다. 또한, 방전 스위치(Q8)의 소스 단자는 접지되고, 더불어 드레인 단자는 방전 저항(242)의 일단과 연결된다. 또한, 방전 저항(242)의 타단은 캐패시터(234)의 일단과 연결된다.The discharge switch Q8 is turned on during rapid discharge and performs the function of quickly discharging the voltage accumulated in the capacitor 234. That is, a discharge path branching from the path in which power is supplied from the capacitor 234 to the high voltage battery 140 is formed, and a discharge resistor 242 and a discharge switch Q8 are disposed in this discharge path. The discharge resistor 242 is designed to have a resistance value that sufficiently discharges the voltage discharged from the capacitor 234. Additionally, the source terminal of the discharge switch Q8 is grounded, and the drain terminal is connected to one end of the discharge resistor 242. Additionally, the other end of the discharge resistor 242 is connected to one end of the capacitor 234.
MCU(240)는, 벅 컨버터(220)의 스위치(Q1, Q2)로 MPPT(Maximum Power Point Tracking) 기반의 PWM 신호를 발생시켜, 안정적인 전원을 고전압 배터리 충전 컨버터(230)로 공급하고, 고전압 배터리 충전 컨버터(230)의 스위치(Q3, Q4)를 고정 PWM 신호로 제어하여 고전압 배터리(140)를 충전한다. 종래에는 단일 태양광 패널의 입력에 대하여 단일 컨버터에서 MPPT 제어를 하기 때문에 차량 주행시 빠르게 변화하는 태양광 특성을 추정하기 힘들지만, 본 발명에서는 각 태양광 패널(110)의 입력에 대하여 MPPT 제어를 각각 수행하기 때문에 태양광 특성을 빠르게 추종할 수 있다. 또한 종래의 플라이백 컨버터 방식보다 효율도 더 우수하기 때문에 효율과 제어성을 동시에 확보할 수 있다.The MCU 240 generates a PWM signal based on MPPT (Maximum Power Point Tracking) with the switches (Q1, Q2) of the buck converter 220, supplies stable power to the high-voltage battery charging converter 230, and supplies stable power to the high-voltage battery. The switches (Q3, Q4) of the charge converter 230 are controlled with a fixed PWM signal to charge the high-voltage battery 140. Conventionally, since MPPT control is performed by a single converter for the input of a single solar panel, it is difficult to estimate the rapidly changing solar characteristics while driving the vehicle. However, in the present invention, MPPT control is performed separately for the input of each solar panel 110. Because of this, solar characteristics can be quickly tracked. In addition, since the efficiency is better than the conventional flyback converter method, efficiency and controllability can be secured at the same time.
이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications and changes without departing from the technical spirit of the present invention to those of ordinary skill in the technical field to which the present invention pertains. It is not limited by the drawings.

Claims (7)

  1. 차량용 태양광 전력 제어 시스템에 있어서,In the solar power control system for vehicles,
    복수의 태양광 패널 각각에 1대1로 연결되어 각각 태양광 패널에서 획득된 전압을 변환하여 저전압 배터리 및 고전압 배터리를 충전하는 복수의 컨버터 모듈을 포함하고,It includes a plurality of converter modules that are connected one to one to each of the plurality of solar panels and convert the voltage obtained from each solar panel to charge the low-voltage battery and the high-voltage battery,
    상기 복수의 컨버터 모듈은, 하나의 마스터 컨버터 모듈과 하나 이상의 슬레이브 컨버터 모듈을 포함하며,The plurality of converter modules include one master converter module and one or more slave converter modules,
    상기 마스터 컨버터 모듈의 제어부는,The control unit of the master converter module,
    배터리 관리 시스템으로부터 수신되는 충전 명령에 따라 해당 마스터 컨버터 모듈의 동작을 제어하거나 해당 충전 명령을 대응하는 슬레이브 컨버터 모듈의 제어부로 전달하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.A solar power control system for vehicles, characterized in that it controls the operation of the corresponding master converter module according to the charging command received from the battery management system or transmits the charging command to the control unit of the corresponding slave converter module.
  2. 제1항에 있어서,According to paragraph 1,
    상기 마스터 컨버터 모듈의 제어부는,The control unit of the master converter module,
    상기 복수의 태양광 패널 각각의 전류값 및 전압값과, 상기 저전압 배터리 및 상기 고전압 배터리의 전류값 및 전압값을, 상기 배터리 관리 시스템으로 전달하고, 이에 기초하여 상기 충전 명령을 수신하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.The current value and voltage value of each of the plurality of solar panels and the current value and voltage value of the low-voltage battery and the high-voltage battery are transmitted to the battery management system, and the charging command is received based on this. A solar power control system for vehicles.
  3. 제1항에 있어서,According to paragraph 1,
    상기 복수의 컨버터 모듈 각각은,Each of the plurality of converter modules,
    대응하는 태양광 패널에서 획득된 전압을 변환하여 상기 저전압 배터리를 충전하는 저전압 배터리 충전 컨버터;a low-voltage battery charging converter that converts the voltage obtained from a corresponding solar panel to charge the low-voltage battery;
    대응하는 태양광 패널에서 획득된 전압을 강압 변환하는 벅 컨버터; 및A buck converter for step-down converting the voltage obtained from the corresponding solar panel; and
    상기 벅 컨버터로부터 공급되는 전압을 변환하여 상기 고전압 배터리를 충전하는 고전압 배터리 충전 컨버터를 포함하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.A solar power control system for a vehicle, comprising a high-voltage battery charging converter that converts the voltage supplied from the buck converter to charge the high-voltage battery.
  4. 제3항에 있어서,According to paragraph 3,
    상기 복수의 컨버터 모듈 각각의 제어부는,The control unit of each of the plurality of converter modules,
    상기 벅 컨버터에 포함된 한 쌍의 스위치를 MPPT(Maximum Power Point Tracking) 기반의 PWM(Pulse Width Modulation) 신호를 통해 제어하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.A solar power control system for vehicles, characterized in that a pair of switches included in the buck converter are controlled through a PWM (Pulse Width Modulation) signal based on MPPT (Maximum Power Point Tracking).
  5. 제4항에 있어서,According to paragraph 4,
    상기 복수의 컨버터 모듈 각각의 제어부는,The control unit of each of the plurality of converter modules,
    상기 고전압 배터리 충전 컨버터에 포함된 한 쌍의 스위치를 고정 PWM 신호를 통해 제어하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.A solar power control system for a vehicle, characterized in that a pair of switches included in the high-voltage battery charging converter are controlled through a fixed PWM signal.
  6. 제3항에 있어서,According to paragraph 3,
    상기 고전압 배터리 충전 컨버터는, The high-voltage battery charging converter,
    푸시풀 컨버터인 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.A solar power control system for vehicles characterized by a push-pull converter.
  7. 제6항에 있어서,According to clause 6,
    상기 고전압 배터리 충전 컨버터는,The high-voltage battery charging converter,
    한 쌍의 스위치의 제어를 통해서 상기 벅 컨버터로부터 공급되는 전압을 소정의 전압으로 변압하는 변압 모듈;a transformer module that transforms the voltage supplied from the buck converter to a predetermined voltage through control of a pair of switches;
    상기 변압 모듈에서 변압된 전압을 정류하는 정류 모듈; 및a rectifier module that rectifies the voltage transformed by the transformer module; and
    상기 정류 모듈에서 정류된 전압을 저장하고 상기 고전압 배터리로 공급하는 인덕터;를 포함하는 것을 특징으로 하는 차량용 태양광 전력 제어 시스템.An inductor that stores the voltage rectified in the rectifier module and supplies it to the high voltage battery.
PCT/KR2023/003802 2022-04-11 2023-03-22 Vehicular solar power control system WO2023200133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220044743A KR20230146180A (en) 2022-04-11 2022-04-11 System for controlling solar power for vehicle
KR10-2022-0044743 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023200133A1 true WO2023200133A1 (en) 2023-10-19

Family

ID=88329819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003802 WO2023200133A1 (en) 2022-04-11 2023-03-22 Vehicular solar power control system

Country Status (2)

Country Link
KR (1) KR20230146180A (en)
WO (1) WO2023200133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150374A1 (en) * 2009-06-24 2010-12-29 三菱電機株式会社 Power conversion system and communication address setting method
KR101426696B1 (en) * 2013-07-17 2014-09-25 한경대학교 산학협력단 Grid-connected module type photovoltaic power conversion apparatus
KR20150102766A (en) * 2013-10-08 2015-09-08 삼성전기주식회사 Control device and Control method for Hybrid Photovoltaic cell
US20170070081A1 (en) * 2014-03-06 2017-03-09 Robert Bosch Gmbh Hybrid storage system
KR20200124033A (en) * 2019-04-23 2020-11-02 현대자동차주식회사 System of vehicle including solar cell and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150374A1 (en) * 2009-06-24 2010-12-29 三菱電機株式会社 Power conversion system and communication address setting method
KR101426696B1 (en) * 2013-07-17 2014-09-25 한경대학교 산학협력단 Grid-connected module type photovoltaic power conversion apparatus
KR20150102766A (en) * 2013-10-08 2015-09-08 삼성전기주식회사 Control device and Control method for Hybrid Photovoltaic cell
US20170070081A1 (en) * 2014-03-06 2017-03-09 Robert Bosch Gmbh Hybrid storage system
KR20200124033A (en) * 2019-04-23 2020-11-02 현대자동차주식회사 System of vehicle including solar cell and method for controlling the same

Also Published As

Publication number Publication date
KR20230146180A (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US7768229B2 (en) Electric car charging systems
WO2012018206A2 (en) Battery management apparatus for an electric vehicle, and method for managing same
WO2011105794A2 (en) Hybrid cell system provided with a serial switching circuit
WO2013100559A1 (en) Electric vehicle charging device
WO2013119070A1 (en) Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
CN111231763B (en) Double-source battery pack switching method and system
CN110445375B (en) Three-port DC/DC converter for high-power charging
WO2020091168A1 (en) Power converter
CN111422086A (en) Energy storage type mobile charging pile system
KR20160092505A (en) Charge controller for a battery in a vehicle
WO2018230831A1 (en) Energy storage system
CN108394288B (en) Charging device for direct current charging of electric automobile
CN211543268U (en) Photovoltaic electric automobile photovoltaic equipment charging control system and photovoltaic electric automobile
WO2020149537A1 (en) Battery charging system and battery charging method
WO2019164198A1 (en) Discharged vehicle jumpstart system using auxiliary energy storage device
CN103346671A (en) Direct-current converter and electric automobile direct-current power supply system
WO2023200133A1 (en) Vehicular solar power control system
WO2021033956A1 (en) Battery system and operating method thereof
WO2017073828A1 (en) Non-isolated bidirectional dc-dc converter including pre-charge circuit
WO2022114457A1 (en) V2g system with command signal conversion means and v2g control method using same
CN106026307A (en) Vehicle-borne battery management system
CN207028872U (en) Distributed moving charging/change electric car system and energy storage type charging pile assembly
WO2023038190A1 (en) Initial charge converter
CN113595210B (en) Individual soldier intelligent power management device
CN206211610U (en) A kind of automobile-used DC charging secondary power system of electric sanitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788485

Country of ref document: EP

Kind code of ref document: A1