WO2023095922A1 - Skin treatment device and program - Google Patents

Skin treatment device and program Download PDF

Info

Publication number
WO2023095922A1
WO2023095922A1 PCT/JP2022/043967 JP2022043967W WO2023095922A1 WO 2023095922 A1 WO2023095922 A1 WO 2023095922A1 JP 2022043967 W JP2022043967 W JP 2022043967W WO 2023095922 A1 WO2023095922 A1 WO 2023095922A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
output
electrodes
electrode group
output waveform
Prior art date
Application number
PCT/JP2022/043967
Other languages
French (fr)
Japanese (ja)
Inventor
正志 東平
Original Assignee
ヤーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022063044A external-priority patent/JP2023079985A/en
Application filed by ヤーマン株式会社 filed Critical ヤーマン株式会社
Publication of WO2023095922A1 publication Critical patent/WO2023095922A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents

Definitions

  • the present disclosure relates to a skin treatment device and program.
  • the low-frequency electrode pair repeats a transmission time during which a low-frequency voltage is applied and a rest time during which no voltage is applied, and the high-frequency electrode pair is a low-frequency electrode pair.
  • a technique of applying a high-frequency voltage only during the rest time is known.
  • an object of the present disclosure is to appropriately combine and continuously realize a plurality of types of output modes in a manner that effectively enhances the beauty effect.
  • a plurality of electrodes contactable with a user's skin a power source electrically connected to the plurality of electrodes; a control device that realizes output via the plurality of electrodes in a plurality of types of output modes having different output waveform characteristics,
  • the plurality of types of output modes include a first output mode and a second output mode,
  • a skin treatment apparatus is disclosed, wherein the control device performs a continuous switching process including intermittently and periodically repeating the first output mode and the second output mode.
  • FIG. 2 is a two-sided view of the skin treatment device of FIG. 1;
  • FIG. FIG. 4 is an explanatory diagram of various parameters related to electrode placement; 1 is a schematic configuration diagram of a control system according to an example;
  • FIG. 5 is a block diagram illustrating functions implemented by the control device of FIG. 4;
  • FIG. 4 is an explanatory diagram of setting values of various parameters stored in a parameter storage unit;
  • FIG. 4 is an explanatory diagram of an example of operation mode A1;
  • FIG. 11 is an explanatory diagram of another example of operation mode A1;
  • FIG. 11 is an explanatory diagram of another example of operation mode A1;
  • FIG. 10 is a diagram showing yet another example of output waveforms in infiltration mode M1;
  • FIG. 10 is a diagram showing yet another example of output waveforms in infiltration mode M1;
  • 15D is an enlarged view of the Q6 portion of FIG. 15C;
  • FIG. 10 is a diagram showing a preferred example of an output waveform in iontophoresis mode M2;
  • FIG. 10 is a diagram showing another preferred example of the output waveform in iontophoresis mode M2;
  • FIG. 10 is a diagram showing another preferred example of the output waveform in iontophoresis mode M2;
  • FIG. 10 is a diagram showing a preferred example of an output waveform in high frequency mode M3;
  • FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the frequency of the output waveform of the infiltration mode M1 as shown in FIG. 15;
  • FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the current value of the output waveform of the infiltration mode M1 as shown in FIG. 15;
  • FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the usage time of the output waveform of the infiltration mode M1 as shown in FIG. 15;
  • FIG. 1 is a perspective view showing the appearance of the skin treatment device 1 of this embodiment
  • FIG. 2 is a two-sided view of the skin treatment device 1 of FIG. is.
  • FIG. 3 is an explanatory diagram of the head section 3 of the skin treatment apparatus 1, and an explanatory diagram of various parameters relating to the electrode arrangement.
  • the skin treatment device 1 of this embodiment is in the form of a facial device, and is configured to impart beauty-related effects to the skin of the user's face.
  • the skin treatment device 1 may be configured to apply similar beauty-related effects to areas other than the user's face in addition to or instead of the user's face.
  • the skin treatment device 1 may be used to provide effects other than beauty-related effects (for example, the effect of promoting percutaneous absorption of pharmaceuticals).
  • Beauty-related effects are optional and may include any combination of one or more of the elimination of sagging skin, tightening, fat burning, lifting, slimming, skin firmness and luster, improved hydration, or the like. Moreover, the beauty-related effect may be an effect that can be quantified, or an effect that cannot be quantified.
  • the skin treatment device 1 of this embodiment is configured to impart beauty-related effects to the user's skin by imparting various outputs via a plurality of electrodes that contact the user's skin.
  • the skin treatment apparatus 1 of the present embodiment is a portable type that can be held by a user's hand, but may be applied to a movable type that is movably supported by a fixed device via an arm or the like.
  • the skin treatment device 1 includes a grip portion 2 and a head portion 3.
  • the user can apply various outputs from the skin treatment apparatus 1 to a desired part of the user's face by holding the grip part 2 and bringing the head part 3 into contact with the desired part.
  • the grip part 2 has a form that is easily gripped by the user's hand.
  • the grip portion 2 may include a user interface 20 including various buttons such as a power on/off button, a mode switching button, an intensity adjustment button, and the like.
  • the various buttons may be mechanical buttons or touch switches.
  • the grip part 2 may be provided with a display part (not shown) for displaying the state of the skin treatment device 1 and the like.
  • the grip part 2 may be provided with an electrode (not shown) that touches the user's hand.
  • the head portion 3 is provided at the end portion of the grip portion 2 . Note that the head portion 3 may be fixed to the grip portion 2 , may be removable, or may be movable relative to the grip portion 2 .
  • the head part 3 can come into contact with the user's skin, and has a shape suitable for being brought into contact with the user's skin.
  • the head portion 3 may have a substantially flat contact surface 3a (including a curved surface with a relatively large radius of curvature).
  • the extending direction (basic plane) of the contact surface 3a is indicated by a dashed line in side view.
  • the contact surface 3a is a flat surface that can be approximated to a substantially straight line when viewed from the side.
  • the shape of the contact surface 3a when viewed from the front is arbitrary such as rectangular, circular, elliptical, polygonal, etc. Then, as an example, as shown in FIGS. 2 and 3, it is circular.
  • the head portion 3 has a plurality of electrodes 30 arranged on the contact surface 3a.
  • the plurality of electrodes 30 may have a form that slightly protrudes from the basic surface of the contact surface 3a of the head section 3 so as to easily come into contact with the user's skin.
  • the plurality of electrodes 30 are arranged in an annular shape with the center C of the contact surface 3a of the head portion 3 as the center.
  • terms relating to the radial direction and the circumferential direction refer to the center C of the contact surface 3a when the contact surface 3a is viewed from the front (when viewed in a direction perpendicular to the contact surface 3a).
  • a circle is used as a reference.
  • the radially inner side represents the side closer to the center C of the contact surface 3a in the radial direction.
  • the number of the plurality of electrodes 30 and the unit of one electrode are assumed to be one continuous form.
  • the plurality of electrodes 30 form a plurality of electrode groups for each attribute, specifically a first electrode group 31 and a second electrode group 32 . Note that in other embodiments, three or more electrode groups may be formed.
  • the first electrode group 31, as shown in FIG. 3, includes a plurality of first electrodes 310 arranged at first predetermined angles ⁇ 1 along the first circumference 31a.
  • the plurality of first electrodes 310 may have the same shape. That is, each of the plurality of first electrodes 310 may be rotationally symmetrical with respect to each other around the center C of the contact surface 3a.
  • the first circumference 31a is a circumference with a radius r1 around the center C of the contact surface 3a.
  • the first circumference 31 a is a concept for explaining the arrangement of the plurality of first electrodes 310 and may be defined in any way as long as it passes through the plurality of first electrodes 310 .
  • the first circumference 31 a is a circumference that passes through substantially the center of each of the plurality of first electrodes 310 in the radial direction.
  • the first predetermined angle ⁇ 1 is preferably constant, but may not be constant.
  • ⁇ 1 2 ⁇ /N1.
  • the number of first electrodes 310 may be six, and the first predetermined angle ⁇ 1 may be a constant ⁇ /3.
  • the number of first electrodes 310 is preferably an even number, but may be an odd number. If the number is even, a pair of first electrodes 310 can be formed without one redundant or overlapping first electrode 310 from among the plurality of first electrodes 310, and each pair of first electrodes 310 can be operated simultaneously.
  • any two of the plurality of first electrodes 310 that are adjacent in the circumferential direction are separated from each other by a first distance d1.
  • the first distance d1 is constant in this embodiment, it may vary depending on the position in the circumferential direction, similar to the first predetermined angle ⁇ 1 described above.
  • the first electrodes 310 form a pair in the first electrode group 31 to generate a desired output waveform.
  • the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform.
  • the frequency band of the output waveform is arbitrary, but preferably high frequency or the like having a heating effect.
  • the first distance d1 is preferably adapted to be suitable for application of a high-frequency output waveform having a heating effect (or heating effect, hereinafter the same), and is smaller than a second distance d2, which will be described later.
  • the first distance d1 is preferably between 1.5mm and 4.5mm, more preferably between 2.0mm and 4.0mm, most preferably between 2.5mm and 3.5mm . In this case, an appropriate warming effect can be applied to the user's skin.
  • the output waveform when an output waveform is generated by pairing any two first electrodes 310 adjacent in the circumferential direction, the output waveform substantially acts on the path with the smallest distance between the two first electrodes 310. It tends to be an effective route to
  • the distance between any two of the plurality of first electrodes 310 is maintained at the first distance d1 over the section SC1 of a predetermined length along the radial direction.
  • the radial width of the effective path of the output waveform can be made relatively long according to the radial width (predetermined length) of the section SC1, and the effective region (action region) of the output waveform can be increased to can be spread effectively.
  • the plurality of first electrodes 310 are separated by two linear regions (hereinafter referred to as “linear separation regions 390") that intersect through the center C of the first circumference 31a. and the width of the linear spacing region 390 is the first distance d1.
  • linear separation regions 390 two linear regions that intersect through the center C of the first circumference 31a.
  • the width of the linear spacing region 390 is the first distance d1.
  • the second electrode group 32 includes a plurality of second electrodes 320 arranged at every second predetermined angle ⁇ 2 along the second circumference 32a.
  • the plurality of second electrodes 320 may have the same shape. That is, each of the plurality of second electrodes 320 may be rotationally symmetrical with respect to each other around the center C of the contact surface 3a.
  • the second circumference 32a is a circumference with a radius r2 around the center C of the contact surface 3a. It should be noted that the second circumference 32 a is a concept for explaining the arrangement of the plurality of second electrodes 320 and may be defined in any way as long as it passes through the plurality of second electrodes 320 . Here, it is assumed that the second circumference 32a is a circumference passing through the center of each of the plurality of second electrodes 320 in the radial direction.
  • the radius r2 of the second circumference 32a is larger than the radius r1 of the first circumference 31a. That is, the second electrode group 32 is arranged radially outside the first electrode group 31 .
  • the second predetermined angle ⁇ 2 is preferably constant, but may not be constant.
  • ⁇ 2 2 ⁇ /N2.
  • the number of the plurality of second electrodes 320 may be five, and the second predetermined angle ⁇ 2 may be a constant ⁇ /5.
  • any two of the plurality of second electrodes 320 that are adjacent in the circumferential direction are separated from each other by a second distance d2.
  • the second distance d2 is constant in this embodiment, it may vary depending on the position in the circumferential direction, similar to the second predetermined angle ⁇ 2 described above.
  • the second electrodes 320 adjacent in the circumferential direction form pairs in the second electrode group 32 to generate a desired output waveform.
  • the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform.
  • the frequency band of the output waveform is arbitrary, but is preferably high frequency or low frequency that has muscle electrical stimulating action.
  • the second distance d2 is preferably adapted to be suitable for application of high or low frequency output waveforms with electrical muscle stimulation and is greater than the first distance d1 described above.
  • the second distance d2 is preferably between 5.5mm and 15mm, more preferably between 6.0mm and 8.0mm, most preferably between 6.5mm and 10mm. In this case, it is possible to apply appropriate electrical muscle stimulation to the user's skin.
  • the first electrodes 310 are paired to generate various output waveforms having various effects
  • the second electrodes 320 can be paired to generate various output waveforms having various effects.
  • an electrode arrangement capable of imparting a uniform and excellent skin treatment effect to the user's skin over the entire contact area of the user's skin with which the skin treatment apparatus 1 contacts is realized. can.
  • a plurality of types of output modes having different output waveform characteristics are realized via a plurality of electrodes 30 .
  • the second electrodes 320 are paired or the first electrodes 310 are paired, and the action of penetrating the active ingredient (beauty ingredient) into the skin (hereinafter also simply referred to as "penetration action")
  • the output mode that generates an output waveform having a An output mode that generates an output waveform that has the effect of introducing the An output mode that generates an output waveform is called a "high frequency mode M3" (an example of a third output mode).
  • An output mode in which the second electrodes 320 are paired to generate a high-frequency or low-frequency output waveform having electrical muscle stimulation is referred to as an "electrical muscle stimulation mode M4" (an example of a fourth output mode). Examples of output waveforms in each output mode will be described later.
  • An output mode in which the first electrodes 310 form a pair and apply a weak current (microcurrent) is referred to as “microcurrent mode M5".
  • an output mode in which the first electrodes 310 are paired to generate an output waveform having an action of deriving ions (ions related to dirt etc.) from the skin is referred to as "ion derivation mode M6".
  • the first electrode group 31 and the second electrode group 32 are arranged close to each other in the radial direction, so that the first electrode 310 and the second electrode 320 form a pair.
  • the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform.
  • the frequency band of the output waveform is arbitrary, and may be, for example, a high frequency with a warming effect.
  • the output mode in which the first electrode 310 and the second electrode 320 form a pair to generate an output waveform is also referred to as a "radial mode".
  • the number of the plurality of second electrodes 320 is preferably an odd number, but may be an even number.
  • N1 described above is an even number
  • the relationship in the circumferential direction between the first electrode group 31 and the second electrode group 32 tends to be rotationally symmetrical.
  • the number of the plurality of second electrodes 320 is an even number
  • the first electrode group 31 is arranged so that the circumferential relationship between the first electrode group 31 and the second electrode group 32 is rotationally symmetrical. and the second electrode group 32 may be arranged.
  • various modes including the radial direction mode can be set that can impart a uniform effect along the circumferential direction.
  • the plurality of first electrodes 310 and the plurality of second electrodes 320 are separated by a third distance d3 in the radial direction.
  • the third distance d3 is preferably different from the first distance d1 and the second distance d2 described above. In this case, it is possible to diversify the outputs that can be realized by the first electrode group 31 and the second electrode group 32 .
  • the third distance d3 is preferably smaller than the first distance d1.
  • the relationship may be third distance d3 ⁇ first distance d1 ⁇ second distance d2. In this case, it is possible to diversify the outputs due to various separation distances.
  • the third distance d3 is preferably smaller than the first distance d1 by a distance between 0.5 mm and 1.5 mm.
  • the output waveform is generated by pairing the first electrodes 310 adjacent in the circumferential direction, compared to the case where the output waveform is generated by pairing the electrodes adjacent in the radial direction (for example, the radial mode described above).
  • This makes it easier to expand the effective region of the output waveform in the radial direction.
  • the predetermined length section SC1 (the radial length of the linear spaced region 390) is made relatively long. It is possible to expand the effective area of the output waveform in the radial direction.
  • the plurality of first electrodes 310 have a form in which a ring having a width in the radial direction (difference between the inner diameter and the outer diameter) of which is the fourth distance d4 is divided in the circumferential direction.
  • the annular ring having a width in the radial direction of the fourth distance d4 may be centered on the center C, and the inner diameter may correspond to about twice the width of the linear spaced region 390 .
  • the predetermined length of the section SC1 increases as the fourth distance d4 increases. Therefore, by setting the fourth distance d4 to a relatively long distance, the effective region of the output waveform generated by pairing the first electrodes 310 adjacent in the circumferential direction can be widened in the radial direction.
  • the plurality of second electrodes 320 have a shape in which a circular ring having a radial width of a fifth distance d5 is divided in the circumferential direction.
  • the fifth distance d5 may be significantly smaller than the fourth distance d4.
  • the effective area of the output waveform generated by pairing the second electrodes 320 adjacent in the circumferential direction has a relatively small length in the radial direction. can ensure its effectiveness.
  • the first electrode group 31 and the second electrode group 32 can be efficiently arranged in the limited electrode arrangement area on the contact surface 3a.
  • FIG. 4 the configuration of the control system of the skin treatment apparatus 1 will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a schematic configuration diagram of the control system 100 according to one example.
  • FIG. 5 is a block diagram illustrating functions implemented by the control device 110 of FIG.
  • FIG. 6 is an explanatory diagram of setting values of various parameters stored in the parameter storage unit 116.
  • a power supply 150 is also shown in FIG.
  • Power supply 150 may be, for example, a DC power supply. Although several power sources 150 are shown in FIG. 4, they may be common.
  • control system 100 includes a control device 110;
  • the control device 110 includes a computer and may be formed by, for example, a microcomputer. Note that the control device 110 may operate based on power from the power supply 150 .
  • the control device 110 selectively forms various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4. , 122 , output waveform generators 130 , 131 , 132 and switching circuit units 140 , 141 to control the plurality of electrodes 30 .
  • the control device 110 includes a user input acquisition unit 111, a mode setting unit 112, a control parameter setting unit 113, a control signal generation unit 114, a switching control unit 115 and a parameter storage unit 116 .
  • the CPU Central Processing Unit
  • the user input acquisition unit 111 acquires various user inputs from the user via the user interface 20 described above.
  • Various user inputs may include power on/off, mode selection inputs, intensity adjustment inputs, and the like.
  • the mode setting unit 112 sets the operation mode desired by the user based on the user input from the user input acquisition unit 111 .
  • the mode setting unit 112 may set the operation mode based on other parameters instead of or in addition to the user input.
  • Various operation modes may be prepared, and the number and types thereof are arbitrary. In this embodiment, as an example, a plurality of operation modes are prepared, including an operation mode A0 and an operation mode A1.
  • the operation mode A0 is one of the various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4, which is realized independently.
  • operation mode A0 may be electrical muscle stimulation mode M4. In this case, only the electrical muscle stimulation mode M4 is continuously realized while the operation mode A0 is being formed.
  • a plurality of operation modes A0 may be set according to each of the infiltration mode M1, the muscle electrical stimulation mode M4, and the like.
  • the operation mode A1 is one mode realized by combining two or more of various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4.
  • a plurality of operation modes A1 may be prepared in different combinations.
  • the operation mode A1 may be a combination of two of the infiltration mode M1 and the iontophoresis mode M2, or a combination of three of the infiltration mode M1, the iontophoresis mode M2 and the electrical muscle stimulation mode M4.
  • the combination may be arbitrary and may be settable (customizable) by the user.
  • each mode is intermittently and periodically repeated in a manner that outputs a corresponding output waveform for its duration.
  • the output waveform output in one duration preferably comprises a continuous waveform that changes periodically two or more times, as opposed to a single pulse.
  • the output waveform output in one duration consists of two or more pulses (from the rising/falling edge to the falling/rising edge is one pulse).
  • the output waveform output in one duration includes two or more cycles of the sine wave.
  • a predetermined time interval from the end timing of the output waveform related to the one mode to the start timing of the output waveform related to the other one mode pause time may be set.
  • the predetermined pause time may be set relatively short in such a manner that a time (for example, 1 to 2 milliseconds) required for switching operations in switching circuit units 140 and 141, which will be described later, is ensured.
  • the predetermined pause time may be shorter than the shortest duration of each mode, such as about 5 milliseconds.
  • the control parameter setting unit 113 sets each value of various control parameters for realizing a corresponding output waveform according to the operation mode set by the mode setting unit 112 .
  • the various control parameters include a first parameter indicating whether the waveform is an AC waveform or a DC waveform, a second parameter indicating the frequency, a third parameter indicating the duration, a fourth parameter indicating the pair of electrodes that generate the output waveform, and the like. may contain.
  • the duration corresponds to the output time of the output waveform related to the mode, and corresponds to the continuous output time from the start point to the end point of the corresponding output waveform.
  • the third parameter may be used only in the operation mode A1 described above, and may not be used in the operation mode A0.
  • the duration may be, for example, until the power is turned off, or may be determined according to other requirements (for example, requirements based on temperature information from a thermistor (not shown)).
  • the control parameter setting unit 113 may set each value of various control parameters for realizing the corresponding output waveform based on the set value of each parameter in the parameter storage unit 116 .
  • FIG. 6 shows an example of setting values of various parameters stored in the parameter storage unit 116. As shown in FIG. In the example shown in FIG. 6, set values of various parameters are associated with each mode such as the infiltration mode M1 and the electrical muscle stimulation mode M4. In FIG. 6, the value "1" of the first parameter represents an AC waveform, and the value "0" represents a DC waveform. Also, the values PT1 to PT4, PT20, and PT21 of the fourth parameter may represent the change pattern of the electrode pairs that generate the output waveform.
  • the pair of electrodes that generate the output waveform may be a pair having a one-to-one relationship, or may be a pair having a one-to-many relationship.
  • the control signal generation unit 114 generates a control signal in the form of a PWM (Pulse Width Modulation) signal based on the values of various parameters set by the control parameter setting unit 113 .
  • the control signal generation section 114 provides the generated control signal to the corresponding drive circuit section among the drive circuit sections 120 , 121 and 122 .
  • the control system 100 has three systems of drive circuit units 120, 121, and 122.
  • the drive circuit unit 120 Various output waveforms are generated via (the plurality of second electrodes 320), and the drive circuit units 121 and 122 generate various output waveforms via the first electrode group 31 (the plurality of first electrodes 310).
  • the drive circuit unit 121 generates an AC output waveform (for example, an output waveform for the high frequency mode M3), and the drive circuit unit 122 generates a DC output waveform (for example, an output waveform for the iontophoresis mode M2). .
  • FIG. 4 schematically shows waveforms of part of the control signals CT1 and CT2.
  • the control signals CT1 and CT2 may be applied to the drive circuit units 120 and 121 through separate control lines L1 and L2, respectively.
  • the frequencies (duty ratios) of the control signals CT1 and CT2 may be determined according to the set value of the second parameter.
  • FIG. 4 schematically shows a waveform of part of the control signal CT3.
  • the control signal CT3 may be applied to the drive circuit section 122 via the control line L3.
  • the frequency (duty ratio) of the control signal CT3 may be determined according to the set value of the second parameter.
  • control signals CT1 and CT2 (and the control lines L1 and L2 associated therewith) are output or the control signal CT3 is output depends on the mode. may be determined according to the set value of the first parameter. For example, in one mode, when the setting value of the first parameter is "1", both the control signals CT1 and CT2 are output, and when the setting value of the first parameter is "0", the control signal CT3 is output. may be output. Also, when a certain mode is realized, the duration of the control signals CT1, CT2, and CT3 associated with that mode may be determined according to the set value of the third parameter.
  • the drive circuit units 120, 121, and 122 include drivers that drive a plurality of switching elements Tr, which will be described later.
  • the drive circuit units 120, 121, and 122 turn on/off the switching elements Tr of the output waveform generation units 130, 131, and 132 according to the control signals CT1, CT2, and CT3 from the control signal generation unit 114, respectively.
  • a signal is generated, and the generated drive signal is applied to the corresponding switching element Tr.
  • the output waveform generators 130, 131, and 132 each generate an output waveform based on the power supply 150, which is a DC power supply.
  • Output waveform generating section 130 includes a pair of switching elements Tr and transformer 135 .
  • Output waveform generating section 131 includes a pair of switching elements Tr and transformer 136 .
  • Output waveform generating section 132 includes switching element Tr and transformer 137 .
  • the pair of switching elements Tr are switching elements such as transistors, one of which is connected to the terminal Ta of the transformer 135 and the other of which is connected to the terminal Tb of the transformer 135 .
  • the power supply 150 is connected to the terminal Tc associated with the center tap of the transformer 135 .
  • the transformer 135 may be adapted to the frequency of the high frequency mode M3 based on setting (adjustment) such as changing the setting multiplier of the peripheral circuit, the material and adhesion of the ferrite core (internal part of the transformer 135).
  • the pair of switching elements Tr are switching elements such as transistors, one of which is connected to the terminal Ta of the transformer 136, and the other of which is connected to the terminal Tb of the transformer 136.
  • the power supply 150 is connected to the terminal Tc associated with the center tap of the transformer 136 .
  • the transformer 136 is frequency-specified adapted to the frequency of the high frequency mode M3. Therefore, in this case, the output waveform generators 130 and 131 may be composed of the same parts. The same applies to the drive circuit units 120 and 121 as well.
  • the switching element Tr is, for example, a switching element such as a transistor, and is connected to the terminal Tb of the transformer 137 .
  • the power supply 150 is connected to the terminal Ta of the transformer 137 .
  • the transformer 137 may be frequency-specifically adapted to the frequency of the iontophoretic mode M2.
  • the switching circuit unit 140 switches the connection destinations of the output terminals Td and Te of the output waveform generating unit 130 (that is, the output terminals of the transformer 135) among the plurality of second electrodes 320, thereby selecting pairs of electrodes that generate output waveforms. are controlled within the plurality of second electrodes 320 .
  • the switching circuit section 140 may control the pair of electrodes that generate the output waveform based on the set value of the fourth parameter.
  • the switching circuit section 141 connects the output terminals Td and Te of the output waveform generating section 131 (that is, the output terminals of the transformer 136) and the output terminals of the output waveform generating section 132 (that is, the output terminals of the transformer 137) Td and Te.
  • pairs of electrodes that generate an output waveform are controlled among the plurality of first electrodes 310 .
  • the switching circuit section 141 may control the pair of electrodes that generate the output waveform based on the set value of the fourth parameter.
  • the series for applying the output waveform via the first electrode group 31 and the series for applying the output waveform via the second electrode group 32 are independent. Therefore, it is possible to simultaneously generate (output) an output waveform via the first electrode group 31 and an output waveform via the second electrode group 32 . Therefore, it is possible to combine the output waveform via the first electrode group 31 and the output waveform via the second electrode group 32 on the time axis in various ways, and the output variation of the skin treatment apparatus 1 can be effectively changed. can be increased exponentially.
  • the control system 100 shown in FIG. 4 is merely an example, and the control system 100 may vary depending on the type of output waveform to be generated, requests such as whether or not to use the first electrode group 31 and the second electrode group 32 at the same time, costs, and the like. It may be changed accordingly.
  • the drive circuit section 122 and the output waveform generation section 132 may be omitted.
  • the connection destinations of the output terminals Td and Te of the output waveform generating section 130 (that is, the output terminals of the transformer 135) are within the plurality of second electrodes 320 or within the plurality of first electrodes 310.
  • the output terminals of the output waveform generating section 130 (that is, the output terminals of the transformer 135) Td and Te are connected to one of the plurality of second electrodes 320.
  • the above and one or more of the plurality of first electrodes 310 may be paired and switched by time division.
  • FIG. 7 An example of the operation mode A1 will be described with reference to FIGS. 7 to 13.
  • FIG. 7 An example of the operation mode A1 will be described with reference to FIGS. 7 to 13.
  • FIG. 7 is an explanatory diagram of an example of the operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the picture of the head unit 3 is shown on the upper side, and the circle surrounding the + mark and the circle surrounding the - mark correspond to the paired electrodes among the plurality of electrodes 30. attached.
  • the electrode associated with the circle surrounding the + mark and the electrode associated with the circle surrounding the - mark form a pair.
  • combination patterns (variation patterns) of each mode are shown in association with the picture of the head section 3 on the lower side.
  • the operation mode A1 is a combination mode of the high frequency mode M3 and the ion derivation mode M6.
  • the high frequency mode M3 and the ion extraction mode M6 are repeated periodically in this order in a non-overlapping manner with respect to each other.
  • all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform with a warming effect is applied to the user's skin via each pair.
  • each of the two first electrodes 310 having the same phase of the alternating waveform among the four first electrodes 310 is paired with each of the other two first electrodes 310. good.
  • all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform is applied to the user's skin via each pair that has the effect of extracting ions from within the skin. .
  • each of the two first electrodes 310 having the same polarity among the four first electrodes 310 may be paired with each of the other two first electrodes 310 .
  • the high frequency mode M3 and the ion derivation mode M6 are alternately and repeatedly executed. Dirt, cleansing, etc. can be effectively adsorbed and removed by the derivation mode M6.
  • the duration of each mode (each of the high frequency mode M3 and the ion extraction mode M6) in one cycle of the operation mode A1 is preferably set significantly longer than 1 second. be done.
  • FIG. 8 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the notation method of the combination pattern (variation pattern) is the same as in FIG.
  • operation mode A1 is a combination mode of infiltration mode M1, muscle electrical stimulation mode M4, high frequency mode M3, and iontophoresis mode M2.
  • M2 and the third electrical muscle stimulation mode M4 are cyclically repeated in this order in a non-overlapping manner with respect to each other.
  • the combination mode M0 is a combination mode of the infiltration mode M1 and the high frequency mode M3. That is, the combination mode M0 includes an infiltration mode M1 as a first submode having an effect of permeating the active ingredient into the skin and a high frequency mode M3 as a second submode having an effect of warming the skin. .
  • first sub-mode and second sub-mode can be realized simultaneously using the control system 100 described above with reference to FIG. That is, the first sub-mode uses the system (driving circuit unit 120, etc.) related to the second electrode group 32 in the control system 100 shown in FIG. By using the system (driving circuit unit 121, etc.) related to the first electrode group 31 in the control system 100, they can be realized simultaneously and independently of each other.
  • the two sub-modes may be realized by time division.
  • all of the plurality of second electrodes 320 may be utilized simultaneously, in which case an output waveform is applied to the user's skin via each pair that has the effect of infiltrating the active ingredient into the skin.
  • an output waveform is applied to the user's skin via each pair that has the effect of infiltrating the active ingredient into the skin.
  • the two second electrodes 320 having the same phase of the AC waveform are the other It may be paired with the second electrode 320 (the electrode associated with the circle surrounding the + mark) (that is, a total of two pairs may be formed).
  • all of the plurality of first electrodes 310 may be used simultaneously, similar to the aspect described above with reference to FIG.
  • muscle electrical stimulation mode M4 all of the plurality of second electrodes 320 may be used in a time division manner. As shown in FIG. 8, in the first electrical muscle stimulation mode M4, the upper and lower right two of the three second electrodes 320 are paired to generate an output waveform. In the electrical muscle stimulation mode M4, two different (two adjacent in the circumferential direction) form a pair, and in the next third electrical muscle stimulation mode M4, two further different (two adjacent in the circumferential direction) You can make a pair. In this manner, in the electrical muscle stimulation mode M4, in one cycle of the operation mode A1, the pairs that generate the output waveforms may be changed in three patterns in which the pairs are shifted one by one in the circumferential direction.
  • the pairs that generate the output waveforms may be changed in three patterns in which the pairs are shifted by two in the circumferential direction.
  • the pairs that generate the output waveforms are the same. may be changed dynamically with That is, within the duration of one electrical muscle stimulation mode M4, pairs that generate output waveforms may be dynamically changed in a similar manner.
  • all of the plurality of first electrodes 310 may be used simultaneously. In this case, through each pair, an output waveform is applied to the user's skin that has the effect of introducing ions into the skin.
  • each of the two first electrodes 310 having the same polarity among the four first electrodes 310 may be paired with each of the other two first electrodes 310 .
  • each mode (each of the infiltration mode M1 of the combination mode M0, the electrical muscle stimulation mode M4 of the combination mode M0, the high frequency mode M3 of the combination mode M0, and the iontophoresis mode M2).
  • the duration is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
  • the first combination mode M0 and the second combination mode M0 may be realized continuously (that is, integrated) without an intervening pause time. can also be used).
  • the first combination mode M0 is executed only for the first time of the operation mode A1 or every multiple cycles of the operation mode A1, and each mode from the second combination mode M0 to the third muscle electrical stimulation mode M4 is the operation mode. It may be executed every period of A1.
  • the duration of each mode from the second combination mode M0 to the third muscle electrical stimulation mode M4 is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
  • the duration of the second and third combined modes M0 is preferably between 20 ms and 70 ms, more preferably between 30 ms and 60 ms, and most preferably between 30 ms and 60 ms. Preferably it is between 40 ms and 50 ms.
  • the duration of iontophoretic mode M2 is preferably between 20 and 70 ms, more preferably between 30 and 60 ms, most preferably between 40 and 50 ms. between
  • the duration of each of the first to third muscle electrical stimulation modes M4 is preferably between 10 ms and 40 ms, more preferably between 15 ms and 35 ms, most preferably is between 20 ms and 30 ms.
  • the duration of the first combined mode M0 is preferably set to a time significantly longer than 1 second.
  • the duration of the first combination mode M0 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • FIG. 8A is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • operation mode A1 is a combination mode of infiltration mode M1, muscle electrical stimulation mode M4, and iontophoresis mode M2.
  • the first infiltration mode M1, the first electrical muscle stimulation mode M4, the second infiltration mode M1, the second electrical muscle stimulation mode M4, the iontophoresis mode M2, and the third electrical muscle Stimulation mode M4 is repeated periodically in this order in a non-overlapping manner with respect to each other.
  • the first invasion mode M1 and the second invasion mode M1 are executed independently, unlike the example shown in FIG. Again, the duration of the first invasion mode M1 and the second invasion mode M1 is preferably between 20 ms and 70 ms, more preferably between 30 ms and 60 ms. Yes, and most preferably between 40 ms and 50 ms. Other modes may be the same as the example shown in FIG.
  • FIG. 8B is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • operation mode A1 is a combination mode of iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4.
  • the operating mode A1 comprises a first combination mode M01 and a repetition mode M8, which in that order, in a non-overlapping manner with respect to each other, are periodic. repeatedly repeated.
  • the first combination mode M01 is a combination mode of the high frequency mode M3 and the muscle electrical stimulation mode M4, and its duration is preferably between 5 seconds and 25 seconds, more preferably between 10 seconds and 20 seconds. Between.
  • the repetition mode M8 is an alternating repetition mode of the second combination mode M02 and the iontophoresis mode M2. Specifically, in repetition mode M8, the second combination mode M02 and the iontophoresis mode M2 are periodically repeated in this order in a non-overlapping manner with respect to each other.
  • the duration of repeat mode M8 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • the duration of the repeat mode M8 may be the same as the duration of the first combination mode M01.
  • the second combination mode M02 is a combination mode of the high frequency mode M3 and the muscle electrical stimulation mode M4, like the first combination mode M01.
  • the second combination mode M02 and the iontophoresis mode M2 are preferably repeatedly executed at a period of less than 1 second.
  • Such operation mode A1 is suitable for permeation of macromolecules for the purpose of moisturizing, for example, like the example shown in FIG. 8 or 8A.
  • FIG. 9 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the notation method of the combination pattern (variation pattern) is the same as in FIG.
  • fourth infiltration mode M1 is executed subsequent to third electrical muscle stimulation mode M4. Points are different.
  • the action of the infiltration mode M1 (the action of penetrating the active ingredient into the skin) can be effectively enhanced.
  • the fourth infiltration mode M1 may consist of two sub-modes like the first to third infiltration modes M1, but is preferably performed independently, as shown in FIG.
  • all of the plurality of first electrodes 310 may be utilized simultaneously, in which case, through each pair, an output waveform having the effect of infiltrating the active ingredient into the skin of the user is applied. is applied to In the example shown in FIG.
  • each of the two first electrodes 310 having the same phase of the AC waveform (for example, electrodes associated with a circle surrounding a + mark) is It may be paired with each of the other two first electrodes 310 (electrodes associated with a circle surrounding the minus mark) (that is, a total of four pairs may be formed).
  • Such operation mode A1 is suitable, for example, for penetration of whitening ingredients.
  • the duration of the fourth infiltration mode M1 is set to a time significantly longer than 1 second.
  • the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • the fourth infiltration mode M1 is realized by a plurality of first electrodes 310, but instead of or in addition to this, in a manner similar to the infiltration mode M1 of the combination mode M0 , may be realized by a plurality of second electrodes 320 .
  • FIG. 9A is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • operation mode A1 is a combination mode of infiltration mode M1, iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4.
  • the operation mode A1 includes a first combination mode M11, an electrical muscle stimulation mode M4, and a repetition mode M9, wherein the first combination mode M11, the electrical muscle stimulation mode M4, the repetition mode M9, The electrical muscle stimulation mode M4 is repeated periodically in this order in a non-overlapping manner with respect to each other.
  • a first combination mode M11 is a combination mode of infiltration mode M1 and high frequency mode M3, the duration of which is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds. is.
  • the second electrodes 320 are paired to generate a high-frequency output waveform having an electrical muscle stimulation action.
  • the duration of the electrical muscle stimulation mode M4 is preferably between 4 and 12 seconds, more preferably between 6 and 10 seconds.
  • the electrical muscle stimulation mode M4 before the repetition mode M9 and the electrical muscle stimulation mode M4 after the repetition mode M9 are realized in the same manner including the duration, but in the modification, they are realized in different manners. may
  • the repetition mode M9 is an alternating repetition mode of the second combination mode M12 and the iontophoresis mode M2. Specifically, in repetition mode M9, the second combination mode M12 and the iontophoresis mode M2 are periodically repeated in this order in a non-overlapping manner with respect to each other.
  • the duration of repeat mode M9 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • the duration of the repeat mode M9 may be the same as the duration of the first combination mode M11.
  • the second combination mode M12 is a combination mode of the infiltration mode M1 and the high frequency mode M3, like the first combination mode M11. At this time, the second combination mode M12 and the iontophoresis mode M2 are preferably repeatedly executed at a period of less than 1 second.
  • such an operation mode A1 is suitable for, for example, penetration of whitening ingredients.
  • the infiltration mode M1, and the high frequency mode M3 are combined, a configuration in which the infiltration mode M1 and the high frequency mode M3 are executed simultaneously like the second combination mode M12 is preferable to the infiltration mode M1 and the high frequency mode.
  • Experimental results show that the penetrating effect tends to be higher than the configuration in which mode M3 is continuously performed. Therefore, in the operation mode A1, a further enhanced penetration effect can be expected by combining the iontophoresis mode M2 with the second combination mode M12.
  • FIG. 10 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the notation method of the combination pattern (variation pattern) is the same as in FIG.
  • the operation mode A1 is a combination mode of the infiltration mode M1, the iontophoresis mode M2, the high frequency mode M3, and the muscle electrical stimulation mode M4.
  • the infiltration mode M1, the electrical muscle stimulation mode M4, and the combination mode M10 are periodically repeated in this order in a non-overlapping manner with respect to each other.
  • each of the two first electrodes 310 having the same phase of the AC waveform (for example, electrodes associated with a circle surrounding a + mark) is It may be paired with each of the other two first electrodes 310 (electrodes associated with a circle surrounding the minus mark) (that is, a total of four pairs may be formed).
  • the muscle electrical stimulation mode M4 may be executed in the same manner as the example shown in FIG.
  • the combination mode M10 is a combination mode of the ion introduction mode M2 and the high frequency mode M3. That is, the combination mode M10 includes an ion introduction mode M2 as a first sub-mode having an effect of introducing ions into the skin and a high-frequency mode M3 as a second sub-mode having an effect of warming the skin. .
  • the two sub-modes may be realized in a time-sharing manner using the control system 100 described above with reference to FIG.
  • the first sub-mode and the second sub-mode may alternately be realized only once, or may be realized a plurality of times.
  • the two sub-modes may be implemented simultaneously using a control system (not shown) different from the control system 100 described above with reference to FIG. good.
  • the first sub-mode may be realized via one pair of the two pairs of the plurality of first electrodes 310, and the second sub-mode may be realized via the other pair at the same time.
  • the first sub-mode and the second sub-mode may be realized within one duration without changing the pair, or the first sub-mode with changing the pair within one duration.
  • a mode and a second sub-mode may be implemented.
  • the first sub-mode and the second sub-mode may be realized while changing the pair for each cycle of the operation mode A1.
  • the pair of electrodes that realize the first submode may be changed in four patterns, one by one in the circumferential direction or the other by three in the circumferential direction. Two patterns in which the pairs of electrodes that realize one submode are shifted by two in the circumferential direction (that is, the pairs that realize the first submode and the pairs that realize the second submode are alternately replaced). , may be changed.
  • each mode infiltration mode M1, muscle electrical stimulation mode M4, and combination mode M10 is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
  • the invasion mode M1, the electrical muscle stimulation mode M4, and the combination mode M10 are periodically repeated in this order.
  • the order may be repeated cyclically.
  • FIG. 11 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the notation method of the combination pattern (variation pattern) is the same as in FIG.
  • operation mode A1 is a combination mode of infiltration mode M1, iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4.
  • the high frequency mode M3, the first infiltration mode M1, the first muscle electrical stimulation mode M4, the second infiltration mode M1, the second muscle electrical stimulation mode M4, the combination mode M10, and the third muscle Electrical stimulation mode M4 is repeated periodically in this order and in a non-overlapping manner with respect to each other.
  • the infiltration mode M1 and the muscle electrical stimulation mode M4 may be as described above with reference to FIG.
  • the combination mode M10 may be as described above with reference to FIG.
  • all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform with a warming effect is applied to the user's skin via each pair.
  • each of the two first electrodes 310 having the same phase of the AC waveform among the four first electrodes 310 is connected to the other two first electrodes. 310 may be paired.
  • the duration of each of the infiltration mode M1, combination mode M10 and muscle electrical stimulation mode M4 is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
  • the duration of the infiltration mode M1 the duration of the iontophoresis mode M2 of the combination mode M10, and the duration of the muscle electrical stimulation mode M4 may be the same as the example shown in FIG.
  • the duration of high frequency mode M3 is preferably set to a time significantly longer than 1 second.
  • the duration of high frequency mode M3 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • the high-frequency mode M3 is executed only for the first time of the operation mode A1 or every multiple cycles of the operation mode A1, and each mode from the first infiltration mode M1 to the third muscle electrical stimulation mode M4 is operated. It may be executed for each cycle of mode A1.
  • FIG. 12 is an explanatory diagram of still another example of the operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
  • the notation method of the combination pattern (variation pattern) is the same as in FIG.
  • the operation mode A1 shown in FIG. 12 differs from the operation mode A1 shown in FIG. 11 in that the third electrical muscle stimulation mode M4 is followed by the infiltration mode M1 with a relatively long duration. .
  • the action of the infiltration mode M1 (the action of penetrating the active ingredient into the skin) can be effectively enhanced.
  • the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is set to a time significantly longer than 1 second.
  • the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
  • FIG. 13 is an explanatory diagram of yet another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. Note that the notation method of patterns (variation patterns) is the same as in FIG.
  • An operation mode A1 shown in FIG. 13 is a combination mode of a high frequency mode M3, a microcurrent mode M5, and a muscle electrical stimulation mode M4.
  • the high frequency mode M3, the microcurrent mode M5 and the electrical muscle stimulation mode M4 are repeated periodically in this order in a non-overlapping manner with respect to each other.
  • the microcurrent mode M5 all of the plurality of first electrodes 310 may be used simultaneously.
  • the operation mode A1 shown in FIG. 13 for example, an effect of improving sagging around the eyes and fine wrinkles due to dryness can be expected.
  • the duration of the microcurrent mode M5 may be significantly shorter than 1 second, for example of the order of 0.4 seconds.
  • the duration of the high frequency mode M3 in the operation mode A1 shown in FIG. 13 may be significantly shorter than 1 second, and may be approximately 0.6 seconds, for example.
  • the microcurrent mode M5 is executed independently, but it may be executed in combination of two submodes. That is, the microcurrent mode M5 may be implemented in a mode including a first submode that applies a weak current and a second submode that has an electrical muscle stimulation action.
  • the two sub-modes (first sub-mode and second sub-mode) may be realized in a time-sharing manner using the control system 100 described above with reference to FIG. In this case, within one duration, the first sub-mode and the second sub-mode may alternately be realized only once, or may be realized a plurality of times.
  • the two sub-modes (the first sub-mode and the second sub-mode) may be implemented simultaneously using the control system 100 described above with reference to FIG.
  • FIG. 14 is an explanatory diagram of an example of the operation mode A0, showing combination patterns (change patterns) in time series with the horizontal axis representing time. Note that the notation method of patterns (variation patterns) is the same as in FIG.
  • the muscle electrical stimulation mode M4 is a mode in which pairs of the three second electrodes 320 that generate output waveforms are shifted clockwise (clockwise when viewed from the front) by one in the circumferential direction. It is changed with 3 patterns. Note that the order of the three patterns may be changed arbitrarily.
  • the duration T EMS of each pattern may be the same for each period of the operation mode A0, but is preferably changed regularly for each change period.
  • the duration T EMS may be varied, for example, 1000 ms, 500 ms, 250 ms, 50 ms, 25 ms.
  • the change period in this case may be constant, and may be, for example, about 10 seconds.
  • a plurality of types of muscle electrical stimulation can be applied periodically, so effective lift-up can be expected.
  • FIG. 15 is a diagram showing a preferred example of the output waveform of the infiltration mode M1.
  • FIG. 15 shows the output waveform (time-series waveform) of the infiltration mode M1 when the horizontal axis represents time and the vertical axis represents voltage values.
  • ⁇ T1 represents one cycle of the output waveform.
  • the output waveform of the infiltration mode M1 is an AC waveform and has a plurality of peak voltage values during a half cycle ( ⁇ T/2).
  • the multiple peak voltage values include a first peak voltage value Vp1 and one or more second peak voltage values Vp2.
  • the first peak voltage value Vp1 is the peak voltage value that appears first in the half cycle
  • the second peak voltage value Vp2 appears after the first peak voltage value Vp1 and is higher than the first peak voltage value Vp1. small.
  • a plurality of second peak voltage values Vp2 may occur in such a manner that they gradually decrease.
  • the second peak voltage value Vp2 is preferably less than half the magnitude of the first peak voltage value Vp1.
  • the frequency of the output waveform of infiltration mode M1 is significantly lower than the frequency of the output waveform of high frequency mode M3, preferably between 10 kHz and 500 kHz.
  • 15A to 15C are diagrams showing other output waveforms that may be used in place of the output waveforms of output mode M1 shown in FIG. 15.
  • FIG. FIG. 15D is an enlarged view of part Q6 in FIG. 15C.
  • the example shown in FIGS. 15A and 15C differs from the output waveform shown in FIG. 15 mainly in that the second peak voltage value Vp2 does not exist. In this case, the voltage value of the output waveform for half a period changes from the first peak voltage value Vp1 so as to maintain a substantially constant value (substantially constant voltage value).
  • the substantially constant value may be the same level as the second peak voltage value Vp2.
  • the substantially constant value may be a level slightly lower than the second peak voltage value Vp2, as shown in FIG. 15C.
  • the peak waveform related to the first peak voltage value Vp1 has an effect like electroporation, and the subsequent electrical stimulation (a section of a substantially constant value) can be expected to have an effect of promoting permeation.
  • the substantially constant value is a concept that allows an error that occurs in a relatively small sawtooth waveform as shown in FIG. 15D, for example, a concept that allows an error of 10% or less with respect to a constant value. In FIG.
  • FIG. 15D is a diagram for explaining the substantially constant value in FIG. 15C, but the same applies to FIG. 15A.
  • the example shown in FIG. 15B differs from the output waveform shown in FIG. 15 mainly in that the first peak voltage value Vp1 does not appear at the beginning of the half cycle but appears in the middle.
  • the second peak voltage value Vp2 may appear at the beginning of the half cycle.
  • the first peak voltage value Vp1 appears near the middle of the half cycle, but may appear significantly later (for example, last) (or significantly earlier) than near the middle.
  • the output waveforms shown in FIGS. 15A and 15C that is, in the output waveforms shown in FIGS. 15A and 15C as well, the first peak voltage value Vp1 does not necessarily appear at the beginning of the half cycle, and may appear during or at the end of the half cycle.
  • the various waveforms shown in FIGS. 15 to 15C may be positive and negative substantially symmetrical waveforms, but may have a slight offset on the positive or negative side.
  • the duration ( ⁇ TVp1) of the first peak voltage value Vp1 is preferably 1 /5 or less. Also, in the example shown in FIG.
  • the duration ( ⁇ TVp1) of the first peak voltage value Vp1 may be measured as a period during which 80% or more of the magnitude of the first peak voltage value Vp1 is maintained.
  • the output waveform of such infiltration mode M1 is significantly different in waveform (waveform characteristics other than frequency) from the output waveform of high frequency mode M3 shown in FIG. It can be generated using the same hardware resources.
  • both the output waveform of the infiltration mode M1 and the output waveform of the high frequency mode M3 can be generated via the output waveform generators 130 and 131 of the control system 100 shown in FIG. In this case, only the frequencies of the control signals CT1 and CT2 from the control signal generator 114 are different between generating the output waveform of the infiltration mode M1 and generating the output waveform of the high frequency mode M3.
  • the frequencies of the control signals CT1 and CT2 from the control signal generator 114 correspond to the frequency of the output waveform in the infiltration mode M1, whereas the frequencies of the high frequency mode M3
  • the frequencies of the control signals CT1 and CT2 from the control signal generator 114 are different only by corresponding to the frequency of the output waveform of the high frequency mode M3.
  • the transformer 136 (and the transformer 135 as well) has a frequency specification adapted to the frequency of the high frequency mode M3. 19, a sinusoidal output waveform of a desired frequency (the frequency of the high frequency mode M3) can be generated.
  • the transformer 135 (also the transformer 136) responds to the control signals CT1 and CT2 corresponding to the frequency of the output waveform of the infiltration mode M1 significantly lower than the frequency of the high frequency mode M3 as shown in FIG.
  • a sinusoidal output waveform (a sinusoidal output waveform corresponding to the frequency of the output waveform of the infiltration mode M1) cannot be generated.
  • the transformer 135 produces an output waveform of the infiltration mode M1 as shown in FIG. can be generated.
  • the infiltration mode M1 shown in FIG. 15 can be generated without special hardware resources for generating the infiltration mode M1 output waveform shown in FIG. Can generate output waveforms. That is, according to this embodiment, the output waveform of the infiltration mode M1 as shown in FIG. 15 can be generated by using hardware resources for generating the output waveform of the high frequency mode M3. As a result, various output waveforms (output waveforms having various actions as described above or later) including the output waveform of the infiltration mode M1 as shown in FIG. can.
  • the output waveform of the infiltration mode M1 as shown in FIG. 15 may be generated via the first electrode group 31 instead of or in addition to the second electrode group 32.
  • the output waveform of the high frequency mode M3 as shown in FIG. 19 may be generated via the second electrode group 32 instead of or in addition to the first electrode group 31.
  • the frequencies of the control signals CT1 and CT2 are By simply changing , the output waveform of the infiltration mode M1 as shown in FIG. 15 and the output waveform of the high frequency mode M3 as shown in FIG. 19 can be selectively generated.
  • various output waveforms (output waveforms having various actions as described above or later) can be applied via various electrodes.
  • FIG. 16 is a diagram showing a preferred example of output waveforms in the iontophoresis mode M2.
  • FIG. 16 shows the output waveform (time-series waveform) in the iontophoresis mode M2 when the horizontal axis represents time and the vertical axis represents voltage values.
  • ⁇ T2 represents one cycle of the output waveform.
  • the output waveform in the iontophoresis mode M2 is a pulsed DC waveform. It should be noted that instead of the waveforms shown in FIG. 16, waveforms with inverted polarities as shown in FIG. 17 may be used.
  • the frequency of the output waveform of the iontophoresis mode M2 is determined such that at least two or more pulsed DC waveforms are generated within one duration, preferably between 1.5 kHz and 10 kHz.
  • the output waveform in the iontophoresis mode M2 may consist of a plurality of pulsed DC waveforms with the same amplitude, but preferably one or more specific pulsed DC waveforms whose amplitude (magnitude of voltage value) is significantly larger than others. It may contain pulses.
  • FIG. 18 shows an example of an output waveform for iontophoresis mode M2 in which only one particular pulse PL2 is included within one duration.
  • a specific pulse has the function of enhancing the effect of the iontophoresis mode M2 by generating transient pores in the skin (electroporation) by pulse stimulation.
  • the specific pulse differs not only in amplitude but also in frequency from pulses other than the specific pulse in the output waveform of the iontophoresis mode M2 (hereinafter referred to as "mesoporation pulse” for distinction).
  • the mesoporation pulse has a peak voltage value of less than 10 V and a frequency between 1.5 kHz and 10 kHz, whereas the specific pulse has a peak voltage value of 10 V or more and , the frequency may be a low frequency of about 2 to 10 Hz.
  • transient pores are generated in the skin by pulse stimulation. It may be useful to apply the mesoporation pulse immediately after the application of the specific pulse with function. This is because transient pores tend to close up quickly.
  • the mesoporation pulse is generated immediately after the application of the specific pulse, so the effect of the ion introduction mode M2 can be effectively enhanced.
  • FIG. 19 is a diagram showing a preferred example of the output waveform of the high frequency mode M3.
  • FIG. 19 shows the output waveform (time-series waveform) of the high-frequency mode M3 when the horizontal axis represents time and the vertical axis represents voltage.
  • ⁇ T3 represents one cycle of the output waveform.
  • the output waveform of the high frequency mode M3 is a high frequency AC waveform, and has a significantly higher frequency than the frequency of the output waveform of the infiltration mode M1 as described above.
  • the frequency of the output waveform in high frequency mode M3 may be, for example, 900 kHz or higher.
  • FIG. 20 is a diagram comparing the permeation effects of active ingredients with various output waveforms.
  • the vertical axis indicates the amount of absorption in the stratum corneum for the 2nd to 5th layers of the stratum corneum, and the horizontal axis indicates various test conditions C1 to C5. is shown.
  • the vertical axis indicates the amount of absorption in the stratum corneum for the 6th to 10th layers of the stratum corneum, and the horizontal axis indicates various test conditions C1 to C5. is shown.
  • Test condition C1 corresponds to a condition in which no output waveform is generated from the skin treatment device 1 (hereinafter also referred to as "output nonuse condition"), and test conditions C2 to C5 are conditions in which the skin treatment device 1 is used,
  • the test condition C2 corresponds to the condition under which only the output waveform of the high frequency mode M3 is applied, and the test condition C3 is the condition under which only the output waveform of the iontophoresis mode M2 (positive output waveform shown in FIG. 16) is applied.
  • the test condition C4 corresponds to a condition in which only the output waveform of the iontophoresis mode M2 (negative output waveform shown in FIG. 17) is given.
  • the test condition C5 corresponds to a condition in which only the output waveform of the infiltration mode M1 as shown in FIG. 15 is given.
  • 21A and 21B are explanatory diagrams of the difference in effect according to the difference in the frequency of the output waveform of the infiltration mode M1 as shown in FIG.
  • the vertical axis represents the stratum corneum absorption amount
  • the horizontal axis represents various test conditions C10 to C12 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
  • Test conditions C10 to C12 correspond to conditions in which the frequency of the output waveform in the infiltration mode M1 is 50 kHz, 70 kHz, and 156 kHz, respectively. condition that does not occur).
  • the test procedure is as described above with reference to FIG.
  • FIG. 22 is an explanatory diagram of the difference in effect according to the difference in the current value of the output waveform of the infiltration mode M1 as shown in FIG.
  • the vertical axis is the stratum corneum absorption amount
  • the horizontal axis is associated with various test conditions C20, C21 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
  • Test conditions C20 and C21 respectively correspond to the condition that the frequency of the output waveform of the infiltration mode M1 is 70 kHz. is the same condition as Note that the test condition C1 is the output non-use condition described above.
  • FIG. 23 is an explanatory diagram of the difference in effect according to the difference in the usage time of the output waveform of the infiltration mode M1 as shown in FIG.
  • the vertical axis is the stratum corneum absorption amount
  • the horizontal axis is associated with various test conditions C30, C31 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
  • Test conditions C30 and C31 respectively correspond to conditions in which the frequency of the output waveform in the infiltration mode M1 is 70 kHz. be. Note that the test condition C1 is the output non-use condition described above.
  • the longer the usage time the higher the absorption amount in all layers.
  • the absorption amount is 2 to 10 layers of the stratum corneum 3.6 times. From this, it can be seen that if the frequency is the same, the longer the usage time, the greater the amount of absorption. Therefore, for example, by including the infiltration mode M1 in the operation mode A1 and increasing the time ratio of the infiltration mode M1 in one cycle of the operation mode A1, the absorption amount per unit time can be efficiently increased. can be expected.
  • the output waveform of the permeation mode M1 as shown in FIG. 15 is suitable for promoting permeation of useful substances contained in external skin preparations.
  • the substance carrier may be used for any purpose. For example, it is effective not only in cosmetics and quasi-drugs, but also in promoting percutaneous absorption of drugs that have been decomposed in the liver and have not fully exhibited their effects.
  • the purpose of use of external agents that are percutaneously absorbed is arbitrary, and percutaneous absorption of external agents such as analgesics, antiphlogistic agents, whitening agents, moisturizing agents, anti-wrinkle agents, anti-inflammatory agents, antibacterial agents, and antiviral agents. Any purpose.
  • a plurality of first electrodes 310 forming the first electrode group 31 are spaced apart in the circumferential direction. good.
  • any one or more of the infiltration mode M1, the iontophoresis mode M2, the high frequency mode M3, the muscle electrical stimulation mode M4, the microcurrent mode M5, and the ion extraction mode M6 are combined with one central electrode.
  • the second electrodes 320 may be paired to produce the output waveforms described above.
  • the output waveform described above may be generated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Disclosed is a skin treatment device comprising: a plurality of electrodes that can be brought into contact with the skin of a user; a power source that is electrically connected to the plurality of electrodes; and a control device that achieves output via the plurality of electrodes in a plurality of types of output modes which differ from each other in output waveform characteristics, wherein the plurality of types of output modes include a first output mode and a second output mode, and the control device performs a continuous switching process that includes intermittently and periodically repeating the first output mode and the second output mode.

Description

肌処理装置及びプログラムSkin treatment device and program
 本開示は、肌処理装置及びプログラムに関する。 The present disclosure relates to a skin treatment device and program.
 低周波電極対と高周波電極対とを備える肌処理装置において、低周波電極対は、低周波電圧を印加する発信時間と電圧を印加しない休止時間とを繰り返し、高周波電極対は、低周波電極対に係る休止時間にのみ高周波電圧を印加する技術が知られている。 In a skin treatment device comprising a low-frequency electrode pair and a high-frequency electrode pair, the low-frequency electrode pair repeats a transmission time during which a low-frequency voltage is applied and a rest time during which no voltage is applied, and the high-frequency electrode pair is a low-frequency electrode pair. There is known a technique of applying a high-frequency voltage only during the rest time.
特開2012-65693号公報JP 2012-65693 A
 しかしながら、上記のような従来技術では、美容効果を効果的に高める態様で複数種類の出力モードを適切に組み合わせて連続的に実現することが難しい。 However, with the conventional technology as described above, it is difficult to appropriately combine multiple types of output modes in a manner that effectively enhances the beauty effect and to realize this continuously.
 そこで、本開示は、美容効果を効果的に高める態様で複数種類の出力モードを適切に組み合わせて連続的に実現することを目的とする。 Therefore, an object of the present disclosure is to appropriately combine and continuously realize a plurality of types of output modes in a manner that effectively enhances the beauty effect.
 1つの側面では、ユーザの肌に当接可能な複数の電極と、
 前記複数の電極に電気的に接続される電源と、
 互いに出力波形の特性が異なる複数種類の出力モードで前記複数の電極を介した出力を実現する制御装置とを備え、
 前記複数種類の出力モードは、第1出力モード及び第2出力モードを含み、
 前記制御装置は、前記第1出力モード及び前記第2出力モードを間欠的かつ周期的に繰り返すことを含む連続切替処理を行う、肌処理装置が開示される。
In one aspect, a plurality of electrodes contactable with a user's skin;
a power source electrically connected to the plurality of electrodes;
a control device that realizes output via the plurality of electrodes in a plurality of types of output modes having different output waveform characteristics,
The plurality of types of output modes include a first output mode and a second output mode,
A skin treatment apparatus is disclosed, wherein the control device performs a continuous switching process including intermittently and periodically repeating the first output mode and the second output mode.
 本開示によれば、美容効果を効果的に高める態様で複数種類の出力モードを適切に組み合わせて連続的に実現することが可能となる。 According to the present disclosure, it is possible to appropriately combine a plurality of types of output modes in a manner that effectively enhances the beauty effect and realize them continuously.
本実施例の肌処理装置の外観を示す斜視図である。It is a perspective view showing the appearance of the skin treatment apparatus of the present embodiment. 図1の肌処理装置の2面図である。2 is a two-sided view of the skin treatment device of FIG. 1; FIG. 電極配置に係る各種パラメータの説明図である。FIG. 4 is an explanatory diagram of various parameters related to electrode placement; 一例による制御系の概略的な構成図である。1 is a schematic configuration diagram of a control system according to an example; FIG. 図4の制御装置により実現される機能を説明するブロック図である。5 is a block diagram illustrating functions implemented by the control device of FIG. 4; FIG. パラメータ記憶部内に記憶される各種パラメータの設定値の説明図である。FIG. 4 is an explanatory diagram of setting values of various parameters stored in a parameter storage unit; 動作モードA1の一例の説明図である。FIG. 4 is an explanatory diagram of an example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA1の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A1; 動作モードA0の他の一例の説明図である。FIG. 11 is an explanatory diagram of another example of operation mode A0; 浸潤モードM1の出力波形の好ましい例を示す図である。FIG. 4 is a diagram showing a preferred example of an output waveform in infiltration mode M1; 浸潤モードM1の出力波形の他の例を示す図である。FIG. 10 is a diagram showing another example of an output waveform in infiltration mode M1; 浸潤モードM1の出力波形の更なる他の例を示す図である。FIG. 10 is a diagram showing yet another example of output waveforms in infiltration mode M1; 浸潤モードM1の出力波形の更なる他の例を示す図である。FIG. 10 is a diagram showing yet another example of output waveforms in infiltration mode M1; 図15CのQ6部の拡大図である。15D is an enlarged view of the Q6 portion of FIG. 15C; FIG. イオン導入モードM2の出力波形の好ましい例を示す図である。FIG. 10 is a diagram showing a preferred example of an output waveform in iontophoresis mode M2; イオン導入モードM2の出力波形の他の好ましい例を示す図である。FIG. 10 is a diagram showing another preferred example of the output waveform in iontophoresis mode M2; イオン導入モードM2の出力波形の他の好ましい例を示す図である。FIG. 10 is a diagram showing another preferred example of the output waveform in iontophoresis mode M2; 高周波モードM3の出力波形の好ましい例を示す図である。FIG. 10 is a diagram showing a preferred example of an output waveform in high frequency mode M3; 各種出力波形による有効成分の浸透効果を比較する図である。FIG. 4 is a diagram comparing the permeation effects of active ingredients with various output waveforms. 図15に示すような浸潤モードM1の出力波形の周波数の違いに応じた効果の相違の説明図である。FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the frequency of the output waveform of the infiltration mode M1 as shown in FIG. 15; 図15に示すような浸潤モードM1の出力波形の電流値の違いに応じた効果の相違の説明図である。FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the current value of the output waveform of the infiltration mode M1 as shown in FIG. 15; 図15に示すような浸潤モードM1の出力波形の使用時間の違いに応じた効果の相違の説明図である。FIG. 16 is an explanatory diagram of the difference in effect according to the difference in the usage time of the output waveform of the infiltration mode M1 as shown in FIG. 15;
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Each embodiment will be described in detail below with reference to the accompanying drawings.
 図1は、本実施例の肌処理装置1の外観を示す斜視図であり、図2は、図1の肌処理装置1の2面図であり、左側が側面視であり、右側が正面視である。図3は、肌処理装置1のヘッド部3の説明図であり、電極配置に係る各種パラメータの説明図である。 FIG. 1 is a perspective view showing the appearance of the skin treatment device 1 of this embodiment, and FIG. 2 is a two-sided view of the skin treatment device 1 of FIG. is. FIG. 3 is an explanatory diagram of the head section 3 of the skin treatment apparatus 1, and an explanatory diagram of various parameters relating to the electrode arrangement.
 本実施例の肌処理装置1は、美顔器の形態であり、ユーザの顔部の肌に美容関連効果を付与するように構成される。ただし、変形例では、肌処理装置1は、ユーザの顔部に加えて又は代えて、ユーザの顔部以外に同様の美容関連効果を付与するように構成されてもよい。また、肌処理装置1は、美容関連効果とは異なる効果(例えば医薬品の経皮吸収の促進効果)を付与するために利用されてもよい。 The skin treatment device 1 of this embodiment is in the form of a facial device, and is configured to impart beauty-related effects to the skin of the user's face. However, in a modification, the skin treatment device 1 may be configured to apply similar beauty-related effects to areas other than the user's face in addition to or instead of the user's face. In addition, the skin treatment device 1 may be used to provide effects other than beauty-related effects (for example, the effect of promoting percutaneous absorption of pharmaceuticals).
 美容関連効果は、任意であり、たるみの解消や、引き締め、脂肪燃焼、リフトアップ、小顔化、肌のハリやツヤ、潤いの向上又はその類の1つ以上の任意の組み合わせを含んでよい。また、美容関連効果は、数値化可能な効果であってもよいし、数値化可能でない効果であってもよい。 Beauty-related effects are optional and may include any combination of one or more of the elimination of sagging skin, tightening, fat burning, lifting, slimming, skin firmness and luster, improved hydration, or the like. . Moreover, the beauty-related effect may be an effect that can be quantified, or an effect that cannot be quantified.
 本実施例の肌処理装置1は、ユーザの肌に当接する複数の電極を介して各種出力を付与することで、ユーザの肌に美容関連効果を付与するように構成される。 The skin treatment device 1 of this embodiment is configured to impart beauty-related effects to the user's skin by imparting various outputs via a plurality of electrodes that contact the user's skin.
 本実施例の肌処理装置1は、ユーザの手により把持可能な携帯型であるが、固定機器にアーム等を介して可動に支持される可動式に適用されてもよい。 The skin treatment apparatus 1 of the present embodiment is a portable type that can be held by a user's hand, but may be applied to a movable type that is movably supported by a fixed device via an arm or the like.
 肌処理装置1は、把持部2と、ヘッド部3とを含む。この場合、ユーザは、把持部2を挟持して、ヘッド部3を自身の顔部における所望の部位に当てることで、所望の部位に対して肌処理装置1からの各種出力を付与できる。 The skin treatment device 1 includes a grip portion 2 and a head portion 3. In this case, the user can apply various outputs from the skin treatment apparatus 1 to a desired part of the user's face by holding the grip part 2 and bringing the head part 3 into contact with the desired part.
 把持部2は、ユーザの手で把持されやすい形態を有する。把持部2には、電源のオン/オフボタンやモード切替ボタン、強さ調整ボタン等のような各種ボタンを含むユーザインターフェイス20を含んでよい。なお、各種ボタンは、機械式のボタンであってもよいし、タッチスイッチであってもよい。また、把持部2には、肌処理装置1の状態等を表示する表示部(図示せず)が設けられてもよい。また、把持部2は、ユーザの手に触れる電極(図示せず)が設けられてもよい。 The grip part 2 has a form that is easily gripped by the user's hand. The grip portion 2 may include a user interface 20 including various buttons such as a power on/off button, a mode switching button, an intensity adjustment button, and the like. The various buttons may be mechanical buttons or touch switches. Further, the grip part 2 may be provided with a display part (not shown) for displaying the state of the skin treatment device 1 and the like. Moreover, the grip part 2 may be provided with an electrode (not shown) that touches the user's hand.
 ヘッド部3は、把持部2の端部に設けられる。なお、ヘッド部3は、把持部2に対して固定されてもよいし、取り外し可能であってもよいし、把持部2に対して可動であってもよい。 The head portion 3 is provided at the end portion of the grip portion 2 . Note that the head portion 3 may be fixed to the grip portion 2 , may be removable, or may be movable relative to the grip portion 2 .
 ヘッド部3は、ユーザの肌に当接可能であり、ユーザの肌に当接されるのに適した形態を有する。例えば、ヘッド部3は、略平面状(比較的大きい曲率半径の曲面状を含む)の当接面3aを有してよい。図2には、側面視で当接面3aの延在方向(基本面)が一点鎖線で示されている。この場合、当接面3aは、側面視で略直線に近似できる平面である。正面視での当接面3aの形態(当接面3aに対して垂直な方向に視たときの形態)は、矩形や円形、楕円形、多角形等のような任意であり、本実施例では、一例として、図2及び図3に示すように、円形である。 The head part 3 can come into contact with the user's skin, and has a shape suitable for being brought into contact with the user's skin. For example, the head portion 3 may have a substantially flat contact surface 3a (including a curved surface with a relatively large radius of curvature). In FIG. 2, the extending direction (basic plane) of the contact surface 3a is indicated by a dashed line in side view. In this case, the contact surface 3a is a flat surface that can be approximated to a substantially straight line when viewed from the side. The shape of the contact surface 3a when viewed from the front (the shape when viewed in a direction perpendicular to the contact surface 3a) is arbitrary such as rectangular, circular, elliptical, polygonal, etc. Then, as an example, as shown in FIGS. 2 and 3, it is circular.
 ヘッド部3は、当接面3aに配置される複数の電極30を有する。複数の電極30は、ユーザの肌に当接しやすいように、ヘッド部3の当接面3aの基本面よりも僅かに突出した形態であってもよい。 The head portion 3 has a plurality of electrodes 30 arranged on the contact surface 3a. The plurality of electrodes 30 may have a form that slightly protrudes from the basic surface of the contact surface 3a of the head section 3 so as to easily come into contact with the user's skin.
 本実施例では、複数の電極30は、ヘッド部3の当接面3aの中心Cを中心として、円環状に配置される。以下、径方向及び周方向に係る用語は、当接面3aを正面視したとき(当接面3aに対して垂直な方向に視たとき)の、当接面3aの中心Cを中心とした円形を基準とする。例えば、径方向内側とは、径方向で当接面3aの中心Cに近い側を表す。また、以下では、複数の電極30の個数や一の電極の単位は、連続した形態を1つとする。 In this embodiment, the plurality of electrodes 30 are arranged in an annular shape with the center C of the contact surface 3a of the head portion 3 as the center. Hereinafter, terms relating to the radial direction and the circumferential direction refer to the center C of the contact surface 3a when the contact surface 3a is viewed from the front (when viewed in a direction perpendicular to the contact surface 3a). A circle is used as a reference. For example, the radially inner side represents the side closer to the center C of the contact surface 3a in the radial direction. Further, hereinafter, the number of the plurality of electrodes 30 and the unit of one electrode are assumed to be one continuous form.
 本実施例では、複数の電極30は、属性ごとに複数の電極群を形成し、具体的には、第1電極群31と、第2電極群32とを形成する。なお、他の実施例では、3つ以上の電極群が形成されてもよい。 In this embodiment, the plurality of electrodes 30 form a plurality of electrode groups for each attribute, specifically a first electrode group 31 and a second electrode group 32 . Note that in other embodiments, three or more electrode groups may be formed.
 第1電極群31は、図3に示すように、第1円周31aに沿って第1所定角度θ1ごとに配置される複数の第1電極310を含む。 The first electrode group 31, as shown in FIG. 3, includes a plurality of first electrodes 310 arranged at first predetermined angles θ1 along the first circumference 31a.
 複数の第1電極310は、互いに同一の形態であってよい。すなわち、複数の第1電極310のそれぞれは、互いに対して、当接面3aの中心Cを中心とした回転対称の形態であってよい。 The plurality of first electrodes 310 may have the same shape. That is, each of the plurality of first electrodes 310 may be rotationally symmetrical with respect to each other around the center C of the contact surface 3a.
 第1円周31aは、当接面3aの中心Cを中心とした半径r1の円周である。なお、第1円周31aは、複数の第1電極310の配置の説明用の概念であり、複数の第1電極310を通る限り、どのように規定されてもよい。ここでは、第1円周31aは、複数の第1電極310のそれぞれの径方向の略中心を通る円周であるとする。 The first circumference 31a is a circumference with a radius r1 around the center C of the contact surface 3a. Note that the first circumference 31 a is a concept for explaining the arrangement of the plurality of first electrodes 310 and may be defined in any way as long as it passes through the plurality of first electrodes 310 . Here, it is assumed that the first circumference 31 a is a circumference that passes through substantially the center of each of the plurality of first electrodes 310 in the radial direction.
 第1所定角度θ1は、好ましくは、一定であるが、一定でなくてもよい。第1所定角度θ1が一定である場合、複数の第1電極310の数をN1とすると、θ1=2π/N1である。本実施例では、第1所定角度θ1は、一定のπ/4(=90度)であり、複数の第1電極310の数は、4つである。なお、他の実施例では、複数の第1電極310の数は、6つであり、第1所定角度θ1は、一定のπ/3であってもよい。なお、複数の第1電極310の数は、好ましくは、偶数であるが、奇数であってもよい。偶数である場合、複数の第1電極310のうちから、1つのあまり又は重複もなく対の第1電極310を形成でき、各対の第1電極310を同時に動作させることができる。  The first predetermined angle θ1 is preferably constant, but may not be constant. When the first predetermined angle θ1 is constant and the number of the plurality of first electrodes 310 is N1, θ1=2π/N1. In this embodiment, the first predetermined angle θ1 is constant π/4 (=90 degrees), and the number of first electrodes 310 is four. In another embodiment, the number of first electrodes 310 may be six, and the first predetermined angle θ1 may be a constant π/3. The number of first electrodes 310 is preferably an even number, but may be an odd number. If the number is even, a pair of first electrodes 310 can be formed without one redundant or overlapping first electrode 310 from among the plurality of first electrodes 310, and each pair of first electrodes 310 can be operated simultaneously.
 複数の第1電極310のうちの、周方向で隣り合う任意の2つは、互いに対する離間距離が第1距離d1である。本実施例では、第1距離d1は、一定であるが、上述した第1所定角度θ1と同様、周方向位置に応じて異なってもよい。 Any two of the plurality of first electrodes 310 that are adjacent in the circumferential direction are separated from each other by a first distance d1. Although the first distance d1 is constant in this embodiment, it may vary depending on the position in the circumferential direction, similar to the first predetermined angle θ1 described above.
 本実施例では、複数の第1電極310が上述したように配置されるので、第1電極群31において第1電極310同士が対をなして、所望の出力波形を生成できる。この場合、出力波形は、任意であり、例えば交流波形やパルス状の直流波形であってよい。交流波形の場合、出力波形の周波数帯は、任意であるが、好ましくは、加温作用を有する高周波等である。第1電極310同士が対をなして実現する出力波形のいくつかの例は後述する。なお、本明細書において、特に言及しない限り、高周波とは、10kHzよりも大きい周波数帯を指し、低周波とは、10kHz以下の周波数帯を指す。 In this embodiment, since the plurality of first electrodes 310 are arranged as described above, the first electrodes 310 form a pair in the first electrode group 31 to generate a desired output waveform. In this case, the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform. In the case of an AC waveform, the frequency band of the output waveform is arbitrary, but preferably high frequency or the like having a heating effect. Some examples of output waveforms realized by pairing the first electrodes 310 will be described later. In this specification, unless otherwise specified, high frequency refers to a frequency band higher than 10 kHz, and low frequency refers to a frequency band of 10 kHz or lower.
 第1距離d1は、好ましくは、加温作用(又は加熱作用、以下同様)を有する高周波の出力波形の印加に適するように適合され、後述する第2距離d2よりも小さい。第1距離d1は、好ましくは、1.5mmから4.5mmの間であり、より好ましくは2.0mmから4.0mmの間であり、最も好ましくは2.5mmから3.5mmの間である。この場合、ユーザの肌に適切な加温作用を付与できる。 The first distance d1 is preferably adapted to be suitable for application of a high-frequency output waveform having a heating effect (or heating effect, hereinafter the same), and is smaller than a second distance d2, which will be described later. The first distance d1 is preferably between 1.5mm and 4.5mm, more preferably between 2.0mm and 4.0mm, most preferably between 2.5mm and 3.5mm . In this case, an appropriate warming effect can be applied to the user's skin.
 ここで、周方向で隣り合う任意の2つの第1電極310を対として出力波形を発生させる場合、当該2つの第1電極310間で距離が最小となる経路が、出力波形が実質的に作用する実効経路となりやすい。 Here, when an output waveform is generated by pairing any two first electrodes 310 adjacent in the circumferential direction, the output waveform substantially acts on the path with the smallest distance between the two first electrodes 310. It tends to be an effective route to
 この点、本実施例では、複数の第1電極310のうちの、任意の2つの離間距離は、径方向に沿った所定長さの区間SC1にわたって第1距離d1を保つ。これにより、出力波形の実効経路の径方向の幅を、区間SC1に係る径方向の幅(所定長さの)に応じて比較的長くすることができ、出力波形の実効領域(作用領域)を効率的に広げることができる。 In this regard, in this embodiment, the distance between any two of the plurality of first electrodes 310 is maintained at the first distance d1 over the section SC1 of a predetermined length along the radial direction. As a result, the radial width of the effective path of the output waveform can be made relatively long according to the radial width (predetermined length) of the section SC1, and the effective region (action region) of the output waveform can be increased to can be spread effectively.
 より具体的には、複数の第1電極310は、第1円周31aの中心Cを通って交差する2本の直線状の領域(以下、「直線状の離間領域390」と称する)により分離され、直線状の離間領域390の幅は第1距離d1である。この場合、周方向で隣り合う任意の2つの第1電極310を対として出力波形を発生させる場合に、直線状の離間領域390の略全体を出力波形の実効領域(作用領域)とすることができる。 More specifically, the plurality of first electrodes 310 are separated by two linear regions (hereinafter referred to as "linear separation regions 390") that intersect through the center C of the first circumference 31a. and the width of the linear spacing region 390 is the first distance d1. In this case, when an output waveform is generated by pairing arbitrary two first electrodes 310 adjacent in the circumferential direction, substantially the entire linear spaced region 390 can be used as an effective region (active region) of the output waveform. can.
 第2電極群32は、図3に示すように、第2円周32aに沿って第2所定角度θ2ごとに配置される複数の第2電極320を含む。 The second electrode group 32, as shown in FIG. 3, includes a plurality of second electrodes 320 arranged at every second predetermined angle θ2 along the second circumference 32a.
 複数の第2電極320は、互いに同一の形態であってよい。すなわち、複数の第2電極320のそれぞれは、互いに対して、当接面3aの中心Cを中心とした回転対称の形態であってよい。 The plurality of second electrodes 320 may have the same shape. That is, each of the plurality of second electrodes 320 may be rotationally symmetrical with respect to each other around the center C of the contact surface 3a.
 第2円周32aは、当接面3aの中心Cを中心とした半径r2の円周である。なお、第2円周32aは、複数の第2電極320の配置の説明用の概念であり、複数の第2電極320を通る限り、どのように規定されてもよい。ここでは、第2円周32aは、複数の第2電極320のそれぞれの径方向の中心を通る円周であるとする。 The second circumference 32a is a circumference with a radius r2 around the center C of the contact surface 3a. It should be noted that the second circumference 32 a is a concept for explaining the arrangement of the plurality of second electrodes 320 and may be defined in any way as long as it passes through the plurality of second electrodes 320 . Here, it is assumed that the second circumference 32a is a circumference passing through the center of each of the plurality of second electrodes 320 in the radial direction.
 第2円周32aの半径r2は、第1円周31aの半径r1よりも大きい。すなわち、第2電極群32は、第1電極群31の径方向外側に配置される。 The radius r2 of the second circumference 32a is larger than the radius r1 of the first circumference 31a. That is, the second electrode group 32 is arranged radially outside the first electrode group 31 .
 第2所定角度θ2は、好ましくは、一定であるが、一定でなくてもよい。第2所定角度θ2が一定である場合、複数の第2電極320の数をN2とすると、θ2=2π/N2である。本実施例では、第2所定角度θ2は、一定のπ/3(=120度)であり、複数の第2電極320の数は、3つである。なお、他の実施例では、複数の第2電極320の数は、5つであり、第2所定角度θ2は、一定のπ/5であってもよい。 The second predetermined angle θ2 is preferably constant, but may not be constant. When the second predetermined angle θ2 is constant and the number of the plurality of second electrodes 320 is N2, θ2=2π/N2. In this embodiment, the second predetermined angle θ2 is constant π/3 (=120 degrees), and the number of the plurality of second electrodes 320 is three. In another embodiment, the number of the plurality of second electrodes 320 may be five, and the second predetermined angle θ2 may be a constant π/5.
 複数の第2電極320のうちの、周方向で隣り合う任意の2つは、互いに対する離間距離が第2距離d2である。本実施例では、第2距離d2は、一定であるが、上述した第2所定角度θ2と同様、周方向位置に応じて異なってもよい。 Any two of the plurality of second electrodes 320 that are adjacent in the circumferential direction are separated from each other by a second distance d2. Although the second distance d2 is constant in this embodiment, it may vary depending on the position in the circumferential direction, similar to the second predetermined angle θ2 described above.
 本実施例では、複数の第2電極320が上述したように配置されるので、第2電極群32において、周方向で隣り合う第2電極320同士が対をなして、所望の出力波形を生成できる。この場合、出力波形は、任意であり、例えば交流波形やパルス状の直流波形であってよい。この場合、出力波形の周波数帯は、任意であるが、好ましくは、筋電気刺激作用を有する高周波又は低周波である。第2電極320同士が対をなして実現する出力波形のいくつかの例は後述する。 In this embodiment, since the plurality of second electrodes 320 are arranged as described above, the second electrodes 320 adjacent in the circumferential direction form pairs in the second electrode group 32 to generate a desired output waveform. can. In this case, the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform. In this case, the frequency band of the output waveform is arbitrary, but is preferably high frequency or low frequency that has muscle electrical stimulating action. Some examples of output waveforms realized by pairing the second electrodes 320 will be described later.
 第2距離d2は、好ましくは、筋電気刺激作用を有する高周波又は低周波の出力波形の印加に適するように適合され、上述した第1距離d1よりも大きい。第2距離d2は、好ましくは、5.5mmから15mmの間であり、より好ましくは6.0mmから8.0mmの間であり、最も好ましくは6.5mmから10mmの間である。この場合、ユーザの肌に適切な筋電気刺激作用を付与できる。 The second distance d2 is preferably adapted to be suitable for application of high or low frequency output waveforms with electrical muscle stimulation and is greater than the first distance d1 described above. The second distance d2 is preferably between 5.5mm and 15mm, more preferably between 6.0mm and 8.0mm, most preferably between 6.5mm and 10mm. In this case, it is possible to apply appropriate electrical muscle stimulation to the user's skin.
 ここで、本実施例では、上述したように、第1電極群31においては第1電極310同士が対をなして、各種作用を有する多様な出力波形を生成できるとともに、第2電極群32においては第2電極320同士が対をなして各種作用を有する多様な出力波形を生成できる。このようにして、本実施例によれば、ユーザの肌に対して、肌処理装置1が当接するユーザの肌の当接領域全体にわたり均一で良好な肌処理効果を付与可能な電極配置を実現できる。 Here, in the present embodiment, as described above, in the first electrode group 31, the first electrodes 310 are paired to generate various output waveforms having various effects, and in the second electrode group 32, , the second electrodes 320 can be paired to generate various output waveforms having various effects. In this manner, according to the present embodiment, an electrode arrangement capable of imparting a uniform and excellent skin treatment effect to the user's skin over the entire contact area of the user's skin with which the skin treatment apparatus 1 contacts is realized. can.
 本実施例では、複数の電極30を介して互いに出力波形の特性が異なる複数種類の出力モードを実現する。以下では、第2電極320同士が対をなして又は第1電極310同士が対をなして、肌内へと有効成分(美容成分)を浸透させる作用(以下、単に「浸透作用」とも称する)を有する出力波形を生成する出力モードを、「浸潤モードM1」(第1出力モードの一例)と称し、第1電極310同士が対をなして、肌内へとイオン(有効成分に係るイオン)を導入する作用を有する出力波形を生成する出力モードを、「イオン導入モードM2」(第2出力モードの一例)と称し、第1電極310同士が対をなして、加温作用を有する高周波の出力波形を生成する出力モードを、「高周波モードM3」(第3出力モードの一例)と称する。また、第2電極320同士が対をなして筋電気刺激作用を有する高周波又は低周波の出力波形を生成する出力モードを、「筋電気刺激モードM4」(第4出力モードの一例)と称する。各出力モードでの出力波形の例は後述する。また、第1電極310同士が対をなして、微弱電流(マイクロカレント)を付与する出力モードを、「マイクロカレントモードM5」と称する。また、第1電極310同士が対をなして、肌内からイオン(汚れ等に係るイオン)を導出する作用を有する出力波形を生成する出力モードを、「イオン導出モードM6」と称する。 In this embodiment, a plurality of types of output modes having different output waveform characteristics are realized via a plurality of electrodes 30 . Below, the second electrodes 320 are paired or the first electrodes 310 are paired, and the action of penetrating the active ingredient (beauty ingredient) into the skin (hereinafter also simply referred to as "penetration action") The output mode that generates an output waveform having a An output mode that generates an output waveform that has the effect of introducing the An output mode that generates an output waveform is called a "high frequency mode M3" (an example of a third output mode). An output mode in which the second electrodes 320 are paired to generate a high-frequency or low-frequency output waveform having electrical muscle stimulation is referred to as an "electrical muscle stimulation mode M4" (an example of a fourth output mode). Examples of output waveforms in each output mode will be described later. An output mode in which the first electrodes 310 form a pair and apply a weak current (microcurrent) is referred to as "microcurrent mode M5". Further, an output mode in which the first electrodes 310 are paired to generate an output waveform having an action of deriving ions (ions related to dirt etc.) from the skin is referred to as "ion derivation mode M6".
 また、本実施例では、上述したように、第1電極群31と第2電極群32とが径方向で近接して配置されるので、第1電極310と第2電極320とが対をなして、所望の出力波形を生成できる。この場合も、出力波形は、任意であり、例えば交流波形やパルス状の直流波形であってよい。交流波形の場合、出力波形の周波数帯は、任意であり、例えば、加温作用を有する高周波であってもよい。以下では、このように第1電極310と第2電極320とが対をなして出力波形を生成する出力モードを、「径方向モード」とも称する。 Further, in this embodiment, as described above, the first electrode group 31 and the second electrode group 32 are arranged close to each other in the radial direction, so that the first electrode 310 and the second electrode 320 form a pair. can be used to generate the desired output waveform. Also in this case, the output waveform is arbitrary, and may be, for example, an AC waveform or a pulsed DC waveform. In the case of an AC waveform, the frequency band of the output waveform is arbitrary, and may be, for example, a high frequency with a warming effect. Hereinafter, the output mode in which the first electrode 310 and the second electrode 320 form a pair to generate an output waveform is also referred to as a "radial mode".
 ここで、径方向モードを実現する仕様の場合、複数の第2電極320の数は、好ましくは、奇数であるが、偶数であってもよい。この場合、例えば上述したN1が偶数である場合に、第1電極群31と第2電極群32との間の周方向の関係が回転対称とならない関係になりやすい。かかる場合、第1電極群31と第2電極群32のうちから、多様な位置関係で第1電極310と第2電極320との間の対の組み合わせを形成でき、出力の多様化を実現することが可能となる。 Here, in the case of specifications for realizing the radial direction mode, the number of the plurality of second electrodes 320 is preferably an odd number, but may be an even number. In this case, for example, when N1 described above is an even number, the relationship in the circumferential direction between the first electrode group 31 and the second electrode group 32 tends to be rotationally symmetrical. In this case, it is possible to form pairs of the first electrode 310 and the second electrode 320 in various positional relationships among the first electrode group 31 and the second electrode group 32, thereby realizing diversification of outputs. becomes possible.
 ただし、変形例では、複数の第2電極320の数を偶数とし、第1電極群31と第2電極群32との間の周方向の関係が回転対称となるように、第1電極群31及び第2電極群32が配置されてよい。この場合、径方向モードを実現する仕様の場合であっても、径方向モードを含め、円周方向に沿って均一な作用を付与可能な各種モードを設定できる。 However, in the modified example, the number of the plurality of second electrodes 320 is an even number, and the first electrode group 31 is arranged so that the circumferential relationship between the first electrode group 31 and the second electrode group 32 is rotationally symmetrical. and the second electrode group 32 may be arranged. In this case, even in the case of the specification for realizing the radial direction mode, various modes including the radial direction mode can be set that can impart a uniform effect along the circumferential direction.
 本実施例では、複数の第1電極310と複数の第2電極320とは、径方向で第3距離d3だけ離間する。第3距離d3は、好ましくは、上述した第1距離d1や第2距離d2とは異なる。この場合、第1電極群31と第2電極群32とにより実現可能な出力の多様化を図ることができる。具体的には、第3距離d3は、好ましくは、第1距離d1よりも小さい。例えば、第3距離d3<第1距離d1<第2距離d2の関係であってよい。この場合、多様な離間距離に起因した出力の多様化を図ることができる。なお、第3距離d3は、好ましくは、第1距離d1よりも、0.5mmから1.5mmの間の距離だけ小さい。 In this embodiment, the plurality of first electrodes 310 and the plurality of second electrodes 320 are separated by a third distance d3 in the radial direction. The third distance d3 is preferably different from the first distance d1 and the second distance d2 described above. In this case, it is possible to diversify the outputs that can be realized by the first electrode group 31 and the second electrode group 32 . Specifically, the third distance d3 is preferably smaller than the first distance d1. For example, the relationship may be third distance d3<first distance d1<second distance d2. In this case, it is possible to diversify the outputs due to various separation distances. It should be noted that the third distance d3 is preferably smaller than the first distance d1 by a distance between 0.5 mm and 1.5 mm.
 このように、本実施例によれば、複数の第1電極310が周方向に沿って分離して配置されるので、周方向で隣り合う第1電極310同士を対として、各種出力波形を生成できる。 Thus, according to the present embodiment, since the plurality of first electrodes 310 are arranged separately along the circumferential direction, various output waveforms are generated by pairing the first electrodes 310 adjacent in the circumferential direction. can.
 ここで、周方向で隣り合う第1電極310同士を対として出力波形を生成する場合は、径方向で隣り合う電極同士を対として出力波形を生成する場合(例えば上述した径方向モード)に比べて、出力波形の実効領域を径方向に広げやすくなる。具体的には、複数の第1電極310の径方向の長さを比較的長くすることで、所定長さの区間SC1(直線状の離間領域390の径方向の長さ)を比較的長くすることができ、出力波形の実効領域を径方向に広げることができる。 Here, when the output waveform is generated by pairing the first electrodes 310 adjacent in the circumferential direction, compared to the case where the output waveform is generated by pairing the electrodes adjacent in the radial direction (for example, the radial mode described above). This makes it easier to expand the effective region of the output waveform in the radial direction. Specifically, by making the radial length of the plurality of first electrodes 310 relatively long, the predetermined length section SC1 (the radial length of the linear spaced region 390) is made relatively long. It is possible to expand the effective area of the output waveform in the radial direction.
 この点、本実施例では、複数の第1電極310は、径方向の幅(内径と外径の差)が第4距離d4の円環を周方向間で分断した形態を有する。なお、径方向の幅が第4距離d4の円環は、中心Cを中心とし、内径が、直線状の離間領域390の幅の2倍程度に対応してよい。この場合、所定長さの区間SC1(直線状の離間領域390の径方向の長さ)は、第4距離d4が長いほど長くなる。従って、第4距離d4を比較的長い距離に設定することで、周方向で隣り合う第1電極310同士を対として生成する出力波形の実効領域を径方向に広げることができる。 In this respect, in the present embodiment, the plurality of first electrodes 310 have a form in which a ring having a width in the radial direction (difference between the inner diameter and the outer diameter) of which is the fourth distance d4 is divided in the circumferential direction. Note that the annular ring having a width in the radial direction of the fourth distance d4 may be centered on the center C, and the inner diameter may correspond to about twice the width of the linear spaced region 390 . In this case, the predetermined length of the section SC1 (the radial length of the linear spaced region 390) increases as the fourth distance d4 increases. Therefore, by setting the fourth distance d4 to a relatively long distance, the effective region of the output waveform generated by pairing the first electrodes 310 adjacent in the circumferential direction can be widened in the radial direction.
 他方、複数の第2電極320は、径方向の幅が第5距離d5の円環を周方向間で分断した形態を有する。この場合、第5距離d5は、第4距離d4よりも有意に小さくてよい。この場合、周方向で隣り合う第2電極320同士を対として生成する出力波形の実効領域は、径方向の長さが比較的小さくなるが、かかる実効領域によっても良好な筋電気刺激作用や浸透作用を確保できる。このようにして本実施例によれば、当接面3aにおける限られた電極配置領域において、第1電極群31と第2電極群32とを効率的に配置できる。 On the other hand, the plurality of second electrodes 320 have a shape in which a circular ring having a radial width of a fifth distance d5 is divided in the circumferential direction. In this case, the fifth distance d5 may be significantly smaller than the fourth distance d4. In this case, the effective area of the output waveform generated by pairing the second electrodes 320 adjacent in the circumferential direction has a relatively small length in the radial direction. can ensure its effectiveness. Thus, according to this embodiment, the first electrode group 31 and the second electrode group 32 can be efficiently arranged in the limited electrode arrangement area on the contact surface 3a.
 次に、図4から図6を参照して、肌処理装置1の制御系の構成について説明する。 Next, the configuration of the control system of the skin treatment apparatus 1 will be described with reference to FIGS. 4 to 6. FIG.
 図4は、一例による制御系100の概略的な構成図である。図5は、図4の制御装置110により実現される機能を説明するブロック図である。図6は、パラメータ記憶部116内に記憶される各種パラメータの設定値の説明図である。図4には、制御系100に加えて、電源150が併せて示されている。電源150は、例えば直流電源であってよい。なお、図4では、電源150がいくつか示されているが、共通であってよい。 FIG. 4 is a schematic configuration diagram of the control system 100 according to one example. FIG. 5 is a block diagram illustrating functions implemented by the control device 110 of FIG. FIG. 6 is an explanatory diagram of setting values of various parameters stored in the parameter storage unit 116. As shown in FIG. In addition to the control system 100, a power supply 150 is also shown in FIG. Power supply 150 may be, for example, a DC power supply. Although several power sources 150 are shown in FIG. 4, they may be common.
 図4に示す例では、制御系100は、制御装置110と、駆動回路部120、121、122と、出力波形発生部130、131、132と、切替回路部140、141とを含む。 In the example shown in FIG. 4, the control system 100 includes a control device 110;
 制御装置110は、コンピュータを含み、例えばマイクロコンピュータにより形成されてよい。なお、制御装置110は、電源150からの電力に基づいて動作してよい。 The control device 110 includes a computer and may be formed by, for example, a microcomputer. Note that the control device 110 may operate based on power from the power supply 150 .
 制御装置110は、上述した浸潤モードM1や筋電気刺激モードM4等のような各種モードを選択的に形成し、各モードにおいて、対応する出力波形が生成されるように、駆動回路部120、121、122、出力波形発生部130、131、132、及び切替回路部140、141を介して複数の電極30を制御する。 The control device 110 selectively forms various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4. , 122 , output waveform generators 130 , 131 , 132 and switching circuit units 140 , 141 to control the plurality of electrodes 30 .
 本実施例では、一例として、制御装置110は、図5に示すように、ユーザ入力取得部111と、モード設定部112と、制御パラメータ設定部113と、制御信号生成部114と、切替制御部115と、パラメータ記憶部116とを含む。ユーザ入力取得部111から切替制御部115までの各部は、例えば制御装置110のCPU(Central Processing Unit)(図示せず)が、制御装置110の記憶装置(図示せず)の1つ以上のプログラムを実行することで実現できる。パラメータ記憶部116は、制御装置110の記憶装置(図示せず)により実現できる。 In this embodiment, as an example, as shown in FIG. 5, the control device 110 includes a user input acquisition unit 111, a mode setting unit 112, a control parameter setting unit 113, a control signal generation unit 114, a switching control unit 115 and a parameter storage unit 116 . Each unit from the user input acquisition unit 111 to the switching control unit 115, for example, the CPU (Central Processing Unit) (not shown) of the control device 110 stores one or more programs in the storage device (not shown) of the control device 110. This can be achieved by executing Parameter storage unit 116 can be realized by a storage device (not shown) of control device 110 .
 ユーザ入力取得部111は、上述したユーザインターフェイス20を介してユーザからの各種ユーザ入力を取得する。各種ユーザ入力は、電源のオン/オフ、モード選択入力、強度調整入力等を含んでよい。 The user input acquisition unit 111 acquires various user inputs from the user via the user interface 20 described above. Various user inputs may include power on/off, mode selection inputs, intensity adjustment inputs, and the like.
 モード設定部112は、ユーザ入力取得部111からユーザ入力に基づいて、ユーザの所望する動作モードを設定する。なお、変形例では、モード設定部112は、ユーザ入力に代えて又は加えて、他のパラメータに基づいて、動作モードを設定してもよい。動作モードは各種用意されてよく、その数や種類は任意である。本実施例では、一例として、動作モードは、複数用意され、動作モードA0と、動作モードA1とを含む。 The mode setting unit 112 sets the operation mode desired by the user based on the user input from the user input acquisition unit 111 . Note that, in a modified example, the mode setting unit 112 may set the operation mode based on other parameters instead of or in addition to the user input. Various operation modes may be prepared, and the number and types thereof are arbitrary. In this embodiment, as an example, a plurality of operation modes are prepared, including an operation mode A0 and an operation mode A1.
 動作モードA0は、上述した浸潤モードM1や筋電気刺激モードM4等のような各種モードのうちの、単独で実現される一のモードである。例えば、動作モードA0は筋電気刺激モードM4であってよい。この場合、動作モードA0が形成されている間、筋電気刺激モードM4だけが継続的に実現される。なお、動作モードA0は、浸潤モードM1や筋電気刺激モードM4等のそれぞれに応じて、複数設定されてもよい。 The operation mode A0 is one of the various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4, which is realized independently. For example, operation mode A0 may be electrical muscle stimulation mode M4. In this case, only the electrical muscle stimulation mode M4 is continuously realized while the operation mode A0 is being formed. A plurality of operation modes A0 may be set according to each of the infiltration mode M1, the muscle electrical stimulation mode M4, and the like.
 動作モードA1は、上述した浸潤モードM1や筋電気刺激モードM4等のような各種モードのうちの、2つ以上の組み合わせで実現される一のモードである。動作モードA1は、組み合わせ方が異なる態様で、複数用意されてよい。例えば、動作モードA1は、浸潤モードM1とイオン導入モードM2の2つの組み合わせであってもよいし、浸潤モードM1とイオン導入モードM2と筋電気刺激モードM4の3つの組み合わせであってもよい。なお、組み合わせ方は、任意であり、ユーザにより設定可能(カスタマイズ可能)であってもよい。動作モードA1のいくつかの具体例は、後述する。 The operation mode A1 is one mode realized by combining two or more of various modes such as the above-described infiltration mode M1 and muscle electrical stimulation mode M4. A plurality of operation modes A1 may be prepared in different combinations. For example, the operation mode A1 may be a combination of two of the infiltration mode M1 and the iontophoresis mode M2, or a combination of three of the infiltration mode M1, the iontophoresis mode M2 and the electrical muscle stimulation mode M4. Note that the combination may be arbitrary and may be settable (customizable) by the user. Some specific examples of operation mode A1 will be described later.
 動作モードA1において、各モードは、それぞれの持続時間にわたって、対応する出力波形を出力する態様で、間欠的かつ周期的に繰り返される。この場合、一の持続時間において出力される出力波形は、好ましくは、単一のパルスとは異なり、2回以上周期的に変化する連続波形を含む。例えば、出力波形が、パルス状の直流波形である場合、一の持続時間において出力される出力波形は、2つ以上のパルス(立ち上がり/下がりエッジから立ち下がり/立ち上がりエッジまでを1つのパルスとしたとき)を含む。また、出力波形が、正弦波状の交流波形である場合、一の持続時間において出力される出力波形は、2周期分以上の正弦波を含む。 In operation mode A1, each mode is intermittently and periodically repeated in a manner that outputs a corresponding output waveform for its duration. In this case, the output waveform output in one duration preferably comprises a continuous waveform that changes periodically two or more times, as opposed to a single pulse. For example, when the output waveform is a pulsed DC waveform, the output waveform output in one duration consists of two or more pulses (from the rising/falling edge to the falling/rising edge is one pulse). when). Moreover, when the output waveform is a sinusoidal AC waveform, the output waveform output in one duration includes two or more cycles of the sine wave.
 また、動作モードA1において、一のモードから他の一のモードに遷移する際、当該一のモードに係る出力波形の終了タイミングから、当該他の一のモードに係る出力波形の開始タイミングまで、所定の休止時間が設定されてよい。所定の休止時間は、後述する切替回路部140、141における切替動作に必要な時間(例えば1ミリ秒から2ミリ秒)が確保される態様で、比較的短く設定されてよい。例えば、所定の休止時間は、各モードの持続時間の最短時間よりも短く、例えば5ミリ秒程度であってもよい。 Further, in the operation mode A1, when transitioning from one mode to another mode, a predetermined time interval from the end timing of the output waveform related to the one mode to the start timing of the output waveform related to the other one mode pause time may be set. The predetermined pause time may be set relatively short in such a manner that a time (for example, 1 to 2 milliseconds) required for switching operations in switching circuit units 140 and 141, which will be described later, is ensured. For example, the predetermined pause time may be shorter than the shortest duration of each mode, such as about 5 milliseconds.
 制御パラメータ設定部113は、モード設定部112により設定される動作モードに応じて、対応する出力波形を実現するための各種制御パラメータの各値を設定する。各種制御パラメータは、交流波形か直流波形かを示す第1パラメータと、周波数を示す第2パラメータと、持続時間を示す第3パラメータと、出力波形を生成する電極の対を表す第4パラメータ等を含んでよい。持続時間とは、当該モードに係る出力波形の出力時間に対応し、対応する出力波形の開始時点から終了時点までの連続的な出力時間に対応する。なお、第3パラメータは、上述した動作モードA1だけで利用されてよく、動作モードA0では利用されなくてよい。なお、動作モードA0では、持続時間は、例えば電源がオフされるまでであってもよいし、他の要件(例えば図示しないサーミスタからの温度情報に基づく要件等)で決定されてもよい。 The control parameter setting unit 113 sets each value of various control parameters for realizing a corresponding output waveform according to the operation mode set by the mode setting unit 112 . The various control parameters include a first parameter indicating whether the waveform is an AC waveform or a DC waveform, a second parameter indicating the frequency, a third parameter indicating the duration, a fourth parameter indicating the pair of electrodes that generate the output waveform, and the like. may contain. The duration corresponds to the output time of the output waveform related to the mode, and corresponds to the continuous output time from the start point to the end point of the corresponding output waveform. Note that the third parameter may be used only in the operation mode A1 described above, and may not be used in the operation mode A0. In operation mode A0, the duration may be, for example, until the power is turned off, or may be determined according to other requirements (for example, requirements based on temperature information from a thermistor (not shown)).
 制御パラメータ設定部113は、パラメータ記憶部116内の各パラメータの設定値に基づいて、対応する出力波形を実現するための各種制御パラメータの各値を設定してよい。図6には、パラメータ記憶部116内に記憶される各種パラメータの設定値の一例が示されている。図6に示す例では、浸潤モードM1や筋電気刺激モードM4等の各モードに対して、各種パラメータの設定値が対応付けられている。なお、図6では、第1パラメータの値“1”は交流波形を表し、値“0”は直流波形を表す。また、第4パラメータの値PT1からPT4、PT20、PT21は、出力波形を生成する電極の対の変化パターンを表してもよい。なお、出力波形を生成する電極の対は、一対一の関係の対であってもよいし、一対多の関係の対であってもよい。 The control parameter setting unit 113 may set each value of various control parameters for realizing the corresponding output waveform based on the set value of each parameter in the parameter storage unit 116 . FIG. 6 shows an example of setting values of various parameters stored in the parameter storage unit 116. As shown in FIG. In the example shown in FIG. 6, set values of various parameters are associated with each mode such as the infiltration mode M1 and the electrical muscle stimulation mode M4. In FIG. 6, the value "1" of the first parameter represents an AC waveform, and the value "0" represents a DC waveform. Also, the values PT1 to PT4, PT20, and PT21 of the fourth parameter may represent the change pattern of the electrode pairs that generate the output waveform. The pair of electrodes that generate the output waveform may be a pair having a one-to-one relationship, or may be a pair having a one-to-many relationship.
 制御信号生成部114は、制御パラメータ設定部113により設定された各種パラメータの値に基づいて、PWM(Pulse Width Modulation)信号の形態の制御信号を生成する。制御信号生成部114は、生成した制御信号を、駆動回路部120、121、122のうちの、対応する駆動回路部に与える。 The control signal generation unit 114 generates a control signal in the form of a PWM (Pulse Width Modulation) signal based on the values of various parameters set by the control parameter setting unit 113 . The control signal generation section 114 provides the generated control signal to the corresponding drive circuit section among the drive circuit sections 120 , 121 and 122 .
 図4に示す例では、制御系100は、3系統の駆動回路部120、121、122を有し、駆動回路部120、121、122のうちの、駆動回路部120は、第2電極群32(複数の第2電極320)を介して各種出力波形を発生し、駆動回路部121、122は、第1電極群31(複数の第1電極310)を介して各種出力波形を発生する。駆動回路部121は、交流波形の出力波形(例えば高周波モードM3用の出力波形)を生成し、駆動回路部122は、直流波形の出力波形(例えばイオン導入モードM2用の出力波形)を発生する。 In the example shown in FIG. 4, the control system 100 has three systems of drive circuit units 120, 121, and 122. Of the drive circuit units 120, 121, and 122, the drive circuit unit 120 Various output waveforms are generated via (the plurality of second electrodes 320), and the drive circuit units 121 and 122 generate various output waveforms via the first electrode group 31 (the plurality of first electrodes 310). The drive circuit unit 121 generates an AC output waveform (for example, an output waveform for the high frequency mode M3), and the drive circuit unit 122 generates a DC output waveform (for example, an output waveform for the iontophoresis mode M2). .
 図4には、制御信号CT1、CT2の一部の波形が模式的に示されている。この場合、制御信号CT1、CT2は、それぞれ別々の制御ラインL1、L2を介して駆動回路部120、121に付与されてよい。制御信号CT1、CT2の周波数(デュティー比)は、第2パラメータの設定値に応じて決まってよい。また、図4には、制御信号CT3の一部の波形が模式的に示されている。この場合、制御信号CT3は、制御ラインL3を介して駆動回路部122に付与されてよい。制御信号CT3の周波数(デュティー比)は、第2パラメータの設定値に応じて決まってよい。 FIG. 4 schematically shows waveforms of part of the control signals CT1 and CT2. In this case, the control signals CT1 and CT2 may be applied to the drive circuit units 120 and 121 through separate control lines L1 and L2, respectively. The frequencies (duty ratios) of the control signals CT1 and CT2 may be determined according to the set value of the second parameter. Further, FIG. 4 schematically shows a waveform of part of the control signal CT3. In this case, the control signal CT3 may be applied to the drive circuit section 122 via the control line L3. The frequency (duty ratio) of the control signal CT3 may be determined according to the set value of the second parameter.
 また、ある一のモードが実現される際、制御信号CT1、CT2(及びそれに伴い制御ラインL1、L2)が出力されるか、制御信号CT3が出力されるかは、当該一のモードに対応付けられている第1パラメータの設定値に応じて決まってよい。例えば、一のモードに関して、第1パラメータの設定値が“1”である場合、制御信号CT1、CT2の双方が出力され、第1パラメータの設定値が“0”である場合、制御信号CT3が出力されてよい。また、ある一のモードが実現される際、当該一のモードに対応付けられている制御信号CT1、CT2、CT3の持続時間は、第3パラメータの設定値に応じて決まってよい。 When a certain mode is realized, whether the control signals CT1 and CT2 (and the control lines L1 and L2 associated therewith) are output or the control signal CT3 is output depends on the mode. may be determined according to the set value of the first parameter. For example, in one mode, when the setting value of the first parameter is "1", both the control signals CT1 and CT2 are output, and when the setting value of the first parameter is "0", the control signal CT3 is output. may be output. Also, when a certain mode is realized, the duration of the control signals CT1, CT2, and CT3 associated with that mode may be determined according to the set value of the third parameter.
 駆動回路部120、121、122は、後述する複数のスイッチング素子Trを駆動するドライバを含む。駆動回路部120、121、122は、それぞれ、制御信号生成部114からの制御信号CT1、CT2、CT3に応じて出力波形発生部130、131、132のスイッチング素子Trをオン/オフさせるための駆動信号を生成し、生成した駆動信号を、対応するスイッチング素子Trに与える。 The drive circuit units 120, 121, and 122 include drivers that drive a plurality of switching elements Tr, which will be described later. The drive circuit units 120, 121, and 122 turn on/off the switching elements Tr of the output waveform generation units 130, 131, and 132 according to the control signals CT1, CT2, and CT3 from the control signal generation unit 114, respectively. A signal is generated, and the generated drive signal is applied to the corresponding switching element Tr.
 出力波形発生部130、131、132は、それぞれ、直流電源である電源150に基づいて、出力波形を生成する。出力波形発生部130は、対のスイッチング素子Trと、トランス135とを含む。出力波形発生部131は、対のスイッチング素子Trと、トランス136とを含む。出力波形発生部132は、スイッチング素子Trと、トランス137とを含む。 The output waveform generators 130, 131, and 132 each generate an output waveform based on the power supply 150, which is a DC power supply. Output waveform generating section 130 includes a pair of switching elements Tr and transformer 135 . Output waveform generating section 131 includes a pair of switching elements Tr and transformer 136 . Output waveform generating section 132 includes switching element Tr and transformer 137 .
 駆動回路部120に係る系統に関して、対のスイッチング素子Trは、例えばトランジスタ等のスイッチング素子であり、一方は、トランス135の端子Taに接続され、他方は、トランス135の端子Tbに接続される。トランス135は、センタータップに係る端子Tcに電源150が接続される。本実施例では、トランス135は、高周波モードM3の周波数に適合された周波数仕様である。例えば、トランス135の誘起電圧Eを、E=√2・π・f・n・φmとした場合、周波数fは、高周波モードM3の周波数(図6の第2パラメータの設定値α3)と略等しい。なお、この場合、nは、巻数であり、φmは、磁束である。なお、トランス135は、周辺回路の設定乗数やフェライトコア(トランス135の内部部品)の材質や密着度を変えるなどの設定(調整)に基づいて、高周波モードM3の周波数に適合されてよい。 Regarding the system related to the drive circuit unit 120 , the pair of switching elements Tr are switching elements such as transistors, one of which is connected to the terminal Ta of the transformer 135 and the other of which is connected to the terminal Tb of the transformer 135 . The power supply 150 is connected to the terminal Tc associated with the center tap of the transformer 135 . In this embodiment, the transformer 135 is frequency specification adapted to the frequency of the high frequency mode M3. For example, when the induced voltage E of the transformer 135 is E=√2·π·f·n·φm, the frequency f is substantially equal to the frequency of the high frequency mode M3 (second parameter set value α3 in FIG. 6). . In this case, n is the number of turns and φm is the magnetic flux. Note that the transformer 135 may be adapted to the frequency of the high frequency mode M3 based on setting (adjustment) such as changing the setting multiplier of the peripheral circuit, the material and adhesion of the ferrite core (internal part of the transformer 135).
 駆動回路部121に係る系統に関しても、対のスイッチング素子Trは、例えばトランジスタ等のスイッチング素子であり、一方は、トランス136の端子Taに接続され、他方は、トランス136の端子Tbに接続される。トランス136は、センタータップに係る端子Tcに電源150が接続される。本実施例では、トランス136は、高周波モードM3の周波数に適合された周波数仕様である。従って、この場合、出力波形発生部130、131は、同じ部品により構成されてもよい。これは、駆動回路部120、121も同様である。 As for the system related to the drive circuit unit 121, the pair of switching elements Tr are switching elements such as transistors, one of which is connected to the terminal Ta of the transformer 136, and the other of which is connected to the terminal Tb of the transformer 136. . The power supply 150 is connected to the terminal Tc associated with the center tap of the transformer 136 . In this embodiment, the transformer 136 is frequency-specified adapted to the frequency of the high frequency mode M3. Therefore, in this case, the output waveform generators 130 and 131 may be composed of the same parts. The same applies to the drive circuit units 120 and 121 as well.
 駆動回路部122に係る系統に関して、スイッチング素子Trは、例えばトランジスタ等のスイッチング素子であり、トランス137の端子Tbに接続される。トランス137は、端子Taに電源150が接続される。本実施例では、トランス137は、イオン導入モードM2の周波数に適合された周波数仕様であってよい。 Regarding the system related to the drive circuit section 122 , the switching element Tr is, for example, a switching element such as a transistor, and is connected to the terminal Tb of the transformer 137 . The power supply 150 is connected to the terminal Ta of the transformer 137 . In this embodiment, the transformer 137 may be frequency-specifically adapted to the frequency of the iontophoretic mode M2.
 切替回路部140は、出力波形発生部130の出力端子(すなわちトランス135の出力端子)Td、Teの接続先を、複数の第2電極320内で切り替えることで、出力波形を生成する電極の対を複数の第2電極320内で制御する。この場合、切替回路部140は、第4パラメータの設定値に基づいて、出力波形を生成する電極の対を制御してよい。 The switching circuit unit 140 switches the connection destinations of the output terminals Td and Te of the output waveform generating unit 130 (that is, the output terminals of the transformer 135) among the plurality of second electrodes 320, thereby selecting pairs of electrodes that generate output waveforms. are controlled within the plurality of second electrodes 320 . In this case, the switching circuit section 140 may control the pair of electrodes that generate the output waveform based on the set value of the fourth parameter.
 切替回路部141は、出力波形発生部131の出力端子(すなわちトランス136の出力端子)Td、Teの接続先、及び、出力波形発生部132の出力端子(すなわちトランス137の出力端子)Td、Teの接続先を、複数の第1電極310内で切り替えることで、出力波形を生成する電極の対を複数の第1電極310内で制御する。この場合、切替回路部141は、第4パラメータの設定値に基づいて、出力波形を生成する電極の対を制御してよい。 The switching circuit section 141 connects the output terminals Td and Te of the output waveform generating section 131 (that is, the output terminals of the transformer 136) and the output terminals of the output waveform generating section 132 (that is, the output terminals of the transformer 137) Td and Te. By switching connection destinations among the plurality of first electrodes 310 , pairs of electrodes that generate an output waveform are controlled among the plurality of first electrodes 310 . In this case, the switching circuit section 141 may control the pair of electrodes that generate the output waveform based on the set value of the fourth parameter.
 図4に示した制御系100によれば、第1電極群31を介して出力波形を付与するための系列と、第2電極群32を介して出力波形を付与するための系列とが独立に構成されるので、第1電極群31を介した出力波形と第2電極群32を介した出力波形とを同時に生成(出力)することが可能である。従って、時間軸上で第1電極群31を介した出力波形と第2電極群32を介した出力波形とを多様な態様で組み合わせることも可能であり、肌処理装置1の出力のバリエーションを効率的に増加させることも可能である。 According to the control system 100 shown in FIG. 4, the series for applying the output waveform via the first electrode group 31 and the series for applying the output waveform via the second electrode group 32 are independent. Therefore, it is possible to simultaneously generate (output) an output waveform via the first electrode group 31 and an output waveform via the second electrode group 32 . Therefore, it is possible to combine the output waveform via the first electrode group 31 and the output waveform via the second electrode group 32 on the time axis in various ways, and the output variation of the skin treatment apparatus 1 can be effectively changed. can be increased exponentially.
 なお、図4に示した制御系100は、あくまで一例であり、生成対象の出力波形の種類や同時に第1電極群31及び第2電極群32を利用するか否か等の要請、コスト等に応じて、適宜、変更されてよい。例えば、同時に第1電極群31及び第2電極群32を利用しない構成では、駆動回路部122及び出力波形発生部132が省略されてよい。この場合、切替回路部140において、出力波形発生部130の出力端子(すなわちトランス135の出力端子)Td、Teの接続先が、複数の第2電極320内で、又は、複数の第1電極310内で、時分割により切り替えられてよい。あるいは、それに加えて又は代えて、切替回路部140において、出力波形発生部130の出力端子(すなわちトランス135の出力端子)Td、Teの接続先が、複数の第2電極320のうちの1つ以上と、複数の第1電極310のうちの1つ以上とが対をなす態様で、時分割により切り替えられてもよい。 The control system 100 shown in FIG. 4 is merely an example, and the control system 100 may vary depending on the type of output waveform to be generated, requests such as whether or not to use the first electrode group 31 and the second electrode group 32 at the same time, costs, and the like. It may be changed accordingly. For example, in a configuration that does not use the first electrode group 31 and the second electrode group 32 at the same time, the drive circuit section 122 and the output waveform generation section 132 may be omitted. In this case, in the switching circuit section 140, the connection destinations of the output terminals Td and Te of the output waveform generating section 130 (that is, the output terminals of the transformer 135) are within the plurality of second electrodes 320 or within the plurality of first electrodes 310. may be switched in a time division manner. Alternatively, in addition or alternatively, in the switching circuit section 140, the output terminals of the output waveform generating section 130 (that is, the output terminals of the transformer 135) Td and Te are connected to one of the plurality of second electrodes 320. The above and one or more of the plurality of first electrodes 310 may be paired and switched by time division.
 次に、図7から図13を参照して、動作モードA1の例について説明する。 Next, an example of the operation mode A1 will be described with reference to FIGS. 7 to 13. FIG.
 図7は、動作モードA1の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。具体的には、図7では、上側に、ヘッド部3の絵とともに、複数の電極30のうちの、対となる電極に対して、+マークを囲む丸と、-マークを囲む丸とが対応付けられている。この場合、+マークを囲む丸が対応付けられている電極と、-マークを囲む丸が対応付けられている電極とが、対をなす。また、図7では、下側に、ヘッド部3の絵に対応付けて、各モードの組み合わせパターン(変化パターン)が示されている。 FIG. 7 is an explanatory diagram of an example of the operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. Specifically, in FIG. 7, the picture of the head unit 3 is shown on the upper side, and the circle surrounding the + mark and the circle surrounding the - mark correspond to the paired electrodes among the plurality of electrodes 30. attached. In this case, the electrode associated with the circle surrounding the + mark and the electrode associated with the circle surrounding the - mark form a pair. In addition, in FIG. 7, combination patterns (variation patterns) of each mode are shown in association with the picture of the head section 3 on the lower side.
 図7に示す例では、動作モードA1は、高周波モードM3と、イオン導出モードM6との組み合わせモードである。この場合、高周波モードM3とイオン導出モードM6とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 7, the operation mode A1 is a combination mode of the high frequency mode M3 and the ion derivation mode M6. In this case, the high frequency mode M3 and the ion extraction mode M6 are repeated periodically in this order in a non-overlapping manner with respect to each other.
 高周波モードM3では、複数の第1電極310のすべてが同時に利用されてよく、この場合、各対を介して、加温作用を有する出力波形がユーザの肌に印加される。なお、図7に示す例において、4つの第1電極310のうちの、交流波形の同位相の2つの第1電極310のそれぞれは、他の2つの第1電極310のそれぞれと対をなしてよい。 In high frequency mode M3, all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform with a warming effect is applied to the user's skin via each pair. In the example shown in FIG. 7, each of the two first electrodes 310 having the same phase of the alternating waveform among the four first electrodes 310 is paired with each of the other two first electrodes 310. good.
 イオン導出モードM6では、複数の第1電極310のすべてが同時に利用されてよく、この場合、各対を介して、肌内からイオンを導出する作用を有する出力波形がユーザの肌に印加される。なお、図7に示す例において、4つの第1電極310のうちの、同一極性の2つの第1電極310のそれぞれは、他の2つの第1電極310のそれぞれと対をなしてよい。 In ion extraction mode M6, all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform is applied to the user's skin via each pair that has the effect of extracting ions from within the skin. . In the example shown in FIG. 7 , each of the two first electrodes 310 having the same polarity among the four first electrodes 310 may be paired with each of the other two first electrodes 310 .
 このような図7に示す動作モードA1では、高周波モードM3とイオン導出モードM6とが交互に繰り返し実行されるので、高周波モードM3がユーザの肌を加温して汚れやクレンジング等を浮かせ、イオン導出モードM6により汚れやクレンジング等を効果的に吸着除去できる。このような図7に示す動作モードA1では、動作モードA1の一の周期における各モード(高周波モードM3とイオン導出モードM6のそれぞれ)の持続時間は、好ましくは、1秒よりも有意に長く設定される。 In the operation mode A1 shown in FIG. 7, the high frequency mode M3 and the ion derivation mode M6 are alternately and repeatedly executed. Dirt, cleansing, etc. can be effectively adsorbed and removed by the derivation mode M6. In the operation mode A1 shown in FIG. 7, the duration of each mode (each of the high frequency mode M3 and the ion extraction mode M6) in one cycle of the operation mode A1 is preferably set significantly longer than 1 second. be done.
 図8は、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、組み合わせパターン(変化パターン)の表記方法は、図7と同様である。 FIG. 8 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. The notation method of the combination pattern (variation pattern) is the same as in FIG.
 図8に示す例では、動作モードA1は、浸潤モードM1と、筋電気刺激モードM4と、高周波モードM3と、イオン導入モードM2との組み合わせモードである。この場合、第1の組み合わせモードM0と、第2の組み合わせモードM0と、第1の筋電気刺激モードM4と、第3の組み合わせモードM0と、第2の筋電気刺激モードM4と、イオン導入モードM2と、第3の筋電気刺激モードM4とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 8, operation mode A1 is a combination mode of infiltration mode M1, muscle electrical stimulation mode M4, high frequency mode M3, and iontophoresis mode M2. In this case, a first combination mode M0, a second combination mode M0, a first electrical muscle stimulation mode M4, a third combination mode M0, a second electrical muscle stimulation mode M4, and an iontophoresis mode. M2 and the third electrical muscle stimulation mode M4 are cyclically repeated in this order in a non-overlapping manner with respect to each other.
 組み合わせモードM0は、浸潤モードM1と高周波モードM3との組み合わせモードである。すなわち、組み合わせモードM0は、肌内へと有効成分を浸透させる作用を有する第1サブモードとしての浸潤モードM1と、肌を加温する作用を有する第2サブモードとしての高周波モードM3とを含む。 The combination mode M0 is a combination mode of the infiltration mode M1 and the high frequency mode M3. That is, the combination mode M0 includes an infiltration mode M1 as a first submode having an effect of permeating the active ingredient into the skin and a high frequency mode M3 as a second submode having an effect of warming the skin. .
 この場合、2つのサブモード(第1サブモード及び第2サブモード)は、図4を参照して上述した制御系100を利用して、同時に実現できる。すなわち、第1サブモードは、図4に示した制御系100のうちの、第2電極群32に係る系統(駆動回路部120等)を利用して、第2サブモードは、図4に示した制御系100のうちの、第1電極群31に係る系統(駆動回路部121等)を利用して、それぞれ同時に互いに独立して実現できる。ただし、上述したように駆動回路部122及び出力波形発生部132が省略されるような変形例では、2つのサブモードは、時分割で実現されてもよい。 In this case, two sub-modes (first sub-mode and second sub-mode) can be realized simultaneously using the control system 100 described above with reference to FIG. That is, the first sub-mode uses the system (driving circuit unit 120, etc.) related to the second electrode group 32 in the control system 100 shown in FIG. By using the system (driving circuit unit 121, etc.) related to the first electrode group 31 in the control system 100, they can be realized simultaneously and independently of each other. However, in a modified example in which the drive circuit section 122 and the output waveform generation section 132 are omitted as described above, the two sub-modes may be realized by time division.
 浸潤モードM1では、複数の第2電極320のすべてが同時に利用されてよく、この場合、各対を介して、肌内へと有効成分を浸透させる作用を有する出力波形がユーザの肌に印加される。なお、図8に示す例において、3つの第2電極320のうちの、交流波形の同位相の2つの第2電極320(例えば-マークを囲む丸が対応付けられている電極)は、他の第2電極320(+マークを囲む丸が対応付けられている電極)と対をなしてよい(すなわち、延べ2通りの対を形成してよい)。 In infiltration mode M1, all of the plurality of second electrodes 320 may be utilized simultaneously, in which case an output waveform is applied to the user's skin via each pair that has the effect of infiltrating the active ingredient into the skin. be. In the example shown in FIG. 8, of the three second electrodes 320, the two second electrodes 320 having the same phase of the AC waveform (for example, the electrodes associated with the circle surrounding the - mark) are the other It may be paired with the second electrode 320 (the electrode associated with the circle surrounding the + mark) (that is, a total of two pairs may be formed).
 高周波モードM3では、図7を参照して上述した態様と同様に、複数の第1電極310のすべてが同時に利用されてよい。 In the high frequency mode M3, all of the plurality of first electrodes 310 may be used simultaneously, similar to the aspect described above with reference to FIG.
 筋電気刺激モードM4では、複数の第2電極320のすべてが時分割式に利用されてよい。図8に示すように、第1の筋電気刺激モードM4では、3つの第2電極320のうちの、上側と右下の2つが対をなして出力波形を生成するが、次の第2の筋電気刺激モードM4では、異なる2つ(周方向で隣り合う2つ)が対をなし、次の第3の筋電気刺激モードM4では、更に異なる2つ(周方向で隣り合う2つ)が対をなしてよい。このようにして、筋電気刺激モードM4では、動作モードA1の一の周期において、出力波形を生成する対が周方向に1つずつずれる態様の3パターンで、変化されてもよい。あるいは、動作モードA1の一の周期において、出力波形を生成する対が周方向に2つずつずれる態様の3パターンで、変化されてもよい。ただし、変形例では、一の第1の筋電気刺激モードM4(第2の筋電気刺激モードM4及び第3の筋電気刺激モードM4についても同様)において、出力波形を生成する対が同様の態様で動的に変化されてもよい。すなわち、一の筋電気刺激モードM4の持続時間内で、出力波形を生成する対が同様の態様で動的に変化されてもよい。 In muscle electrical stimulation mode M4, all of the plurality of second electrodes 320 may be used in a time division manner. As shown in FIG. 8, in the first electrical muscle stimulation mode M4, the upper and lower right two of the three second electrodes 320 are paired to generate an output waveform. In the electrical muscle stimulation mode M4, two different (two adjacent in the circumferential direction) form a pair, and in the next third electrical muscle stimulation mode M4, two further different (two adjacent in the circumferential direction) You can make a pair. In this manner, in the electrical muscle stimulation mode M4, in one cycle of the operation mode A1, the pairs that generate the output waveforms may be changed in three patterns in which the pairs are shifted one by one in the circumferential direction. Alternatively, in one period of the operation mode A1, the pairs that generate the output waveforms may be changed in three patterns in which the pairs are shifted by two in the circumferential direction. However, in the modified example, in one of the first electrical muscle stimulation modes M4 (the same applies to the second electrical muscle stimulation mode M4 and the third electrical muscle stimulation mode M4), the pairs that generate the output waveforms are the same. may be changed dynamically with That is, within the duration of one electrical muscle stimulation mode M4, pairs that generate output waveforms may be dynamically changed in a similar manner.
 イオン導入モードM2では、複数の第1電極310のすべてが同時に利用されてよい。この場合、各対を介して、肌内へイオンを導入する作用を有する出力波形がユーザの肌に印加される。なお、図8に示す例において、4つの第1電極310のうちの、同一極性の2つの第1電極310のそれぞれは、他の2つの第1電極310のそれぞれと対をなしてよい。 In the iontophoresis mode M2, all of the plurality of first electrodes 310 may be used simultaneously. In this case, through each pair, an output waveform is applied to the user's skin that has the effect of introducing ions into the skin. In the example shown in FIG. 8 , each of the two first electrodes 310 having the same polarity among the four first electrodes 310 may be paired with each of the other two first electrodes 310 .
 このような図8に示す動作モードA1では、各モード(組み合わせモードM0の浸潤モードM1、組み合わせモードM0の筋電気刺激モードM4、組み合わせモードM0の高周波モードM3、及びイオン導入モードM2のそれぞれ)の持続時間は、好ましくは、1秒未満に設定される。このような比較的短い持続時間で各モードを周期的に繰り返す場合、比較的長い持続時間(例えば1秒よりも有意に長い持続時間)で各モードを周期的に繰り返す場合に比べて、単位時間あたりの美容関連効果を高めることができる。 In the operation mode A1 shown in FIG. 8, each mode (each of the infiltration mode M1 of the combination mode M0, the electrical muscle stimulation mode M4 of the combination mode M0, the high frequency mode M3 of the combination mode M0, and the iontophoresis mode M2). The duration is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
 なお、図8に示す動作モードA1では、第1の組み合わせモードM0と第2の組み合わせモードM0とは、その間に休止時間を介することなく、連続して実現されてもよい(すなわち一体化されてもよい)。あるいは、第1の組み合わせモードM0は、動作モードA1の初回だけ又は動作モードA1の複数周期ごとに実行され、第2の組み合わせモードM0から第3の筋電気刺激モードM4までの各モードが動作モードA1の周期ごとに、実行されてもよい。 Note that in the operation mode A1 shown in FIG. 8, the first combination mode M0 and the second combination mode M0 may be realized continuously (that is, integrated) without an intervening pause time. can also be used). Alternatively, the first combination mode M0 is executed only for the first time of the operation mode A1 or every multiple cycles of the operation mode A1, and each mode from the second combination mode M0 to the third muscle electrical stimulation mode M4 is the operation mode. It may be executed every period of A1.
 具体的には、図8に示す動作モードA1では、第2の組み合わせモードM0から第3の筋電気刺激モードM4までの各モードの持続時間は、好ましくは、1秒未満に設定される。このような比較的短い持続時間で各モードを周期的に繰り返す場合、比較的長い持続時間(例えば1秒よりも有意に長い持続時間)で各モードを周期的に繰り返す場合に比べて、単位時間あたりの美容関連効果を高めることができる。 Specifically, in the operation mode A1 shown in FIG. 8, the duration of each mode from the second combination mode M0 to the third muscle electrical stimulation mode M4 is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
 具体的には、第2及び第3の組み合わせモードM0の持続時間は、好ましくは、20ミリ秒から70ミリ秒の間であり、より好ましくは30ミリ秒から60ミリ秒の間であり、最も好ましくは、40ミリ秒から50ミリ秒の間である。 Specifically, the duration of the second and third combined modes M0 is preferably between 20 ms and 70 ms, more preferably between 30 ms and 60 ms, and most preferably between 30 ms and 60 ms. Preferably it is between 40 ms and 50 ms.
 イオン導入モードM2の持続時間は、好ましくは、20ミリ秒から70ミリ秒の間であり、より好ましくは30ミリ秒から60ミリ秒の間であり、最も好ましくは、40ミリ秒から50ミリ秒の間である。 The duration of iontophoretic mode M2 is preferably between 20 and 70 ms, more preferably between 30 and 60 ms, most preferably between 40 and 50 ms. between
 第1から第3の筋電気刺激モードM4のそれぞれの持続時間は、好ましくは、10ミリ秒から40ミリ秒の間であり、より好ましくは15ミリ秒から35ミリ秒の間であり、最も好ましくは、20ミリ秒から30ミリ秒の間である。 The duration of each of the first to third muscle electrical stimulation modes M4 is preferably between 10 ms and 40 ms, more preferably between 15 ms and 35 ms, most preferably is between 20 ms and 30 ms.
 他方、図8に示す動作モードA1では、第1の組み合わせモードM0の持続時間は、好ましくは、1秒よりも有意に長い時間に設定される。例えば、第1の組み合わせモードM0の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 On the other hand, in the operating mode A1 shown in FIG. 8, the duration of the first combined mode M0 is preferably set to a time significantly longer than 1 second. For example, the duration of the first combination mode M0 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
 図8Aは、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。 FIG. 8A is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
 図8Aに示す例では、動作モードA1は、浸潤モードM1と、筋電気刺激モードM4と、イオン導入モードM2との組み合わせモードである。この場合、第1の浸潤モードM1と、第1の筋電気刺激モードM4と、第2の浸潤モードM1と、第2の筋電気刺激モードM4と、イオン導入モードM2と、第3の筋電気刺激モードM4とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 8A, operation mode A1 is a combination mode of infiltration mode M1, muscle electrical stimulation mode M4, and iontophoresis mode M2. In this case, the first infiltration mode M1, the first electrical muscle stimulation mode M4, the second infiltration mode M1, the second electrical muscle stimulation mode M4, the iontophoresis mode M2, and the third electrical muscle Stimulation mode M4 is repeated periodically in this order in a non-overlapping manner with respect to each other.
 図8Aに示す例では、第1の浸潤モードM1及び第2の浸潤モードM1は、図8に示した例とは異なり、単独で実行される。この場合も、第1の浸潤モードM1及び第2の浸潤モードM1の持続時間は、好ましくは、20ミリ秒から70ミリ秒の間であり、より好ましくは30ミリ秒から60ミリ秒の間であり、最も好ましくは、40ミリ秒から50ミリ秒の間である。他のモードについては、図8に示した例と同様であってよい。 In the example shown in FIG. 8A, the first invasion mode M1 and the second invasion mode M1 are executed independently, unlike the example shown in FIG. Again, the duration of the first invasion mode M1 and the second invasion mode M1 is preferably between 20 ms and 70 ms, more preferably between 30 ms and 60 ms. Yes, and most preferably between 40 ms and 50 ms. Other modes may be the same as the example shown in FIG.
 図8Bは、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。 FIG. 8B is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
 図8Bに示す例では、動作モードA1は、イオン導入モードM2と、高周波モードM3と、筋電気刺激モードM4との組み合わせモードである。この場合、動作モードA1は、第1の組み合わせモードM01と、繰り返しモードM8とを含み、第1の組み合わせモードM01と、繰り返しモードM8とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 8B, operation mode A1 is a combination mode of iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4. In this case, the operating mode A1 comprises a first combination mode M01 and a repetition mode M8, which in that order, in a non-overlapping manner with respect to each other, are periodic. repeatedly repeated.
 第1の組み合わせモードM01は、高周波モードM3と筋電気刺激モードM4の組み合わせモードであり、その持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 The first combination mode M01 is a combination mode of the high frequency mode M3 and the muscle electrical stimulation mode M4, and its duration is preferably between 5 seconds and 25 seconds, more preferably between 10 seconds and 20 seconds. Between.
 繰り返しモードM8は、第2の組み合わせモードM02とイオン導入モードM2との交互の繰り返しモードである。具体的には、繰り返しモードM8では、第2の組み合わせモードM02とイオン導入モードM2とが、この順序で、互いに対して重複しない態様で、周期的に繰り返される。繰り返しモードM8の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。繰り返しモードM8の持続時間は、第1の組み合わせモードM01の持続時間と同じであってよい。 The repetition mode M8 is an alternating repetition mode of the second combination mode M02 and the iontophoresis mode M2. Specifically, in repetition mode M8, the second combination mode M02 and the iontophoresis mode M2 are periodically repeated in this order in a non-overlapping manner with respect to each other. The duration of repeat mode M8 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds. The duration of the repeat mode M8 may be the same as the duration of the first combination mode M01.
 第2の組み合わせモードM02は、第1の組み合わせモードM01と同様、高周波モードM3と筋電気刺激モードM4の組み合わせモードである。この際、第2の組み合わせモードM02とイオン導入モードM2とは、好ましくは、1秒未満の周期で、繰り返し実行される。
 このような動作モードA1は、図8又は図8Aに示した例と同様、例えば保湿目的の高分子浸透に好適である。
The second combination mode M02 is a combination mode of the high frequency mode M3 and the muscle electrical stimulation mode M4, like the first combination mode M01. At this time, the second combination mode M02 and the iontophoresis mode M2 are preferably repeatedly executed at a period of less than 1 second.
Such operation mode A1 is suitable for permeation of macromolecules for the purpose of moisturizing, for example, like the example shown in FIG. 8 or 8A.
 図9は、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、組み合わせパターン(変化パターン)の表記方法は、図7と同様である。 FIG. 9 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. The notation method of the combination pattern (variation pattern) is the same as in FIG.
 図9に示す動作モードA1は、図8に示した動作モードA1に対して、第3の筋電気刺激モードM4に後続して、比較的長い持続時間の第4の浸潤モードM1が実行される点が異なる。この場合、浸潤モードM1による作用(肌内へと有効成分を浸透させる作用)を効果的に高めることができる。 In operation mode A1 shown in FIG. 9, in contrast to operation mode A1 shown in FIG. 8, fourth infiltration mode M1 with a relatively long duration is executed subsequent to third electrical muscle stimulation mode M4. Points are different. In this case, the action of the infiltration mode M1 (the action of penetrating the active ingredient into the skin) can be effectively enhanced.
 第4の浸潤モードM1は、第1から第3の浸潤モードM1と同様に、2つのサブモードからなってもよいが、好ましくは、図9に示すように、単独で実行される。第4の浸潤モードM1では、複数の第1電極310のすべてが同時に利用されてよく、この場合、各対を介して、肌内へと有効成分を浸透させる作用を有する出力波形がユーザの肌に印加される。なお、図9に示す例において、4つの第1電極310のうちの、交流波形の同位相の2つの第1電極310のそれぞれ(例えば+マークを囲む丸が対応付けられている電極)は、他の2つの第1電極310のそれぞれ(-マークを囲む丸が対応付けられている電極)と対をなしてよい(すなわち、延べ4通りの対を形成してよい)。このような動作モードA1は、例えば美白成分の浸透に好適である。 The fourth infiltration mode M1 may consist of two sub-modes like the first to third infiltration modes M1, but is preferably performed independently, as shown in FIG. In a fourth infiltration mode M1, all of the plurality of first electrodes 310 may be utilized simultaneously, in which case, through each pair, an output waveform having the effect of infiltrating the active ingredient into the skin of the user is applied. is applied to In the example shown in FIG. 9, of the four first electrodes 310, each of the two first electrodes 310 having the same phase of the AC waveform (for example, electrodes associated with a circle surrounding a + mark) is It may be paired with each of the other two first electrodes 310 (electrodes associated with a circle surrounding the minus mark) (that is, a total of four pairs may be formed). Such operation mode A1 is suitable, for example, for penetration of whitening ingredients.
 第4の浸潤モードM1の持続時間は、1秒よりも有意に長い時間に設定される。例えば、第3の筋電気刺激モードM4に後続する浸潤モードM1の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 The duration of the fourth infiltration mode M1 is set to a time significantly longer than 1 second. For example, the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
 なお、図9に示す例では、第4の浸潤モードM1は、複数の第1電極310により実現されているが、これに代えて又は加えて、組み合わせモードM0の浸潤モードM1と同様の態様で、複数の第2電極320により実現されてもよい。 In the example shown in FIG. 9, the fourth infiltration mode M1 is realized by a plurality of first electrodes 310, but instead of or in addition to this, in a manner similar to the infiltration mode M1 of the combination mode M0 , may be realized by a plurality of second electrodes 320 .
 図9Aは、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。 FIG. 9A is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time.
 図9Aに示す例では、動作モードA1は、浸潤モードM1、イオン導入モードM2と、高周波モードM3と、筋電気刺激モードM4との組み合わせモードである。この場合、動作モードA1は、第1の組み合わせモードM11と、筋電気刺激モードM4と、繰り返しモードM9とを含み、第1の組み合わせモードM11と、筋電気刺激モードM4と、繰り返しモードM9と、筋電気刺激モードM4とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 9A, operation mode A1 is a combination mode of infiltration mode M1, iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4. In this case, the operation mode A1 includes a first combination mode M11, an electrical muscle stimulation mode M4, and a repetition mode M9, wherein the first combination mode M11, the electrical muscle stimulation mode M4, the repetition mode M9, The electrical muscle stimulation mode M4 is repeated periodically in this order in a non-overlapping manner with respect to each other.
 第1の組み合わせモードM11は、浸潤モードM1と高周波モードM3との組み合わせモードであり、その持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 A first combination mode M11 is a combination mode of infiltration mode M1 and high frequency mode M3, the duration of which is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds. is.
 図9Aに示す例では、繰り返しモードM9の前後の筋電気刺激モードM4は、第2電極320同士が対をなして筋電気刺激作用を有する高周波の出力波形を生成する。筋電気刺激モードM4の持続時間は、好ましくは、4秒から12秒の間であり、より好ましくは6秒から10秒の間である。なお、繰り返しモードM9の前の筋電気刺激モードM4と、繰り返しモードM9の後の筋電気刺激モードM4とは、持続時間を含め同じ態様で実現されるが、変形例では、異なる態様で実現されてもよい。 In the example shown in FIG. 9A, in the electrical muscle stimulation mode M4 before and after the repetition mode M9, the second electrodes 320 are paired to generate a high-frequency output waveform having an electrical muscle stimulation action. The duration of the electrical muscle stimulation mode M4 is preferably between 4 and 12 seconds, more preferably between 6 and 10 seconds. The electrical muscle stimulation mode M4 before the repetition mode M9 and the electrical muscle stimulation mode M4 after the repetition mode M9 are realized in the same manner including the duration, but in the modification, they are realized in different manners. may
 繰り返しモードM9は、第2の組み合わせモードM12とイオン導入モードM2との交互の繰り返しモードである。具体的には、繰り返しモードM9では、第2の組み合わせモードM12とイオン導入モードM2とが、この順序で、互いに対して重複しない態様で、周期的に繰り返される。繰り返しモードM9の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。繰り返しモードM9の持続時間は、第1の組み合わせモードM11の持続時間と同じであってよい。 The repetition mode M9 is an alternating repetition mode of the second combination mode M12 and the iontophoresis mode M2. Specifically, in repetition mode M9, the second combination mode M12 and the iontophoresis mode M2 are periodically repeated in this order in a non-overlapping manner with respect to each other. The duration of repeat mode M9 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds. The duration of the repeat mode M9 may be the same as the duration of the first combination mode M11.
 第2の組み合わせモードM12は、第1の組み合わせモードM11と同様、浸潤モードM1と高周波モードM3の組み合わせモードである。この際、第2の組み合わせモードM12とイオン導入モードM2とは、好ましくは、1秒未満の周期で、繰り返し実行される。 The second combination mode M12 is a combination mode of the infiltration mode M1 and the high frequency mode M3, like the first combination mode M11. At this time, the second combination mode M12 and the iontophoresis mode M2 are preferably repeatedly executed at a period of less than 1 second.
 このような動作モードA1は、図9に示した例と同様、例えば美白成分の浸透に好適である。ここで、イオン導入モードM2と浸潤モードM1と高周波モードM3とを組み合わせる場合、第2の組み合わせモードM12のように浸潤モードM1と高周波モードM3とを同時に実行する構成のほうが、浸潤モードM1と高周波モードM3を連続して実行する構成よりも、浸透効果が高くなる傾向が実験結果から得られている。従って、動作モードA1は、イオン導入モードM2に対して第2の組み合わせモードM12が組み合わせられることで、更なる高い浸透効果が期待できる。 Similar to the example shown in FIG. 9, such an operation mode A1 is suitable for, for example, penetration of whitening ingredients. Here, when the iontophoresis mode M2, the infiltration mode M1, and the high frequency mode M3 are combined, a configuration in which the infiltration mode M1 and the high frequency mode M3 are executed simultaneously like the second combination mode M12 is preferable to the infiltration mode M1 and the high frequency mode. Experimental results show that the penetrating effect tends to be higher than the configuration in which mode M3 is continuously performed. Therefore, in the operation mode A1, a further enhanced penetration effect can be expected by combining the iontophoresis mode M2 with the second combination mode M12.
 図10は、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、組み合わせパターン(変化パターン)の表記方法は、図7と同様である。 FIG. 10 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. The notation method of the combination pattern (variation pattern) is the same as in FIG.
 図10に示す例では、動作モードA1は、浸潤モードM1と、イオン導入モードM2と、高周波モードM3と、筋電気刺激モードM4との組み合わせモードである。この場合、浸潤モードM1と、筋電気刺激モードM4と、組み合わせモードM10とは、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 10, the operation mode A1 is a combination mode of the infiltration mode M1, the iontophoresis mode M2, the high frequency mode M3, and the muscle electrical stimulation mode M4. In this case, the infiltration mode M1, the electrical muscle stimulation mode M4, and the combination mode M10 are periodically repeated in this order in a non-overlapping manner with respect to each other.
 浸潤モードM1では、複数の第1電極310のすべてが同時に利用されてよく、この場合、各対を介して、肌内へと有効成分を浸透させる作用を有する出力波形がユーザの肌に印加される。なお、図10に示す例において、4つの第1電極310のうちの、交流波形の同位相の2つの第1電極310のそれぞれ(例えば+マークを囲む丸が対応付けられている電極)は、他の2つの第1電極310のそれぞれ(-マークを囲む丸が対応付けられている電極)と対をなしてよい(すなわち、延べ4通りの対を形成してよい)。 In infiltration mode M1, all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform is applied to the user's skin via each pair that has the effect of infiltrating the active ingredient into the skin. be. In the example shown in FIG. 10, of the four first electrodes 310, each of the two first electrodes 310 having the same phase of the AC waveform (for example, electrodes associated with a circle surrounding a + mark) is It may be paired with each of the other two first electrodes 310 (electrodes associated with a circle surrounding the minus mark) (that is, a total of four pairs may be formed).
 筋電気刺激モードM4は、図8に示した例と同様の態様で実行されてよい。 The muscle electrical stimulation mode M4 may be executed in the same manner as the example shown in FIG.
 組み合わせモードM10は、イオン導入モードM2と高周波モードM3との組み合わせモードである。すなわち、組み合わせモードM10は、肌内へとイオンを導入する作用を有する第1サブモードとしてのイオン導入モードM2と、肌を加温する作用を有する第2サブモードとしての高周波モードM3とを含む。 The combination mode M10 is a combination mode of the ion introduction mode M2 and the high frequency mode M3. That is, the combination mode M10 includes an ion introduction mode M2 as a first sub-mode having an effect of introducing ions into the skin and a high-frequency mode M3 as a second sub-mode having an effect of warming the skin. .
 この場合、2つのサブモード(第1サブモード及び第2サブモード)は、図4を参照して上述した制御系100を利用して、時分割式に実現されてもよい。この場合、一の持続時間内において、第1サブモード及び第2サブモードが交互に1回だけ実現されてもよいし、複数回実現されてもよい。 In this case, the two sub-modes (first sub-mode and second sub-mode) may be realized in a time-sharing manner using the control system 100 described above with reference to FIG. In this case, within one duration, the first sub-mode and the second sub-mode may alternately be realized only once, or may be realized a plurality of times.
 あるいは、2つのサブモード(第1サブモード及び第2サブモード)は、図4を参照して上述した制御系100とは異なる制御系(図示せず)を利用して、同時に実現されてもよい。この場合、複数の第1電極310の2対のうちの一方の対を介して第1サブモードが、他方の対を介して第2サブモードが同時に実現されてよい。この場合、一の持続時間内において、対を変化させずに、第1サブモード及び第2サブモードが実現されてもよいし、一の持続時間内において、対を変化させつつ、第1サブモード及び第2サブモードが実現されてもよい。あるいは、動作モードA1の周期ごとに対を変化させつつ、第1サブモード及び第2サブモードが実現されてもよい。対を変化させる場合、第1サブモードを実現する対の電極が、周方向に1つずつずれる態様又は周方向に3つずつずれる態様の4パターンで、変化されてもよいし、あるいは、第1サブモードを実現する対の電極が、周方向に2つずつずれる態様(すなわち第1サブモードを実現する対と、第2サブモードを実現する対とが交互に入れ替わる態様)の2パターンで、変化されてもよい。 Alternatively, the two sub-modes (the first sub-mode and the second sub-mode) may be implemented simultaneously using a control system (not shown) different from the control system 100 described above with reference to FIG. good. In this case, the first sub-mode may be realized via one pair of the two pairs of the plurality of first electrodes 310, and the second sub-mode may be realized via the other pair at the same time. In this case, the first sub-mode and the second sub-mode may be realized within one duration without changing the pair, or the first sub-mode with changing the pair within one duration. A mode and a second sub-mode may be implemented. Alternatively, the first sub-mode and the second sub-mode may be realized while changing the pair for each cycle of the operation mode A1. When changing the pair, the pair of electrodes that realize the first submode may be changed in four patterns, one by one in the circumferential direction or the other by three in the circumferential direction. Two patterns in which the pairs of electrodes that realize one submode are shifted by two in the circumferential direction (that is, the pairs that realize the first submode and the pairs that realize the second submode are alternately replaced). , may be changed.
 このような図10に示す動作モードA1では、各モード(浸潤モードM1、筋電気刺激モードM4、及び組み合わせモードM10のそれぞれ)の持続時間は、好ましくは、1秒未満に設定される。このような比較的短い持続時間で各モードを周期的に繰り返す場合、比較的長い持続時間(例えば1秒よりも有意に長い持続時間)で各モードを周期的に繰り返す場合に比べて、単位時間あたりの美容関連効果を高めることができる。 In the operation mode A1 shown in FIG. 10, the duration of each mode (infiltration mode M1, muscle electrical stimulation mode M4, and combination mode M10) is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
 なお、図10に示す例では、浸潤モードM1、筋電気刺激モードM4及び組み合わせモードM10が、この順序で周期的に繰り返されるが、浸潤モードM1、組み合わせモードM10及び筋電気刺激モードM4が、この順序で周期的に繰り返されてもよい。 In the example shown in FIG. 10, the invasion mode M1, the electrical muscle stimulation mode M4, and the combination mode M10 are periodically repeated in this order. The order may be repeated cyclically.
 図11は、動作モードA1の他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、組み合わせパターン(変化パターン)の表記方法は、図7と同様である。 FIG. 11 is an explanatory diagram of another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. The notation method of the combination pattern (variation pattern) is the same as in FIG.
 図11に示す例では、動作モードA1は、浸潤モードM1と、イオン導入モードM2と、高周波モードM3と、筋電気刺激モードM4との組み合わせモードである。この場合、高周波モードM3、第1の浸潤モードM1と、第1の筋電気刺激モードM4と、第2の浸潤モードM1、第2の筋電気刺激モードM4、組み合わせモードM10、及び第3の筋電気刺激モードM4は、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 In the example shown in FIG. 11, operation mode A1 is a combination mode of infiltration mode M1, iontophoresis mode M2, high frequency mode M3, and muscle electrical stimulation mode M4. In this case, the high frequency mode M3, the first infiltration mode M1, the first muscle electrical stimulation mode M4, the second infiltration mode M1, the second muscle electrical stimulation mode M4, the combination mode M10, and the third muscle Electrical stimulation mode M4 is repeated periodically in this order and in a non-overlapping manner with respect to each other.
 浸潤モードM1及び筋電気刺激モードM4は、図10を参照して上述したとおりであってよい。また、組み合わせモードM10は、図10を参照して上述したとおりであってよい。 The infiltration mode M1 and the muscle electrical stimulation mode M4 may be as described above with reference to FIG. Also, the combination mode M10 may be as described above with reference to FIG.
 高周波モードM3では、複数の第1電極310のすべてが同時に利用されてよく、この場合、各対を介して、加温作用を有する出力波形がユーザの肌に印加される。なお、浸潤モードM1の場合と同様、図11に示す例において、4つの第1電極310のうちの、交流波形の同位相の2つの第1電極310のそれぞれは、他の2つの第1電極310のそれぞれと対をなしてよい。 In high frequency mode M3, all of the plurality of first electrodes 310 may be utilized simultaneously, in which case an output waveform with a warming effect is applied to the user's skin via each pair. Note that, in the example shown in FIG. 11, as in the case of the infiltration mode M1, each of the two first electrodes 310 having the same phase of the AC waveform among the four first electrodes 310 is connected to the other two first electrodes. 310 may be paired.
 このような図11に示す動作モードA1では、浸潤モードM1、組み合わせモードM10及び筋電気刺激モードM4のそれぞれの持続時間は、好ましくは、1秒未満に設定される。このような比較的短い持続時間で各モードを周期的に繰り返す場合、比較的長い持続時間(例えば1秒よりも有意に長い持続時間)で各モードを周期的に繰り返す場合に比べて、単位時間あたりの美容関連効果を高めることができる。 In such an operation mode A1 shown in FIG. 11, the duration of each of the infiltration mode M1, combination mode M10 and muscle electrical stimulation mode M4 is preferably set to less than 1 second. Cyclically repeating each mode with such a relatively short duration is less than cyclically repeating each mode with a relatively long duration (e.g., duration significantly longer than 1 second) per unit time. Per beauty-related effects can be enhanced.
 具体的には、浸潤モードM1の持続時間、組み合わせモードM10のイオン導入モードM2の持続時間、及び、筋電気刺激モードM4の持続時間は、図8に示した例と同様であってよい。 Specifically, the duration of the infiltration mode M1, the duration of the iontophoresis mode M2 of the combination mode M10, and the duration of the muscle electrical stimulation mode M4 may be the same as the example shown in FIG.
 他方、図11に示す動作モードA1では、高周波モードM3の持続時間は、好ましくは、1秒よりも有意に長い時間に設定される。例えば、高周波モードM3の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 On the other hand, in operation mode A1 shown in FIG. 11, the duration of high frequency mode M3 is preferably set to a time significantly longer than 1 second. For example, the duration of high frequency mode M3 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
 なお、変形例では、高周波モードM3は、動作モードA1の初回だけ又は動作モードA1の複数周期ごとに実行され、第1の浸潤モードM1から第3の筋電気刺激モードM4までの各モードが動作モードA1の周期ごとに、実行されてもよい。 In the modified example, the high-frequency mode M3 is executed only for the first time of the operation mode A1 or every multiple cycles of the operation mode A1, and each mode from the first infiltration mode M1 to the third muscle electrical stimulation mode M4 is operated. It may be executed for each cycle of mode A1.
 図12は、動作モードA1の更なる他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、組み合わせパターン(変化パターン)の表記方法は、図7と同様である。 FIG. 12 is an explanatory diagram of still another example of the operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. The notation method of the combination pattern (variation pattern) is the same as in FIG.
 図12に示す動作モードA1は、図11に示した動作モードA1に対して、第3の筋電気刺激モードM4に後続して、比較的長い持続時間の浸潤モードM1が実行される点が異なる。この場合、浸潤モードM1による作用(肌内へと有効成分を浸透させる作用)を効果的に高めることができる。 The operation mode A1 shown in FIG. 12 differs from the operation mode A1 shown in FIG. 11 in that the third electrical muscle stimulation mode M4 is followed by the infiltration mode M1 with a relatively long duration. . In this case, the action of the infiltration mode M1 (the action of penetrating the active ingredient into the skin) can be effectively enhanced.
 この場合、第3の筋電気刺激モードM4に後続する浸潤モードM1の持続時間は、1秒よりも有意に長い時間に設定される。例えば、第3の筋電気刺激モードM4に後続する浸潤モードM1の持続時間は、好ましくは、5秒から25秒の間であり、より好ましくは10秒から20秒の間である。 In this case, the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is set to a time significantly longer than 1 second. For example, the duration of the infiltration mode M1 following the third electrical muscle stimulation mode M4 is preferably between 5 and 25 seconds, more preferably between 10 and 20 seconds.
 図13は、動作モードA1の更なる他の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、パターン(変化パターン)の表記方法は、図7と同様である。 FIG. 13 is an explanatory diagram of yet another example of operation mode A1, showing combination patterns (change patterns) in time series with the horizontal axis representing time. Note that the notation method of patterns (variation patterns) is the same as in FIG.
 図13に示す動作モードA1は、高周波モードM3と、マイクロカレントモードM5と、筋電気刺激モードM4との組み合わせモードである。この場合、高周波モードM3、マイクロカレントモードM5及び筋電気刺激モードM4は、この順序で、互いに対して重複しない態様で、周期的に繰り返される。 An operation mode A1 shown in FIG. 13 is a combination mode of a high frequency mode M3, a microcurrent mode M5, and a muscle electrical stimulation mode M4. In this case, the high frequency mode M3, the microcurrent mode M5 and the electrical muscle stimulation mode M4 are repeated periodically in this order in a non-overlapping manner with respect to each other.
 マイクロカレントモードM5では、複数の第1電極310のすべてが同時に利用されてよい。図13に示す動作モードA1は、例えば、目元のたるみや乾燥小じわの改善の効果を期待できる。また、筋電気刺激モードM4を組み合わせることで体感のあるモードを実現できる。マイクロカレントモードM5の持続時間は、1秒よりも有意に短くてよく、例えば0.4秒程度であってよい。また、図13に示す動作モードA1における高周波モードM3の持続時間は、1秒よりも有意に短くてよく、例えば0.6秒程度であってよい。また、図13に示す動作モードA1における筋電気刺激モードM4の持続時間は、1秒よりも有意に短くてよく、例えば0.2秒程度であってよい。なお、図13に示す動作モードA1における筋電気刺激モードM4では、図13に模式的に示すように、複数の第1電極310のすべてが同時に利用されてもよいし、図8を参照して上述したように、複数の第1電極310の2つが対となり、当該対が変化する態様で実現されてもよい。 In the microcurrent mode M5, all of the plurality of first electrodes 310 may be used simultaneously. In the operation mode A1 shown in FIG. 13, for example, an effect of improving sagging around the eyes and fine wrinkles due to dryness can be expected. Also, by combining the electrical muscle stimulation mode M4, a mode with a physical sensation can be realized. The duration of the microcurrent mode M5 may be significantly shorter than 1 second, for example of the order of 0.4 seconds. Also, the duration of the high frequency mode M3 in the operation mode A1 shown in FIG. 13 may be significantly shorter than 1 second, and may be approximately 0.6 seconds, for example. Also, the duration of the electrical muscle stimulation mode M4 in the operation mode A1 shown in FIG. 13 may be significantly shorter than 1 second, and may be, for example, about 0.2 seconds. In addition, in the muscle electrical stimulation mode M4 in the operation mode A1 shown in FIG. 13, as schematically shown in FIG. 13, all of the plurality of first electrodes 310 may be used at the same time. As described above, two of the plurality of first electrodes 310 may be paired and implemented in a manner that the pair varies.
 図13に示す例では、マイクロカレントモードM5は、単独で実行されるが、2つのサブモードの組み合わせで実行されてもよい。すなわち、マイクロカレントモードM5は、微弱電流を付与する第1サブモードと、筋電気刺激作用を有する第2サブモードとを含む態様で実現されてもよい。この場合、2つのサブモード(第1サブモード及び第2サブモード)は、図4を参照して上述した制御系100を利用して、時分割式に実現されてもよい。この場合、一の持続時間内において、第1サブモード及び第2サブモードが交互に1回だけ実現されてもよいし、複数回実現されてもよい。あるいは、2つのサブモード(第1サブモード及び第2サブモード)は、図4を参照して上述した制御系100を利用して、同時に実現されてもよい。 In the example shown in FIG. 13, the microcurrent mode M5 is executed independently, but it may be executed in combination of two submodes. That is, the microcurrent mode M5 may be implemented in a mode including a first submode that applies a weak current and a second submode that has an electrical muscle stimulation action. In this case, the two sub-modes (first sub-mode and second sub-mode) may be realized in a time-sharing manner using the control system 100 described above with reference to FIG. In this case, within one duration, the first sub-mode and the second sub-mode may alternately be realized only once, or may be realized a plurality of times. Alternatively, the two sub-modes (the first sub-mode and the second sub-mode) may be implemented simultaneously using the control system 100 described above with reference to FIG.
 図14は、動作モードA0の一例の説明図であり、横軸を時間とした時系列で、組み合わせパターン(変化パターン)が示されている。なお、パターン(変化パターン)の表記方法は、図7と同様である。 FIG. 14 is an explanatory diagram of an example of the operation mode A0, showing combination patterns (change patterns) in time series with the horizontal axis representing time. Note that the notation method of patterns (variation patterns) is the same as in FIG.
 動作モードA0は、筋電気刺激モードM4だけが実現される。この場合、筋電気刺激モードM4は、複数の第2電極320のすべてが時分割式に利用されてよい。図14に示す例では、筋電気刺激モードM4は、3つの第2電極320のうちの、出力波形を生成する対が周方向に時計まわりに(正面視で時計まわりに)1つずつずれる態様の3パターンで、変化される。なお、3パターンの順序等は任意に変更されてよい。 In operation mode A0, only muscle electrical stimulation mode M4 is realized. In this case, in the muscle electrical stimulation mode M4, all of the plurality of second electrodes 320 may be used in a time division manner. In the example shown in FIG. 14, the electrical muscle stimulation mode M4 is a mode in which pairs of the three second electrodes 320 that generate output waveforms are shifted clockwise (clockwise when viewed from the front) by one in the circumferential direction. It is changed with 3 patterns. Note that the order of the three patterns may be changed arbitrarily.
 動作モードA0では、このような3パターンが動作モードA0の周期ごとに実現される態様で、周期的に繰り返される。この場合、各パターンの持続時間TEMSは、動作モードA0の周期ごとに同じであってもよいが、好ましくは、変化周期ごとに規則的に変化される。持続時間TEMSは、例えば、1000ミリ秒、500ミリ秒、250ミリ秒、50ミリ秒、25ミリ秒といった具合に、変化されてもよい。この場合の変化周期は、一定であってもよく、例えば10秒程度であってもよい。この場合、複数種類の筋電気刺激を周期的に付与できるので、効果的なリフトアップを期待できる。 In the operation mode A0, such three patterns are periodically repeated in such a manner that they are realized in each cycle of the operation mode A0. In this case, the duration T EMS of each pattern may be the same for each period of the operation mode A0, but is preferably changed regularly for each change period. The duration T EMS may be varied, for example, 1000 ms, 500 ms, 250 ms, 50 ms, 25 ms. The change period in this case may be constant, and may be, for example, about 10 seconds. In this case, a plurality of types of muscle electrical stimulation can be applied periodically, so effective lift-up can be expected.
 次に、図15から図19を参照して、上述した浸潤モードM1のような各種モードに係る出力波形の好ましい例について説明する。 Next, with reference to FIGS. 15 to 19, preferable examples of output waveforms related to various modes such as the infiltration mode M1 described above will be described.
 図15は、浸潤モードM1の出力波形の好ましい例を示す図である。図15では、横軸に時間を取り、縦軸に電圧値を取ったときの、浸潤モードM1の出力波形(時系列波形)が示されている。なお、図15において、ΔT1は、出力波形の一周期を表す。 FIG. 15 is a diagram showing a preferred example of the output waveform of the infiltration mode M1. FIG. 15 shows the output waveform (time-series waveform) of the infiltration mode M1 when the horizontal axis represents time and the vertical axis represents voltage values. In FIG. 15, ΔT1 represents one cycle of the output waveform.
 本実施例では、浸潤モードM1の出力波形は、交流波形であり、かつ、半周期(ΔT/2)の間に複数のピーク電圧値を有する。この場合、複数のピーク電圧値は、第1ピーク電圧値Vp1と、1つ以上の第2ピーク電圧値Vp2とを含む。 In this embodiment, the output waveform of the infiltration mode M1 is an AC waveform and has a plurality of peak voltage values during a half cycle (ΔT/2). In this case, the multiple peak voltage values include a first peak voltage value Vp1 and one or more second peak voltage values Vp2.
 第1ピーク電圧値Vp1は、半周期の最初に現れるピーク電圧値であり、第2ピーク電圧値Vp2は、第1ピーク電圧値Vp1よりも後に現れ、かつ、第1ピーク電圧値Vp1よりも大きさが小さい。第2ピーク電圧値Vp2は、図15に示すように、徐々に小さくなる態様で複数発生してもよい。第2ピーク電圧値Vp2は、好ましくは、第1ピーク電圧値Vp1の大きさの半分よりも小さい。 The first peak voltage value Vp1 is the peak voltage value that appears first in the half cycle, and the second peak voltage value Vp2 appears after the first peak voltage value Vp1 and is higher than the first peak voltage value Vp1. small. As shown in FIG. 15, a plurality of second peak voltage values Vp2 may occur in such a manner that they gradually decrease. The second peak voltage value Vp2 is preferably less than half the magnitude of the first peak voltage value Vp1.
 浸潤モードM1の出力波形の周波数は、高周波モードM3の出力波形の周波数よりも有意に低く、好ましくは、10kHzから500kHzの間である。
 図15Aから図15Cは、図15に示す出力モードM1の出力波形に代えて利用されてもよい他の出力波形を示す図である。図15Dは、図15CのQ6部の拡大図である。図15A及び図15Cに示す例は、図15に示した出力波形に対して、第2ピーク電圧値Vp2が存在しない点が主に異なる。この場合、半周期分の出力波形の電圧値は、第1ピーク電圧値Vp1から略一定値(略一定の電圧値)を保つ態様で変化する。この場合、略一定値は、第2ピーク電圧値Vp2と同様のレベルであってもよい。あるいは、略一定値は、図15Cに示すように、第2ピーク電圧値Vp2よりもわずかに小さいレベルであってよい。この場合、第1ピーク電圧値Vp1に係るピーク波形で、エレクトロポレーションのような効果があり、その後の電気刺激(略一定値の区間)で、浸透を促す効果が期待できる。なお、略一定値とは、図15Dに示すような比較的小さい鋸状の波形で生じる誤差を許容する概念であり、例えば一定値に対する誤差が10%以内を許容する概念である。なお、図15Dにおいて、BVp1は、第1ピーク電圧値Vp1の大きさ(振幅)を表し、δは、略一定値の変動幅を表している。なお、図15Dは、図15Cの略一定値を説明する図であるが、図15Aに対しても同様である。
The frequency of the output waveform of infiltration mode M1 is significantly lower than the frequency of the output waveform of high frequency mode M3, preferably between 10 kHz and 500 kHz.
15A to 15C are diagrams showing other output waveforms that may be used in place of the output waveforms of output mode M1 shown in FIG. 15. FIG. FIG. 15D is an enlarged view of part Q6 in FIG. 15C. The example shown in FIGS. 15A and 15C differs from the output waveform shown in FIG. 15 mainly in that the second peak voltage value Vp2 does not exist. In this case, the voltage value of the output waveform for half a period changes from the first peak voltage value Vp1 so as to maintain a substantially constant value (substantially constant voltage value). In this case, the substantially constant value may be the same level as the second peak voltage value Vp2. Alternatively, the substantially constant value may be a level slightly lower than the second peak voltage value Vp2, as shown in FIG. 15C. In this case, the peak waveform related to the first peak voltage value Vp1 has an effect like electroporation, and the subsequent electrical stimulation (a section of a substantially constant value) can be expected to have an effect of promoting permeation. Note that the substantially constant value is a concept that allows an error that occurs in a relatively small sawtooth waveform as shown in FIG. 15D, for example, a concept that allows an error of 10% or less with respect to a constant value. In FIG. 15D, BVp1 represents the magnitude (amplitude) of the first peak voltage value Vp1, and δ represents the fluctuation width of a substantially constant value. Note that FIG. 15D is a diagram for explaining the substantially constant value in FIG. 15C, but the same applies to FIG. 15A.
 図15Bに示す例は、図15に示した出力波形に対して、第1ピーク電圧値Vp1が半周期の最初に現れずに途中から現れる点が主に異なる。この場合、図15Bに示すように、第2ピーク電圧値Vp2が半周期の最初に現れてよい。なお、図15Bに示す例では、第1ピーク電圧値Vp1が半周期の中間付近で現れるが、中間付近よりも有意に後(例えば最後)に(又は有意に前に)現れてもよい。これは、図15A及び図15Cに示した出力波形についても同様である。すなわち、図15A及び図15Cに示した出力波形においても、第1ピーク電圧値Vp1は、必ずしも半周期の最初に現れる必要はなく、半周期の途中又は最後に現れてもよい。 The example shown in FIG. 15B differs from the output waveform shown in FIG. 15 mainly in that the first peak voltage value Vp1 does not appear at the beginning of the half cycle but appears in the middle. In this case, as shown in FIG. 15B, the second peak voltage value Vp2 may appear at the beginning of the half cycle. In the example shown in FIG. 15B, the first peak voltage value Vp1 appears near the middle of the half cycle, but may appear significantly later (for example, last) (or significantly earlier) than near the middle. This also applies to the output waveforms shown in FIGS. 15A and 15C. That is, in the output waveforms shown in FIGS. 15A and 15C as well, the first peak voltage value Vp1 does not necessarily appear at the beginning of the half cycle, and may appear during or at the end of the half cycle.
 なお、図15から図15Cに示すような各種波形は、正負で実質的に対称な波形であってよいが、正側又は負側において僅かなオフセットを有してもよい。 The various waveforms shown in FIGS. 15 to 15C may be positive and negative substantially symmetrical waveforms, but may have a slight offset on the positive or negative side.
 ここで、図15から図15Cに示すような各種波形において、第1ピーク電圧値Vp1の持続時間(ΔTVp1)は、好ましくは、半周期(=ΔT/2)に対して、又は、半周期(=ΔT/2)内の残りの時間(=ΔT/2-ΔTVp1)に対して、1/5以下である。すなわち、ΔTVp1≦1/5×(ΔT/2-ΔTVp1)である。例えば、図15に示す例では、第1ピーク電圧値Vp1の持続時間(ΔTVp1)は、好ましくは、第2ピーク電圧値Vp2の持続時間(=ΔTVp2=ΔT/2-ΔTVp1)に対して、1/5以下である。また、図15Bに示す例では、第1ピーク電圧値Vp1の持続時間(ΔTVp1)は、好ましくは、2つの第2ピーク電圧値Vp2の持続時間の合計(=2×ΔTVp2=ΔT/2-ΔTVp1)に対して、1/5以下である。なお、これらの場合、第1ピーク電圧値Vp1の持続時間(ΔTVp1)は、第1ピーク電圧値Vp1の大きさの80%以上が維持される期間として測定されてよい。 Here, in various waveforms as shown in FIGS. 15 to 15C, the duration (ΔTVp1) of the first peak voltage value Vp1 is preferably set with respect to a half cycle (=ΔT/2) or a half cycle ( =ΔT/2), the remaining time (=ΔT/2-ΔTVp1) is 1/5 or less. That is, ΔTVp1≦1/5×(ΔT/2−ΔTVp1). For example, in the example shown in FIG. 15, the duration (ΔTVp1) of the first peak voltage value Vp1 is preferably 1 /5 or less. Also, in the example shown in FIG. 15B, the duration (ΔTVp1) of the first peak voltage value Vp1 is preferably the sum of the durations of the two second peak voltage values Vp2 (=2×ΔTVp2=ΔT/2−ΔTVp1 ), it is 1/5 or less. In these cases, the duration (ΔTVp1) of the first peak voltage value Vp1 may be measured as a period during which 80% or more of the magnitude of the first peak voltage value Vp1 is maintained.
 このような浸潤モードM1の出力波形による効果については、図20以降を参照して後述する。 The effect of such an output waveform of the infiltration mode M1 will be described later with reference to FIG. 20 onwards.
 ところで、このような浸潤モードM1の出力波形は、後出の図19に示す高周波モードM3の出力波形とは、有意に波形(周波数以外の波形特徴)が異なるが、高周波モードM3の出力波形と同じハードウェア資源を利用して生成できる。具体的には、浸潤モードM1の出力波形と、高周波モードM3の出力波形とは、ともに、図4に示した制御系100の出力波形発生部130、131を介して生成可能である。この場合、浸潤モードM1の出力波形を生成する場合と、高周波モードM3の出力波形を生成する場合とで、制御信号生成部114からの制御信号CT1、CT2の周波数が異なるだけである。すなわち、浸潤モードM1の出力波形を生成する場合は、制御信号生成部114からの制御信号CT1、CT2の周波数は、浸潤モードM1の出力波形の周波数に対応するのに対して、高周波モードM3の出力波形を生成する場合は、制御信号生成部114からの制御信号CT1、CT2の周波数は、高周波モードM3の出力波形の周波数に対応するだけの相違である。 By the way, the output waveform of such infiltration mode M1 is significantly different in waveform (waveform characteristics other than frequency) from the output waveform of high frequency mode M3 shown in FIG. It can be generated using the same hardware resources. Specifically, both the output waveform of the infiltration mode M1 and the output waveform of the high frequency mode M3 can be generated via the output waveform generators 130 and 131 of the control system 100 shown in FIG. In this case, only the frequencies of the control signals CT1 and CT2 from the control signal generator 114 are different between generating the output waveform of the infiltration mode M1 and generating the output waveform of the high frequency mode M3. That is, when generating the output waveform of the infiltration mode M1, the frequencies of the control signals CT1 and CT2 from the control signal generator 114 correspond to the frequency of the output waveform in the infiltration mode M1, whereas the frequencies of the high frequency mode M3 When the output waveform is generated, the frequencies of the control signals CT1 and CT2 from the control signal generator 114 are different only by corresponding to the frequency of the output waveform of the high frequency mode M3.
 上述したように、本実施例では、トランス136(トランス135も同様)は、高周波モードM3の周波数に適合された周波数仕様であるので、高周波モードM3の周波数に対応する制御信号CT1、CT2に対しては、図19に示したような所望の周波数(高周波モードM3の周波数)の正弦波状の出力波形を生成できる。一方、トランス135(トランス136も同様)は、高周波モードM3の周波数よりも有意に低い浸潤モードM1の出力波形の周波数に対応する制御信号CT1、CT2に対しては、図19に示したような正弦波状の出力波形(浸潤モードM1の出力波形に係る周波数に対応する正弦波状の出力波形)を、生成できない。他方、トランス135は、高周波モードM3の周波数よりも有意に低い浸潤モードM1の出力波形の周波数に対応する制御信号CT1、CT2に対しては、図15に示すような浸潤モードM1の出力波形を生成できる。 As described above, in this embodiment, the transformer 136 (and the transformer 135 as well) has a frequency specification adapted to the frequency of the high frequency mode M3. 19, a sinusoidal output waveform of a desired frequency (the frequency of the high frequency mode M3) can be generated. On the other hand, the transformer 135 (also the transformer 136) responds to the control signals CT1 and CT2 corresponding to the frequency of the output waveform of the infiltration mode M1 significantly lower than the frequency of the high frequency mode M3 as shown in FIG. A sinusoidal output waveform (a sinusoidal output waveform corresponding to the frequency of the output waveform of the infiltration mode M1) cannot be generated. On the other hand, the transformer 135 produces an output waveform of the infiltration mode M1 as shown in FIG. can be generated.
 このようにして本実施例によれば、図15に示すような浸潤モードM1の出力波形を生成するための特別なハードウェア資源を必要とすることなく、図15に示すような浸潤モードM1の出力波形を生成できる。すなわち、本実施例によれば、高周波モードM3の出力波形を生成するためのハードウェア資源を利用して、図15に示すような浸潤モードM1の出力波形を生成できる。この結果、制御系100の部品バリエーションを最小限に留めつつ、図15に示すような浸潤モードM1の出力波形を含む多様な出力波形(上述又は後述するような各種作用を有する出力波形)を生成できる。 In this manner, according to this embodiment, the infiltration mode M1 shown in FIG. 15 can be generated without special hardware resources for generating the infiltration mode M1 output waveform shown in FIG. Can generate output waveforms. That is, according to this embodiment, the output waveform of the infiltration mode M1 as shown in FIG. 15 can be generated by using hardware resources for generating the output waveform of the high frequency mode M3. As a result, various output waveforms (output waveforms having various actions as described above or later) including the output waveform of the infiltration mode M1 as shown in FIG. can.
 なお、変形例では、第2電極群32に代えて又は加えて第1電極群31を介して、図15に示すような浸潤モードM1の出力波形を生成してもよい。また、第1電極群31に代えて又は加えて第2電極群32を介して、図19に示すような高周波モードM3の出力波形を生成してもよい。この場合、共通の駆動回路部及び出力波形発生部(例えば、第2電極群32の場合、図4の駆動回路部120及び出力波形発生部130)を利用して、制御信号CT1、CT2の周波数を変えるだけで、図15に示すような浸潤モードM1の出力波形と、図19に示すような高周波モードM3の出力波形とを選択的に生成できる。これにより、制御系100の回路規模最小限に留めつつ、多様な出力波形(上述又は後述するような各種作用を有する出力波形)を多様な電極を介して付与できる。 Note that in a modification, the output waveform of the infiltration mode M1 as shown in FIG. 15 may be generated via the first electrode group 31 instead of or in addition to the second electrode group 32. Alternatively, the output waveform of the high frequency mode M3 as shown in FIG. 19 may be generated via the second electrode group 32 instead of or in addition to the first electrode group 31. In this case, using a common drive circuit and output waveform generator (for example, in the case of the second electrode group 32, the drive circuit 120 and the output waveform generator 130 in FIG. 4), the frequencies of the control signals CT1 and CT2 are By simply changing , the output waveform of the infiltration mode M1 as shown in FIG. 15 and the output waveform of the high frequency mode M3 as shown in FIG. 19 can be selectively generated. As a result, while minimizing the circuit scale of the control system 100, various output waveforms (output waveforms having various actions as described above or later) can be applied via various electrodes.
 図16は、イオン導入モードM2の出力波形の好ましい例を示す図である。図16では、横軸に時間を取り、縦軸に電圧値を取ったときの、イオン導入モードM2の出力波形(時系列波形)が示されている。なお、図16において、ΔT2は、出力波形の一周期を表す。 FIG. 16 is a diagram showing a preferred example of output waveforms in the iontophoresis mode M2. FIG. 16 shows the output waveform (time-series waveform) in the iontophoresis mode M2 when the horizontal axis represents time and the vertical axis represents voltage values. In FIG. 16, ΔT2 represents one cycle of the output waveform.
 イオン導入モードM2では、一の持続時間内に、少なくとも2回以上周期的に変化する連続波形を発生する。本実施例では、イオン導入モードM2の出力波形は、パルス状の直流波形である。なお、図16に示す波形に代えて、図17に示すような極性が反転した波形が利用されてもよい。 In the iontophoresis mode M2, a continuous waveform that periodically changes at least twice is generated within one duration. In this embodiment, the output waveform in the iontophoresis mode M2 is a pulsed DC waveform. It should be noted that instead of the waveforms shown in FIG. 16, waveforms with inverted polarities as shown in FIG. 17 may be used.
 イオン導入モードM2の出力波形の周波数は、一の持続時間内に少なくとも2つ以上のパルス状の直流波形が発生するように定められ、好ましくは、1.5kHzから10kHzの間である。 The frequency of the output waveform of the iontophoresis mode M2 is determined such that at least two or more pulsed DC waveforms are generated within one duration, preferably between 1.5 kHz and 10 kHz.
 イオン導入モードM2の出力波形は、振幅が同じ複数のパルス状の直流波形からなってもよいが、好ましくは、振幅(電圧値の大きさ)が他よりも有意に大きい1つ以上の特定のパルスを含んでよい。例えば、図18には、一の持続時間内に、特定のパルスPL2が1つだけ含まれるイオン導入モードM2の出力波形の例が示されている。特定のパルスは、パルス刺激により皮膚に一過性の孔を発生させること(エレクトロポレーション)で、イオン導入モードM2の効果を高める機能を有する。特定のパルスは、イオン導入モードM2の出力波形のうちの、特定のパルス以外のパルス(以下、区別のため、「メソポレーション用パルス」と称する)に対して、振幅のみならず、周波数も異なってもよい。例えば、メソポレーション用パルスは、ピーク電圧値が10V未満であり、かつ、周波数が1.5kHzから10kHzの間であるのに対して、特定のパルスは、ピーク電圧値が10V以上であり、かつ、周波数が2~10Hz程度の低周波であってよい。 The output waveform in the iontophoresis mode M2 may consist of a plurality of pulsed DC waveforms with the same amplitude, but preferably one or more specific pulsed DC waveforms whose amplitude (magnitude of voltage value) is significantly larger than others. It may contain pulses. For example, FIG. 18 shows an example of an output waveform for iontophoresis mode M2 in which only one particular pulse PL2 is included within one duration. A specific pulse has the function of enhancing the effect of the iontophoresis mode M2 by generating transient pores in the skin (electroporation) by pulse stimulation. The specific pulse differs not only in amplitude but also in frequency from pulses other than the specific pulse in the output waveform of the iontophoresis mode M2 (hereinafter referred to as "mesoporation pulse" for distinction). may For example, the mesoporation pulse has a peak voltage value of less than 10 V and a frequency between 1.5 kHz and 10 kHz, whereas the specific pulse has a peak voltage value of 10 V or more and , the frequency may be a low frequency of about 2 to 10 Hz.
 ところで、高電圧を印加してイオンで有効成分を深層部へと押し込む作用(メソポレーション)を有するメソポレーション用パルスの機能を高めるためには、パルス刺激により皮膚に一過性の孔を発生させる機能を有する特定のパルスの印加直後にメソポレーション用パルスを印加することが有用となりうる。これは、一過性の孔がすぐにふさがってしまう傾向があるためである。 By the way, in order to enhance the function of the mesoporation pulse, which has the effect of applying high voltage and pushing the active ingredient into the deep layer with ions (mesoporation), transient pores are generated in the skin by pulse stimulation. It may be useful to apply the mesoporation pulse immediately after the application of the specific pulse with function. This is because transient pores tend to close up quickly.
 この点、図18に示すような出力波形によれば、特定のパルスの印加直後にメソポレーション用パルスが発生するので、イオン導入モードM2の効果を効果的に高めることができる。 In this respect, according to the output waveform as shown in FIG. 18, the mesoporation pulse is generated immediately after the application of the specific pulse, so the effect of the ion introduction mode M2 can be effectively enhanced.
 図19は、高周波モードM3の出力波形の好ましい例を示す図である。図19では、横軸に時間を取り、縦軸に電圧値を取ったときの、高周波モードM3の出力波形(時系列波形)が示されている。なお、図19において、ΔT3は、出力波形の一周期を表す。 FIG. 19 is a diagram showing a preferred example of the output waveform of the high frequency mode M3. FIG. 19 shows the output waveform (time-series waveform) of the high-frequency mode M3 when the horizontal axis represents time and the vertical axis represents voltage. In FIG. 19, ΔT3 represents one cycle of the output waveform.
 高周波モードM3の出力波形は、高周波の交流波形であり、上述したように浸潤モードM1の出力波形の周波数よりも有意に高い周波数を有する。高周波モードM3の出力波形の周波数は、例えば、900kHz以上であってよい。 The output waveform of the high frequency mode M3 is a high frequency AC waveform, and has a significantly higher frequency than the frequency of the output waveform of the infiltration mode M1 as described above. The frequency of the output waveform in high frequency mode M3 may be, for example, 900 kHz or higher.
 次に、図20以降を参照して、図15(又は図15Aから図15C、以下同様)に示すような浸潤モードM1の出力波形による効果について説明する。 Next, with reference to FIG. 20 and subsequent figures, the effect of the output waveform of the infiltration mode M1 as shown in FIG. 15 (or FIGS. 15A to 15C, the same shall apply hereinafter) will be described.
 図20は、各種出力波形による有効成分の浸透効果を比較する図である。図20の左側には、縦軸に、角層2-5層目に係る角層内吸収量を取り、横軸に、各種試験条件C1からC5が対応付けられ、試験条件C1からC5のそれぞれにおける同角層内吸収量が示されている。また、図20の右側には、縦軸に、角層6-10層目に係る角層内吸収量を取り、横軸に、各種試験条件C1からC5が対応付けられ、試験条件C1からC5のそれぞれにおける同角層内吸収量が示されている。試験条件C1は、肌処理装置1から出力波形を発生させない条件(以下、「出力不使用条件」とも称する)に対応し、試験条件C2からC5は、肌処理装置1を使用する条件であり、試験条件C2は、高周波モードM3の出力波形だけが付与される条件に対応し、試験条件C3は、イオン導入モードM2の出力波形(図16に示す正側の出力波形)だけが付与される条件に対応し、試験条件C4は、イオン導入モードM2の出力波形(図17に示す負側の出力波形)だけが付与される条件に対応する。また、試験条件C5は、図15に示すような浸潤モードM1の出力波形だけが付与される条件に対応する。 FIG. 20 is a diagram comparing the permeation effects of active ingredients with various output waveforms. On the left side of FIG. 20, the vertical axis indicates the amount of absorption in the stratum corneum for the 2nd to 5th layers of the stratum corneum, and the horizontal axis indicates various test conditions C1 to C5. is shown. Further, on the right side of FIG. 20, the vertical axis indicates the amount of absorption in the stratum corneum for the 6th to 10th layers of the stratum corneum, and the horizontal axis indicates various test conditions C1 to C5. is shown. Test condition C1 corresponds to a condition in which no output waveform is generated from the skin treatment device 1 (hereinafter also referred to as "output nonuse condition"), and test conditions C2 to C5 are conditions in which the skin treatment device 1 is used, The test condition C2 corresponds to the condition under which only the output waveform of the high frequency mode M3 is applied, and the test condition C3 is the condition under which only the output waveform of the iontophoresis mode M2 (positive output waveform shown in FIG. 16) is applied. , and the test condition C4 corresponds to a condition in which only the output waveform of the iontophoresis mode M2 (negative output waveform shown in FIG. 17) is given. Also, the test condition C5 corresponds to a condition in which only the output waveform of the infiltration mode M1 as shown in FIG. 15 is given.
 本試験は、以下のとおりの手順で実行された。
1)まず、皮膚恒常性の確認として、前腕部を洗浄後、15分、馴化し、適用部位(5箇所)の水分蒸発量を計測した上で、数値の大きな変動や傷がないことを確認した。
2)次いで、以下のとおり、美顔器処理から定量計測を行った。
2-1:前腕部に試料を滴下する。
2-2:2-1の処理後、試料の上から1.5分間、毎秒1回転のスピードで円を描くような動作で使用する。なお、出力不使用条件では、電源をオフした状態の肌処理装置1(すなわち出力波形が一切生成されていない状態の肌処理装置1)を用いて同様の動作を実現する。
2-3:2-2の処理後、いずれもコットンで残存試料を拭き取り、50%のエタノール溶液を浸したコットンで皮膚表面を拭き取り、洗浄を行う。
2-4:2-3の処理後、適用部位の角層を粘着テープ(商品名「D-Squame(登録商標」で商業的に入手可能な角質チェッカー)にて剥離し、角層2-5層目及び角層6-10層目のそれぞれに含有するVCPMg(リン酸L-アスコルビルマグネシウム)量を定量する。
なお、本試験では、肌処理装置1の電気的な影響を考慮し、試験条件C1から実行された。
This test was performed in the following procedure.
1) First, as confirmation of skin homeostasis, after washing the forearm, it was acclimatized for 15 minutes, and after measuring the amount of water evaporation at the application sites (5 sites), it was confirmed that there were no large fluctuations in the numerical values and no scars. bottom.
2) Next, quantitative measurement was performed from the treatment with a facial treatment device as follows.
2-1: Drop the sample onto the forearm.
2-2: After the treatment of 2-1, the sample is used in a circular motion at a speed of 1 rotation per second for 1.5 minutes. Under the output nonuse condition, the same operation is realized by using the skin treatment device 1 in a power-off state (that is, the skin treatment device 1 in a state in which no output waveform is generated).
2-3: After the treatment of 2-2, wipe off the remaining sample with cotton, wipe the skin surface with cotton soaked with 50% ethanol solution, and wash.
2-4: After the treatment of 2-3, the stratum corneum of the application site was peeled off with an adhesive tape (commercially available stratum corneum checker under the trade name “D-Squame (registered trademark)”), and the stratum corneum 2-5 The amount of VCPMg (L-ascorbyl magnesium phosphate) contained in each of the 6th to 10th layers of the stratum corneum is quantified.
In addition, in this test, the electric influence of the skin treatment apparatus 1 was considered, and it was performed from the test condition C1.
 図20に示すように、図15に示すような浸潤モードM1の出力波形によれば、他のモードの出力波形よりも、角層2-5層目及び角層6-10層目のいずれにおいても、顕著に高い浸透効果を期待できることが分かった。 As shown in FIG. 20, according to the output waveform of the infiltration mode M1 as shown in FIG. It was also found that a remarkably high permeation effect can be expected.
 ここで、イオン導入又はイオン導出には、向いている物質とそうでない物質があるが、図15に示すような浸潤モードM1の出力波形は、下記の表に示すようなあらゆる特性の成分において、高い浸透効果を期待できることが分かった。 Here, there are substances that are suitable for ion introduction or ion extraction and substances that are not suitable, but the output waveform of infiltration mode M1 as shown in FIG. It was found that a high penetration effect can be expected.
Figure JPOXMLDOC01-appb-T000001
 図21は、図15に示すような浸潤モードM1の出力波形の周波数の違いに応じた効果の相違の説明図である。図21では、縦軸に、角層内吸収量を取り、横軸に、各種試験条件C10からC12及びC1が対応付けられ、試験条件C10からC12及びC1のそれぞれにおける角層内吸収量が、角層2-5層目(符号2301参照)と、角層6-10層目(符号2302参照)と、それらの合計(角層2-10層目)(符号2303参照)とに分けて、示されている。
Figure JPOXMLDOC01-appb-T000001
21A and 21B are explanatory diagrams of the difference in effect according to the difference in the frequency of the output waveform of the infiltration mode M1 as shown in FIG. In FIG. 21, the vertical axis represents the stratum corneum absorption amount, and the horizontal axis represents various test conditions C10 to C12 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
 試験条件C10からC12は、それぞれ、浸潤モードM1の出力波形の周波数が50kHz、70kHz、156kHzである条件に対応し、試験条件C1は、上述した出力不使用条件(肌処理装置1から出力波形を発生させない条件)である。なお、試験手順は、図20を参照して上述したとおりである。 Test conditions C10 to C12 correspond to conditions in which the frequency of the output waveform in the infiltration mode M1 is 50 kHz, 70 kHz, and 156 kHz, respectively. condition that does not occur). The test procedure is as described above with reference to FIG.
 図21に示すように、図15に示すような浸潤モードM1の出力波形によれば、試験条件C1に係る結果と比べて明らかなように、いずれの周波数においても有効な結果が得られた。なお、浸潤モードM1の出力波形の周波数に関して、周波数が低いほうが僅かに角層内吸収量が多くなる傾向も確認できる。 As shown in FIG. 21, according to the output waveform of the infiltration mode M1 as shown in FIG. 15, effective results were obtained at any frequency, as clearly compared with the results related to the test condition C1. Regarding the frequency of the output waveform of the infiltration mode M1, it can also be confirmed that the lower the frequency, the more the amount of absorption in the stratum corneum slightly increases.
 図22は、図15に示すような浸潤モードM1の出力波形の電流値の違いに応じた効果の相違の説明図である。図22では、縦軸に、角層内吸収量を取り、横軸に、各種試験条件C20、C21及びC1が対応付けられ、試験条件C20、C21及びC1のそれぞれにおける角層内吸収量が、角層2-5層目(符号2301参照)と、角層6-10層目(符号2302参照)と、それらの合計(角層2-10層目)(符号2303参照)とに分けて、示されている。 FIG. 22 is an explanatory diagram of the difference in effect according to the difference in the current value of the output waveform of the infiltration mode M1 as shown in FIG. In FIG. 22, the vertical axis is the stratum corneum absorption amount, and the horizontal axis is associated with various test conditions C20, C21 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
 試験条件C20、C21は、それぞれ、浸潤モードM1の出力波形の周波数が70kHzである条件に対応し、試験条件C20は、試験条件C21よりも電流値が2倍である点を除き、試験条件C21と同じ条件である。なお、試験条件C1は、上述した出力不使用条件である。 Test conditions C20 and C21 respectively correspond to the condition that the frequency of the output waveform of the infiltration mode M1 is 70 kHz. is the same condition as Note that the test condition C1 is the output non-use condition described above.
 図22に示すように、電流値が高いほうがすべての層において吸収量が高くなる傾向が確認できる。具体的には、電流値が2倍である場合(試験条件C21に対して試験条件C20)、吸収量が1.5倍になっている。このことから、同じ周波数であれば、電流値が高いほうが吸収量が多くなることが分かる。 As shown in FIG. 22, it can be confirmed that the higher the current value, the higher the absorption amount in all layers. Specifically, when the current value is doubled (test condition C20 compared to test condition C21), the absorption amount is 1.5 times. From this, it can be seen that if the frequency is the same, the higher the current value, the greater the amount of absorption.
 図23は、図15に示すような浸潤モードM1の出力波形の使用時間の違いに応じた効果の相違の説明図である。図23では、縦軸に、角層内吸収量を取り、横軸に、各種試験条件C30、C31及びC1が対応付けられ、試験条件C30、C31及びC1のそれぞれにおける角層内吸収量が、角層2-5層目(符号2301参照)と、角層6-10層目(符号2302参照)と、それらの合計(角層2-10層目)(符号2303参照)とに分けて、示されている。 FIG. 23 is an explanatory diagram of the difference in effect according to the difference in the usage time of the output waveform of the infiltration mode M1 as shown in FIG. In FIG. 23, the vertical axis is the stratum corneum absorption amount, and the horizontal axis is associated with various test conditions C30, C31 and C1. Divided into stratum corneum 2nd to 5th layers (see symbol 2301), stratum corneum 6th to 10th layers (see symbol 2302), and their sum (stratum corneum 2nd to 10th layers) (see symbol 2303), It is shown.
 試験条件C30、C31は、それぞれ、浸潤モードM1の出力波形の周波数が70kHzである条件に対応し、試験条件C30は、使用時間が90秒であり、試験条件C31は、使用時間が15秒である。なお、試験条件C1は、上述した出力不使用条件である。 Test conditions C30 and C31 respectively correspond to conditions in which the frequency of the output waveform in the infiltration mode M1 is 70 kHz. be. Note that the test condition C1 is the output non-use condition described above.
 図23に示すように、使用時間が長いほうがすべての層において吸収量が高くなる傾向が確認できる。具体的には、使用時間が6倍である場合(試験条件C31の“15秒”に対して6倍の試験条件C30の“90秒”)、吸収量は、角層2-10層目で3.6倍になっている。このことから、同じ周波数であれば、使用時間が長いほうが吸収量が多くなることが分かる。従って、例えば、動作モードA1に浸潤モードM1を含め、かつ、動作モードA1の一の周期に占める浸潤モードM1の時間の比率を高くすることで、単位時間あたりの吸収量を効率的に高めることを期待できる。 As shown in FIG. 23, it can be confirmed that the longer the usage time, the higher the absorption amount in all layers. Specifically, when the usage time is 6 times longer ("90 seconds" of test condition C30, which is 6 times longer than "15 seconds" of test condition C31), the absorption amount is 2 to 10 layers of the stratum corneum 3.6 times. From this, it can be seen that if the frequency is the same, the longer the usage time, the greater the amount of absorption. Therefore, for example, by including the infiltration mode M1 in the operation mode A1 and increasing the time ratio of the infiltration mode M1 in one cycle of the operation mode A1, the absorption amount per unit time can be efficiently increased. can be expected.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope described in the claims. It is also possible to combine all or more of the constituent elements of the above-described embodiments.
 例えば、図15に示すような浸潤モードM1の出力波形は、皮膚外用剤に含まれる有用物質の浸透を促進するのに好適であり、皮膚外用剤であれば医薬品、医薬部外品、化粧品など物質担体の使用目的は任意である。例えば、化粧品、医薬部外品に留まらず、肝臓で分解され効果効能が発揮しきれなかった医薬品の経皮吸収の促進にも効果がある。さらに経皮吸収させる外用剤の使用目的は任意であり、鎮痛剤、消炎剤、美白剤、湿潤剤、抗しわ剤、抗炎症剤、抗菌剤、抗ウイルス薬をはじめとして外用剤の経皮吸収目的を問わない。 For example, the output waveform of the permeation mode M1 as shown in FIG. 15 is suitable for promoting permeation of useful substances contained in external skin preparations. The substance carrier may be used for any purpose. For example, it is effective not only in cosmetics and quasi-drugs, but also in promoting percutaneous absorption of drugs that have been decomposed in the liver and have not fully exhibited their effects. In addition, the purpose of use of external agents that are percutaneously absorbed is arbitrary, and percutaneous absorption of external agents such as analgesics, antiphlogistic agents, whitening agents, moisturizing agents, anti-wrinkle agents, anti-inflammatory agents, antibacterial agents, and antiviral agents. Any purpose.
 また、上述した実施例では、第1電極群31を形成する第1電極310は周方向に離間して複数設けられるが、1つの電極(以下、「中央電極」と称する)により実現されてもよい。この場合、例えば、浸潤モードM1やイオン導入モードM2、高周波モードM3、筋電気刺激モードM4、マイクロカレントモードM5、及び、イオン導出モードM6のうちのいずれか1つ以上は、1つの中央電極と第2電極320が対をなして、上述した出力波形を生成してもよい。また、浸潤モードM1やイオン導入モードM2、高周波モードM3、筋電気刺激モードM4、マイクロカレントモードM5、及び、イオン導出モードM6のうちのいずれか1つ以上は、第2電極320同士が対をなして、上述した出力波形を生成してもよい。 Further, in the above-described embodiment, a plurality of first electrodes 310 forming the first electrode group 31 are spaced apart in the circumferential direction. good. In this case, for example, any one or more of the infiltration mode M1, the iontophoresis mode M2, the high frequency mode M3, the muscle electrical stimulation mode M4, the microcurrent mode M5, and the ion extraction mode M6 are combined with one central electrode. The second electrodes 320 may be paired to produce the output waveforms described above. In one or more of the infiltration mode M1, the iontophoresis mode M2, the high frequency mode M3, the electrical muscle stimulation mode M4, the microcurrent mode M5, and the ion extraction mode M6, the second electrodes 320 are paired. Alternatively, the output waveform described above may be generated.
1 肌処理装置
2 把持部
3 ヘッド部
3a 当接面
20 ユーザインターフェイス
30 電極
31 第1電極群
31a 第1円周
32 第2電極群
32a 第2円周
310 第1電極
320 第2電極
390 離間領域
100 制御系
110 制御装置
111 ユーザ入力取得部
112 モード設定部
113 制御パラメータ設定部
114 PWM信号生成部
115 切替制御部
116 パラメータ記憶部
120 駆動回路部
121 駆動回路部
122 駆動回路部
130 出力波形発生部
131 出力波形発生部
132 出力波形発生部
135 トランス
136 トランス
137 トランス
140 切替回路部
141 切替回路部
150 電源
1 skin treatment device 2 grip portion 3 head portion 3a contact surface 20 user interface 30 electrode 31 first electrode group 31a first circumference 32 second electrode group 32a second circumference 310 first electrode 320 second electrode 390 spaced region 100 control system 110 control device 111 user input acquisition unit 112 mode setting unit 113 control parameter setting unit 114 PWM signal generation unit 115 switching control unit 116 parameter storage unit 120 drive circuit unit 121 drive circuit unit 122 drive circuit unit 130 output waveform generation unit 131 Output waveform generator 132 Output waveform generator 135 Transformer 136 Transformer 137 Transformer 140 Switching circuit 141 Switching circuit 150 Power supply

Claims (13)

  1.  ユーザの肌に当接可能な複数の電極と、
     前記複数の電極に電気的に接続される電源と、
     互いに出力波形の特性が異なる複数種類の出力モードで前記複数の電極を介した出力を実現する制御装置とを備え、
     前記複数種類の出力モードは、第1出力モード及び第2出力モードを含み、
     前記制御装置は、前記第1出力モード及び前記第2出力モードを間欠的かつ周期的に繰り返すことを含む連続切替処理を行う、肌処理装置。
    a plurality of electrodes contactable with the user's skin;
    a power source electrically connected to the plurality of electrodes;
    a control device that realizes output via the plurality of electrodes in a plurality of types of output modes having different output waveform characteristics,
    The plurality of types of output modes include a first output mode and a second output mode,
    The skin treatment device, wherein the control device performs a continuous switching process including intermittently and periodically repeating the first output mode and the second output mode.
  2.  前記制御装置は、前記第1出力モード及び前記第2出力モードのうちの少なくともいずれか一方の持続時間が1秒未満となる態様で、前記連続切替処理を行う、請求項1に記載の肌処理装置。 2. The skin treatment according to claim 1, wherein said control device performs said continuous switching process in such a manner that the duration of at least one of said first output mode and said second output mode is less than 1 second. Device.
  3.  前記第2出力モードに係る第2作用は、前記第1出力モードに係る第1作用を高める機能を有する、請求項1又は2に記載の肌処理装置。 The skin treatment device according to claim 1 or 2, wherein the second action associated with the second output mode has a function of enhancing the first action associated with the first output mode.
  4.  前記第1作用は、肌内へと有効成分を浸透させる作用を含み、
     前記第2作用は、肌内へイオン導入させる作用を含む、請求項3に記載の肌処理装置。
    The first action includes the action of penetrating the active ingredient into the skin,
    4. The skin treatment device according to claim 3, wherein said second action includes iontophoresis into the skin.
  5.  前記第1出力モード又は前記第2出力モードは、肌内へと有効成分を浸透させる作用又は肌内ヘイオン導入させる作用を有する第1サブモードと、肌を加温する作用を有する第2サブモードとを含む、請求項1から4のうちのいずれか1項に記載の肌処理装置。 The first output mode or the second output mode includes a first sub-mode that has an action of penetrating the active ingredient into the skin or an action of introducing hay ions into the skin, and a second sub-mode that has an action of warming the skin. 5. A skin treatment device according to any one of claims 1 to 4, comprising:
  6.  前記第1サブモード及び前記第2サブモードは、同時又は時分割式で、実行される、請求項5に記載の肌処理装置。 The skin treatment device according to claim 5, wherein the first sub-mode and the second sub-mode are executed simultaneously or in a time-sharing manner.
  7.  前記複数種類の出力モードは、加熱作用を有する第3出力モードを更に含み、
     前記連続切替処理は、前記第3出力モードを、1秒よりも長い持続時間で間欠的かつ周期的に繰り返すことを更に含む、請求項1から6のうちのいずれか1項に記載の肌処理装置。
    The plurality of types of output modes further include a third output mode having a heating effect,
    7. The skin treatment according to any one of claims 1 to 6, wherein said continuous switching process further comprises intermittently and periodically repeating said third output mode for a duration longer than 1 second. Device.
  8.  前記複数種類の出力モードは、筋電気刺激作用を有する第4出力モードを更に含み、
     前記連続切替処理は、前記第4出力モードを、1秒未満の持続時間で間欠的かつ周期的に繰り返すことを更に含む、請求項1から7のうちのいずれか1項に記載の肌処理装置。
    The plurality of types of output modes further include a fourth output mode having electrical muscle stimulation,
    8. The skin treatment device according to any one of claims 1 to 7, wherein said continuous switching process further comprises intermittently and periodically repeating said fourth output mode for a duration of less than 1 second. .
  9.  前記複数の電極は、第1電極群と、第2電極群と、を形成し、
     前記第1電極群は、第1円周に沿って第1所定角度ごとに配置される複数の第1電極を含み、
     前記第2電極群は、前記第1円周と同心かつ前記第1円周より径が大きい第2円周に沿って第2所定角度ごとに配置される複数の第2電極を含み、
     前記第1出力モード又は前記第2出力モードは、前記第1電極群を利用して実現される、請求項1から8のうちのいずれか1項に記載の肌処理装置。
    the plurality of electrodes form a first electrode group and a second electrode group;
    The first electrode group includes a plurality of first electrodes arranged at first predetermined angles along the first circumference,
    The second electrode group includes a plurality of second electrodes arranged at a second predetermined angle along a second circumference concentric with the first circumference and having a larger diameter than the first circumference,
    9. The skin treatment device according to any one of claims 1 to 8, wherein said first output mode or said second output mode is realized using said first electrode group.
  10.  前記複数の電極は、第1電極群と、第2電極群と、を形成し、
     前記第1電極群は、第1円周に沿って第1所定角度ごとに配置される複数の第1電極を含み、
     前記第2電極群は、前記第1円周と同心かつ前記第1円周より径が大きい第2円周に沿って第2所定角度ごとに配置される複数の第2電極を含み、
     前記第3出力モードは、前記第1電極群を利用して実現される、請求項7に記載の肌処理装置。
    the plurality of electrodes form a first electrode group and a second electrode group;
    The first electrode group includes a plurality of first electrodes arranged at first predetermined angles along the first circumference,
    The second electrode group includes a plurality of second electrodes arranged at a second predetermined angle along a second circumference concentric with the first circumference and having a larger diameter than the first circumference,
    8. The skin treatment device according to claim 7, wherein said third output mode is realized using said first electrode group.
  11.  前記複数の電極は、第1電極群と、第2電極群と、を形成し、
     前記第1電極群は、第1円周に沿って第1所定角度ごとに配置される複数の第1電極を含み、
     前記第2電極群は、前記第1円周と同心かつ前記第1円周より径が大きい第2円周に沿って第2所定角度ごとに配置される複数の第2電極を含み、
     前記第1出力モード又は前記第4出力モードは、前記第2電極群を利用して実現される、請求項8に記載の肌処理装置。
    the plurality of electrodes form a first electrode group and a second electrode group;
    The first electrode group includes a plurality of first electrodes arranged at first predetermined angles along the first circumference,
    The second electrode group includes a plurality of second electrodes arranged at a second predetermined angle along a second circumference concentric with the first circumference and having a larger diameter than the first circumference,
    9. The skin treatment device according to claim 8, wherein said first output mode or said fourth output mode is realized using said second electrode group.
  12.  前記第1出力モード及び前記第2出力モードのそれぞれは、少なくとも2回以上周期的に変化する連続波形を発生する、請求項1から11のうちのいずれか1項に記載の肌処理装置。 The skin treatment device according to any one of claims 1 to 11, wherein each of said first output mode and said second output mode generates a continuous waveform that periodically changes at least two times or more.
  13.  ユーザの肌に当接可能な複数の電極を有する肌処理装置を制御するプログラムであって、
     前記肌処理装置に備わるコンピュータに、
     互いに出力波形の特性が異なる複数種類の出力モードで前記複数の電極を介した出力を実現する処理を実行させ、
     前記処理は、前記複数種類の出力モードのうちの少なくとも2種類の出力モードを間欠的かつ周期的に繰り返すことを含む連続切替処理を含む、プログラム。
    A program for controlling a skin treatment device having a plurality of electrodes contactable with a user's skin,
    In the computer provided in the skin treatment device,
    executing a process for realizing output via the plurality of electrodes in a plurality of types of output modes having different output waveform characteristics;
    The program, wherein the processing includes continuous switching processing including intermittently and periodically repeating at least two types of output modes among the plurality of types of output modes.
PCT/JP2022/043967 2021-11-29 2022-11-29 Skin treatment device and program WO2023095922A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021192737 2021-11-29
JP2021-192737 2021-11-29
JP2022063044A JP2023079985A (en) 2021-11-29 2022-04-05 Skin treatment device and program
JP2022-063044 2022-04-05

Publications (1)

Publication Number Publication Date
WO2023095922A1 true WO2023095922A1 (en) 2023-06-01

Family

ID=86539760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043967 WO2023095922A1 (en) 2021-11-29 2022-11-29 Skin treatment device and program

Country Status (1)

Country Link
WO (1) WO2023095922A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123565A (en) * 1989-10-09 1991-05-27 Ya Man Ltd Cosmetic apparatus using current impulse
KR102030528B1 (en) * 2018-03-29 2019-11-08 주식회사 지씨에스 Apparatus for Managing Skin and Driving Method of Apparatus for Managing Skin
JP2020185207A (en) * 2019-05-15 2020-11-19 ヤーマン株式会社 Beauty appliance and control method thereof
WO2021167109A1 (en) * 2020-04-27 2021-08-26 ヤーマン株式会社 Beauty device and electric current control method
JP2021171236A (en) * 2020-04-22 2021-11-01 ヤーマン株式会社 Cosmetic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123565A (en) * 1989-10-09 1991-05-27 Ya Man Ltd Cosmetic apparatus using current impulse
KR102030528B1 (en) * 2018-03-29 2019-11-08 주식회사 지씨에스 Apparatus for Managing Skin and Driving Method of Apparatus for Managing Skin
JP2020185207A (en) * 2019-05-15 2020-11-19 ヤーマン株式会社 Beauty appliance and control method thereof
JP2021171236A (en) * 2020-04-22 2021-11-01 ヤーマン株式会社 Cosmetic device
WO2021167109A1 (en) * 2020-04-27 2021-08-26 ヤーマン株式会社 Beauty device and electric current control method

Similar Documents

Publication Publication Date Title
TWI289058B (en) Living body stimulating apparatus
KR101209102B1 (en) Micro current device having function of electrical impulse
JP7372051B2 (en) Beauty device and its control method
US20190255321A1 (en) Skin treatment device comprising a pulse modulator
JP2001198227A (en) Alternating waveform for facial treatment and facial treatment device
JP5963412B2 (en) Beauty equipment
JP7048121B2 (en) Electrical stimulator
WO2021215149A1 (en) Cosmetic device
JP2010057804A (en) Living body stimulating apparatus
KR100955743B1 (en) Low-frequency electric therapy apparatus
WO2023095922A1 (en) Skin treatment device and program
JP2015163145A (en) Bioelectric stimulator
WO2023095908A1 (en) Skin treatment device
JP2023079985A (en) Skin treatment device and program
WO2024045716A1 (en) Rf beauty instrument and current control method thereof
CN109876296B (en) Electronic acupuncture therapeutic instrument
CN118119430A (en) Skin treatment device and program
CN118119431A (en) Skin treatment device
JP2004129866A (en) Electronic treatment device
JP3225952U (en) Compound beauty equipment
JP2021133160A (en) High-frequency beauty appliance
JP4627958B2 (en) Pulse electrical stimulator
WO2023095688A1 (en) Skin treatment device
JP2019093093A (en) Waveform generator
WO2023234116A1 (en) Skin treatment device, operation method for operating skin treatment device, skin treatment method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898704

Country of ref document: EP

Kind code of ref document: A1