WO2023095387A1 - Determination device and determination method - Google Patents

Determination device and determination method Download PDF

Info

Publication number
WO2023095387A1
WO2023095387A1 PCT/JP2022/029661 JP2022029661W WO2023095387A1 WO 2023095387 A1 WO2023095387 A1 WO 2023095387A1 JP 2022029661 W JP2022029661 W JP 2022029661W WO 2023095387 A1 WO2023095387 A1 WO 2023095387A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
generation unit
target power
detection
Prior art date
Application number
PCT/JP2022/029661
Other languages
French (fr)
Japanese (ja)
Inventor
浅尾芳久
谷村晃太郎
中川和三
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023095387A1 publication Critical patent/WO2023095387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification

Definitions

  • the present disclosure relates to a determination device and a determination method.
  • This application claims priority based on Japanese Patent Application No. 2021-193111 filed on November 29, 2021, and the entire disclosure thereof is incorporated herein.
  • Patent Document 1 discloses a power generation state determination device as follows. That is, the power generation state determination device is a power generation state determination device used in a photovoltaic power generation system including a plurality of power generation units including a plurality of solar cell panels, and is a power generation state determination device that indicates measurement results of outputs of the plurality of power generation units. a measurement result of a power generation unit whose power generation state is to be determined among the plurality of power generation units; and at least one measurement result of a power generation unit other than the target power generation unit. and a determination unit that determines the power generation state of the target power generation unit based on the ratio calculated by the calculation unit.
  • a determination device is a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is communication processing for acquiring power generated by a target power generation unit, which is the power generation unit to be determined. Calculation for calculating a performance index indicating the power generation performance of the target power generation unit based on the power generated by the target power generation unit acquired by the communication processing unit and the power generated by the target power generation unit in a reference year and a detection unit that detects an abnormality in the target power generation unit based on the performance index calculated by the calculation unit.
  • a determination method of the present disclosure is a determination method in a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and acquires power generated by a target power generation unit that is the power generation unit to be determined. calculating a performance index indicating power generation performance of the target power generation unit based on the obtained generated power of the target power generation unit and the generated power of the target power generation unit in a reference year; and detecting an abnormality in the target power generation unit based on the performance index.
  • One aspect of the present disclosure can be implemented not only as a determination device including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one aspect of the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the determination device, or can be implemented as an abnormality determination system including the determination device.
  • FIG. 1 is a diagram showing the configuration of a photovoltaic power generation system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a PCS unit according to the embodiment of the present disclosure.
  • FIG. 3 is a diagram showing the configuration of a current collecting unit according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram showing the configuration of a solar cell unit according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram showing the configuration of a monitoring system according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing the configuration of a monitoring device in the monitoring system according to the embodiment of the present disclosure.
  • FIG. 7 is a diagram showing the configuration of a determination device in the monitoring system according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a photovoltaic power generation system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the configuration of a PCS unit according to the embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of monitoring information held by a determination device in the monitoring system according to the embodiment of the present disclosure
  • FIG. 9 is a diagram for explaining the operation of the first acquisition unit in the determination device according to the embodiment of the present disclosure
  • FIG. 10 is a scatter diagram plotting a plurality of sets acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure.
  • FIG. 11 is a diagram showing representative values stored in a storage unit in the determination device according to the embodiment of the present disclosure;
  • FIG. 12 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure.
  • FIG. 13 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure.
  • FIG. 14 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure.
  • FIG. 15 is a diagram for explaining changes in the pseudo maximum value acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure;
  • FIG. 16 is a diagram illustrating an example of determination results by the detection unit in the determination device according to the embodiment of the present disclosure; FIG.
  • FIG. 17 is a diagram illustrating another example of a determination result by the detection unit in the determination device according to the embodiment of the present disclosure.
  • 18 is a diagram illustrating an example of a determination result after verification processing by the detection unit in the determination device according to the embodiment of the present disclosure;
  • FIG. FIG. 19 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present disclosure performs abnormality determination of the power generation unit.
  • the present disclosure has been made to solve the above-described problems, and its purpose is to provide a determination device and a determination method capable of improving the abnormality determination accuracy of a photovoltaic power generation system.
  • a determination device is a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is a target power generation unit that is the power generation unit to be determined. power generation performance of the target power generation unit based on the power generation of the target power generation unit acquired by the communication processing unit and the power generation of the target power generation unit in a reference year and a detection unit that detects an abnormality in the target power generation unit based on the performance index calculated by the calculation unit.
  • the performance index of the target power generation unit is calculated, and based on the performance index
  • the performance index of the target power generation unit is calculated, and based on the performance index
  • the communication processing unit receives power generated by the target power generation unit every predetermined time and power generated by each of the plurality of power generation units other than the target power generation unit every predetermined time.
  • the determination device further acquires the statistical value of the generated power of each power generation unit acquired by the communication processing unit, and the acquired statistical value and the power generation used to acquire the statistical value
  • a first acquisition unit that acquires a set of power generated by the target power generation unit and the power generated by the target power generation unit out of power, and that acquires the set every predetermined time
  • a second acquiring unit that performs segmentation and acquires a representative value of the generated power of the target power generating unit for each segment based on the plurality of sets acquired by the first acquiring unit;
  • the unit calculates, for each interval, the ratio of the representative value acquired by the second acquisition unit, the representative value in the reference year, and the representative value in the year to be determined, and is acquired as the performance index, and the detection unit detects an abnormality in the target power generation unit based on the time-series
  • the representative value considering the relationship with the generated power of other power generation units, that is, changes due to shadows. Since the representative value can be acquired in consideration of the power generation environment, for example, the power generation environment of the generated power to be acquired as the representative value can be uniformed.
  • the first acquisition unit may acquire a statistical value of the power generated by each of the power generation units connected to the same power converter for each predetermined time.
  • the statistical value for each predetermined time period may be the maximum value or the median value of the power generated by each of the power generation units during the predetermined time period.
  • the first acquisition unit acquires the maximum value of the power generated by each power generation unit in a predetermined time as a statistical value
  • the second acquisition unit obtains the target power for each section.
  • the maximum value is acquired as the representative value
  • the maximum generated power that the target power generation unit can output in each section that is, the generated power in a power generation environment where the influence of shadows and the like is low can be acquired as the representative value.
  • the first acquisition unit acquires the median value of the power generated by each power generation unit for a predetermined time as a statistical value
  • the second acquisition unit represents the median value of the target power for each section.
  • the second acquiring unit further calculates the ratio for each section calculated by the calculating unit as a plurality of power generation units including the target power generation unit.
  • the representative value of the section corresponding to the plurality of ratios may be corrected based on the plurality of ratios obtained for the portion.
  • the first acquisition unit acquires the maximum value of the generated power of each power generation unit as a statistical value
  • the solar radiation condition at a certain timing in the reference year and the solar radiation condition at a certain timing in the year to be determined are different. Even if they are the same, the statistic value acquired by the first acquisition unit, that is, the maximum generated power obtained from the power generation unit may change.
  • the maximum power generated by the power generation unit will change even if the solar radiation conditions are the same. there's a possibility that. In this way, if there is a change in the statistical value even though the solar radiation conditions are the same, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination of the target power generation unit.
  • the second acquisition unit divides a day into a plurality of time zones, and for each of the plurality of time zones, the representative value for each section may be obtained, and the calculation unit calculates the ratio for each of the sections for each of the plurality of time periods, and obtains one of the plurality of calculated ratios as the performance index
  • the detection unit may perform the detection process based on any one of the performance indicators for each of the plurality of time periods acquired by the calculation unit.
  • the power generated by the power generation unit may change depending on the time of day.
  • the performance index is acquired for each time period, and one of the acquired indexes for each time period is used for abnormality detection, so that abnormality determination is performed more accurately. be able to.
  • the second acquisition unit may divide a part of the possible range of the generated power of the power generation unit into a plurality of sections in the section division. good.
  • the detection unit may perform the detection process at a plurality of detection timings for each predetermined period, and the detection unit may perform the detection process at a first detection timing. when it is determined that the target power generation unit does not have an abnormality in the detection process of , and the target power generation unit is abnormal in the detection processes at a plurality of consecutive detection timings immediately before the first detection timing If it is determined that a you can go
  • the detection unit may detect an abnormality in the target power generation unit at predetermined intervals, and the determination device further causes the detection unit to An output unit that outputs a predetermined output when an abnormality in the target power generation unit is continuously detected a predetermined number of times or more may be provided.
  • the predetermined period may be one month.
  • a determination method is a determination method in a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is the power generation unit to be determined. a step of acquiring the generated power of the target power generation unit; and calculating a performance index indicating power generation performance of the target power generation unit based on the acquired generated power of the target power generation unit and the generated power of the target power generation unit in a base year. and detecting an abnormality in the target power generating unit based on the calculated performance index.
  • the performance index of the target power generation unit is calculated, and based on the performance index, the abnormality of the target power generation unit is detected. It is possible to obtain a more accurate determination result without being affected by the replacement or repair of other power generation units in determining whether or not there is an abnormality. Therefore, it is possible to improve the abnormality determination accuracy of the photovoltaic power generation system.
  • FIG. 1 is a diagram showing the configuration of a photovoltaic power generation system according to an embodiment of the present disclosure.
  • a photovoltaic power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicles 6 .
  • Cubicle 6 includes copper bars 73 .
  • FIG. 1 representatively shows four PCS units 80, more or fewer PCS units 80 may be provided.
  • FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present disclosure.
  • the PCS unit 80 includes four power collection units 60 and a PCS (power converter) 8 .
  • PCS 8 includes copper bar 7 and power converter 9 .
  • FIG. 2 representatively shows four collector units 60, more or fewer collector units 60 may be provided.
  • FIG. 3 is a diagram showing the configuration of the current collecting unit according to the embodiment of the present disclosure.
  • current collection unit 60 includes four solar cell units 74 and current collection box 71 .
  • a current collection box 71 has a copper bar 72 .
  • FIG. 3 representatively shows four solar cell units 74, more or fewer solar cell units 74 may be provided.
  • FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present disclosure.
  • solar cell unit 74 includes four power generation units 78 and junction box 76 .
  • the power generation section 78 has a solar panel 79 .
  • Junction box 76 has copper bars 77 .
  • FIG. 4 representatively shows four power generation units 78, more or fewer power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar panels 79A, 79B, 79C, and 79D, which are the solar panel 79 in this example, are connected in series.
  • FIG. 4 representatively shows four solar cell panels 79, more or fewer solar cell panels 79 may be provided.
  • output lines and aggregate lines, ie, power lines, from the plurality of power generation units 78 are electrically connected to the PCS 8 shown in FIG.
  • the output line 1 of the power generation section 78 has a first end connected to the power generation section 78 and a second end connected to the copper bar 77 .
  • Each output line 1 is aggregated into an aggregate line 5 via a copper bar 77 .
  • Copper bar 77 is provided inside junction box 76, for example.
  • the power generation unit 78 When the power generation unit 78 receives sunlight, it converts the energy of the received sunlight into DC power and outputs the converted DC power to the output line 1 .
  • aggregate line 5 has a first end connected to copper bar 77 in the corresponding solar cell unit 74 and a second end connected to copper bar 72 .
  • Each aggregate line 5 is aggregated into an aggregate line 2 via a copper bar 72 .
  • Copper bar 72 is provided, for example, inside collector box 71 .
  • each output line 1 from a plurality of power generation units 78 is aggregated into aggregate line 5
  • each aggregate line 5 is aggregated into aggregate line 2, as described above.
  • each aggregate line 2 is electrically connected to the PCS8.
  • each aggregate line 2 has a first end connected to the copper bar 72 in the corresponding collector unit 60 and a second end connected to the copper bar 7 .
  • internal line 3 has a first end connected to copper bar 7 and a second end connected to power converter 9 .
  • the power conversion unit 9 for example, outputs the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregate line 5, the copper bar 72, the aggregate line 2, the copper bar 7 and the internal line 3. , it converts the received DC power into AC power and outputs it to the aggregation line 4 .
  • the aggregate line 4 has a first end connected to the power converter 9 and a second end connected to the copper bar 73 .
  • the AC power output from the power converter 9 in each PCS 8 to each aggregate line 4 is output to the system via the copper bar 73.
  • FIG. 5 is a diagram showing the configuration of a monitoring system according to an embodiment of the present disclosure.
  • the monitoring system 301 is used in the photovoltaic power generation system 401.
  • the monitoring system 301 includes one or more determination devices 101 , multiple monitoring devices 111 , and multiple collection devices 151 .
  • the monitoring system 301 includes one determination device 101 as an example.
  • FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, more or fewer monitoring devices 111 may be provided.
  • sensor information in the monitoring device 111 which is a child device, is transmitted to the collection device 151 regularly or irregularly.
  • the monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is, for example, electrically connected to a corresponding output line 1 and aggregate line 5 .
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 using a sensor. Also, the monitoring device 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 using a sensor.
  • the collection device 151 is provided near the PCS8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and electrically connected to the copper bar 7 via the signal line 46 .
  • the monitoring device 111 and the collection device 151 transmit and receive information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the measurement results of the current and voltage of the corresponding output line.
  • the collection device 151 collects measurement results of each monitoring device 111 .
  • FIG. 6 is a diagram showing the configuration of a monitoring device in the monitoring system according to the embodiment of the present disclosure.
  • output line 1 aggregate line 5 and copper bar 77 are shown in more detail.
  • the output line 1 includes a plus side output line 1p and a minus side output line 1n.
  • Aggregate line 5 includes a plus side aggregate line 5p and a minus side aggregate line 5n.
  • Copper bars 77 include plus side copper bars 77p and minus side copper bars 77n.
  • the copper bars 72 in the current collection box 71 shown in FIG. 3 include plus side copper bars 72p and minus side copper bars 72n corresponding to the plus side aggregate line 5p and the minus side aggregate line 5n, respectively.
  • the plus side output line 1p has a first end connected to the corresponding power generating section 78 and a second end connected to the plus side copper bar 77p.
  • the negative output line 1n has a first end connected to the corresponding power generation section 78 and a second end connected to the negative copper bar 77n.
  • the plus side aggregate line 5 p has a first end connected to the plus side copper bar 77 p and a second end connected to the plus side copper bar 72 p in the current collection box 71 .
  • the negative aggregate line 5n has a first end connected to the negative copper bar 77n and a second end connected to the negative copper bar 72n in the collector box 71 .
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may have more or less current sensors 16 depending on the number of output lines 1 .
  • the monitoring device 111 is provided near the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76 .
  • the monitoring device 111 is electrically connected to, for example, the plus side aggregate line 5p and the minus side aggregate line 5n via the plus side power supply line 26p and the minus side power supply line 26n, respectively.
  • Each of the plus-side power supply line 26p and the minus-side power supply line 26n is also referred to as a power supply line 26 hereinafter.
  • Each monitoring device 111 transmits monitoring information indicating the measurement result of the corresponding power generation unit 78 via the power line connected to itself and the collection device 151 .
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the multiple monitoring devices 111 . More specifically, the communication section 14 can transmit and receive information via the aggregate lines 2 and 5 . Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregate lines 2 and 5 .
  • the detection processing unit 11 is set, for example, to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time.
  • the predetermined time is, for example, 1 minute.
  • the current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 uses power received from a power supply circuit (not shown) of the monitoring device 111 to measure the current flowing through the corresponding negative output line 1n and outputs a signal indicating the measurement result to the detection processing unit 11 . The current sensor 16 may measure the current flowing through the plus side output line 1p.
  • the voltage sensor 17 measures the voltage of the output line 1. More specifically, voltage sensor 17 measures the voltage between plus side copper bar 77p and minus side copper bar 77n and outputs a signal indicating the measurement result to detection processing unit 11 .
  • the detection processing unit 11 performs signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and each voltage sensor 17 at predetermined time intervals, and converts the signals into digital signals.
  • the detection processing unit 11 stores the measured value indicated by each created digital signal, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter also referred to as voltage sensor ID). , and the ID of its own monitoring device 111 (hereinafter also referred to as a monitoring device ID).
  • the detection processing unit 11 creates a monitoring information packet whose source ID is its own monitoring device ID, whose destination ID is the ID of the collection device 151, and whose data portion is monitoring information. The detection processing unit 11 then outputs the created monitoring information packet to the communication unit 14 . Note that the detection processing unit 11 may include a sequence number in the monitoring information packet.
  • the communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151 .
  • the collection device 151 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives monitoring information packets from the plurality of monitoring devices 111, for example.
  • the collection device 151 has a counter and a storage unit, and upon receiving a monitoring information packet from the monitoring device 111, obtains monitoring information from the received monitoring information packet and obtains the count value in the counter as the reception time. After including the reception time in the monitoring information, the collection device 151 saves the monitoring information in a storage unit (not shown).
  • FIG. 7 is a diagram showing the configuration of a determination device in the monitoring system according to the embodiment of the present disclosure.
  • the determination device 101 includes a communication processing unit (output unit) 81, an abnormality determination unit 82, and a storage unit 83.
  • Abnormality determination unit 82 includes a first acquisition unit 91 , a second acquisition unit 92 , a calculation unit 93 , and a detection unit 94 .
  • Part or all of the communication processing unit 81 and the abnormality determination unit 82 are implemented by processors such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).
  • Storage unit 83 is, for example, a non-volatile memory.
  • the ID of the monitoring device 111 to be managed that is, the monitoring device ID is registered in the storage unit 83 . Further, the storage unit 83 registers a correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID.
  • the determination device 101 is, for example, a server, periodically acquires monitoring information from the collecting device 151, and processes the acquired monitoring information. For example, the determination device 101 receives monitoring information from some or all of the plurality of collection devices 151 and performs abnormality determination, which will be described later, for each PCS unit 80 . Note that the determination device 101 may be configured to be built in the collection device 151, for example.
  • the communication processing unit 81 in the determination device 101 transmits and receives information to and from other devices such as the collection device 151 via the network.
  • the communication processing unit 81 acquires monitoring information indicating the measurement results of the output current and output voltage of each power generation unit 78 at a designated daily processing timing, for example, at midnight every day. If the determination device 101 is incorporated in the collection device 151, monitoring information can be easily collected at shorter intervals.
  • the communication processing unit 81 refers to each monitoring device ID registered in the storage unit 83, corresponds to each of the referenced monitoring device IDs, and stores the data within 24 hours of the daily processing timing.
  • a monitoring information request is sent to the collection device 151 for requesting monitoring information including the reception times belonging to the previous to the daily processing timing (hereinafter also referred to as processing day).
  • the collection device 151 Upon receiving the monitoring information request from the determination device 101, the collection device 151 transmits to the determination device 101 one or more pieces of monitoring information that satisfy the contents of the monitoring information request according to the received monitoring information request.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present disclosure.
  • the monitoring information includes a monitoring device ID, a current sensor ID of each current sensor 16 in monitoring device 111, a current value that is a measurement value of each current sensor 16, and a voltage sensor ID of voltage sensor 17. , the voltage value that is the measurement value of the voltage sensor 17, and the reception time.
  • the reception time is the time when the collection device 151 receives the monitoring information transmitted from the monitoring device 111 .
  • the communication processing unit 81 Upon receiving one or a plurality of pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication processing unit 81 saves each piece of received monitoring information in the storage unit 83 .
  • the anomaly determination unit 82 performs an anomaly determination for determining an anomaly due to aged deterioration of the power generation unit 78 for each predetermined period based on a plurality of pieces of monitoring information stored in the storage unit 83 . For example, the abnormality determination unit 82 performs abnormality determination on the first day of every month.
  • the abnormality determination unit 82 compares the power generated by the power generation unit 78 to be determined (hereinafter also referred to as the “target power generation unit 78”) with the power generated in the past by the target power generation unit 78, thereby determining the target power generation. Abnormality judgment of the part 78 is performed.
  • the abnormality determination unit 82 determines the power generation environment of the target power generation unit 78 and The generated power to be compared is determined based on the power generation environment.
  • the abnormality determination unit 82 determines the power generation of the target power generation unit 78 in, for example, a situation in which the power generation environment is similar to each other, that is, the solar radiation conditions are similar to each other, and the effects of shadows and the like are similar to each other.
  • the power is compared with the power generated in the past by the target power generation unit 78 .
  • the abnormality determination unit 82 determines whether the generated power is the last month's generated power at a timing when the influence of shadows or the like is small, and the generated power in the same month of the reference year and the shadows or the like. Compare with the generated power at the timing when the influence of Details of the abnormality determination unit 82 will be described below.
  • FIG. 9 is a diagram for explaining the operation of the first acquisition unit in the determination device according to the embodiment of the present disclosure.
  • the first acquisition unit 91 acquires the statistical value of the generated power of each power generation unit 78, the acquired statistical value, and the target Acquire a pair with the power generated by the power generation unit 78 .
  • the first acquisition unit 91 acquires each power generation connected to the same PCS 8 based on the current measurement result and the voltage measurement result indicated by each of the plurality of pieces of monitoring information stored in the storage unit 83.
  • a list of power generated by the unit 78 for each predetermined time period is created in units of a predetermined period.
  • the first acquisition unit 91 creates a list of power generated by each power generation unit 78 for each minute on a monthly basis.
  • the first acquisition unit 91 may be configured to create a list of power generated by each power generation unit 78 in units of periods longer than one month. However, if the length of the period is long, the solar radiation conditions such as the altitude of the sun change during the period. can be compared with each other.
  • the first acquisition unit 91 may be configured to create a list of power generated by each power generation unit 78 in units of a period shorter than one month, such as one week.
  • a period shorter than one month such as one week.
  • the first acquisition unit 91 is configured to create a list of power generated by each power generation unit 78 in units of about one month.
  • the first acquisition unit 91 also refers to the created power generation list and acquires the statistical value of the power generation of each power generation unit 78 for each predetermined time.
  • the statistical value of the generated power of each power generation unit 78 is, for example, the maximum value, the median value, the x-th value from the maximum value, or the top x values of the generated power of each power generation unit 78 obtained at the same timing. such as the average value of
  • the first acquisition unit 91 acquires, i.e., obtains, the maximum value (hereinafter referred to as “pseudo maximum value”) of the power generated by each power generation unit 78 for each minute as a statistical value. explain.
  • the first acquisition unit 91 obtains the power Identify the generated power W ⁇ of the unit 78( ⁇ ), identify the generated power W ⁇ of the power generation unit 78( ⁇ ) as the pseudo maximum value at 7:01 on January 1, 2021, and specify the generated power W ⁇ of the power generation unit 78( ⁇ ) on January 1, 2021
  • the power generation Wk of the power generation unit 78(k) is specified as the pseudo maximum value at 7:02. In this way, the first obtaining unit 91 identifies the pseudo maximum value for each minute for one month.
  • the power generated by the power generation unit 78 may suddenly change when at least one of the current sensor 16 and the voltage sensor 17 malfunctions, or when the weather suddenly changes. In such a case, if the first acquisition unit 91 acquires the generated power with a sudden change as the pseudo maximum value, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination described later.
  • the first obtaining unit 91 obtains, for example, the median value of the power generated by each power generation unit 78 (hereinafter referred to as the “pseudo median value”) as a statistical value.
  • the pseudo maximum value and the pseudo median value are collectively referred to as "pseudo power generation value”.
  • the first acquisition unit 91 acquires the pseudo maximum value as a statistical value, for example, the generated power other than the value that is significantly larger than the other generated power obtained at the same timing is set as the pseudo maximum value. It may be configured to acquire.
  • the first acquisition unit 91 is not limited to the configuration that acquires the statistic value of the power generated by each power generation unit 78 connected to the same PCS 8 . It may be configured to acquire the statistic value of the generated power.
  • the first acquisition unit 91 is configured to acquire the statistic value from the power generated by each power generation unit 78 connected to the same PCS 8, in the abnormality determination of the target power generation unit 78 described later, the PCS 8 It is possible to make a determination taking into account the influence of operating conditions and the like, and to appropriately suppress the amount of storage area used in the storage unit 83 .
  • Each generated power used to acquire the pseudo power generation value is the power generated from which the pseudo power generation value is obtained, that is, the power generated by each power generation unit 78 obtained at the same timing as the pseudo power generation value.
  • the power generation unit 78(1) is the target power generation unit 78, and the power generated by the target power generation unit 78(1) at each timing of 7:00, 7:01, 7:02, . Suppose that they are "W12", “W13", and so on.
  • the first acquisition unit 91 acquires (W ⁇ , W11), (W ⁇ , W12), (Wk, W13), .
  • FIG. 10 is a scatter diagram plotting a plurality of sets acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure.
  • the horizontal axis indicates the pseudo maximum value
  • the vertical axis indicates the target power.
  • first acquiring unit 91 obtains pairs (W ⁇ , W11), (W ⁇ , W12), (Wk, W13), . Plot a point at each position corresponding to . Then, the first acquisition unit 91 saves data representing the created scatter diagram in the storage unit 83 . Most of the points plotted by the first acquisition unit 91 are around the straight line G with a slope of 1 and are located on the horizontal axis side of the straight line G. That is, the slope of the straight line passing through each point and the origin of the graph is less than one.
  • Second acquisition unit (b-1) Acquisition of representative value Segmentation is performed by providing segments (hereinafter referred to as “class cells”).
  • the second acquisition unit 92 identifies the possible range of power generated by the power generation unit 78 based on the pseudo maximum values included in the plurality of sets obtained by the first acquisition unit 91, and sets the identified range to 50 W. Divide into multiple class cells by unit.
  • the second acquisition unit 92 divides a part of the possible range of the generated power of the power generation unit 78 into a plurality of class cells based on the rated capacity of the target power generation unit 78, the power conversion capacity of the PCS 8, and the like. may be
  • the second acquisition unit 92 sets the maximum value of the horizontal axis to 2500 W, and excludes the low power generation region where the amount of power generation is small.
  • the minimum value of the horizontal axis is set to 500 W
  • the range of values on the horizontal axis from 500 W to 2500 W is defined as class cell "1", which is the section from 500 W to 550 W, and class cell "2", which is the section from 550 W to 600 W. , .
  • the range of values on the horizontal axis from 500 W to 1000 W is divided into a plurality of class cells.
  • the second acquisition unit 92 acquires the statistical values of multiple target powers as the representative value P for each class cell. For example, the second acquisition unit 92 identifies, for each class cell, the group having the maximum target power among the plurality of groups included in the class cell, and acquires the target power contained in the group as the representative value P. .
  • the maximum generated power that can be output by the target power generation unit 78 that is, the generated power in a power generation environment where the influence of shadows and the like is low can be obtained as the representative value P.
  • the second acquisition unit 92 may be configured not to acquire the representative value P of the class cell when the number of pairs included in the class cell is equal to or less than a predetermined number. With such a configuration, the reliability of the representative value P acquired by the second acquisition unit 92 can be ensured.
  • the second acquisition unit 92 acquires the median value among the plurality of target powers as the representative value P for each class cell.
  • the second acquisition unit 92 stores, for example, the representative value P, the ID of the target power generation unit 78, the year and month to be determined (hereinafter referred to as “determination month ”, and the class cell number are associated with each other and stored in the storage unit 83 .
  • FIG. 11 is a diagram showing representative values stored in the storage unit in the determination device according to the embodiment of the present disclosure.
  • the table shown in FIG. 11 shows the representative value P of each class cell in January from the base year to n years later.
  • the second acquisition unit 92 can create the table by repeating the acquisition of the representative value P of each class cell in January for n years from the reference year.
  • the table is created, for example, on February 1, n years after the base year.
  • the second acquisition unit 92 stores the representative value P in the storage unit 83 in the form of P(s, c, y, m).
  • P(s, c, y, m) indicates the ID of the target power generation unit 78
  • "c” indicates the class cell number
  • "y” indicates the year to be judged
  • "m” indicates the month to be judged.
  • the representative value P acquired by the second acquisition unit 92 is the representative value P of the power generation unit 78(1) and the representative value P of the class cell "1" in January 2021. It is also assumed that the ID of power generation unit 78(1) is "1". In this case, the second acquisition unit 92 stores P(1, 1, 2021, 1) in the storage unit 83, for example.
  • the representative value P of the power generation unit 78(1) is shown for each class cell in January from 2021 to n years later.
  • the second obtaining unit 92 stores the representative value P for each class cell, which is the representative value P for each month from the base year to n years later, in the storage unit 83 for each power generation unit 78 .
  • the second acquisition unit 92 acquires the representative value P of each class cell of the last month on February 1, for example, and adds the acquired representative value P to the table shown in FIG. , to store representative values.
  • the second acquisition unit 92 similarly stores the representative value P not only for January but also for each month.
  • the second acquisition unit 92 stores the representative value P for each month as described above for each power generation unit 78 .
  • the calculation unit 93 calculates a performance index In indicating the power generation performance of the target power generation unit 78 based on the power generated by the target power generation unit 78 and the power generated by the target power generation unit 78 in the reference year. More specifically, the calculation unit 93 calculates, for each class cell, the representative value P of the determination month in the reference year for each target power generation unit 78 based on the plurality of representative values P stored in the storage unit 83, A ratio R to the representative value P of the judgment month n years after the reference year is calculated. Then, the calculation unit 93 acquires the calculated statistical value of the ratio R for each class cell as the performance index In of the target power generation unit 78 after n years. The statistical value of the ratio R for each class cell is the maximum value, the median value, the x-th value from the maximum value, or the average value of the top x values among the ratios R for each class cell.
  • the calculation unit 93 calculates 40 ratios R respectively corresponding to the class cells "1" to "40” using the calculation method described above. Then, the calculation unit 93 acquires, for example, the median value of the calculated 40 ratios R as the performance index In of the power generation unit 78(1) in January 2022.
  • the calculation unit 93 acquires the performance index In of the power generation unit 78 ( 1 ) using the same method for each month from February 2022 onwards, and stores the acquired performance index In in the storage unit 83 . Thereby, the calculation unit 93 acquires the time-series change in the performance index In of the power generation unit 78(1).
  • the calculation unit 93 acquires time-series changes in the performance index In of the other target power generation units 78 and stores the acquired performance index In in the storage unit 83 .
  • the calculation unit 93 calculates, in a predetermined period, when the variance of the ratio R for each class cell is greater than a predetermined threshold, or when the loss of data indicating the measurement results included in the monitoring information is greater than or equal to a predetermined threshold. etc., the configuration may be such that the performance index In for the predetermined period is not acquired.
  • FIGS. 12 to 14 are graphs showing an example of time-series changes in the performance index acquired by the calculator in the determination device according to the embodiment of the present disclosure.
  • the detection unit 94 performs detection processing for detecting an abnormality in the target power generation unit 78 based on the performance index In calculated by the calculation unit 93.
  • FIG. the detection unit 94 performs detection processing at a plurality of detection timings for each predetermined period. In the detection process, the detection unit 94 determines whether or not there is an abnormality for each target power generation unit 78 based on the performance index In, which is one of the plurality of ratios R calculated by the calculation unit 93. make a judgment.
  • the detection unit 94 detects a time-series change in the performance index In based on a plurality of performance indexes In of the target power generation unit 78 stored in the storage unit 83. By determining whether or not a predetermined condition is satisfied, it is determined whether or not there is an abnormality in the target power generation section 78 .
  • the detection unit 94 detects when the rate of decrease of the performance index In exceeds a first predetermined value compared to the reference year, or when the rate of decrease of the performance index In per year exceeds a second predetermined value, It is determined that the time series change of the performance index In satisfies a predetermined condition.
  • the first predetermined value is, for example, 2%
  • the second predetermined value is, for example, 0.8%/year. 12 to 14
  • a line L1 indicating whether the rate of decrease of the performance index In exceeds a first predetermined value
  • a line L1 indicating whether the rate of decrease of the performance index In per year exceeds a second predetermined value.
  • a line L2 indicating the reference is shown.
  • the detection unit 94 determines that the chronological change in the performance index In of the target power generation unit 78 does not satisfy the predetermined condition, and that no abnormality has occurred in the target power generation unit 78 during the period.
  • the performance index In gradually decreases during the period from January 2022 to October 2024, but the above predetermined condition is not satisfied. Also in this case, the detection unit 94 determines that the target power generation unit 78 does not have an abnormality during the period.
  • the performance index In is less than 98%, and the above predetermined condition is satisfied. and
  • the detection unit 94 determines that an abnormality has occurred in the target power generation unit 78 in July 2023, which is the last month.
  • the determination result indicating that an abnormality has occurred is stored in the storage unit 83 .
  • the communication processing unit 81 performs a predetermined output.
  • the plurality of times is, for example, three times.
  • the communication processing unit 81 refers to the determination result by the detection unit 94 stored in the storage unit 83 every time a predetermined period of time elapses, for example, and the same target power generation unit 78 is used for three months. If the determination result indicating that the abnormality has occurred continuously is stored, an alarm is output to the administrator or the like.
  • the performance index In is less than 98% continuously for three months from July to September 2023. Therefore, for example, on October 1, 2023, when the determination result for September 2023 was obtained, the communication processing unit 81 outputs an alarm to the effect that the target power generation unit 78 has an abnormality.
  • the communication processing unit 81 displays the ID of the target power generation unit 78 and the fact that an abnormality has occurred due to aged deterioration or the like on a monitor, or sends an e-mail.
  • the communication processing unit 81 displays in a display mode different from that of the other power generation units 78, for example, by brightly displaying the ID of the target power generation unit 78 on the screen showing the list of the plurality of power generation units 78. good too.
  • the communication processing unit 81 may be configured to output a predetermined output each time an abnormality is detected in the target power generation unit 78 .
  • the calculation unit 93 may be configured to acquire the performance index of the target power generation unit 78 for each time zone.
  • the first acquisition unit 91 divides a day into a plurality of time slots and acquires a set of the simulated power generation value and the target power for each time slot. For example, the first acquisition unit 91 acquires a plurality of pairs in the morning time zone and a plurality of pairs in the afternoon time zone for the target power generation unit 78, and prepares a scatter diagram as shown in FIG. and for each time period in the afternoon.
  • the second acquisition unit 92 acquires the representative value P for each class cell for each time period based on the scatter diagram for each time period created by the first acquisition unit 91 .
  • the calculation unit 93 uses the representative value P for each class cell acquired by the second acquisition unit 92 to calculate the performance index for each time slot. Then, the calculation unit 93 performs abnormality determination using any one of the performance indicators for each time period.
  • the calculation unit 93 acquires the highest value of the performance indexes in the morning and afternoon time slots as the performance index In of the target power generation unit 78, and uses the acquired performance index In to perform abnormality determination.
  • the first acquisition unit 91 is not limited to a configuration in which one day is divided into two time zones, morning and afternoon. For example, one day may be divided into three or more time zones. A day may be divided into two or more time periods.
  • the first acquisition unit 91 divides the day into a plurality of time zones, and further, for each time zone, obtains a first set of the pseudo maximum value and the target power and a second set of the pseudo median value and the target power. may be configured to obtain both.
  • the first acquiring unit 91 obtains the plurality of first pairs and the plurality of second pairs in the morning time slot and the plurality of first pairs and the plurality of second pairs in the afternoon time slot. I will get it.
  • the first acquisition unit 91 obtains the first set of morning time slots, the second set of morning time slots, the first set of afternoon time slots, and the afternoon time slot for the target power generation unit 78. Create four scatterplots, each corresponding to the second set of bands.
  • the second acquisition unit 92 acquires the representative value P for each class cell for each of the four scatter diagrams created by the first acquisition unit 91 .
  • the calculation unit 93 calculates the performance index In using the representative value P for each class cell acquired by the second acquisition unit 92 for each of the four scatter diagrams. Then, the calculation unit 93 acquires, for example, the highest value among the calculated four performance indices as the performance index In of the target power generation unit 78 .
  • FIG. 15 is a diagram for explaining changes in the pseudo maximum value acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure
  • the maximum generated power obtained from power generation unit 78 is the first
  • the pseudo maximum value acquired by the acquisition unit 91 may change.
  • the PCS 8 will not be connected.
  • the maximum generated power that can be output by the generated power generation unit 78 may increase.
  • the ratio of the pseudo maximum value to the target power becomes large. That is, the positions of the plurality of points plotted by the first acquisition unit 91 corresponding to the plurality of sets are around the straight line G1 in the base year, but are around the straight line G2 after n years. change to
  • the second acquisition unit 92 acquires a correction value corresponding to the change in the pseudo maximum value based on the plurality of ratios R, and corrects the representative value P of each class cell using the acquired correction value. Therefore, the configuration may be such that the influence on the representative value P due to the change in the pseudo maximum value is corrected.
  • the second acquisition unit 92 acquires the ratio R for each class cell calculated by the calculation unit 93 for the multiple power generation units 78 including the target power generation unit 78, and based on the multiple acquired ratios R , corrects the representative value P of the section corresponding to a plurality of ratios R.
  • the second acquisition unit 92 acquires the ratio R for all the power generation units 78 connected to the same PCS 8 for each class cell, and the median value MedR of the acquired multiple ratios R is taken as the corresponding Acquired as the correction value of the class cell. Then, the second obtaining unit 92 corrects the obtained representative value P for each class cell using the corresponding correction value.
  • the second acquisition unit 92 acquires the representative value P for each class cell in January 2022 for each of the k power generation units 78, as described above.
  • the calculation unit 93 uses the representative value P for each class cell of January 2022 acquired by the second acquisition unit 92 for each of the k power generation units 78 to obtain the class cell of January 2022. Calculate the ratio R for each.
  • the second acquisition unit 92 acquires the ratio R for each class cell in January 2022 of the k power generation units 78 calculated by the calculation unit 93 .
  • the second acquisition unit 92 acquires k ratios R of class cells “1” in January 2022 corresponding to k power generation units 78 respectively.
  • the second obtaining unit 92 obtains the median value MedR of the obtained k ratios R as the correction value of the January 2022 class cell “1”.
  • the calculating unit 93 calculates the ratio R using the corrected representative value P, and out of the calculated ratio R for each class cell, Any one, for example, the median value, is obtained as the performance index In.
  • FIG. 16 is a diagram illustrating an example of determination results by the detection unit in the determination device according to the embodiment of the present disclosure; FIG. 16 shows the actual state of the target power generation unit 78 and the transition of the determination result of the target power generation unit 78 by the detection unit 94 .
  • Regarding the actual state of the target power generation section 78 in FIG. indicate that 16, "N" (Normal) indicates that the detection unit 94 has determined that there is no abnormality in the target power generation unit 78, and "A" (Abnormal) indicates that the detection unit 94 This indicates that it has been determined that the power generation unit 78 has an abnormality.
  • the determination result indicating that an abnormality has occurred in the target power generation unit 78 will also be referred to as an abnormality determination result. Also called
  • the detection unit 94 starts abnormality determination for the target power generation unit 78 in the year following the base year.
  • the reference year is, for example, the first year after the start of operation of the determination device 101 .
  • the detection unit 94 determines that an abnormality has occurred in the target power generation unit 78 in July of the year n years after the reference year.
  • the detection unit 94 also determines that the target power generation unit 78 has an abnormality in the determination month after August of the year n years after the reference year.
  • FIG. 17 is a diagram showing another example of determination result by the detection unit in the determination device according to the embodiment of the present disclosure.
  • the view of FIG. 17 is the same as that of FIG.
  • the detection unit 94 starts abnormality determination for the target power generation unit 78 in January one year after the reference year, and determines that the target power generation unit 78 has an abnormality.
  • the detection unit 94 detects that the target power generation unit 78 does not have an abnormality even though the target power generation unit 78 continues to be in an abnormal state from July to December one year after the reference year. I judge. This is because the representative value P in the period from July to December of the base year is smaller than the representative value P in the period from January to June of the base year. This is because the performance index In in the judgment months up to December is relatively high.
  • the detection unit 94 determines that the target power generation unit 78 does not have an abnormality in the determination month. Perform verification processing to verify. For example, when the detection unit 94 determines in the detection process at the first detection timing that an abnormality has not occurred in the target power generation unit 78, the detection unit 94 detects a plurality of consecutive detection timings immediately before the first detection timing. When it is determined in the detection process that an abnormality has occurred in the target power generation unit 78, the result of the detection process at the first detection timing is based on the result of the detection process at the detection timing prior to the first detection timing. Perform verification processing to verify the
  • FIG. 18 is a diagram showing an example of a determination result after verification processing by the detection unit in the determination device according to the embodiment of the present disclosure.
  • the view of FIG. 18 is the same as that of FIG.
  • detection unit 94 determines that target power generation unit 78 has an abnormality in a predetermined number of continuous determination months, and determines that target power generation in the determination month following the predetermined number of determination months. If it is determined that there is no abnormality in the unit 78, a verification process is performed to verify whether or not the determination result is correct using the determination result of the past determination month. Thereafter, in the next determination month in which the detection unit 94 determines that the target power generation unit 78 does not have an abnormality in a predetermined number of continuous determination months, it is determined that the target power generation unit 78 does not have an abnormality. The judgment month is also referred to as the verification month.
  • the detection unit 94 acquires the determination results of the determination month for the most recent year from the storage unit 83, and rearranges the acquired determination results in the order of the corresponding determination month. Specifically, when the verification process is performed in July of the year n years after the reference year, the detection unit 94 performs Obtain the judgment results of the judgment month up to July of the year, and obtain the judgment results from August to December of the year (n-1) years after the base year to August of the year n years after the base year. Assuming that the determination results are from January to December, the acquired determination results are sorted in month order.
  • the detection unit 94 stores the changed determination result in the storage unit 83 .
  • the detection unit 94 determines that the determination result of the verification month is not erroneous, and determines the verification month. Maintain results.
  • the detection unit 94 in the verification process, instead of acquiring the judgment result of the judgment month of the most recent one year from the storage unit 83, Acquire the judgment results from January of the year after the year to the judgment month immediately before the verification month.
  • Each device in the monitoring system 301 has a computer including a memory, and an arithmetic processing unit such as a CPU in the computer reads out from the memory and executes a program including part or all of each step of the following flowcharts. Programs for these multiple devices can each be installed from the outside. Programs for these devices are stored in recording media and distributed.
  • FIG. 19 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present disclosure performs abnormality determination of the power generation unit.
  • the abnormality determination of one target power generation unit 78 will be described. Further, here, an operation procedure in the case where the determination device 101 performs abnormality determination of the target power generation unit 78 every month, which is an example of a predetermined period, will be described. The determination device 101 performs the following operation for each target power generation unit 78, for example.
  • communication processing unit 81 when communication processing unit 81 acquires one or a plurality of pieces of monitoring information, communication processing unit 81 saves each piece of acquired monitoring information in storage unit 83 .
  • Communication processing unit 81 acquires and stores monitoring information, for example, every day (step S11).
  • the first acquisition unit 91 obtains data for each power generation connected to the same PCS 8 for the last month based on a plurality of pieces of monitoring information stored in the storage unit 83.
  • a statistical value of the power generated by the unit 78 for each minute is obtained as a pseudo power generation value (step S12).
  • the first obtaining unit 91 obtains the obtained pseudo power generation value and each generated power used to obtain the pseudo power generation value, that is, each power obtained at the same timing from which the pseudo power generation value is obtained.
  • a set of the power generated by the power generation unit 78 and the target power for the last month is obtained (step S13).
  • the first acquisition unit 91 creates a scatter diagram showing the plurality of acquired pairs on a monthly basis, and stores the data showing the created scatter diagram in the storage unit 83 (step S14).
  • the second acquisition unit 92 refers to the scatter diagram stored in the storage unit 83, and divides into sections by providing a plurality of class cells indicating different ranges of power generated by the power generation unit 78 (step S15).
  • the second acquisition unit 92 acquires the statistical values of the plurality of target powers as the representative value P for each class cell, and stores the acquired representative value P in the storage unit 83 (step S16).
  • the calculation unit 93 calculates, for each class cell, the ratio R is calculated (step S17).
  • the calculation unit 93 acquires the calculated statistical value of the ratio R for each class cell as the performance index In of the target power generation unit 78 in the last month of the year to be determined, and stores the acquired performance index In in the storage unit 83. Save (step S18).
  • the detection unit 94 performs an abnormality determination for detecting the presence or absence of an abnormality in the target power generation unit 78 based on the plurality of performance indicators In stored in the storage unit 83, and when it is determined that an abnormality has occurred , the determination result is stored in the storage unit 83 (step S19).
  • the communication processing unit 81 refers to the determination result by the detection unit 94 stored in the storage unit 83, and confirms whether or not an abnormality has been detected in the same target power generation unit 78 continuously for a predetermined number of times or more. (step S20).
  • step S21 when an abnormality is continuously detected for the same target power generation unit 78 for a predetermined number of times or more ("YES" in step S20), the communication processing unit 81 outputs a warning to the administrator or the like. Output is performed (step S21).
  • the communication processing unit 81 does not output an alarm or the like when an abnormality has not been detected continuously for the same target power generation unit 78 for a predetermined number of times or more ("NO" in step S20).
  • the second acquisition unit 92 may be configured to correct the influence of changes in the pseudo maximum value on the representative value P.
  • the second acquisition unit 92 corrects the representative value P between the calculation of the ratio R by the calculation unit 93 (step S17) and the acquisition of the performance index In by the calculation unit 93 (step S18).
  • the second acquisition unit 92 acquires the ratio R for each class cell calculated by the calculation unit 93 in step S17 for the plurality of power generation units 78 connected to the same PCS 8, and The median MedR is taken as the correction value for the corresponding class cell. Then, the second acquiring unit 92 corrects the representative value P for each class cell acquired in step S16 using the corresponding correction value.
  • step S18 the calculation unit 93 recalculates the ratio R for each class cell using the corrected representative value P by the second acquisition unit 92, and obtains the statistical values of the newly calculated multiple ratios R as It is acquired as the performance index In of the last month of the determination target year of the target power generation unit 78 .
  • a determination device used in a photovoltaic power generation system comprising a plurality of power generation units including solar panels, a communication processing unit that acquires power generated by a target power generation unit that is the power generation unit to be determined; a calculation unit that calculates a performance index indicating the power generation performance of the target power generation unit based on the generated power of the target power generation unit acquired by the communication processing unit and the power generation of the target power generation unit in a reference year; a detection unit that performs detection processing for detecting an abnormality in the target power generation unit based on the performance index calculated by the calculation unit;
  • the determination device further A statistical value of the generated power of each power generation unit is acquired, and the power generation of the target power generation unit, which is the power generation unit to be determined, among the acquired statistical value and the generated power used to acquire the statistical value a first acquisition unit that acquires a set of electricity and electric power at predetermined time intervals; Sectioning is performed to provide a plurality of sections indicating different range

Abstract

This determination device (101) is used in a solar power generation system (401) comprising a plurality of power generation units (78) including a solar cell panel (79), the determination device (101) comprising: a communication processing unit (81) that acquires generated power of a target power generation unit (78), which is the power generation unit (78) that is the target of the determination; a calculation unit (93) that calculates a performance index (In) indicating the power generation performance of the target power generation unit (78) on the basis of the generated power of the target power generation unit (78) acquired by the communication processing unit (81), and the generated power of the target power generation unit (78) in a reference year; and a detection unit (94) that performs a detection process to detect an abnormality of the target power generation unit (78) on the basis of the performance index (In) calculated by the calculation unit (93).

Description

判定装置および判定方法Judgment device and judgment method
 本開示は、判定装置および判定方法に関する。
 この出願は、2021年11月29日に出願された日本出願特願2021-193111号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present disclosure relates to a determination device and a determination method.
This application claims priority based on Japanese Patent Application No. 2021-193111 filed on November 29, 2021, and the entire disclosure thereof is incorporated herein.
 特開2018-26909号公報(特許文献1)には、以下のような発電状態判定装置が開示されている。すなわち、発電状態判定装置は、複数の太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる発電状態判定装置であって、前記複数の発電部の出力の計測結果をそれぞれ示す複数の計測情報を取得する取得部と、前記複数の発電部のうち発電状態を判定する対象の発電部の計測結果と、前記対象の発電部以外の発電部の計測結果を少なくとも1つ用いて定めた基準値との比を算出する算出部と、前記算出部によって算出された前記比に基づいて前記対象の発電部の発電状態を判定する判定部とを備える。 Japanese Patent Laying-Open No. 2018-26909 (Patent Document 1) discloses a power generation state determination device as follows. That is, the power generation state determination device is a power generation state determination device used in a photovoltaic power generation system including a plurality of power generation units including a plurality of solar cell panels, and is a power generation state determination device that indicates measurement results of outputs of the plurality of power generation units. a measurement result of a power generation unit whose power generation state is to be determined among the plurality of power generation units; and at least one measurement result of a power generation unit other than the target power generation unit. and a determination unit that determines the power generation state of the target power generation unit based on the ratio calculated by the calculation unit.
特開2018-26909号公報JP 2018-26909 A
 本開示の判定装置は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、判定対象の前記発電部である対象発電部の発電電力を取得する通信処理部と、前記通信処理部により取得された前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出する算出部と、前記算出部により算出された前記性能指標に基づいて、前記対象発電部の異常を検知する検知部とを備える。 A determination device according to the present disclosure is a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is communication processing for acquiring power generated by a target power generation unit, which is the power generation unit to be determined. Calculation for calculating a performance index indicating the power generation performance of the target power generation unit based on the power generated by the target power generation unit acquired by the communication processing unit and the power generated by the target power generation unit in a reference year and a detection unit that detects an abnormality in the target power generation unit based on the performance index calculated by the calculation unit.
 本開示の判定方法は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、判定対象の前記発電部である対象発電部の発電電力を取得するステップと、取得した前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出するステップと、算出した前記性能指標に基づいて、前記対象発電部の異常を検知するステップとを含む。 A determination method of the present disclosure is a determination method in a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and acquires power generated by a target power generation unit that is the power generation unit to be determined. calculating a performance index indicating power generation performance of the target power generation unit based on the obtained generated power of the target power generation unit and the generated power of the target power generation unit in a reference year; and detecting an abnormality in the target power generation unit based on the performance index.
 本開示の一態様は、このような特徴的な処理部を備える判定装置として実現され得るだけでなく、かかる特徴的な処理をコンピュータに実行させるためのプログラムとして実現され得る。また、本開示の一態様は、判定装置の一部または全部を実現する半導体集積回路として実現され得たり、判定装置を含む異常判定システムとして実現され得る。 One aspect of the present disclosure can be implemented not only as a determination device including such a characteristic processing unit, but also as a program for causing a computer to execute such characteristic processing. Further, one aspect of the present disclosure can be implemented as a semiconductor integrated circuit that implements part or all of the determination device, or can be implemented as an abnormality determination system including the determination device.
図1は、本開示の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a photovoltaic power generation system according to an embodiment of the present disclosure. 図2は、本開示の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing the configuration of a PCS unit according to the embodiment of the present disclosure. 図3は、本開示の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing the configuration of a current collecting unit according to an embodiment of the present disclosure. 図4は、本開示の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a diagram showing the configuration of a solar cell unit according to an embodiment of the present disclosure. 図5は、本開示の実施の形態に係る監視システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of a monitoring system according to an embodiment of the present disclosure. 図6は、本開示の実施の形態に係る監視システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing the configuration of a monitoring device in the monitoring system according to the embodiment of the present disclosure. 図7は、本開示の実施の形態に係る監視システムにおける判定装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of a determination device in the monitoring system according to the embodiment of the present disclosure. 図8は、本開示の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。FIG. 8 is a diagram illustrating an example of monitoring information held by a determination device in the monitoring system according to the embodiment of the present disclosure; 図9は、本開示の実施の形態に係る判定装置における第1取得部の動作を説明するための図である。FIG. 9 is a diagram for explaining the operation of the first acquisition unit in the determination device according to the embodiment of the present disclosure; 図10は、本開示の実施の形態に係る判定装置における第1取得部により取得された複数の組をプロットした散布図である。FIG. 10 is a scatter diagram plotting a plurality of sets acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure. 図11は、本開示の実施の形態に係る判定装置における記憶部に保存される代表値を示す図である。FIG. 11 is a diagram showing representative values stored in a storage unit in the determination device according to the embodiment of the present disclosure; 図12は、本開示の実施の形態に係る判定装置における算出部により取得される性能指標の時系列変化の一例を示すグラフである。FIG. 12 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure. 図13は、本開示の実施の形態に係る判定装置における算出部により取得される性能指標の時系列変化の一例を示すグラフである。FIG. 13 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure. 図14は、本開示の実施の形態に係る判定装置における算出部により取得される性能指標の時系列変化の一例を示すグラフである。FIG. 14 is a graph showing an example of time-series changes in the performance index acquired by the calculation unit in the determination device according to the embodiment of the present disclosure. 図15は、本開示の実施の形態に係る判定装置における第1取得部により取得される疑似最大値の変化を説明するための図である。FIG. 15 is a diagram for explaining changes in the pseudo maximum value acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure; 図16は、本開示の実施の形態に係る判定装置における検知部による判定結果の一例を示す図である。FIG. 16 is a diagram illustrating an example of determination results by the detection unit in the determination device according to the embodiment of the present disclosure; 図17は、本開示の実施の形態に係る判定装置における検知部による判定結果の他の例を示す図である。FIG. 17 is a diagram illustrating another example of a determination result by the detection unit in the determination device according to the embodiment of the present disclosure; 図18は、本開示の実施の形態に係る判定装置における検知部による検証処理後の判定結果の一例を示す図である。18 is a diagram illustrating an example of a determination result after verification processing by the detection unit in the determination device according to the embodiment of the present disclosure; FIG. 図19は、本開示の実施の形態に係る判定装置が発電部の異常判定を行う際の動作手順を定めたフローチャートである。FIG. 19 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present disclosure performs abnormality determination of the power generation unit.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, technology has been developed to monitor solar power generation systems and identify abnormalities.
 [本開示が解決しようとする課題]
 特許文献1に記載の技術では、基準値となる計測結果を出力した発電部が保守等のために交換されたり、不具合の改修が行われたりした場合、判定対象となる発電部の計測結果の上記基準値に対する比が変化し、発電部の発電状態を正確に判定することができない可能性がある。
[Problems to be Solved by the Present Disclosure]
In the technology described in Patent Document 1, if the power generation unit that outputs the measurement result that serves as the reference value is replaced for maintenance or the like, or if a defect is repaired, the measurement result of the power generation unit to be determined is changed. There is a possibility that the ratio with respect to the reference value will change, making it impossible to accurately determine the power generation state of the power generation unit.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定精度を向上させることが可能な判定装置および判定方法を提供することである。 The present disclosure has been made to solve the above-described problems, and its purpose is to provide a determination device and a determination method capable of improving the abnormality determination accuracy of a photovoltaic power generation system.
 本開示によれば、太陽光発電システムの異常判定精度を向上させることができる。 According to the present disclosure, it is possible to improve the abnormality determination accuracy of the photovoltaic power generation system.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
 (1)本開示の実施の形態に係る判定装置は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、判定対象の前記発電部である対象発電部の発電電力を取得する通信処理部と、前記通信処理部により取得された前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出する算出部と、前記算出部により算出された前記性能指標に基づいて、前記対象発電部の異常を検知する検知処理を行う検知部とを備える。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
(1) A determination device according to an embodiment of the present disclosure is a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is a target power generation unit that is the power generation unit to be determined. power generation performance of the target power generation unit based on the power generation of the target power generation unit acquired by the communication processing unit and the power generation of the target power generation unit in a reference year and a detection unit that detects an abnormality in the target power generation unit based on the performance index calculated by the calculation unit.
 このように、対象発電部の発電電力(以下、「対象電力」とも称する。)と、基準年における対象電力とに基づいて、対象発電部の性能指標を算出し、性能指標に基づいて当該対象発電部の異常を検知する構成により、当該対象発電部に異常が生じているか否かの異常判定において、他の発電部の交換または改修等による影響を受けることなく、より正確な判定結果を得ることができる。したがって、太陽光発電システムの異常判定精度を向上させることができる。 In this way, based on the power generated by the target power generation unit (hereinafter also referred to as “target power”) and the target power in the base year, the performance index of the target power generation unit is calculated, and based on the performance index With a configuration that detects an abnormality in the power generation unit, more accurate determination results can be obtained without being affected by replacement or repair of other power generation units in determining whether or not an abnormality has occurred in the relevant power generation unit. be able to. Therefore, it is possible to improve the abnormality determination accuracy of the photovoltaic power generation system.
 (2)上記(1)において、前記通信処理部は、前記対象発電部の所定時間ごとの発電電力、および前記対象発電部以外の複数の前記発電部の各々の前記所定時間ごとの発電電力を取得し、前記判定装置は、さらに、前記通信処理部により取得された前記各発電部の発電電力の統計値を取得し、取得した前記統計値と、前記統計値の取得に用いた前記各発電電力のうちの前記対象発電部の発電電力との組であって、前記所定時間ごとの前記組を取得する第1取得部と、前記発電部の発電電力の異なる範囲を示す複数の区間を設ける区間分けを行い、前記第1取得部により取得された複数の前記組に基づいて、前記区間ごとに、前記対象発電部の発電電力の代表値を取得する第2取得部とを備え、前記算出部は、前記第2取得部により取得された前記代表値であって、前記基準年における前記代表値と、判定対象の年における前記代表値との比を前記区間ごとに算出し、前記区間ごとの前記比の統計値を前記性能指標として取得し、前記検知部は、前記性能指標の時系列変化に基づいて、前記対象発電部の異常を検知する。 (2) In the above (1), the communication processing unit receives power generated by the target power generation unit every predetermined time and power generated by each of the plurality of power generation units other than the target power generation unit every predetermined time. The determination device further acquires the statistical value of the generated power of each power generation unit acquired by the communication processing unit, and the acquired statistical value and the power generation used to acquire the statistical value A first acquisition unit that acquires a set of power generated by the target power generation unit and the power generated by the target power generation unit out of power, and that acquires the set every predetermined time; a second acquiring unit that performs segmentation and acquires a representative value of the generated power of the target power generating unit for each segment based on the plurality of sets acquired by the first acquiring unit; The unit calculates, for each interval, the ratio of the representative value acquired by the second acquisition unit, the representative value in the reference year, and the representative value in the year to be determined, and is acquired as the performance index, and the detection unit detects an abnormality in the target power generation unit based on the time-series change in the performance index.
 このように、各発電部の発電電力の統計値を用いて、対象電力の代表値を取得する構成により、他の発電部の発電電力との関係を考慮した代表値、すなわち影などにより変化する発電環境を考慮した代表値を取得することができるため、たとえば、代表値として取得する発電電力の発電環境を揃えることができる。 In this way, by using the statistical value of the generated power of each power generation unit to obtain the representative value of the target power, the representative value considering the relationship with the generated power of other power generation units, that is, changes due to shadows. Since the representative value can be acquired in consideration of the power generation environment, for example, the power generation environment of the generated power to be acquired as the representative value can be uniformed.
 また、基準年における対象電力の代表値と、判定対象の年における対象電力の代表値との比を区間ごとに算出し、区間ごとの比の統計値を性能指標として取得する構成により、たとえば、日射条件、天候および影などの影響等が同様の状況である発電電力同士を比較することができるため、異常判定においてより正確な判定結果を得ることができる。 In addition, by calculating the ratio between the representative value of the target power in the reference year and the representative value of the target power in the judgment target year for each section, and obtaining the statistical value of the ratio for each section as a performance index, for example, Since it is possible to compare generated electric power under similar conditions such as the effects of solar radiation conditions, weather, shadows, etc., it is possible to obtain more accurate determination results in abnormality determination.
 (3)上記(2)において、前記第1取得部は、同一の電力変換装置に接続された前記各発電部の発電電力の前記所定時間ごとの統計値を取得してもよい。 (3) In (2) above, the first acquisition unit may acquire a statistical value of the power generated by each of the power generation units connected to the same power converter for each predetermined time.
 このような構成により、対象発電部の異常判定において、当該対象発電部が接続された電力変換装置の動作状況などによる影響を考慮した判定を行うことができ、かつ発電電力を保存する記憶領域の使用量を適切に抑えることができる。 With such a configuration, it is possible to make a determination considering the influence of the operation status of the power conversion device to which the target power generation unit is connected when determining whether the target power generation unit is abnormal. It is possible to appropriately reduce the amount used.
 (4)上記(2)または(3)において、前記所定時間ごとの前記統計値は、前記所定時間における前記各発電部の発電電力のうちの最大値または中央値でもよい。 (4) In (2) or (3) above, the statistical value for each predetermined time period may be the maximum value or the median value of the power generated by each of the power generation units during the predetermined time period.
 このような構成により、たとえば、第1取得部が、所定時間における各発電部の発電電力のうちの最大値を統計値として取得し、第2取得部が、区間ごとに、対象電力のうちの最大値を代表値として取得する場合、各区間において、対象発電部が出力し得る最大の発電電力、すなわち影などの影響が低い発電環境における発電電力を代表値として取得することができる。 With such a configuration, for example, the first acquisition unit acquires the maximum value of the power generated by each power generation unit in a predetermined time as a statistical value, and the second acquisition unit obtains the target power for each section. When the maximum value is acquired as the representative value, the maximum generated power that the target power generation unit can output in each section, that is, the generated power in a power generation environment where the influence of shadows and the like is low can be acquired as the representative value.
 また、たとえば、第1取得部が、所定時間における各発電部の発電電力のうちの中央値を統計値として取得し、第2取得部が、区間ごとに、対象電力のうちの中央値を代表値として取得する場合、各区間において、対象発電部が出力し得る発電電力の中央値、すなわちより安定した発電環境における発電電力を代表値として取得することができる。 Also, for example, the first acquisition unit acquires the median value of the power generated by each power generation unit for a predetermined time as a statistical value, and the second acquisition unit represents the median value of the target power for each section. When acquiring as a value, the median value of the generated power that the target power generation unit can output in each section, that is, the generated power in a more stable power generation environment can be acquired as the representative value.
 このように、代表値として取得する発電電力の発電環境を容易に揃えて、互いに発電環境が同様の状況における発電電力の代表値同士を比較することができるため、異常判定をより一層正確に行うことができる。 In this way, it is possible to easily align the power generation environment of the generated power to be acquired as a representative value, and to compare the representative values of the generated power under similar power generation environments, so that the abnormality determination can be performed more accurately. be able to.
 (5)上記(2)から(4)のいずれかにおいて、前記第2取得部は、さらに、前記算出部により算出された前記区間ごとの前記比を、前記対象発電部を含む複数の前記発電部について取得し、取得した複数の前記比に基づいて、前記複数の比に対応する前記区間の前記代表値を補正してもよい。 (5) In any one of (2) to (4) above, the second acquiring unit further calculates the ratio for each section calculated by the calculating unit as a plurality of power generation units including the target power generation unit. The representative value of the section corresponding to the plurality of ratios may be corrected based on the plurality of ratios obtained for the portion.
 ここで、第1取得部が、各発電部の発電電力のうちの最大値を統計値として取得する場合、基準年のあるタイミングにおける日射条件と、判定対象の年のあるタイミングにおける日射条件とが同じであっても、第1取得部により取得される統計値、すなわち発電部から得られる最大の発電電力に変化が生じることがある。 Here, when the first acquisition unit acquires the maximum value of the generated power of each power generation unit as a statistical value, the solar radiation condition at a certain timing in the reference year and the solar radiation condition at a certain timing in the year to be determined are different. Even if they are the same, the statistic value acquired by the first acquisition unit, that is, the maximum generated power obtained from the power generation unit may change.
 たとえば、基準年から判定対象の年までの間に、複数の発電部のうちの1つ以上が交換された場合、同一の日射条件であっても、発電部により得られる最大の発電電力は変化する可能性がある。このように、日射条件が同じであるにも関わらず統計値に変化が生じる場合、対象発電部の異常判定において正確な判定結果を得ることができない可能性がある。 For example, if one or more of the multiple power generation units are replaced between the base year and the year to be judged, the maximum power generated by the power generation unit will change even if the solar radiation conditions are the same. there's a possibility that. In this way, if there is a change in the statistical value even though the solar radiation conditions are the same, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination of the target power generation unit.
 これに対して、上記のような構成により、統計値の変化による代表値への影響を補正することができるため、異常判定をより一層正確に行うことができる。 On the other hand, with the above configuration, it is possible to correct the influence of changes in the statistical values on the representative values, so that the abnormality determination can be performed more accurately.
 (6)上記(2)から(5)のいずれかにおいて、前記第2取得部は、1日を複数の時間帯に分けて、前記複数の時間帯のそれぞれについて、前記区間ごとの前記代表値を取得してもよく、前記算出部は、前記複数の時間帯のそれぞれについて、前記区間ごとの前記比を算出し、算出した複数の前記比のうちのいずれか1つを前記性能指標として取得してもよく、前記検知部は、前記算出部により取得された前記複数の時間帯の各々の前記性能指標のうちのいずれか1つに基づいて、前記検知処理を行ってもよい。 (6) In any one of (2) to (5) above, the second acquisition unit divides a day into a plurality of time zones, and for each of the plurality of time zones, the representative value for each section may be obtained, and the calculation unit calculates the ratio for each of the sections for each of the plurality of time periods, and obtains one of the plurality of calculated ratios as the performance index The detection unit may perform the detection process based on any one of the performance indicators for each of the plurality of time periods acquired by the calculation unit.
 ここで、発電部の向く方角などが原因となり、当該発電部の発電電力が時間帯に応じて変化することがある。これに対して、上記のように、時間帯ごとに性能指標を取得し、取得した時間帯ごとの指標のうちのいずれか1つを異常検知に用いる構成により、異常判定をより一層正確に行うことができる。 Here, due to factors such as the direction in which the power generation unit faces, the power generated by the power generation unit may change depending on the time of day. On the other hand, as described above, the performance index is acquired for each time period, and one of the acquired indexes for each time period is used for abnormality detection, so that abnormality determination is performed more accurately. be able to.
 (7)上記(2)から(6)のいずれかにおいて、前記第2取得部は、前記区間分けにおいて、前記発電部の発電電力のとり得る範囲の一部を、複数の区間に分けてもよい。 (7) In any one of the above (2) to (6), the second acquisition unit may divide a part of the possible range of the generated power of the power generation unit into a plurality of sections in the section division. good.
 このような構成により、たとえば、区間の数を適切に減らして、区間ごとの比の算出等の演算による処理負荷を抑えることができる。 With such a configuration, for example, it is possible to appropriately reduce the number of sections and reduce the processing load due to calculations such as calculation of ratios for each section.
 (8)上記(2)から(7)のいずれかにおいて、前記検知部は、所定期間ごとの複数の検知タイミングにおいて前記検知処理を行ってもよく、前記検知部は、第1の前記検知タイミングの前記検知処理において前記対象発電部に異常が生じていないと判定した場合であって、前記第1の検知タイミングの直前の連続する複数の前記検知タイミングの前記検知処理において前記対象発電部に異常が生じていると判定した場合、前記第1の検知タイミングよりも前の前記検知タイミングにおける前記検知処理の結果に基づいて、前記第1の検知タイミングにおける前記検知処理の結果を検証する検証処理を行ってもよい。 (8) In any one of (2) to (7) above, the detection unit may perform the detection process at a plurality of detection timings for each predetermined period, and the detection unit may perform the detection process at a first detection timing. when it is determined that the target power generation unit does not have an abnormality in the detection process of , and the target power generation unit is abnormal in the detection processes at a plurality of consecutive detection timings immediately before the first detection timing If it is determined that a you can go
 このような構成により、基準年において対象発電部に異常が生じた場合において、基準年における代表値が低下することによる第1の検知タイミングにおける誤判定を抑制することができる。 With such a configuration, it is possible to suppress erroneous determination at the first detection timing due to a decrease in the representative value in the base year when an abnormality occurs in the target power generation unit in the base year.
 (9)上記(2)から(8)のいずれかにおいて、前記検知部は、所定期間ごとに前記対象発電部の異常を検知してもよく、前記判定装置は、さらに、前記検知部により前記対象発電部の異常が所定回数以上連続して検知された場合、所定の出力を行う出力部を備えてもよい。 (9) In any one of (2) to (8) above, the detection unit may detect an abnormality in the target power generation unit at predetermined intervals, and the determination device further causes the detection unit to An output unit that outputs a predetermined output when an abnormality in the target power generation unit is continuously detected a predetermined number of times or more may be provided.
 このような構成により、たとえば、発電環境の一時的な変化などが原因となって、対象発電部に異常が生じている旨の警報等が行われることを防ぎ、警報などの出力の信頼性を高めることができる。 With such a configuration, for example, due to temporary changes in the power generation environment, etc., it is possible to prevent an alarm, etc., from being issued to the effect that an abnormality has occurred in the target power generation unit, and improve the reliability of the output of the alarm, etc. can be enhanced.
 (10)上記(8)または(9)において、前記所定期間は、1か月でもよい。 (10) In (8) or (9) above, the predetermined period may be one month.
 このような構成により、たとえば、日射条件が同様である同一の月における対象発電部の発電電力の代表値同士を比較して、1か月ごとに当該対象発電部の異常を判定することにより、より正確な判定結果を得ることができ、かつ異常判定のための処理負荷を適切に抑えることができる。 With such a configuration, for example, by comparing the representative values of the generated power of the target power generation unit in the same month with the same solar radiation conditions, and determining the abnormality of the target power generation unit on a monthly basis, A more accurate determination result can be obtained, and the processing load for abnormality determination can be suppressed appropriately.
 (11)本開示の実施の形態に係る判定方法は、太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、判定対象の前記発電部である対象発電部の発電電力を取得するステップと、取得した前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出するステップと、算出した前記性能指標に基づいて、前記対象発電部の異常を検知するステップとを含む。 (11) A determination method according to an embodiment of the present disclosure is a determination method in a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar cell panels, and is the power generation unit to be determined. a step of acquiring the generated power of the target power generation unit; and calculating a performance index indicating power generation performance of the target power generation unit based on the acquired generated power of the target power generation unit and the generated power of the target power generation unit in a base year. and detecting an abnormality in the target power generating unit based on the calculated performance index.
 このように対象電力と、基準年における対象電力とに基づいて、対象発電部の性能指標を算出し、性能指標に基づいて当該対象発電部の異常を検知する方法により、当該対象発電部に異常が生じているか否かの異常判定において、他の発電部の交換または改修等による影響を受けることなく、より正確な判定結果を得ることができる。したがって、太陽光発電システムの異常判定精度を向上させることができる。 In this way, based on the target power and the target power in the base year, the performance index of the target power generation unit is calculated, and based on the performance index, the abnormality of the target power generation unit is detected. It is possible to obtain a more accurate determination result without being affected by the replacement or repair of other power generation units in determining whether or not there is an abnormality. Therefore, it is possible to improve the abnormality determination accuracy of the photovoltaic power generation system.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Embodiments of the present disclosure will be described below with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. Moreover, at least part of the embodiments described below may be combined arbitrarily.
<構成および基本動作>
[太陽光発電システムの構成]
 図1は、本開示の実施の形態に係る太陽光発電システムの構成を示す図である。
<Configuration and basic operation>
[Configuration of photovoltaic power generation system]
FIG. 1 is a diagram showing the configuration of a photovoltaic power generation system according to an embodiment of the present disclosure.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, a photovoltaic power generation system 401 includes four PCS (Power Conditioning Subsystem) units 80 and cubicles 6 . Cubicle 6 includes copper bars 73 .
 図1では、4つのPCSユニット80を代表的に示しているが、さらに多数または少数のPCSユニット80が設けられてもよい。 Although FIG. 1 representatively shows four PCS units 80, more or fewer PCS units 80 may be provided.
 図2は、本開示の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present disclosure.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 With reference to FIG. 2, the PCS unit 80 includes four power collection units 60 and a PCS (power converter) 8 . PCS 8 includes copper bar 7 and power converter 9 .
 図2では、4つの集電ユニット60を代表的に示しているが、さらに多数または少数の集電ユニット60が設けられてもよい。 Although FIG. 2 representatively shows four collector units 60, more or fewer collector units 60 may be provided.
 図3は、本開示の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing the configuration of the current collecting unit according to the embodiment of the present disclosure.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3 , current collection unit 60 includes four solar cell units 74 and current collection box 71 . A current collection box 71 has a copper bar 72 .
 図3では、4つの太陽電池ユニット74を代表的に示しているが、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 Although FIG. 3 representatively shows four solar cell units 74, more or fewer solar cell units 74 may be provided.
 図4は、本開示の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a diagram showing the configuration of the solar cell unit according to the embodiment of the present disclosure.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池パネル79を有する。接続箱76は、銅バー77を有する。 4, solar cell unit 74 includes four power generation units 78 and junction box 76 . The power generation section 78 has a solar panel 79 . Junction box 76 has copper bars 77 .
 図4では、4つの発電部78を代表的に示しているが、さらに多数または少数の発電部78が設けられてもよい。 Although FIG. 4 representatively shows four power generation units 78, more or fewer power generation units 78 may be provided.
 発電部78は、この例では、太陽電池パネル79である4つの太陽電池パネル79A,79B,79C,79Dが直列接続されたストリングである。 The power generation unit 78 is a string in which four solar panels 79A, 79B, 79C, and 79D, which are the solar panel 79 in this example, are connected in series.
 図4では、4つの太陽電池パネル79を代表的に示しているが、さらに多数または少数の太陽電池パネル79が設けられてもよい。 Although FIG. 4 representatively shows four solar cell panels 79, more or fewer solar cell panels 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれ、図2に示すPCS8に電気的に接続される。 In the photovoltaic power generation system 401, output lines and aggregate lines, ie, power lines, from the plurality of power generation units 78 are electrically connected to the PCS 8 shown in FIG.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, the output line 1 of the power generation section 78 has a first end connected to the power generation section 78 and a second end connected to the copper bar 77 . Each output line 1 is aggregated into an aggregate line 5 via a copper bar 77 . Copper bar 77 is provided inside junction box 76, for example.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When the power generation unit 78 receives sunlight, it converts the energy of the received sunlight into DC power and outputs the converted DC power to the output line 1 .
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 3 and 4, aggregate line 5 has a first end connected to copper bar 77 in the corresponding solar cell unit 74 and a second end connected to copper bar 72 . Each aggregate line 5 is aggregated into an aggregate line 2 via a copper bar 72 . Copper bar 72 is provided, for example, inside collector box 71 .
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2がPCS8に電気的に接続される。 1 to 4, in solar power generation system 401, each output line 1 from a plurality of power generation units 78 is aggregated into aggregate line 5, and each aggregate line 5 is aggregated into aggregate line 2, as described above. and each aggregate line 2 is electrically connected to the PCS8.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregate line 2 has a first end connected to the copper bar 72 in the corresponding collector unit 60 and a second end connected to the copper bar 7 . In PCS 8 , internal line 3 has a first end connected to copper bar 7 and a second end connected to power converter 9 .
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In the PCS 8, the power conversion unit 9, for example, outputs the DC power generated in each power generation unit 78 via the output line 1, the copper bar 77, the aggregate line 5, the copper bar 72, the aggregate line 2, the copper bar 7 and the internal line 3. , it converts the received DC power into AC power and outputs it to the aggregation line 4 .
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregate line 4 has a first end connected to the power converter 9 and a second end connected to the copper bar 73 .
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, the AC power output from the power converter 9 in each PCS 8 to each aggregate line 4 is output to the system via the copper bar 73.
[監視システムの構成]
 図5は、本開示の実施の形態に係る監視システムの構成を示す図である。
[Surveillance system configuration]
FIG. 5 is a diagram showing the configuration of a monitoring system according to an embodiment of the present disclosure.
 図5を参照して、監視システム301は、太陽光発電システム401に用いられる。監視システム301は、1または複数の判定装置101と、複数の監視装置111と、複数の収集装置151とを含む。図5では、一例として、監視システム301は、1つの判定装置101を含む。 With reference to FIG. 5, the monitoring system 301 is used in the photovoltaic power generation system 401. The monitoring system 301 includes one or more determination devices 101 , multiple monitoring devices 111 , and multiple collection devices 151 . In FIG. 5, the monitoring system 301 includes one determination device 101 as an example.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示しているが、さらに多数または少数の監視装置111が設けられてもよい。 Although FIG. 5 representatively shows four monitoring devices 111 provided corresponding to one current collecting unit 60, more or fewer monitoring devices 111 may be provided.
 監視システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。 In the monitoring system 301, sensor information in the monitoring device 111, which is a child device, is transmitted to the collection device 151 regularly or irregularly.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 The monitoring device 111 is provided in the current collecting unit 60, for example. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is, for example, electrically connected to a corresponding output line 1 and aggregate line 5 .
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 using a sensor. Also, the monitoring device 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 using a sensor.
 収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collection device 151 is provided near the PCS8, for example. More specifically, the collection device 151 is provided corresponding to the PCS 8 and electrically connected to the copper bar 7 via the signal line 46 .
 監視装置111および収集装置151は、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより情報の送受信を行う。 The monitoring device 111 and the collection device 151 transmit and receive information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果を示す監視情報を送信する。収集装置151は、各監視装置111の計測結果を収集する。 More specifically, each monitoring device 111 transmits monitoring information indicating the measurement results of the current and voltage of the corresponding output line. The collection device 151 collects measurement results of each monitoring device 111 .
[監視装置の構成]
 図6は、本開示の実施の形態に係る監視システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of monitoring device]
FIG. 6 is a diagram showing the configuration of a monitoring device in the monitoring system according to the embodiment of the present disclosure. In FIG. 6 output line 1, aggregate line 5 and copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, the output line 1 includes a plus side output line 1p and a minus side output line 1n. Aggregate line 5 includes a plus side aggregate line 5p and a minus side aggregate line 5n. Copper bars 77 include plus side copper bars 77p and minus side copper bars 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, the copper bars 72 in the current collection box 71 shown in FIG. 3 include plus side copper bars 72p and minus side copper bars 72n corresponding to the plus side aggregate line 5p and the minus side aggregate line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 The plus side output line 1p has a first end connected to the corresponding power generating section 78 and a second end connected to the plus side copper bar 77p. The negative output line 1n has a first end connected to the corresponding power generation section 78 and a second end connected to the negative copper bar 77n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The plus side aggregate line 5 p has a first end connected to the plus side copper bar 77 p and a second end connected to the plus side copper bar 72 p in the current collection box 71 . The negative aggregate line 5n has a first end connected to the negative copper bar 77n and a second end connected to the negative copper bar 72n in the collector box 71 .
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. Note that the monitoring device 111 may have more or less current sensors 16 depending on the number of output lines 1 .
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 The monitoring device 111 is provided near the power generation unit 78, for example. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. Note that the monitoring device 111 may be provided outside the connection box 76 .
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 The monitoring device 111 is electrically connected to, for example, the plus side aggregate line 5p and the minus side aggregate line 5n via the plus side power supply line 26p and the minus side power supply line 26n, respectively. Each of the plus-side power supply line 26p and the minus-side power supply line 26n is also referred to as a power supply line 26 hereinafter.
 各監視装置111は、対応の発電部78に関する計測結果を示す監視情報を、自己および収集装置151に接続される電力線を介して送信する。 Each monitoring device 111 transmits monitoring information indicating the measurement result of the corresponding power generation unit 78 via the power line connected to itself and the collection device 151 .
 詳細には、監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。 Specifically, the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects the measurement results of the multiple monitoring devices 111 . More specifically, the communication section 14 can transmit and receive information via the aggregate lines 2 and 5 . Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power line 26 and the aggregate lines 2 and 5 .
 検出処理部11は、たとえば、対応の出力ライン1の電流および電圧の計測結果を示す監視情報を所定時間ごとに作成するように設定されている。所定時間は、たとえば1分である。 The detection processing unit 11 is set, for example, to create monitoring information indicating the measurement results of the current and voltage of the corresponding output line 1 every predetermined time. The predetermined time is, for example, 1 minute.
 電流センサ16は、出力ライン1の電流を計測する。より詳細には、電流センサ16は、たとえば、ホール素子タイプの電流プローブである。電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を計測し、計測結果を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 measures the current of the output line 1. More specifically, the current sensor 16 is, for example, a Hall element type current probe. The current sensor 16 uses power received from a power supply circuit (not shown) of the monitoring device 111 to measure the current flowing through the corresponding negative output line 1n and outputs a signal indicating the measurement result to the detection processing unit 11 . The current sensor 16 may measure the current flowing through the plus side output line 1p.
 電圧センサ17は、出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を計測し、計測結果を示す信号を検出処理部11へ出力する。 The voltage sensor 17 measures the voltage of the output line 1. More specifically, voltage sensor 17 measures the voltage between plus side copper bar 77p and minus side copper bar 77n and outputs a signal indicating the measurement result to detection processing unit 11 .
 検出処理部11は、たとえば、所定時間ごとに、各電流センサ16および電圧センサ17から受けた各計測信号に対して平均化およびフィルタリング等の信号処理を行った信号をデジタル信号に変換する。 For example, the detection processing unit 11 performs signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and each voltage sensor 17 at predetermined time intervals, and converts the signals into digital signals.
 検出処理部11は、作成した各デジタル信号の示す計測値と、対応の電流センサ16のID(以下、電流センサIDとも称する。)、電圧センサ17のID(以下、電圧センサIDとも称する。)、および自己の監視装置111のID(以下、監視装置IDとも称する。)とを含む監視情報を作成する。 The detection processing unit 11 stores the measured value indicated by each created digital signal, the ID of the corresponding current sensor 16 (hereinafter also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter also referred to as voltage sensor ID). , and the ID of its own monitoring device 111 (hereinafter also referred to as a monitoring device ID).
 検出処理部11は、送信元IDが自己の監視装置IDであり、送信先IDが収集装置151のIDであり、データ部分が監視情報である監視情報パケットを作成する。そして、検出処理部11は、作成した監視情報パケットを通信部14へ出力する。なお、検出処理部11は、監視情報パケットにシーケンス番号を含めてもよい。 The detection processing unit 11 creates a monitoring information packet whose source ID is its own monitoring device ID, whose destination ID is the ID of the collection device 151, and whose data portion is monitoring information. The detection processing unit 11 then outputs the created monitoring information packet to the communication unit 14 . Note that the detection processing unit 11 may include a sequence number in the monitoring information packet.
 通信部14は、検出処理部11から受ける監視情報パケットを収集装置151へ送信する。 The communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151 .
 再び図5を参照して、収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視情報パケットを複数の監視装置111から受信する。  Referring to FIG. 5 again, the collection device 151 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives monitoring information packets from the plurality of monitoring devices 111, for example.
 収集装置151は、カウンタおよび記憶部を有しており、監視装置111から監視情報パケットを受信すると、受信した監視情報パケットから監視情報を取得するとともに、カウンタにおけるカウント値を受信時刻として取得する。そして、収集装置151は、受信時刻を監視情報に含めた後、図示しない記憶部に当該監視情報を保存する。 The collection device 151 has a counter and a storage unit, and upon receiving a monitoring information packet from the monitoring device 111, obtains monitoring information from the received monitoring information packet and obtains the count value in the counter as the reception time. After including the reception time in the monitoring information, the collection device 151 saves the monitoring information in a storage unit (not shown).
[判定装置の構成]
 図7は、本開示の実施の形態に係る監視システムにおける判定装置の構成を示す図である。
[Configuration of determination device]
FIG. 7 is a diagram showing the configuration of a determination device in the monitoring system according to the embodiment of the present disclosure.
 図7を参照して、判定装置101は、通信処理部(出力部)81と、異常判定部82と、記憶部83とを備える。異常判定部82は、第1取得部91と、第2取得部92と、算出部93と、検知部94とを含む。通信処理部81および異常判定部82の一部または全部は、たとえば、CPU(Central Processing Unit)およびDSP(Digital Signal Processor)等のプロセッサにより実現される。記憶部83は、たとえば不揮発性メモリである。 With reference to FIG. 7, the determination device 101 includes a communication processing unit (output unit) 81, an abnormality determination unit 82, and a storage unit 83. Abnormality determination unit 82 includes a first acquisition unit 91 , a second acquisition unit 92 , a calculation unit 93 , and a detection unit 94 . Part or all of the communication processing unit 81 and the abnormality determination unit 82 are implemented by processors such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor). Storage unit 83 is, for example, a non-volatile memory.
 記憶部83には、たとえば、管理対象の監視装置111のIDすなわち監視装置IDが登録されている。また、記憶部83には、監視装置IDと当該監視装置IDを有する監視装置111に含まれる各センサのIDすなわち電流センサIDおよび電圧センサIDとの対応関係R1が登録されている。 For example, the ID of the monitoring device 111 to be managed, that is, the monitoring device ID is registered in the storage unit 83 . Further, the storage unit 83 registers a correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID.
 判定装置101は、たとえばサーバであり、監視情報を収集装置151から定期的に取得し、取得した監視情報を処理する。たとえば、判定装置101は、複数の収集装置151のうちの一部または全部から監視情報を受信し、PCSユニット80ごとに、後述の異常判定を行う。なお、判定装置101は、たとえば収集装置151に内蔵される構成であってもよい。 The determination device 101 is, for example, a server, periodically acquires monitoring information from the collecting device 151, and processes the acquired monitoring information. For example, the determination device 101 receives monitoring information from some or all of the plurality of collection devices 151 and performs abnormality determination, which will be described later, for each PCS unit 80 . Note that the determination device 101 may be configured to be built in the collection device 151, for example.
 より詳細には、判定装置101における通信処理部81は、ネットワークを介して、収集装置151等の他の装置と情報の送受信を行う。 More specifically, the communication processing unit 81 in the determination device 101 transmits and receives information to and from other devices such as the collection device 151 via the network.
 通信処理部81は、指定された日毎処理タイミング、たとえば毎日の午前0時において各発電部78の出力電流および出力電圧の計測結果を示す監視情報を取得する。なお、判定装置101を収集装置151に内蔵する構成にすれば、より短い間隔で監視情報を容易に収集することができる。 The communication processing unit 81 acquires monitoring information indicating the measurement results of the output current and output voltage of each power generation unit 78 at a designated daily processing timing, for example, at midnight every day. If the determination device 101 is incorporated in the collection device 151, monitoring information can be easily collected at shorter intervals.
 より詳細には、通信処理部81は、日毎処理タイミングが到来すると、記憶部83に登録されている各監視装置IDを参照し、参照した各監視装置IDに対応し、日毎処理タイミングの24時間前から当該日毎処理タイミングまで(以下、処理日とも称する。)に属する受信時刻を含む監視情報を要求するための監視情報要求を収集装置151へ送信する。 More specifically, when the daily processing timing arrives, the communication processing unit 81 refers to each monitoring device ID registered in the storage unit 83, corresponds to each of the referenced monitoring device IDs, and stores the data within 24 hours of the daily processing timing. A monitoring information request is sent to the collection device 151 for requesting monitoring information including the reception times belonging to the previous to the daily processing timing (hereinafter also referred to as processing day).
 収集装置151は、判定装置101から監視情報要求を受信すると、受信した監視情報要求に従って、監視情報要求の内容を満足する1または複数の監視情報を判定装置101へ送信する。 Upon receiving the monitoring information request from the determination device 101, the collection device 151 transmits to the determination device 101 one or more pieces of monitoring information that satisfy the contents of the monitoring information request according to the received monitoring information request.
 図8は、本開示の実施の形態に係る監視システムにおける判定装置が保持する監視情報の一例を示す図である。 FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the monitoring system according to the embodiment of the present disclosure.
 図8を参照して、監視情報は、監視装置IDと、監視装置111における各電流センサ16の電流センサIDと、各電流センサ16の計測値である電流値と、電圧センサ17の電圧センサIDと、電圧センサ17の計測値である電圧値と、受信時刻とを含む。受信時刻は、収集装置151が監視装置111から送信された監視情報を受信した時刻である。 8, the monitoring information includes a monitoring device ID, a current sensor ID of each current sensor 16 in monitoring device 111, a current value that is a measurement value of each current sensor 16, and a voltage sensor ID of voltage sensor 17. , the voltage value that is the measurement value of the voltage sensor 17, and the reception time. The reception time is the time when the collection device 151 receives the monitoring information transmitted from the monitoring device 111 .
 通信処理部81は、監視情報要求の応答として収集装置151から1または複数の監視情報を受信すると、受信した各監視情報を記憶部83に保存する。 Upon receiving one or a plurality of pieces of monitoring information from the collection device 151 as a response to the monitoring information request, the communication processing unit 81 saves each piece of received monitoring information in the storage unit 83 .
 異常判定部82は、記憶部83に保存されている複数の監視情報に基づいて、所定期間ごとに、発電部78の経年劣化などによる異常を判定する異常判定を行う。たとえば、異常判定部82は、毎月の初日に異常判定を行う。 The anomaly determination unit 82 performs an anomaly determination for determining an anomaly due to aged deterioration of the power generation unit 78 for each predetermined period based on a plurality of pieces of monitoring information stored in the storage unit 83 . For example, the abnormality determination unit 82 performs abnormality determination on the first day of every month.
[異常判定部の詳細]
 異常判定部82は、判定対象となる発電部78(以下、「対象発電部78」とも称する。)の発電電力を、当該対象発電部78の過去の発電電力と比較することにより、当該対象発電部78の異常判定を行う。
[Details of abnormality determination part]
The abnormality determination unit 82 compares the power generated by the power generation unit 78 to be determined (hereinafter also referred to as the “target power generation unit 78”) with the power generated in the past by the target power generation unit 78, thereby determining the target power generation. Abnormality judgment of the part 78 is performed.
 ここで、太陽高度などの日射条件、天候および影などの発電環境が発電電力に影響を与えることにより、対象発電部78の異常判定において正確な判定結果を得ることができない可能性がある。このため、異常判定部82は、対象発電部78の異常判定において、対象発電部78の発電環境と、基準となる年(以下、単に「基準年」と称する。)における当該対象発電部78の発電環境とに基づいて、比較の対象となる発電電力を決定する。 Here, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination of the target power generation unit 78 due to the influence of the power generation environment such as solar radiation conditions such as the altitude of the sun, weather and shadows on the generated power. Therefore, in the abnormality determination of the target power generation unit 78, the abnormality determination unit 82 determines the power generation environment of the target power generation unit 78 and The generated power to be compared is determined based on the power generation environment.
 より詳細には、異常判定部82は、たとえば、互いに発電環境が同様の状況、すなわち、互いに日射条件が同様であり、かつ互いに影などの影響が同様である状況における、対象発電部78の発電電力と、当該対象発電部78の過去の発電電力とを比較する。 More specifically, the abnormality determination unit 82 determines the power generation of the target power generation unit 78 in, for example, a situation in which the power generation environment is similar to each other, that is, the solar radiation conditions are similar to each other, and the effects of shadows and the like are similar to each other. The power is compared with the power generated in the past by the target power generation unit 78 .
 具体的には、異常判定部82は、毎月の初日において、先月の発電電力であり、かつ影などの影響が少ないタイミングにおける発電電力と、基準年の同一月の発電電力であり、かつ影などの影響が少ないタイミングにおける発電電力とを比較する。以下、異常判定部82の詳細について説明する。 Specifically, on the first day of each month, the abnormality determination unit 82 determines whether the generated power is the last month's generated power at a timing when the influence of shadows or the like is small, and the generated power in the same month of the reference year and the shadows or the like. Compare with the generated power at the timing when the influence of Details of the abnormality determination unit 82 will be described below.
(a)第1取得部
(a-1)疑似最大値の取得
 図9は、本開示の実施の形態に係る判定装置における第1取得部の動作を説明するための図である。
(a) First Acquisition Unit (a-1) Acquisition of Pseudo Maximum Value FIG. 9 is a diagram for explaining the operation of the first acquisition unit in the determination device according to the embodiment of the present disclosure.
 図9を参照して、第1取得部91は、各発電部78の発電電力の統計値を取得し、取得した統計値と、当該統計値の取得に用いた各発電電力のうちの、対象発電部78の発電電力との組を取得する。 Referring to FIG. 9 , the first acquisition unit 91 acquires the statistical value of the generated power of each power generation unit 78, the acquired statistical value, and the target Acquire a pair with the power generated by the power generation unit 78 .
 より詳細には、第1取得部91は、記憶部83に保存されている複数の監視情報の各々が示す電流の計測結果および電圧の計測結果に基づいて、同一のPCS8に接続された各発電部78の所定時間ごとの発電電力の一覧を所定期間の単位で作成する。 More specifically, the first acquisition unit 91 acquires each power generation connected to the same PCS 8 based on the current measurement result and the voltage measurement result indicated by each of the plurality of pieces of monitoring information stored in the storage unit 83. A list of power generated by the unit 78 for each predetermined time period is created in units of a predetermined period.
 たとえば、第1取得部91は、1分ごとの、各発電部78の発電電力の一覧を1か月単位で作成する。 For example, the first acquisition unit 91 creates a list of power generated by each power generation unit 78 for each minute on a monthly basis.
 なお、第1取得部91は、各発電部78の発電電力の一覧を、1か月よりも長い期間の単位で作成する構成であってもよい。しかしながら、当該期間の長さが長い場合、当該期間における太陽高度などの日射条件が変化するため、後述するような、対象発電部78の発電電力の比較において、互いに日射条件が異なる状況における発電電力同士を比較する可能性がある。 Note that the first acquisition unit 91 may be configured to create a list of power generated by each power generation unit 78 in units of periods longer than one month. However, if the length of the period is long, the solar radiation conditions such as the altitude of the sun change during the period. can be compared with each other.
 また、第1取得部91は、各発電部78の発電電力の一覧を、1週間など、1か月よりも短い期間の単位で作成する構成であってもよい。しかしながら、当該期間の長さが短い場合、長梅雨など、当該期間にわたって継続する気象の影響を避けることが困難であり、互いに日射条件が異なる状況における発電電力同士を比較する可能性がある。 Also, the first acquisition unit 91 may be configured to create a list of power generated by each power generation unit 78 in units of a period shorter than one month, such as one week. However, when the length of the period is short, it is difficult to avoid the influence of weather that continues over the period, such as a long rainy season, and there is a possibility that the generated power under different solar radiation conditions will be compared.
 このため、第1取得部91は、1か月程度の長さの単位で、各発電部78の発電電力の一覧を作成する構成であることが好ましい。 For this reason, it is preferable that the first acquisition unit 91 is configured to create a list of power generated by each power generation unit 78 in units of about one month.
 また、第1取得部91は、作成した発電電力の一覧を参照して、所定時間ごとの、各発電部78の発電電力の統計値を取得する。各発電部78の発電電力の統計値は、たとえば、同一のタイミングにおいて得られた各発電部78の発電電力のうちの、最大値、中央値、最大値からx番目の値、または上位x個の平均値などである。 The first acquisition unit 91 also refers to the created power generation list and acquires the statistical value of the power generation of each power generation unit 78 for each predetermined time. The statistical value of the generated power of each power generation unit 78 is, for example, the maximum value, the median value, the x-th value from the maximum value, or the top x values of the generated power of each power generation unit 78 obtained at the same timing. such as the average value of
 ここでは、第1取得部91は、1分ごとの、各発電部78の発電電力のうちの最大値(以下、「疑似最大値」と称する。)を統計値として取得する、すなわち求める場合について説明する。 Here, the first acquisition unit 91 acquires, i.e., obtains, the maximum value (hereinafter referred to as “pseudo maximum value”) of the power generated by each power generation unit 78 for each minute as a statistical value. explain.
 具体的には、あるPCS8にk個の発電部78(1)~78(k)が接続されているとする。この場合、第1取得部91は、図9に示すように、たとえば、発電部78(1)~78(k)のうち、2021年1月1日の7:00における疑似最大値として、発電部78(α)の発電電力Wαを特定し、2021年1月1日の7:01における疑似最大値として、発電部78(β)の発電電力Wβを特定し、2021年1月1日の7:02における疑似最大値として、発電部78(k)の発電電力Wkを特定する。このように、第1取得部91は、1か月分について、1分ごとの疑似最大値を特定する。 Specifically, it is assumed that k power generation units 78(1) to 78(k) are connected to a certain PCS8. In this case, as shown in FIG. 9, the first acquisition unit 91, for example, among the power generation units 78(1) to 78(k), obtains the power Identify the generated power Wα of the unit 78(α), identify the generated power Wβ of the power generation unit 78(β) as the pseudo maximum value at 7:01 on January 1, 2021, and specify the generated power Wβ of the power generation unit 78(β) on January 1, 2021 The power generation Wk of the power generation unit 78(k) is specified as the pseudo maximum value at 7:02. In this way, the first obtaining unit 91 identifies the pseudo maximum value for each minute for one month.
 なお、電流センサ16および電圧センサ17の少なくともいずれか一方に異常が生じた場合、または天候の急変が生じた場合など、発電部78の発電電力に急な変化が生じることがある。このような場合において、第1取得部91が、急な変化が生じた発電電力を疑似最大値として取得した場合、後述する異常判定において正確な判定結果を得ることができない可能性がある。 The power generated by the power generation unit 78 may suddenly change when at least one of the current sensor 16 and the voltage sensor 17 malfunctions, or when the weather suddenly changes. In such a case, if the first acquisition unit 91 acquires the generated power with a sudden change as the pseudo maximum value, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination described later.
 このため、第1取得部91は、疑似最大値を取得する代わりに、たとえば、各発電部78の発電電力のうちの中央値(以下、「疑似中央値」と称する。)を統計値として取得してもよい。以下、疑似最大値および疑似中央値を「疑似発電値」と総称する。 Therefore, instead of obtaining the pseudo maximum value, the first obtaining unit 91 obtains, for example, the median value of the power generated by each power generation unit 78 (hereinafter referred to as the “pseudo median value”) as a statistical value. You may Hereinafter, the pseudo maximum value and the pseudo median value are collectively referred to as "pseudo power generation value".
 また、第1取得部91は、統計値として疑似最大値を取得する場合、たとえば、同一のタイミングにおいて得られた他の発電電力と比較して突出して大きい値以外の発電電力を疑似最大値として取得する構成であってもよい。 In addition, when the first acquisition unit 91 acquires the pseudo maximum value as a statistical value, for example, the generated power other than the value that is significantly larger than the other generated power obtained at the same timing is set as the pseudo maximum value. It may be configured to acquire.
 なお、第1取得部91は、同一のPCS8に接続された各発電部78の発電電力の統計値を取得する構成に限らず、たとえば、複数のPCS8の各々に接続された各発電部78の発電電力の統計値を取得する構成であってもよい。 Note that the first acquisition unit 91 is not limited to the configuration that acquires the statistic value of the power generated by each power generation unit 78 connected to the same PCS 8 . It may be configured to acquire the statistic value of the generated power.
 しかしながら、第1取得部91が、同一のPCS8に接続された各発電部78の発電電力の中から統計値を取得する構成である場合、後述する対象発電部78の異常判定において、当該PCS8の動作状況などによる影響を考慮した判定を行うことができ、かつ記憶部83における記憶領域の使用量を適切に抑えることができる。 However, if the first acquisition unit 91 is configured to acquire the statistic value from the power generated by each power generation unit 78 connected to the same PCS 8, in the abnormality determination of the target power generation unit 78 described later, the PCS 8 It is possible to make a determination taking into account the influence of operating conditions and the like, and to appropriately suppress the amount of storage area used in the storage unit 83 .
(a-2)疑似発電値と対象電力との組の取得
 第1取得部91は、取得した疑似発電値と、当該疑似発電値の取得に用いた各発電電力のうちの対象発電部78の発電電力(以下、「対象電力」とも称する。)との組を取得する。疑似発電値の取得に用いた各発電電力は、当該疑似発電値を求める元となった発電電力、すなわち当該疑似発電値と同一のタイミングにおいて得られた各発電部78の発電電力である。
(a-2) Acquisition of pairs of simulated power generation value and target power Acquire a set with generated power (hereinafter also referred to as “target power”). Each generated power used to acquire the pseudo power generation value is the power generated from which the pseudo power generation value is obtained, that is, the power generated by each power generation unit 78 obtained at the same timing as the pseudo power generation value.
 たとえば、発電部78(1)が対象発電部78であり、対象発電部78(1)の7:00,7:01,7:02,・・・の各タイミングにおける発電電力がそれぞれ「W11」「W12」「W13」・・・であるとする。 For example, the power generation unit 78(1) is the target power generation unit 78, and the power generated by the target power generation unit 78(1) at each timing of 7:00, 7:01, 7:02, . Suppose that they are "W12", "W13", and so on.
 この場合、第1取得部91は、疑似最大値と対象電力の組として、(Wα,W11),(Wβ,W12),(Wk,W13),・・・を取得する。 In this case, the first acquisition unit 91 acquires (Wα, W11), (Wβ, W12), (Wk, W13), .
 図10は、本開示の実施の形態に係る判定装置における第1取得部により取得された複数の組をプロットした散布図である。図10において、横軸は、疑似最大値を示し、縦軸は対象電力を示す。 FIG. 10 is a scatter diagram plotting a plurality of sets acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure. In FIG. 10, the horizontal axis indicates the pseudo maximum value, and the vertical axis indicates the target power.
 図10を参照して、第1取得部91は、たとえば、図10に示すグラフにおいて、取得した1か月分の組(Wα,W11),(Wβ,W12),(Wk,W13),・・・に対応する各位置に点をプロットする。そして、第1取得部91は、作成した散布図を示すデータを記憶部83に保存する。第1取得部91によりプロットされる点のうちの多くは、傾きが1である直線Gの周辺であり、かつ直線Gよりも横軸側に位置する。すなわち、各点とグラフの原点とを通る直線の傾きは、1よりも小さくなる。 Referring to FIG. 10, first acquiring unit 91 obtains pairs (Wα, W11), (Wβ, W12), (Wk, W13), . Plot a point at each position corresponding to . Then, the first acquisition unit 91 saves data representing the created scatter diagram in the storage unit 83 . Most of the points plotted by the first acquisition unit 91 are around the straight line G with a slope of 1 and are located on the horizontal axis side of the straight line G. That is, the slope of the straight line passing through each point and the origin of the graph is less than one.
(b)第2取得部
(b-1)代表値の取得
 第2取得部92は、記憶部83に保存された散布図を参照して、発電部78の発電電力の異なる範囲を示す複数の区間(以下、「階級セル」と称する。)を設ける区間分けを行う。
(b) Second acquisition unit (b-1) Acquisition of representative value Segmentation is performed by providing segments (hereinafter referred to as “class cells”).
 たとえば、第2取得部92は、第1取得部91により取得された複数の組に含まれる疑似最大値に基づいて、発電部78の発電電力のとり得る範囲を特定し、特定した範囲を50W単位で複数の階級セルに分ける。 For example, the second acquisition unit 92 identifies the possible range of power generated by the power generation unit 78 based on the pseudo maximum values included in the plurality of sets obtained by the first acquisition unit 91, and sets the identified range to 50 W. Divide into multiple class cells by unit.
 なお、第2取得部92は、対象発電部78の定格容量、およびPCS8の電力変換容量などに基づいて、発電部78の発電電力のとり得る範囲の一部を、複数の階級セルに分ける構成であってもよい。 The second acquisition unit 92 divides a part of the possible range of the generated power of the power generation unit 78 into a plurality of class cells based on the rated capacity of the target power generation unit 78, the power conversion capacity of the PCS 8, and the like. may be
 具体的には、同一のPCS8に接続された各発電部78の発電電力の合計が当該PCS8の電力変換容量を超える場合、すなわち過積載の場合では、発電部78の発電電力が3000Wに達しない、または図10に示すグラフにおいて縦軸が3000Wの付近にプロットされる点は直線Gから離れる可能性がある。 Specifically, when the total power generated by each power generation unit 78 connected to the same PCS 8 exceeds the power conversion capacity of the PCS 8, that is, in the case of overloading, the power generated by the power generation unit 78 does not reach 3000W. , or points plotted near 3000 W on the vertical axis in the graph shown in FIG.
 このため、第2取得部92は、発電部78の発電電力のとり得る範囲が0W~3000Wであったとしても、たとえば、横軸の最大値を2500Wとし、発電量の少ない低発電領域を除外するために横軸の最小値を500Wとして、横軸の値が500W~2500Wまでの範囲を、500W~550Wの区間である階級セル「1」、550W~600Wの区間である階級セル「2」、・・・、2450W~2500Wの区画である階級セル「40」に分ける。 Therefore, even if the range of power generated by the power generation unit 78 is 0 W to 3000 W, the second acquisition unit 92 sets the maximum value of the horizontal axis to 2500 W, and excludes the low power generation region where the amount of power generation is small. In order to do so, the minimum value of the horizontal axis is set to 500 W, and the range of values on the horizontal axis from 500 W to 2500 W is defined as class cell "1", which is the section from 500 W to 550 W, and class cell "2", which is the section from 550 W to 600 W. , .
 図10では、グラフを見やすくするために、横軸の値が500W~1000Wまでの範囲を複数の階級セルに分けた状態を示している。 In FIG. 10, in order to make the graph easier to see, the range of values on the horizontal axis from 500 W to 1000 W is divided into a plurality of class cells.
 また、第2取得部92は、階級セルごとに、複数の対象電力の統計値を代表値Pとして取得する。たとえば、第2取得部92は、階級セルごとに、階級セルに含まれる複数の組のうち、対象電力が最大となる組を特定し、当該組に含まれる対象電力を代表値Pとして取得する。 In addition, the second acquisition unit 92 acquires the statistical values of multiple target powers as the representative value P for each class cell. For example, the second acquisition unit 92 identifies, for each class cell, the group having the maximum target power among the plurality of groups included in the class cell, and acquires the target power contained in the group as the representative value P. .
 これにより、各階級セルの範囲において、対象発電部78が出力し得る最大の発電電力、すなわち影などの影響が低い発電環境における発電電力を代表値Pとして取得することができる。 Thus, in the range of each class cell, the maximum generated power that can be output by the target power generation unit 78, that is, the generated power in a power generation environment where the influence of shadows and the like is low can be obtained as the representative value P.
 図10に示すグラフでは、階級セルごとに特定された代表値Pに対応する点を、他の点よりも大きく表している。 In the graph shown in FIG. 10, the point corresponding to the representative value P specified for each class cell is shown larger than the other points.
 なお、第2取得部92は、階級セルに含まれる組が所定数以下である場合、当該階級セルの代表値Pを取得しない構成であってもよい。このような構成により、第2取得部92により取得される代表値Pの信頼性を確保することができる。 Note that the second acquisition unit 92 may be configured not to acquire the representative value P of the class cell when the number of pairs included in the class cell is equal to or less than a predetermined number. With such a configuration, the reliability of the representative value P acquired by the second acquisition unit 92 can be ensured.
 また、第2取得部92は、第1取得部91が疑似発電値として疑似中央値を取得する場合、階級セルごとに、複数の対象電力のうちの中央値を代表値Pとして取得する。 Also, when the first acquisition unit 91 acquires the pseudo median value as the pseudo power generation value, the second acquisition unit 92 acquires the median value among the plurality of target powers as the representative value P for each class cell.
(b-2)代表値の保存
 第2取得部92は、対象発電部78ごとに、たとえば、代表値Pと、対象発電部78のID、判定対象となる年および月(以下、「判定月」とも称する。)、ならびに階級セルの番号を対応づけて記憶部83に保存する。
(b-2) Storage of representative value For each target power generation unit 78, the second acquisition unit 92 stores, for example, the representative value P, the ID of the target power generation unit 78, the year and month to be determined (hereinafter referred to as “determination month ”, and the class cell number are associated with each other and stored in the storage unit 83 .
 図11は、本開示の実施の形態に係る判定装置における記憶部に保存される代表値を示す図である。図11に示す表は、基準年からn年後までの1月における各階級セルの代表値Pを示している。第2取得部92は、1月における各階級セルの代表値Pの取得を基準年からn年間繰り返すことにより、当該表を作成することができる。当該表は、たとえば、基準年からn年後の2月1日に作成される。 FIG. 11 is a diagram showing representative values stored in the storage unit in the determination device according to the embodiment of the present disclosure. The table shown in FIG. 11 shows the representative value P of each class cell in January from the base year to n years later. The second acquisition unit 92 can create the table by repeating the acquisition of the representative value P of each class cell in January for n years from the reference year. The table is created, for example, on February 1, n years after the base year.
 図11を参照して、ここでは、第2取得部92は、代表値Pを、P(s,c,y,m)の形式で記憶部83に保存する。P(s,c,y,m)において、「s」は対象発電部78のIDを示し、「c」は階級セルの番号を示し、「y」は判定対象の年を示し、「m」は判定対象の月を示す。 Referring to FIG. 11, here, the second acquisition unit 92 stores the representative value P in the storage unit 83 in the form of P(s, c, y, m). In P(s, c, y, m), "s" indicates the ID of the target power generation unit 78, "c" indicates the class cell number, "y" indicates the year to be judged, and "m" indicates the month to be judged.
 第2取得部92により取得された代表値Pが発電部78(1)の代表値Pであり、2021年1月における階級セル「1」の代表値Pであるとする。また、発電部78(1)のIDが「1」であるとする。この場合、第2取得部92は、たとえば、P(1,1,2021,1)を記憶部83に保存する。 Assume that the representative value P acquired by the second acquisition unit 92 is the representative value P of the power generation unit 78(1) and the representative value P of the class cell "1" in January 2021. It is also assumed that the ID of power generation unit 78(1) is "1". In this case, the second acquisition unit 92 stores P(1, 1, 2021, 1) in the storage unit 83, for example.
 図11に示す例では、発電部78(1)の代表値Pであって、2021年からn年後までの1月における階級セルごとの代表値Pが示されている。このように、第2取得部92は、発電部78ごとに、基準年からn年後までの各月の代表値Pであって、階級セルごとの代表値Pを記憶部83に保存する。 In the example shown in FIG. 11, the representative value P of the power generation unit 78(1) is shown for each class cell in January from 2021 to n years later. In this way, the second obtaining unit 92 stores the representative value P for each class cell, which is the representative value P for each month from the base year to n years later, in the storage unit 83 for each power generation unit 78 .
 第2取得部92は、2022年以降も同様に、たとえば2月1日において、先月の各階級セルの代表値Pを取得し、取得した代表値Pを図11に示す表に追加することにより、代表値を保存する。第2取得部92は、1月に限らず、各月についても同様に代表値Pの保存を行う。 Similarly, after 2022, the second acquisition unit 92 acquires the representative value P of each class cell of the last month on February 1, for example, and adds the acquired representative value P to the table shown in FIG. , to store representative values. The second acquisition unit 92 similarly stores the representative value P not only for January but also for each month.
 また、第2取得部92は、上記のような各月の代表値Pの保存を、発電部78ごとに行う。 Also, the second acquisition unit 92 stores the representative value P for each month as described above for each power generation unit 78 .
(c)算出部
 算出部93は、対象発電部78の発電電力と、基準年における対象発電部78の発電電力とに基づいて、対象発電部78の発電性能を示す性能指標Inを算出する。より詳細には、算出部93は、記憶部83に保存されている複数の代表値Pに基づいて、各対象発電部78について、階級セルごとに、基準年における判定月の代表値Pと、基準年からn年後の判定月の代表値Pとの比Rを算出する。そして、算出部93は、算出した階級セルごとの比Rの統計値を、対象発電部78のn年後の性能指標Inとして取得する。階級セルごとの比Rの統計値は、階級セルごとの比Rのうちの最大値、中央値、最大値からx番目の値、または上位x個の平均値などである。
(c) Calculation Unit The calculation unit 93 calculates a performance index In indicating the power generation performance of the target power generation unit 78 based on the power generated by the target power generation unit 78 and the power generated by the target power generation unit 78 in the reference year. More specifically, the calculation unit 93 calculates, for each class cell, the representative value P of the determination month in the reference year for each target power generation unit 78 based on the plurality of representative values P stored in the storage unit 83, A ratio R to the representative value P of the judgment month n years after the reference year is calculated. Then, the calculation unit 93 acquires the calculated statistical value of the ratio R for each class cell as the performance index In of the target power generation unit 78 after n years. The statistical value of the ratio R for each class cell is the maximum value, the median value, the x-th value from the maximum value, or the average value of the top x values among the ratios R for each class cell.
 ここでは、2022年1月における対象発電部78(1)の性能指標Inを算出する方法について説明する。 Here, a method for calculating the performance index In of the target power generation unit 78(1) in January 2022 will be described.
 具体的には、算出部93は、対象発電部78(1)について、階級セル「1」の2021年1月の代表値P(1,1,2021,1)と、階級セル「1」の2022年1月の代表値P(1,1,2022,1)との比R(=P(1,1,2022,1)/P(1,1,2021,1))を算出する。 Specifically, the calculation unit 93 calculates the representative value P (1, 1, 2021, 1) in January 2021 of the class cell “1” and the A ratio R (=P(1,1,2022,1)/P(1,1,2021,1)) to the representative value P(1,1,2022,1) in January 2022 is calculated.
 また、算出部93は、たとえば、発電部78(1)について、階級セル「2」の2021年1月の代表値P(1,2,2021,1)と、階級セル「2」の2022年1月の代表値P(1,2,2022,1)との比R(=P(1,2,2022,1)/P(1,2,2021,1))を算出する。 Further, the calculation unit 93 calculates, for example, the representative value P(1, 2, 2021, 1) for January 2021 of the class cell “2” and the representative value P(1, 2, 2021, 1) for the class cell “2” for A ratio R (=P(1,2,2022,1)/P(1,2,2021,1)) to the representative value P(1,2,2022,1) in January is calculated.
 算出部93は、上記のような算出方法を用いて、階級セル「1」~「40」にそれぞれ対応する40個の比Rを算出する。そして、算出部93は、たとえば、算出した40個の比Rのうちの中央値を、2022年1月における発電部78(1)の性能指標Inとして取得する。 The calculation unit 93 calculates 40 ratios R respectively corresponding to the class cells "1" to "40" using the calculation method described above. Then, the calculation unit 93 acquires, for example, the median value of the calculated 40 ratios R as the performance index In of the power generation unit 78(1) in January 2022.
 算出部93は、2022年2月以降の各月についても同様の方法を用いて発電部78(1)の性能指標Inを取得し、取得した性能指標Inを記憶部83に保存する。これにより、算出部93は、発電部78(1)の性能指標Inの時系列変化を取得する。 The calculation unit 93 acquires the performance index In of the power generation unit 78 ( 1 ) using the same method for each month from February 2022 onwards, and stores the acquired performance index In in the storage unit 83 . Thereby, the calculation unit 93 acquires the time-series change in the performance index In of the power generation unit 78(1).
 また、算出部93は、他の対象発電部78についても同様に、性能指標Inの時系列変化を取得し、取得した性能指標Inを記憶部83に保存する。 Similarly, the calculation unit 93 acquires time-series changes in the performance index In of the other target power generation units 78 and stores the acquired performance index In in the storage unit 83 .
 なお、算出部93は、所定期間において、階級セルごとの比Rの分散が所定の閾値よりも大きい場合、または監視情報に含まれる計測結果を示すデータの欠損等が所定の閾値以上である場合などにおいては、当該所定期間の性能指標Inを取得しない構成であってもよい。 It should be noted that the calculation unit 93 calculates, in a predetermined period, when the variance of the ratio R for each class cell is greater than a predetermined threshold, or when the loss of data indicating the measurement results included in the monitoring information is greater than or equal to a predetermined threshold. etc., the configuration may be such that the performance index In for the predetermined period is not acquired.
(d)検知部
 図12~図14は、本開示の実施の形態に係る判定装置における算出部により取得される性能指標の時系列変化の一例を示すグラフである。
(d) Detector FIGS. 12 to 14 are graphs showing an example of time-series changes in the performance index acquired by the calculator in the determination device according to the embodiment of the present disclosure.
 図12~図14を参照して、検知部94は、算出部93により算出された性能指標Inに基づいて、対象発電部78の異常を検知する検知処理を行う。たとえば、検知部94は、所定期間ごとの複数の検知タイミングにおいて検知処理を行う。検知部94は、検知処理において、算出部93により算出された複数の比Rのうちのいずれか1つである性能指標Inに基づいて、各対象発電部78について、異常の有無を判定する異常判定を行う。 12 to 14, the detection unit 94 performs detection processing for detecting an abnormality in the target power generation unit 78 based on the performance index In calculated by the calculation unit 93. FIG. For example, the detection unit 94 performs detection processing at a plurality of detection timings for each predetermined period. In the detection process, the detection unit 94 determines whether or not there is an abnormality for each target power generation unit 78 based on the performance index In, which is one of the plurality of ratios R calculated by the calculation unit 93. make a judgment.
 より詳細には、検知部94は、たとえば、所定期間が経過するたびに、記憶部83に保存されている対象発電部78の複数の性能指標Inに基づいて、性能指標Inの時系列変化が所定条件を満たすか否かを判断することにより、当該対象発電部78に異常が生じているか否かを判定する。 More specifically, for example, every time a predetermined period of time elapses, the detection unit 94 detects a time-series change in the performance index In based on a plurality of performance indexes In of the target power generation unit 78 stored in the storage unit 83. By determining whether or not a predetermined condition is satisfied, it is determined whether or not there is an abnormality in the target power generation section 78 .
 たとえば、検知部94は、基準年と比較して性能指標Inの減少率が第1所定値を超えた場合、または1年あたりの性能指標Inの減少率が第2所定値を超えた場合、性能指標Inの時系列変化が所定条件を満たすと判断する。 For example, the detection unit 94 detects when the rate of decrease of the performance index In exceeds a first predetermined value compared to the reference year, or when the rate of decrease of the performance index In per year exceeds a second predetermined value, It is determined that the time series change of the performance index In satisfies a predetermined condition.
 第1所定値は、たとえば2%であり、第2所定値は、たとえば0.8%/年である。図12~図14では、性能指標Inの減少率が第1所定値を超えるか否かの基準を示す線L1、および1年あたりの性能指標Inの減少率が第2所定値を超えるか否かの基準を示す線L2を示している。 The first predetermined value is, for example, 2%, and the second predetermined value is, for example, 0.8%/year. 12 to 14, a line L1 indicating whether the rate of decrease of the performance index In exceeds a first predetermined value, and a line L1 indicating whether the rate of decrease of the performance index In per year exceeds a second predetermined value. A line L2 indicating the reference is shown.
 具体的には、図12に示すように、2022年1月~2024年10月の期間において、性能指標Inに大きな変化が無いとする。この場合、検知部94は、対象発電部78の性能指標Inの時系列変化は所定条件を満たしておらず、当該期間において対象発電部78に異常が生じていないと判定する。 Specifically, as shown in FIG. 12, it is assumed that the performance index In does not change significantly during the period from January 2022 to October 2024. In this case, the detection unit 94 determines that the chronological change in the performance index In of the target power generation unit 78 does not satisfy the predetermined condition, and that no abnormality has occurred in the target power generation unit 78 during the period.
 また、図13に示すように、2022年1月~2024年10月の期間において、性能指標Inは徐々に減少しているが、上記の所定条件は満たされていないとする。この場合においても、検知部94は、当該期間において対象発電部78に異常が生じていないと判定する。 Also, as shown in FIG. 13, the performance index In gradually decreases during the period from January 2022 to October 2024, but the above predetermined condition is not satisfied. Also in this case, the detection unit 94 determines that the target power generation unit 78 does not have an abnormality during the period.
 また、図14に示すように、2022年1月~2024年1月の期間のうち、2023年7月の時点において、性能指標Inが98%未満であり、上記の所定条件が満たされているとする。この場合、検知部94は、たとえば、2023年8月1日に行う異常判定において、先月である2023年7月において対象発電部78に異常が生じていると判定し、当該対象発電部78に異常が生じている旨の判定結果を記憶部83に保存する。 Further, as shown in FIG. 14, in the period from January 2022 to January 2024, as of July 2023, the performance index In is less than 98%, and the above predetermined condition is satisfied. and In this case, for example, in the abnormality determination performed on August 1, 2023, the detection unit 94 determines that an abnormality has occurred in the target power generation unit 78 in July 2023, which is the last month. The determination result indicating that an abnormality has occurred is stored in the storage unit 83 .
(e)判定結果の警報
 通信処理部81は、同一の対象発電部78について複数回以上連続して異常が検知された場合、所定の出力を行う。上記複数回は、たとえば3回である。
(e) Warning of determination result When the same target power generation unit 78 is detected to have an abnormality more than once in succession, the communication processing unit 81 performs a predetermined output. The plurality of times is, for example, three times.
 より詳細には、通信処理部81は、たとえば、所定期間が経過するたびに、記憶部83に保存されている検知部94による判定結果を参照して、同一の対象発電部78について3か月以上連続して異常が生じている旨の判定結果が保存されている場合、管理者等に対して警報を出力する。 More specifically, the communication processing unit 81 refers to the determination result by the detection unit 94 stored in the storage unit 83 every time a predetermined period of time elapses, for example, and the same target power generation unit 78 is used for three months. If the determination result indicating that the abnormality has occurred continuously is stored, an alarm is output to the administrator or the like.
 図14に示す例の場合、2023年7月~9月の3か月間連続して性能指標Inが98%未満である。このため、たとえば、通信処理部81は、2023年9月の判定結果が得られた2023年10月1日に、対象発電部78に異常が生じている旨の警報を出力する。 In the example shown in FIG. 14, the performance index In is less than 98% continuously for three months from July to September 2023. Therefore, for example, on October 1, 2023, when the determination result for September 2023 was obtained, the communication processing unit 81 outputs an alarm to the effect that the target power generation unit 78 has an abnormality.
 たとえば、通信処理部81は、当該対象発電部78のID、および経年劣化等による異常が生じていることを、モニタに表示したり、メールで送信したりする。 For example, the communication processing unit 81 displays the ID of the target power generation unit 78 and the fact that an abnormality has occurred due to aged deterioration or the like on a monitor, or sends an e-mail.
 また、通信処理部81は、たとえば、複数の発電部78の一覧を示す画面において、当該対象発電部78のID等を明るく表示するなど、他の発電部78とは異なる表示態様で表示してもよい。 Further, the communication processing unit 81 displays in a display mode different from that of the other power generation units 78, for example, by brightly displaying the ID of the target power generation unit 78 on the screen showing the list of the plurality of power generation units 78. good too.
 なお、通信処理部81は、対象発電部78について異常が検知されるたびに、所定の出力を行う構成であってもよい。 Note that the communication processing unit 81 may be configured to output a predetermined output each time an abnormality is detected in the target power generation unit 78 .
(変形例1)
 算出部93は、対象発電部78の性能指標Inの取得において、当該対象発電部78の時間帯ごとの性能指標を取得する構成であってもよい。
(Modification 1)
In acquiring the performance index In of the target power generation unit 78 , the calculation unit 93 may be configured to acquire the performance index of the target power generation unit 78 for each time zone.
 この場合、第1取得部91は、1日を複数の時間帯に分けて、各時間帯について、疑似発電値と対象電力との組を取得する。たとえば、第1取得部91は、対象発電部78について、午前中の時間帯における複数の組と、午後の時間帯における複数の組とを取得し、図10に示すような散布図を、午前および午後の各時間帯について作成する。 In this case, the first acquisition unit 91 divides a day into a plurality of time slots and acquires a set of the simulated power generation value and the target power for each time slot. For example, the first acquisition unit 91 acquires a plurality of pairs in the morning time zone and a plurality of pairs in the afternoon time zone for the target power generation unit 78, and prepares a scatter diagram as shown in FIG. and for each time period in the afternoon.
 第2取得部92は、第1取得部91により作成された各時間帯の散布図に基づいて、各時間帯について階級セルごとの代表値Pを取得する。 The second acquisition unit 92 acquires the representative value P for each class cell for each time period based on the scatter diagram for each time period created by the first acquisition unit 91 .
 算出部93は、第2取得部92により取得された階級セルごとの代表値Pを用いて、各時間帯の性能指標を算出する。そして、算出部93は、各時間帯の性能指標のうちのいずれか1つを用いて異常判定を行う。 The calculation unit 93 uses the representative value P for each class cell acquired by the second acquisition unit 92 to calculate the performance index for each time slot. Then, the calculation unit 93 performs abnormality determination using any one of the performance indicators for each time period.
 たとえば、算出部93は、午前および午後の各時間帯の性能指標のうちの最も高い値を、対象発電部78の性能指標Inとして取得し、取得した性能指標Inを用いて異常判定を行う。 For example, the calculation unit 93 acquires the highest value of the performance indexes in the morning and afternoon time slots as the performance index In of the target power generation unit 78, and uses the acquired performance index In to perform abnormality determination.
 なお、第1取得部91は、1日を午前および午後の2つの時間帯に分ける構成に限定されず、たとえば、1日を3つ以上の時間帯に分けてもよいし、一部重複する2つ以上の時間帯に1日を分けてもよい。 Note that the first acquisition unit 91 is not limited to a configuration in which one day is divided into two time zones, morning and afternoon. For example, one day may be divided into three or more time zones. A day may be divided into two or more time periods.
(変形例2)
 第1取得部91は、1日を複数の時間帯に分け、さらに、時間帯ごとに、疑似最大値と対象電力との第1の組、および疑似中央値と対象電力との第2の組の両方を取得する構成であってもよい。
(Modification 2)
The first acquisition unit 91 divides the day into a plurality of time zones, and further, for each time zone, obtains a first set of the pseudo maximum value and the target power and a second set of the pseudo median value and the target power. may be configured to obtain both.
 ここでは、第1取得部91は、午前中の時間帯における複数の第1の組および複数の第2の組、ならびに午後の時間帯における複数の第1の組および複数の第2の組を取得することとする。 Here, the first acquiring unit 91 obtains the plurality of first pairs and the plurality of second pairs in the morning time slot and the plurality of first pairs and the plurality of second pairs in the afternoon time slot. I will get it.
 この場合、第1取得部91は、対象発電部78について、午前の時間帯の第1の組、午前の時間帯の第2の組、午後の時間帯の第1の組、および午後の時間帯の第2の組にそれぞれ対応する4つの散布図を作成する。 In this case, the first acquisition unit 91 obtains the first set of morning time slots, the second set of morning time slots, the first set of afternoon time slots, and the afternoon time slot for the target power generation unit 78. Create four scatterplots, each corresponding to the second set of bands.
 第2取得部92は、第1取得部91により作成された4つの各散布図について、階級セルごとの代表値Pを取得する。 The second acquisition unit 92 acquires the representative value P for each class cell for each of the four scatter diagrams created by the first acquisition unit 91 .
 算出部93は、4つの各散布図について、第2取得部92により取得された階級セルごとの代表値Pを用いて性能指標Inを算出する。そして、算出部93は、たとえば、算出した4つの性能指標のうちの最も高い値を、対象発電部78の性能指標Inとして取得する。 The calculation unit 93 calculates the performance index In using the representative value P for each class cell acquired by the second acquisition unit 92 for each of the four scatter diagrams. Then, the calculation unit 93 acquires, for example, the highest value among the calculated four performance indices as the performance index In of the target power generation unit 78 .
(変形例3)
 図15は、本開示の実施の形態に係る判定装置における第1取得部により取得される疑似最大値の変化を説明するための図である。
(Modification 3)
FIG. 15 is a diagram for explaining changes in the pseudo maximum value acquired by the first acquisition unit in the determination device according to the embodiment of the present disclosure;
 図15を参照して、基準年のあるタイミングにおける日射条件と、基準年からn年後のあるタイミングにおける日射条件とが同じであっても、発電部78から得られる最大の発電電力として第1取得部91により取得される疑似最大値に変化が生じることがある。 Referring to FIG. 15, even if the solar radiation condition at a certain timing in the reference year and the solar radiation condition at a certain timing n years after the reference year are the same, the maximum generated power obtained from power generation unit 78 is the first The pseudo maximum value acquired by the acquisition unit 91 may change.
 たとえば、基準年からn年後までの間に、同一のPCS8に接続された複数の発電部78のうちの1つ以上が交換された場合、同一の日射条件であっても、当該PCS8に接続された発電部78により出力され得る最大の発電電力は大きくなる可能性がある。 For example, if one or more of the plurality of power generation units 78 connected to the same PCS 8 are replaced during the period from the reference year to n years later, even if the solar radiation conditions are the same, the PCS 8 will not be connected. The maximum generated power that can be output by the generated power generation unit 78 may increase.
 この場合、図15に示すように、第1取得部91により取得される疑似最大値と対象電力との各組において、対象電力に対する疑似最大値の比が大きくなる。すなわち、第1取得部91によりプロットされる、複数の組にそれぞれ対応する複数の点の位置は、基準年においては直線G1の周辺であるのに対して、n年後においては直線G2の周辺に変化する。 In this case, as shown in FIG. 15, in each pair of the pseudo maximum value and the target power acquired by the first acquisition unit 91, the ratio of the pseudo maximum value to the target power becomes large. That is, the positions of the plurality of points plotted by the first acquisition unit 91 corresponding to the plurality of sets are around the straight line G1 in the base year, but are around the straight line G2 after n years. change to
 このように、日射条件が同じであるにも関わらず疑似最大値に変化が生じる場合、対象発電部78の異常判定において正確な判定結果を得ることができない可能性がある。 In this way, if the pseudo maximum value changes even though the solar radiation conditions are the same, there is a possibility that an accurate determination result cannot be obtained in the abnormality determination of the target power generation unit 78 .
 このため、第2取得部92は、複数の比Rに基づいて、疑似最大値の変化に応じた補正値を取得し、取得した補正値を用いて、各階級セルの代表値Pを補正することにより、疑似最大値の変化による代表値Pへの影響を補正する構成であってもよい。 Therefore, the second acquisition unit 92 acquires a correction value corresponding to the change in the pseudo maximum value based on the plurality of ratios R, and corrects the representative value P of each class cell using the acquired correction value. Therefore, the configuration may be such that the influence on the representative value P due to the change in the pseudo maximum value is corrected.
 詳細には、第2取得部92は、算出部93により算出された階級セルごとの比Rを、対象発電部78を含む複数の発電部78について取得し、取得した複数の比Rに基づいて、複数の比Rに対応する区間の代表値Pを補正する。 Specifically, the second acquisition unit 92 acquires the ratio R for each class cell calculated by the calculation unit 93 for the multiple power generation units 78 including the target power generation unit 78, and based on the multiple acquired ratios R , corrects the representative value P of the section corresponding to a plurality of ratios R.
 より詳細には、第2取得部92は、階級セルごとに、同一のPCS8に接続されたすべての発電部78について比Rを取得し、取得した複数の比Rの中央値MedRを、対応する階級セルの補正値として取得する。そして、第2取得部92は、取得済である階級セルごとの代表値Pに対して、対応する補正値を用いた補正を行う。 More specifically, the second acquisition unit 92 acquires the ratio R for all the power generation units 78 connected to the same PCS 8 for each class cell, and the median value MedR of the acquired multiple ratios R is taken as the corresponding Acquired as the correction value of the class cell. Then, the second obtaining unit 92 corrects the obtained representative value P for each class cell using the corresponding correction value.
 ここでは、同一のPCS8にk個の発電部78が接続されており、第2取得部92が、2022年1月の代表値Pを補正する場合について説明する。 Here, a case where k power generation units 78 are connected to the same PCS 8 and the second acquisition unit 92 corrects the representative value P for January 2022 will be described.
 第2取得部92は、上述のとおり、k個の各発電部78について、2022年1月の階級セルごとの代表値Pを取得する。 The second acquisition unit 92 acquires the representative value P for each class cell in January 2022 for each of the k power generation units 78, as described above.
 算出部93は、上述のとおり、k個の各発電部78について、第2取得部92により取得された2022年1月の階級セルごとの代表値Pを用いて、2022年1月の階級セルごとの比Rを算出する。 As described above, the calculation unit 93 uses the representative value P for each class cell of January 2022 acquired by the second acquisition unit 92 for each of the k power generation units 78 to obtain the class cell of January 2022. Calculate the ratio R for each.
 第2取得部92は、算出部93により算出されたk個の各発電部78の、2022年1月の階級セルごとの比Rを取得する。たとえば、第2取得部92は、k個の発電部78にそれぞれ対応する、2022年1月の階級セル「1」の比Rをk個取得する。そして、第2取得部92は、取得したk個の比Rの中央値MedRを、2022年1月の階級セル「1」の補正値として取得する。 The second acquisition unit 92 acquires the ratio R for each class cell in January 2022 of the k power generation units 78 calculated by the calculation unit 93 . For example, the second acquisition unit 92 acquires k ratios R of class cells “1” in January 2022 corresponding to k power generation units 78 respectively. Then, the second obtaining unit 92 obtains the median value MedR of the obtained k ratios R as the correction value of the January 2022 class cell “1”.
 そして、第2取得部92は、対象発電部78の、2022年1月の階級セルごとに、取得した補正値を用いて代表値Pを補正する。具体的には、第2取得部92は、対象発電部78の2022年1月の階級セル「1」の代表値Pを、階級セル「1」に対応する補正値で割ることにより(P=P/MedR)、当該代表値Pを補正する。 Then, the second acquiring unit 92 corrects the representative value P using the acquired correction value for each January 2022 class cell of the target power generating unit 78 . Specifically, the second acquisition unit 92 divides the representative value P of the class cell “1” in January 2022 of the target power generation unit 78 by the correction value corresponding to the class cell “1” (P= P/MedR), correcting the representative value P.
 また、算出部93は、第2取得部92による代表値Pの補正が行われた場合、補正後の代表値Pを用いて比Rを算出し、算出した階級セルごとの比Rのうちのいずれか1つ、たとえば中央値を性能指標Inとして取得する。 Further, when the representative value P is corrected by the second acquiring unit 92, the calculating unit 93 calculates the ratio R using the corrected representative value P, and out of the calculated ratio R for each class cell, Any one, for example, the median value, is obtained as the performance index In.
 (変形例4)
 図16は、本開示の実施の形態に係る判定装置における検知部による判定結果の一例を示す図である。図16は、対象発電部78の実際の状態、および検知部94による対象発電部78についての判定結果の遷移を示す。図16における対象発電部78の実際の状態について、「N」(Normal)は対象発電部78に異常が生じていないことを示し、「A」(Abnormal)は対象発電部78に異常が生じていることを示す。また、図16における判定結果について、「N」(Normal)は検知部94により対象発電部78に異常が生じていないと判定されたことを示し、「A」(Abnormal)は検知部94により対象発電部78に異常が生じていると判定されたことを示す。以下、検知部94による判定結果のうち、対象発電部78に異常が生じている旨の判定結果を異常判定結果とも称し、対象発電部78に異常が生じていない旨の判定結果を正常判定結果とも称する。
(Modification 4)
FIG. 16 is a diagram illustrating an example of determination results by the detection unit in the determination device according to the embodiment of the present disclosure; FIG. 16 shows the actual state of the target power generation unit 78 and the transition of the determination result of the target power generation unit 78 by the detection unit 94 . Regarding the actual state of the target power generation section 78 in FIG. indicate that 16, "N" (Normal) indicates that the detection unit 94 has determined that there is no abnormality in the target power generation unit 78, and "A" (Abnormal) indicates that the detection unit 94 This indicates that it has been determined that the power generation unit 78 has an abnormality. Hereinafter, among the determination results obtained by the detection unit 94, the determination result indicating that an abnormality has occurred in the target power generation unit 78 will also be referred to as an abnormality determination result. Also called
 図16を参照して、検知部94は、基準年の次の年において、対象発電部78についての異常判定を開始する。基準年は、たとえば判定装置101の運用開始後の1年目の年である。 With reference to FIG. 16, the detection unit 94 starts abnormality determination for the target power generation unit 78 in the year following the base year. The reference year is, for example, the first year after the start of operation of the determination device 101 .
 たとえば、基準年のn年後の年の7月に対象発電部78に経年劣化などによる異常が生じ、かつ対象発電部78の交換等が行われない場合、基準年のn年後の年の8月以降においても対象発電部78が異常である状態は継続する。 For example, in July of the year n years after the base year, if an abnormality due to aged deterioration etc. occurs in the target power generation unit 78 and the target power generation unit 78 is not replaced, etc., in the year n years after the base year Even after August, the state in which the target power generation unit 78 is abnormal continues.
 この場合、検知部94は、基準年のn年後の年の7月において対象発電部78に異常が生じていると判定する。また、検知部94は、基準年のn年後の年の8月以降の判定月においても対象発電部78に異常が生じていると判定する。 In this case, the detection unit 94 determines that an abnormality has occurred in the target power generation unit 78 in July of the year n years after the reference year. The detection unit 94 also determines that the target power generation unit 78 has an abnormality in the determination month after August of the year n years after the reference year.
 図17は、本開示の実施の形態に係る判定装置における検知部による判定結果の他の例を示す図である。図17の見方は、図16と同じである。 FIG. 17 is a diagram showing another example of determination result by the detection unit in the determination device according to the embodiment of the present disclosure. The view of FIG. 17 is the same as that of FIG.
 図17を参照して、たとえば、基準年の7月に対象発電部78に経年劣化などによる異常が生じ、かつ対象発電部78の交換等が行われない場合、基準年の8月以降においても対象発電部78が異常である状態は継続する。 Referring to FIG. 17, for example, if an abnormality due to age-related deterioration occurs in the target power generation unit 78 in July of the base year and the replacement of the target power generation unit 78 is not performed, even after August of the base year The state in which the target power generation unit 78 is abnormal continues.
 検知部94は、基準年の1年後の1月において、対象発電部78についての異常判定を開始し、対象発電部78に異常が生じていると判定する。 The detection unit 94 starts abnormality determination for the target power generation unit 78 in January one year after the reference year, and determines that the target power generation unit 78 has an abnormality.
 一方、検知部94は、基準年の1年後の7月から12月において、対象発電部78が異常である状態が継続しているにも関わらず、対象発電部78に異常が生じていないと判定する。これは、基準年の7月から12月までの期間における代表値Pは、基準年の1月から6月までの期間における代表値Pよりも小さいので、算出部93により算出される7月から12月までの判定月における性能指標Inが相対的に高くなるからである。 On the other hand, the detection unit 94 detects that the target power generation unit 78 does not have an abnormality even though the target power generation unit 78 continues to be in an abnormal state from July to December one year after the reference year. I judge. This is because the representative value P in the period from July to December of the base year is smaller than the representative value P in the period from January to June of the base year. This is because the performance index In in the judgment months up to December is relatively high.
 そこで、検知部94は、基準年において対象発電部78に異常が生じたことによる誤判定を抑制するために、判定月において対象発電部78に異常が生じていないと判定した場合、判定結果を検証する検証処理を行う。たとえば、検知部94は、第1の検知タイミングの検知処理において対象発電部78に異常が生じていないと判定した場合であって、当該第1の検知タイミングの直前の連続する複数の検知タイミングの検知処理において対象発電部78に異常が生じていると判定した場合、当該第1の検知タイミングよりも前の検知タイミングにおける検知処理の結果に基づいて、当該第1の検知タイミングにおける検知処理の結果を検証する検証処理を行う。 Therefore, in order to suppress an erroneous determination due to an abnormality occurring in the target power generation unit 78 in the reference year, the detection unit 94 determines that the target power generation unit 78 does not have an abnormality in the determination month. Perform verification processing to verify. For example, when the detection unit 94 determines in the detection process at the first detection timing that an abnormality has not occurred in the target power generation unit 78, the detection unit 94 detects a plurality of consecutive detection timings immediately before the first detection timing. When it is determined in the detection process that an abnormality has occurred in the target power generation unit 78, the result of the detection process at the first detection timing is based on the result of the detection process at the detection timing prior to the first detection timing. Perform verification processing to verify the
 図18は、本開示の実施の形態に係る判定装置における検知部による検証処理後の判定結果の一例を示す図である。図18の見方は、図16と同じである。 FIG. 18 is a diagram showing an example of a determination result after verification processing by the detection unit in the determination device according to the embodiment of the present disclosure. The view of FIG. 18 is the same as that of FIG.
 図18を参照して、検知部94は、たとえば連続する所定数の判定月において対象発電部78に異常が生じていると判定し、かつ当該所定数の判定月の次の判定月において対象発電部78に異常が生じていないと判定した場合、過去の判定月の判定結果を用いて、判定結果が正しいか否かを検証する検証処理を行う。以下、検知部94により、連続する所定数の判定月において対象発電部78に異常が生じていないと判定された次の判定月であって、対象発電部78に異常が生じていないと判定された判定月を、検証月とも称する。 Referring to FIG. 18 , detection unit 94 determines that target power generation unit 78 has an abnormality in a predetermined number of continuous determination months, and determines that target power generation in the determination month following the predetermined number of determination months. If it is determined that there is no abnormality in the unit 78, a verification process is performed to verify whether or not the determination result is correct using the determination result of the past determination month. Thereafter, in the next determination month in which the detection unit 94 determines that the target power generation unit 78 does not have an abnormality in a predetermined number of continuous determination months, it is determined that the target power generation unit 78 does not have an abnormality. The judgment month is also referred to as the verification month.
 より詳細には、検知部94は、検証処理において、記憶部83から直近の1年間の判定月の判定結果を取得し、取得した判定結果を対応の判定月の月順に並べ替える。具体的には、検知部94は、基準年のn年後の年の7月に検証処理を行う場合、基準年の(n-1)年後の年の8月から基準年のn年後の年の7月までの判定月の判定結果を取得し、基準年の(n-1)年後の年の8月から12月までの判定結果を、基準年のn年後の年の8月から12月までの判定結果と仮定し、取得した判定結果を月順に並べ替える。 More specifically, in the verification process, the detection unit 94 acquires the determination results of the determination month for the most recent year from the storage unit 83, and rearranges the acquired determination results in the order of the corresponding determination month. Specifically, when the verification process is performed in July of the year n years after the reference year, the detection unit 94 performs Obtain the judgment results of the judgment month up to July of the year, and obtain the judgment results from August to December of the year (n-1) years after the base year to August of the year n years after the base year. Assuming that the determination results are from January to December, the acquired determination results are sorted in month order.
 検知部94は、直近の1年分の判定月の判定結果を並べ替えた場合において、検証月以降の連続する所定数の判定月の判定結果が正常判定結果である所定条件を満たす場合、検証月の判定結果は誤りであると判断し、検証月の判定結果を正常判定結果から異常判定結果に変更する。検知部94は、変更後の判定結果を記憶部83に保存する。 When the determination results of the determination month for the most recent one year are rearranged, if the determination result of a predetermined number of continuous determination months after the verification month satisfies a predetermined condition that the determination result is normal, the verification The determination result of the month is determined to be incorrect, and the determination result of the verification month is changed from the normal determination result to the abnormal determination result. The detection unit 94 stores the changed determination result in the storage unit 83 .
 一方、検知部94は、直近の1年分の判定月の判定結果を並べ替えた場合において、当該所定条件を満たさない場合、検証月の判定結果は誤りではないと判断し、検証月の判定結果を維持する。 On the other hand, when the determination results of the determination month for the most recent one year are rearranged, if the predetermined condition is not satisfied, the detection unit 94 determines that the determination result of the verification month is not erroneous, and determines the verification month. Maintain results.
 なお、検知部94は、検証月が基準年の1年後の年である場合、検証処理において、記憶部83から直近の1年間の判定月の判定結果を取得する代わりに、基準年の1年後の年の1月から検証月の直前の判定月までの判定結果を取得する。 Note that when the verification month is one year after the reference year, the detection unit 94, in the verification process, instead of acquiring the judgment result of the judgment month of the most recent one year from the storage unit 83, Acquire the judgment results from January of the year after the year to the judgment month immediately before the verification month.
<動作の流れ>
 監視システム301における各装置は、メモリを含むコンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを当該メモリから読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
<Flow of operation>
Each device in the monitoring system 301 has a computer including a memory, and an arithmetic processing unit such as a CPU in the computer reads out from the memory and executes a program including part or all of each step of the following flowcharts. Programs for these multiple devices can each be installed from the outside. Programs for these devices are stored in recording media and distributed.
 図19は、本開示の実施の形態に係る判定装置が発電部の異常判定を行う際の動作手順を定めたフローチャートである。 FIG. 19 is a flowchart that defines an operation procedure when the determination device according to the embodiment of the present disclosure performs abnormality determination of the power generation unit.
 ここでは、1つの対象発電部78の異常判定について説明する。また、ここでは、判定装置101が、所定期間の一例である1か月ごとに、対象発電部78の異常判定を行う場合の動作手順について説明する。判定装置101は、たとえば以下のような動作を対象発電部78ごとに行う。 Here, the abnormality determination of one target power generation unit 78 will be described. Further, here, an operation procedure in the case where the determination device 101 performs abnormality determination of the target power generation unit 78 every month, which is an example of a predetermined period, will be described. The determination device 101 performs the following operation for each target power generation unit 78, for example.
 図19を参照して、まず、通信処理部81は、1または複数の監視情報を取得すると、取得した各監視情報を記憶部83に保存する。通信処理部81は、監視情報の取得および保存を、たとえば1日ごとに行う(ステップS11)。 Referring to FIG. 19 , first, when communication processing unit 81 acquires one or a plurality of pieces of monitoring information, communication processing unit 81 saves each piece of acquired monitoring information in storage unit 83 . Communication processing unit 81 acquires and stores monitoring information, for example, every day (step S11).
 次に、第1取得部91は、たとえば、毎月の初日に、記憶部83に保存されている複数の監視情報に基づいて、先月の1か月分について、同一のPCS8に接続された各発電部78の発電電力の1分ごとの統計値を疑似発電値として取得する(ステップS12)。 Next, for example, on the first day of every month, the first acquisition unit 91 obtains data for each power generation connected to the same PCS 8 for the last month based on a plurality of pieces of monitoring information stored in the storage unit 83. A statistical value of the power generated by the unit 78 for each minute is obtained as a pseudo power generation value (step S12).
 次に、第1取得部91は、取得した疑似発電値と、当該疑似発電値の取得に用いた各発電電力、すなわち当該疑似発電値を求める元となった、同一のタイミングにおいて得られた各発電部78の発電電力、のうちの対象電力との組を、先月の1か月分について取得する(ステップS13)。 Next, the first obtaining unit 91 obtains the obtained pseudo power generation value and each generated power used to obtain the pseudo power generation value, that is, each power obtained at the same timing from which the pseudo power generation value is obtained. A set of the power generated by the power generation unit 78 and the target power for the last month is obtained (step S13).
 次に、第1取得部91は、取得した複数の組を示す散布図を1か月の単位で作成し、作成した散布図を示すデータを記憶部83に保存する(ステップS14)。 Next, the first acquisition unit 91 creates a scatter diagram showing the plurality of acquired pairs on a monthly basis, and stores the data showing the created scatter diagram in the storage unit 83 (step S14).
 次に、第2取得部92は、記憶部83に保存された散布図を参照して、発電部78の発電電力の異なる範囲を示す複数の階級セルを設ける区間分けを行う(ステップS15)。 Next, the second acquisition unit 92 refers to the scatter diagram stored in the storage unit 83, and divides into sections by providing a plurality of class cells indicating different ranges of power generated by the power generation unit 78 (step S15).
 次に、第2取得部92は、階級セルごとに、複数の対象電力の統計値を代表値Pとして取得し、取得した代表値Pを記憶部83に保存する(ステップS16)。 Next, the second acquisition unit 92 acquires the statistical values of the plurality of target powers as the representative value P for each class cell, and stores the acquired representative value P in the storage unit 83 (step S16).
 次に、算出部93は、記憶部83に保存されている複数の代表値Pに基づいて、階級セルごとに、基準年における代表値Pと、判定対象の年の代表値Pとの比Rを算出する(ステップS17)。 Next, based on the plurality of representative values P stored in the storage unit 83, the calculation unit 93 calculates, for each class cell, the ratio R is calculated (step S17).
 次に、算出部93は、算出した階級セルごとの比Rの統計値を、判定対象の年の先月の対象発電部78の性能指標Inとして取得し、取得した性能指標Inを記憶部83に保存する(ステップS18)。 Next, the calculation unit 93 acquires the calculated statistical value of the ratio R for each class cell as the performance index In of the target power generation unit 78 in the last month of the year to be determined, and stores the acquired performance index In in the storage unit 83. Save (step S18).
 次に、検知部94は、記憶部83に保存されている複数の性能指標Inに基づいて、対象発電部78における異常の有無を検知する異常判定を行い、異常が生じていると判定した場合、判定結果を記憶部83に保存する(ステップS19)。 Next, the detection unit 94 performs an abnormality determination for detecting the presence or absence of an abnormality in the target power generation unit 78 based on the plurality of performance indicators In stored in the storage unit 83, and when it is determined that an abnormality has occurred , the determination result is stored in the storage unit 83 (step S19).
 次に、通信処理部81は、記憶部83に保存されている検知部94による判定結果を参照して、同一の対象発電部78について所定回数以上連続して異常が検知されたか否かを確認する(ステップS20)。 Next, the communication processing unit 81 refers to the determination result by the detection unit 94 stored in the storage unit 83, and confirms whether or not an abnormality has been detected in the same target power generation unit 78 continuously for a predetermined number of times or more. (step S20).
 そして、通信処理部81は、同一の対象発電部78について所定回数以上連続して異常が検知された場合(ステップS20において「YES」)、管理者等に対して警報を出力するなど、所定の出力を行う(ステップS21)。 Then, when an abnormality is continuously detected for the same target power generation unit 78 for a predetermined number of times or more ("YES" in step S20), the communication processing unit 81 outputs a warning to the administrator or the like. Output is performed (step S21).
 一方、通信処理部81は、同一の対象発電部78について所定回数以上連続して異常が検知されていない場合(ステップS20において「NO」)、警報等の出力を行わない。 On the other hand, the communication processing unit 81 does not output an alarm or the like when an abnormality has not been detected continuously for the same target power generation unit 78 for a predetermined number of times or more ("NO" in step S20).
 なお、変形例3において説明したとおり、第2取得部92は、疑似最大値の変化による代表値Pへの影響を補正する構成であってもよい。この場合、第2取得部92は、算出部93による比Rの算出(ステップS17)と、算出部93による性能指標Inの取得(ステップS18)との間において、代表値Pの補正を行う。 As described in Modification 3, the second acquisition unit 92 may be configured to correct the influence of changes in the pseudo maximum value on the representative value P. In this case, the second acquisition unit 92 corrects the representative value P between the calculation of the ratio R by the calculation unit 93 (step S17) and the acquisition of the performance index In by the calculation unit 93 (step S18).
 すなわち、第2取得部92は、ステップS17において算出部93により算出された階級セルごとの比Rを、同一のPCS8に接続された複数の発電部78について取得し、取得した複数の比Rの中央値MedRを、対応する階級セルの補正値として取得する。そして、第2取得部92は、ステップS16において取得した階級セルごとの代表値Pに対して、対応する補正値を用いた補正を行う。 That is, the second acquisition unit 92 acquires the ratio R for each class cell calculated by the calculation unit 93 in step S17 for the plurality of power generation units 78 connected to the same PCS 8, and The median MedR is taken as the correction value for the corresponding class cell. Then, the second acquiring unit 92 corrects the representative value P for each class cell acquired in step S16 using the corresponding correction value.
 そして、算出部93は、ステップS18において、第2取得部92による補正後の代表値Pを用いて階級セルごとの比Rを再び算出し、新たに算出した複数の比Rの統計値を、対象発電部78の判定対象の年の先月の性能指標Inとして取得する。 Then, in step S18, the calculation unit 93 recalculates the ratio R for each class cell using the corrected representative value P by the second acquisition unit 92, and obtains the statistical values of the newly calculated multiple ratios R as It is acquired as the performance index In of the last month of the determination target year of the target power generation unit 78 .
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiments should be considered as examples in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、
 判定対象の前記発電部である対象発電部の発電電力を取得する通信処理部と、
 前記通信処理部により取得された前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出する算出部と、
 前記算出部により算出された前記性能指標に基づいて、前記対象発電部の異常を検知する検知処理を行う検知部とを備え、
 前記判定装置は、さらに、
 前記各発電部の発電電力の統計値を取得し、取得した前記統計値と、前記統計値の取得に用いた前記各発電電力のうちの、判定対象の前記発電部である対象発電部の発電電力との組であって、所定時間ごとの前記組を取得する第1取得部と、
 前記発電部の発電電力の異なる範囲を示す複数の区間を設ける区間分けを行い、前記第1取得部により取得された複数の前記組に基づいて、前記区間ごとに、前記対象発電部の発電電力の代表値を取得する第2取得部とを備え、
 前記算出部は、前記第2取得部により取得された前記代表値であって、前記基準年における前記代表値と、判定対象の年における前記代表値との比を前記区間ごとに算出し、前記区間ごとの前記比の統計値を前記性能指標として取得し、
 前記検知部は、前記性能指標の時系列変化に基づいて、前記対象発電部の異常を検知し、
 前記第1取得部は、所定期間における前記所定時間ごとの前記組を取得し、
 前記算出部は、前記各区間の前記比を算出し、算出した前記各区間の前記比のうちのいずれか1つを、前記対象発電部の前記所定期間における前記性能指標として取得し、
 前記検知部は、前記算出部により取得された前記所定期間ごとの前記性能指標に基づいて、前記対象発電部の異常を検知する、判定装置。
The above description includes the features appended below.
[Appendix 1]
A determination device used in a photovoltaic power generation system comprising a plurality of power generation units including solar panels,
a communication processing unit that acquires power generated by a target power generation unit that is the power generation unit to be determined;
a calculation unit that calculates a performance index indicating the power generation performance of the target power generation unit based on the generated power of the target power generation unit acquired by the communication processing unit and the power generation of the target power generation unit in a reference year;
a detection unit that performs detection processing for detecting an abnormality in the target power generation unit based on the performance index calculated by the calculation unit;
The determination device further
A statistical value of the generated power of each power generation unit is acquired, and the power generation of the target power generation unit, which is the power generation unit to be determined, among the acquired statistical value and the generated power used to acquire the statistical value a first acquisition unit that acquires a set of electricity and electric power at predetermined time intervals;
Sectioning is performed to provide a plurality of sections indicating different ranges of the generated power of the power generation unit, and based on the plurality of sets acquired by the first acquisition unit, the power generated by the target power generation unit for each section A second acquisition unit that acquires a representative value of
The calculation unit calculates, for each section, a ratio of the representative value obtained by the second obtaining unit, the representative value obtained in the reference year, and the representative value obtained in the determination target year, Obtaining the statistical value of the ratio for each section as the performance index,
The detection unit detects an abnormality in the target power generation unit based on time-series changes in the performance index,
The first acquisition unit acquires the set every predetermined time in a predetermined period,
The calculation unit calculates the ratio of each section, acquires one of the calculated ratios of each section as the performance index of the target power generation unit in the predetermined period,
The determination device, wherein the detection unit detects an abnormality in the target power generation unit based on the performance index for each predetermined period acquired by the calculation unit.
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS(電力変換装置)
 9 電力変換部
 11 検出処理部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 46 信号線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79,79A~79D 太陽電池パネル
 80 PCSユニット
 81 通信処理部(出力部)
 82 異常判定部
 83 記憶部
 91 第1取得部
 92 第2取得部
 93 算出部
 94 検知部
 101 判定装置
 111 監視装置
 151 収集装置
 301 監視システム
 401 太陽光発電システム
 
1 output line 2, 4, 5 aggregate line 3 internal line 6 cubicle 7 copper bar 8 PCS (Power Converter)
9 power conversion unit 11 detection processing unit 14 communication unit 16 current sensor 17 voltage sensor 26 power supply line 46 signal line 60 current collection unit 71 current collection box 72, 73, 77 copper bar 74 solar cell unit 76 junction box 78 power generation unit 79, 79A to 79D solar panel 80 PCS unit 81 communication processing unit (output unit)
82 abnormality determination unit 83 storage unit 91 first acquisition unit 92 second acquisition unit 93 calculation unit 94 detection unit 101 determination device 111 monitoring device 151 collection device 301 monitoring system 401 solar power generation system

Claims (11)

  1.  太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置であって、
     判定対象の前記発電部である対象発電部の発電電力を取得する通信処理部と、
     前記通信処理部により取得された前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出する算出部と、
     前記算出部により算出された前記性能指標に基づいて、前記対象発電部の異常を検知する検知処理を行う検知部とを備える、判定装置。
    A determination device used in a photovoltaic power generation system comprising a plurality of power generation units including solar panels,
    a communication processing unit that acquires power generated by a target power generation unit that is the power generation unit to be determined;
    a calculation unit that calculates a performance index indicating the power generation performance of the target power generation unit based on the generated power of the target power generation unit acquired by the communication processing unit and the power generation of the target power generation unit in a reference year;
    a detection unit that performs detection processing for detecting an abnormality in the target power generation unit based on the performance index calculated by the calculation unit.
  2.  前記通信処理部は、前記対象発電部の所定時間ごとの発電電力、および前記対象発電部以外の複数の前記発電部の各々の前記所定時間ごとの発電電力を取得し、
     前記判定装置は、さらに、
     前記通信処理部により取得された前記各発電部の発電電力の統計値を取得し、取得した前記統計値と、前記統計値の取得に用いた前記各発電電力のうちの前記対象発電部の発電電力との組であって、前記所定時間ごとの前記組を取得する第1取得部と、
     前記発電部の発電電力の異なる範囲を示す複数の区間を設ける区間分けを行い、前記第1取得部により取得された複数の前記組に基づいて、前記区間ごとに、前記対象発電部の発電電力の代表値を取得する第2取得部とを備え、
     前記算出部は、前記第2取得部により取得された前記代表値であって、前記基準年における前記代表値と、判定対象の年における前記代表値との比を前記区間ごとに算出し、前記区間ごとの前記比の統計値を前記性能指標として取得し、
     前記検知部は、前記性能指標の時系列変化に基づいて、前記対象発電部の異常を検知する、請求項1に記載の判定装置。
    The communication processing unit acquires the power generated by the target power generation unit every predetermined time and the power generated by each of the plurality of power generation units other than the target power generation unit every predetermined time,
    The determination device further
    Obtaining statistical values of the generated power of each of the power generation units obtained by the communication processing unit, and obtaining the obtained statistical values and power generation of the target power generation unit among the generated power used to obtain the statistical values a first acquisition unit that acquires a pair of electricity and electric power at intervals of the predetermined time;
    Sectioning is performed to provide a plurality of sections indicating different ranges of the generated power of the power generation unit, and based on the plurality of sets acquired by the first acquisition unit, the power generated by the target power generation unit for each section A second acquisition unit that acquires a representative value of
    The calculation unit calculates, for each section, a ratio of the representative value obtained by the second obtaining unit, the representative value obtained in the reference year, and the representative value obtained in the determination target year, Obtaining the statistical value of the ratio for each section as the performance index,
    2. The determination device according to claim 1, wherein said detection unit detects an abnormality in said target power generation unit based on a time-series change in said performance index.
  3.  前記第1取得部は、同一の電力変換装置に接続された前記各発電部の発電電力の前記所定時間ごとの統計値を取得する、請求項2に記載の判定装置。 The determination device according to claim 2, wherein the first acquisition unit acquires a statistical value of power generated by each of the power generation units connected to the same power converter for each predetermined time.
  4.  前記所定時間ごとの前記統計値は、前記所定時間における前記各発電部の発電電力のうちの最大値または中央値である、請求項2または請求項3に記載の判定装置。 4. The determination device according to claim 2 or 3, wherein said statistical value for each predetermined time is a maximum value or a median value of power generated by said power generation units at said predetermined time.
  5.  前記第2取得部は、さらに、前記算出部により算出された前記区間ごとの前記比を、前記対象発電部を含む複数の前記発電部について取得し、取得した複数の前記比に基づいて、前記複数の比に対応する前記区間の前記代表値を補正する、請求項2から請求項4のいずれか1項に記載の判定装置。 The second acquisition unit further acquires the ratio for each section calculated by the calculation unit for a plurality of the power generation units including the target power generation unit, and based on the plurality of acquired ratios, the 5. The determination device according to any one of claims 2 to 4, wherein said representative value of said section corresponding to a plurality of ratios is corrected.
  6.  前記第2取得部は、1日を複数の時間帯に分けて、前記複数の時間帯のそれぞれについて、前記区間ごとの前記代表値を取得し、
     前記算出部は、前記複数の時間帯のそれぞれについて、前記区間ごとの前記比を算出し、算出した複数の前記比のうちのいずれか1つを前記性能指標として取得し、
     前記検知部は、前記算出部により取得された前記複数の時間帯の各々の前記性能指標のうちのいずれか1つに基づいて、前記検知処理を行う、請求項2から請求項5のいずれか1項に記載の判定装置。
    The second acquisition unit divides a day into a plurality of time zones and acquires the representative value for each section for each of the plurality of time zones,
    The calculation unit calculates the ratio for each of the sections for each of the plurality of time periods, acquires one of the plurality of calculated ratios as the performance index,
    6. The detection unit according to any one of claims 2 to 5, wherein the detection unit performs the detection process based on any one of the performance indicators for each of the plurality of time periods acquired by the calculation unit. The determination device according to item 1.
  7.  前記第2取得部は、前記区間分けにおいて、前記発電部の発電電力のとり得る範囲の一部を、複数の区間に分ける、請求項2から請求項6のいずれか1項に記載の判定装置。 The determination device according to any one of claims 2 to 6, wherein the second acquisition unit divides a part of the possible range of the generated power of the power generation unit into a plurality of sections in the section division. .
  8.  前記検知部は、所定期間ごとの複数の検知タイミングにおいて前記検知処理を行い、
     前記検知部は、第1の前記検知タイミングの前記検知処理において前記対象発電部に異常が生じていないと判定した場合であって、前記第1の検知タイミングの直前の連続する複数の前記検知タイミングの前記検知処理において前記対象発電部に異常が生じていると判定した場合、前記第1の検知タイミングよりも前の前記検知タイミングにおける前記検知処理の結果に基づいて、前記第1の検知タイミングにおける前記検知処理の結果を検証する検証処理を行う、請求項2から請求項7のいずれか1項に記載の判定装置。
    The detection unit performs the detection process at a plurality of detection timings for each predetermined period,
    The detection unit determines that an abnormality has not occurred in the target power generation unit in the detection processing at the first detection timing, and a plurality of consecutive detection timings immediately before the first detection timing. When it is determined that an abnormality has occurred in the target power generation unit in the detection process of, at the first detection timing based on the result of the detection process at the detection timing before the first detection timing The determination device according to any one of claims 2 to 7, which performs a verification process of verifying a result of the detection process.
  9.  前記検知部は、所定期間ごとの複数の検知タイミングにおいて前記検知処理を行い、
     前記判定装置は、さらに、
     前記検知部により前記対象発電部の異常が所定回数以上連続して検知された場合、所定の出力を行う出力部を備える、請求項2から請求項8のいずれか1項に記載の判定装置。
    The detection unit performs the detection process at a plurality of detection timings for each predetermined period,
    The determination device further
    9. The determination device according to any one of claims 2 to 8, further comprising an output unit that outputs a predetermined output when the detection unit continuously detects an abnormality in the target power generation unit for a predetermined number of times or more.
  10.  前記所定期間は、1か月である、請求項8または請求項9に記載の判定装置。 The determination device according to claim 8 or 9, wherein the predetermined period is one month.
  11.  太陽電池パネルを含む複数の発電部を備える太陽光発電システムに用いられる判定装置における判定方法であって、
     判定対象の前記発電部である対象発電部の発電電力を取得するステップと、
     取得した前記対象発電部の発電電力と、基準年における前記対象発電部の発電電力とに基づいて、前記対象発電部の発電性能を示す性能指標を算出するステップと、
     算出した前記性能指標に基づいて、前記対象発電部の異常を検知するステップとを含む、判定方法。
     
     
    A determination method in a determination device used in a photovoltaic power generation system including a plurality of power generation units including solar panels,
    a step of acquiring the generated power of a target power generation unit, which is the power generation unit to be determined;
    calculating a performance index indicating the power generation performance of the target power generation unit based on the acquired generated power of the target power generation unit and the generated power of the target power generation unit in a reference year;
    and detecting an abnormality in the target power generating unit based on the calculated performance index.

PCT/JP2022/029661 2021-11-29 2022-08-02 Determination device and determination method WO2023095387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193111 2021-11-29
JP2021-193111 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023095387A1 true WO2023095387A1 (en) 2023-06-01

Family

ID=86539123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029661 WO2023095387A1 (en) 2021-11-29 2022-08-02 Determination device and determination method

Country Status (1)

Country Link
WO (1) WO2023095387A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326375A (en) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd Method and apparatus for diagnosis of solar light power generation system
JP2013191672A (en) * 2012-03-13 2013-09-26 Omron Corp Information processing apparatus, abnormality detecting method, program, and solar power generation system
CN105373970A (en) * 2015-12-02 2016-03-02 国家电网公司 Method of overall performance evaluation of photovoltaic power station
WO2016166991A1 (en) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 Diagnostic system for photovoltaic power generation equipment, and program
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program
JP2018166370A (en) * 2017-03-28 2018-10-25 株式会社Nttファシリティーズ Power generation state determination device
WO2019150779A1 (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Determination device, determination method, and determination program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326375A (en) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd Method and apparatus for diagnosis of solar light power generation system
JP2013191672A (en) * 2012-03-13 2013-09-26 Omron Corp Information processing apparatus, abnormality detecting method, program, and solar power generation system
WO2016166991A1 (en) * 2015-04-17 2016-10-20 パナソニックIpマネジメント株式会社 Diagnostic system for photovoltaic power generation equipment, and program
CN105373970A (en) * 2015-12-02 2016-03-02 国家电网公司 Method of overall performance evaluation of photovoltaic power station
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program
JP2018166370A (en) * 2017-03-28 2018-10-25 株式会社Nttファシリティーズ Power generation state determination device
WO2019150779A1 (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Determination device, determination method, and determination program

Similar Documents

Publication Publication Date Title
US20150088440A1 (en) Solar power generation monitoring method and solar power generation monitoring system
JP5617695B2 (en) Diagnostic device for solar power generation unit
US9048781B2 (en) Abnormality diagnosis device, method therefor, and computer-readable medium
US10312858B2 (en) Solar power generation system and failure diagnosis method therefor
CN117129790B (en) Fault diagnosis system for power system
KR102126577B1 (en) A Monitoring System of Photovoltaic Generation Using Multi-channel Module Sensors
JP7400631B2 (en) Judgment device and method
JP6756188B2 (en) Power generation status judgment device, power generation status judgment method and judgment program
JP2013239686A (en) Failure detection method and monitoring system for solar power generation
WO2023095387A1 (en) Determination device and determination method
JP2016144244A (en) Power generation situation diagnosis method for photovoltaic power generation system, and device therefor
JP5800069B2 (en) Diagnostic device, diagnostic method, and solar power generation system for solar power generation unit
Skomedal et al. General, robust, and scalable methods for string level monitoring in utility scale PV systems
JP7163931B2 (en) Determination device, determination method and determination program
JP7095734B2 (en) Judgment device, photovoltaic system and judgment method
JP7173128B2 (en) GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
JP7207401B2 (en) Determination device, weather information processing device, determination method, and weather information processing method
JP2021145509A (en) Abnormality detection device, abnormality detection method, and abnormality detection program
JP2023009777A (en) Determination device and determination method
WO2023203843A1 (en) Power generation state determination device, power generation state determination method, and determination program
CN117572332B (en) Electric energy meter error checking method and system based on cloud computing
WO2023145230A1 (en) Display processing device, display processing method, and display processing program
WO2022113441A1 (en) Power generation status determination device, power generation status determination method, and determination program
AU2015258246A1 (en) Method and apparatus for detecting a photovoltaic module&#39;s state of degradation
JP6456123B2 (en) Solar panel alarm notification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563513

Country of ref document: JP