WO2022249366A1 - Power supply system switching device and power supply system switching method - Google Patents

Power supply system switching device and power supply system switching method Download PDF

Info

Publication number
WO2022249366A1
WO2022249366A1 PCT/JP2021/020088 JP2021020088W WO2022249366A1 WO 2022249366 A1 WO2022249366 A1 WO 2022249366A1 JP 2021020088 W JP2021020088 W JP 2021020088W WO 2022249366 A1 WO2022249366 A1 WO 2022249366A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
supply system
circuit breakers
switching device
Prior art date
Application number
PCT/JP2021/020088
Other languages
French (fr)
Japanese (ja)
Inventor
尚倫 中村
裕二 樋口
直樹 花岡
徹 田中
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023523837A priority Critical patent/JPWO2022249366A1/ja
Priority to PCT/JP2021/020088 priority patent/WO2022249366A1/en
Publication of WO2022249366A1 publication Critical patent/WO2022249366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network

Definitions

  • the present invention relates to a power supply system switching device and a power supply system switching method.
  • Patent Literature 1 discloses a direct-current circuit breaker that performs switching using a semiconductor circuit breaker that cuts off quickly.
  • the disclosed technology aims to suppress time loss for controlling the operation of multiple circuit breakers.
  • the disclosed technology is a power supply system switching device for switching a power supply system from a power supply device, and includes a first plurality of first power supply systems that interrupt current in a first system and cancel current interruption in a second system.
  • a circuit breaker an optical modulator that modulates and emits incident light based on a voltage that is applied in proportion to the current detected by the first plurality of circuit breakers; a modulation detector for detecting modulation of light; and a second plurality of interruptions for interrupting the current in the first system and unblocking the current in the second system when the modulation detector detects modulation. and a power supply system switching device.
  • the time loss for controlling the operation of multiple circuit breakers can be suppressed.
  • FIG. 1 is a first diagram showing an example of a configuration of a conventional power supply system switching device
  • FIG. FIG. 10 is a second diagram showing an example of the configuration of a conventional power supply system switching device
  • It is a figure showing an example of composition of a feed system switching device concerning an embodiment of the invention.
  • It is a figure which shows an example of a structure of a semiconductor circuit breaker.
  • FIG. 4 is a first diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention
  • FIG. 5 is a second diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention;
  • FIG. 1 is a first diagram showing an example of the configuration of a conventional power supply system switching device.
  • a conventional feed system switching device is composed of a plurality of circuit breakers 90a, 90b, 90c and 90d.
  • the power supply system switching device is configured to include a circuit breaker only in the power cable 40a on the positive electrode side, but the power cable 40b on the negative electrode side is also equipped with a similar circuit breaker. Also good.
  • the DC power supplied from the power supply device 10 to the load device 20 is supplied by two systems, system 1 and system 2 . Normally, power is supplied from system 1, and when an accident such as a short circuit occurs in system 1, it is switched to system 2.
  • the circuit breaker 90a when an accident such as a short circuit occurs at the accident point 41 and the circuit breaker 90a detects the occurrence of the accident, the circuit breaker 90a is opened and the circuit breaker 90b is closed. Note that opening is an operation of interrupting current, and closing is an operation of canceling the interruption of current. Subsequently, the circuit breaker 90c is opened and the circuit breaker 90d is closed.
  • FIG. 2 is a second diagram showing an example of the configuration of a conventional power supply system switching device.
  • the feed system switching device shown in FIG. 2 includes a plurality of semiconductor circuit breakers 30a, 30b, 30c and 30d.
  • the breaking speed by itself is faster, but the semiconductor circuit breaker 30a that detects the occurrence of an accident detects a short-circuit current and converts the detection of the short-circuit current into an electrical signal (or optical signal).
  • semiconductor circuit breakers 30c and 30d send electrical signals to semiconductor circuit breakers 30c and 30d
  • semiconductor circuit breakers 30c and 30d receive the electrical signals (or optical signals), and analyze that the received signals detect short-circuit current in semiconductor circuit breaker 30a
  • FIG. 3 is a diagram showing an example of the configuration of the power supply system switching device according to this embodiment.
  • the power supply system switching device 1 according to the present embodiment includes semiconductor breakers 30a, 30b, 30c and 30d similar to those in FIG. 2, and further includes an optical modulator 50 and a modulation detector 60.
  • the optical modulator 50 modulates the light emitted from the light source 70 toward the light receiving section 80 when the occurrence of an accident is detected by the semiconductor circuit breaker 30a or the semiconductor circuit breaker 30b.
  • the modulation detector 60 detects modulation of light emitted from the light source 70 toward the light receiving section 80 .
  • Semiconductor circuit breaker 30c and semiconductor circuit breaker 30d switch between opening and closing when modulation detector 60 detects modulation.
  • FIG. 4 is a diagram showing an example of the configuration of a semiconductor circuit breaker.
  • the semiconductor circuit breaker 30 shown in FIG. 4 has a configuration common to the semiconductor circuit breakers 30a, 30b, 30c and 30d.
  • the semiconductor circuit breaker 30 includes a control circuit 31, an IGBT (Insulated Gate Bipolar Transistor) 32, a voltage suppression circuit 33, and a current sensor 34.
  • IGBT Insulated Gate Bipolar Transistor
  • the control circuit 31 controls the opening and closing of the IGBT 32 via the control line 35.
  • FIG. 4 shows a built-in power supply type, power may be supplied from a power supply (not shown).
  • the IGBT 32 is an insulated gate bipolar transistor, and is controlled by the control circuit 31 to cut off the current flowing through the power cable 40a on the positive electrode side or cancel the cutoff of the current.
  • the voltage suppression circuit 33 is a capacitor, a diode, or the like, and is a circuit that suppresses a rise in voltage generated between the power cable 40a on the positive electrode side and the power cable 40b on the negative electrode side.
  • the two voltage suppression circuits 33 connected to both ends of the IGBT 32 can avoid a sudden rise in voltage due to current interruption.
  • the current sensor 34 measures the value of the current flowing through the power cable 40a and transmits a signal indicating the current value to the control circuit 31. Thereby, the control circuit 31 detects the occurrence of the short-circuit current.
  • the power cable 40a in FIG. 4 may be read as the negative electrode side and the power cable 40b as the positive electrode side.
  • FIG. 5 is a first diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention.
  • the optical modulator 50 includes a polarizer 51 and electro-optic crystals 52a and 52b.
  • the polarizer 51 polarizes the light incident from the light source 70 in a certain direction.
  • the electro-optic crystals 52a and 52b are elements for changing the polarization direction of light by applying a voltage.
  • the modulation detector 60 includes half mirrors 61c, 61d, analyzers 62c, 62d, and O/E converters 63c, 63d.
  • the half mirrors 61c and 61d are mirrors that reflect part of the incident light toward the analyzers 62c and 62d and transmit part of the light.
  • the analyzers 62c and 62d are elements for detecting the presence or absence of polarized light and the direction of the plane of polarization.
  • the O/E converters 63c and 63d are devices that convert optical signals into electrical signals.
  • the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b and the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d are connected via a link line 42 so as to be communicable.
  • the optical modulator 50 and the modulation detector 60 are connected by a polarization maintaining fiber 43 .
  • step S11 When power is being supplied in system 1, a short circuit occurs at the fault point between semiconductor circuit breaker 30a and semiconductor circuit breaker 30c (step S11), and semiconductor circuit breaker 30a detects the short circuit (step S12).
  • the semiconductor circuit breaker 30a controls the IGBT 32 by the control circuit 31 to cut off the current in the system 1 (step S13), and also transmits a signal to the semiconductor circuit breaker 30b via the link line 42 (step S14).
  • Semiconductor circuit breaker 30 b that has received the signal cancels the cutoff of the current in system 2 .
  • the switching operation of the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b is instantaneously performed.
  • step S15 when the semiconductor circuit breaker 30a cuts off the current in the system 1, the voltage V1 is applied to the electro-optic crystal 52a at that moment (step S15), and the plane of polarization of the linearly polarized wave incident from the light source 70 is changed to +45 degrees, for example. Rotate (step S16).
  • the light emitted from the optical modulator 50 enters the modulation detector 60 via the polarization maintaining fiber 43 .
  • the modulation detector 60 In the case of light whose plane of polarization has been rotated by +45 degrees, it is reflected by the half mirror 61c and enters the analyzer 62c.
  • the analyzer 62c detects the incident light, the O/E converter 63c converts the optical signal into an electrical signal (step S17).
  • the semiconductor circuit breaker 30c receives the converted electric signal, controls the IGBT 32 by the control circuit 31, cuts off the current in the system 1 (step S18), and simultaneously transmits the signal to the semiconductor circuit breaker 30d via the link line 42. is transmitted (step S19).
  • Semiconductor circuit breaker 30 d that has received the signal releases the cutoff of the current in system 2 .
  • the switching operation of the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d is instantaneously performed, and the switching from the system 1 (an example of the first power supply system) to the system 2 (an example of the second power supply system) is completed. do.
  • FIG. 6 is a second diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention.
  • a short circuit occurs at the fault point between semiconductor circuit breaker 30b and semiconductor circuit breaker 30d (step S21), and semiconductor circuit breaker 30b detects the short circuit (step S22).
  • the semiconductor circuit breaker 30b controls the IGBT 32 by the control circuit 31 to cut off the current in the system 2 (step S23), and also transmits a signal to the semiconductor circuit breaker 30a via the link line 42 (step S24). Upon receiving the signal, the semiconductor circuit breaker 30a cancels the interruption of the current in the system 1. As a result, the switching operation of the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b is instantaneously performed.
  • step S25 the voltage V2 is applied to the electro-optic crystal 52b at that instant (step S25), and the plane of polarization of the linearly polarized wave incident from the light source 70 is changed to -45, for example. Rotate by degrees (step S26).
  • the light emitted from the optical modulator 50 enters the modulation detector 60 via the polarization maintaining fiber 43 . If the light has its plane of polarization rotated by -45 degrees, it is reflected by the half mirror 61d and enters the analyzer 62d. When the analyzer 62d detects the incident light, the O/E converter 63d converts the optical signal into an electrical signal (step S27).
  • the semiconductor circuit breaker 30d receives the converted electrical signal, controls the IGBT 32 by the control circuit 31, cuts off the current in the system 2 (step S28), and simultaneously transmits the signal to the semiconductor circuit breaker 30c via the link line 42. is transmitted (step S29).
  • the semiconductor circuit breaker 30c that has received the signal cancels the interruption of the current in the system 1.
  • the switching operation of the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d is instantaneously performed, and the switching from the system 2 (an example of the first power supply system) to the system 1 (an example of the second power supply system) is completed. do.
  • the light modulated by the optical modulator 50 connected to the first plurality of circuit breakers (semiconductor circuit breakers 30a and 30b) is converted to the second plurality of circuit breakers.
  • a modulation detector 60 connected to the circuit breakers (semiconductor circuit breakers 30c and 30d) detects. Thereby, in the transmission of information from the first plurality of circuit breakers (semiconductor circuit breakers 30a, 30b) to the second plurality of circuit breakers (semiconductor circuit breakers 30c, 30d), the first plurality of circuit breakers are short-circuited.
  • the information that the short-circuit current is detected in the first plurality of circuit breakers is not converted into an electrical signal (or an optical signal) (without using a communication protocol).
  • the information that the short circuit current is detected in the conventional method is converted into an electric signal (or an optical signal), and the electric signal is
  • the time loss can be suppressed by converting the signal so that it can be transmitted over an IP network and converting it into a signal for controlling a circuit breaker on the receiving side of the signal.
  • the voltage V1 and the voltage V2 described above may be voltage values generated when the current sensor 34 detects current, or may be voltage values obtained by stepping up or stepping down the voltage value generated by the current sensor 34 .
  • the configuration of the optical modulator 50 and the modulation detector 60 shown in the present embodiment is an example, and an optical modulation technology that modulates light with a voltage and a modulation detection technology that detects the modulated light can be used. But it's okay.
  • the semiconductor circuit breakers 30a, 30b, 30c, and 30d are examples of circuit breakers.
  • the circuit breaker may be an electronic switch, an electrically controllable breaker, or the like.
  • a power supply system switching device for switching a power supply system from a power supply, a plurality of first circuit breakers that interrupt the current in the first system and cancel the interruption of the current in the second system; an optical modulator that modulates and emits incident light based on a voltage that is applied in proportion to the current detected by the first plurality of circuit breakers; a modulation detector for detecting modulation of light incident from the optical modulator; a second plurality of circuit breakers that, when the modulation detector detects modulation, interrupts current in the first system and unblocks current in the second system; Power supply system switching device.
  • each of the first plurality of circuit breakers includes a control circuit, an IGBT, and a current sensor;
  • the control circuit controls the IGBT to cut off the current in the first system.
  • Each of the first plurality of circuit breakers is communicably connected to each other via a link line, and when any one of the circuit breakers included in the first plurality of circuit breakers detects a current, the first circuit breaker Sending a signal via the link line to other circuit breakers included in the plurality of circuit breakers, 3.
  • Each of the second plurality of circuit breakers is communicatively connected to each other via a link line, and when any circuit breaker included in the second plurality of circuit breakers receives a signal from the modulation detector , transmitting a signal via the connecting line to other circuit breakers included in the second plurality of circuit breakers;
  • the power supply system switching device according to any one of items 1 to 3.
  • a power supply system switching method executed by a power supply system switching device for switching a power supply system from a power supply, a step of interrupting the current in the first system and canceling the interruption of the current in the second system; modulating and emitting incident light based on an applied voltage proportional to the detected current; detecting the modulation of the incident light; upon detection of modulation, interrupting the current in the first system and unblocking the current in the second system; Power supply system switching method.
  • power supply system switching device 10 power supply device 20 load device 30 semiconductor circuit breaker 31 control circuit 32 IGBT 33 voltage suppression circuit 34 current sensor 35 control line 40 power cable 41 fault point 42 link line 43 polarization maintaining fiber 50 optical modulator 51 polarizer 52 electro-optic crystal 60 modulation detector 61 half mirror 62 analyzer 63 O/E conversion device 70 light source 80 light receiving unit 90 circuit breaker

Abstract

This power supply system switching device for switching a power supply system from a power supply apparatus, comprising: a plurality of first circuit breakers that interrupt current in a first system and cancel interruption of current in a second system; an optical modulator that modulates incident light and emits the modulated light on the basis of a voltage applied in proportion to the current detected by the plurality of first circuit breakers; a modulation detector that detects the modulation of incident light from the optical modulator; and a plurality of second circuit breakers that, when the modulation detector detects the modulation, interrupt the current in the first system and cancel the interruption of current in the second system.

Description

給電系統切替装置および給電系統切替方法POWER SUPPLY SWITCHING DEVICE AND POWER SUPPLY SWITCHING METHOD
 本発明は、給電系統切替装置および給電系統切替方法に関する。 The present invention relates to a power supply system switching device and a power supply system switching method.
 給電システムにおいて短絡事故が発生した場合、自動的に回路を遮断する配線用遮断器により、事故点を即座に切り離すことが一般的であり、短絡の検出から切り離しまでを短時間で実現することで、事故を最小限に抑えることができる。さらに、装置への給電系統を複数準備しておき、短絡等の事故によってある系統が遮断された場合でも、他の系統に切り替えることで、装置への給電の停止による影響も抑えることができる。 When a short-circuit fault occurs in a power supply system, it is common to immediately isolate the point of fault by means of a circuit breaker that automatically breaks the circuit. , accidents can be minimized. Furthermore, by preparing a plurality of power supply systems to the device, even if one system is cut off due to an accident such as a short circuit, switching to another system can reduce the impact of power supply interruption to the device.
 また、遮断動作が早い遮断器を用いる技術が知られている。例えば、特許文献1には、遮断動作が早い半導体遮断器を用いて切り替えを行う直流遮断装置が開示されている。 There is also a known technique that uses a circuit breaker with a fast breaking operation. For example, Patent Literature 1 discloses a direct-current circuit breaker that performs switching using a semiconductor circuit breaker that cuts off quickly.
特開2015-011933号公報JP 2015-011933 A
 しかし、従来の技術では、系統の切り替えには複数の遮断器を開閉する制御が必要となり、遮断自体の動作は早くても、複数の遮断器の動作を制御し、系統を切り替えるためには時間的なロスが発生して瞬時電圧低下が発生するという問題がある。 However, with the conventional technology, it is necessary to control the opening and closing of multiple circuit breakers for system switching. There is a problem that an instantaneous voltage drop occurs due to the occurrence of a significant loss.
 開示の技術は、複数の遮断器の動作を制御するための時間的なロスを抑制することを目的とする。 The disclosed technology aims to suppress time loss for controlling the operation of multiple circuit breakers.
 開示の技術は、電源装置からの給電系統を切り替えるための給電系統切替装置であって、第一の系統の電流を遮断して、第二の系統の電流の遮断を解除する第一の複数の遮断器と、前記第一の複数の遮断器が検出した電流に比例して印加される電圧に基づいて、入射された光を変調して出射する光変調器と、前記光変調器から入射した光の変調を検出する変調検出器と、前記変調検出器が変調を検出すると、前記第一の系統の電流を遮断して前記第二の系統の電流の遮断を解除する第二の複数の遮断器と、を備える給電系統切替装置である。 The disclosed technology is a power supply system switching device for switching a power supply system from a power supply device, and includes a first plurality of first power supply systems that interrupt current in a first system and cancel current interruption in a second system. a circuit breaker, an optical modulator that modulates and emits incident light based on a voltage that is applied in proportion to the current detected by the first plurality of circuit breakers; a modulation detector for detecting modulation of light; and a second plurality of interruptions for interrupting the current in the first system and unblocking the current in the second system when the modulation detector detects modulation. and a power supply system switching device.
 複数の遮断器の動作を制御するための時間的なロスを抑制することができる。  The time loss for controlling the operation of multiple circuit breakers can be suppressed.
従来の給電系統切替装置の構成の一例を示す第一の図である。1 is a first diagram showing an example of a configuration of a conventional power supply system switching device; FIG. 従来の給電系統切替装置の構成の一例を示す第二の図である。FIG. 10 is a second diagram showing an example of the configuration of a conventional power supply system switching device; 本発明の実施の形態に係る給電系統切替装置の構成の一例を示す図である。It is a figure showing an example of composition of a feed system switching device concerning an embodiment of the invention. 半導体遮断器の構成の一例を示す図である。It is a figure which shows an example of a structure of a semiconductor circuit breaker. 本発明の実施の形態に係る給電系統切替装置の動作の一例を示す第一の図である。FIG. 4 is a first diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention; 本発明の実施の形態に係る給電系統切替装置の動作の一例を示す第二の図である。FIG. 5 is a second diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention;
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。本実施の形態に係る技術を説明する前に、まずは、本実施の形態に関連する従来技術とその課題を説明する。 An embodiment (this embodiment) of the present invention will be described below with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments. Prior to explaining the technology according to this embodiment, first, the conventional technology and its problems related to this embodiment will be explained.
 (従来技術について)
 図1は、従来の給電系統切替装置の構成の一例を示す第一の図である。従来の給電系統切替装置は、複数の遮断器90a、90b、90cおよび90dから構成される。なお、図1に示されるように、給電系統切替装置が正極側の電源ケーブル40aのみに遮断器を備える構成となっているが、負極側の電源ケーブル40bにも同様の遮断器を備えていても良い。
(Regarding conventional technology)
FIG. 1 is a first diagram showing an example of the configuration of a conventional power supply system switching device. A conventional feed system switching device is composed of a plurality of circuit breakers 90a, 90b, 90c and 90d. As shown in FIG. 1, the power supply system switching device is configured to include a circuit breaker only in the power cable 40a on the positive electrode side, but the power cable 40b on the negative electrode side is also equipped with a similar circuit breaker. Also good.
 電源装置10から負荷装置20に供給される直流電力は、系統1と系統2の2つの系統によって供給される。通常時は、系統1によって電力が供給され、系統1で短絡等の事故が発生した場合に、系統2に切り替えられる。 The DC power supplied from the power supply device 10 to the load device 20 is supplied by two systems, system 1 and system 2 . Normally, power is supplied from system 1, and when an accident such as a short circuit occurs in system 1, it is switched to system 2.
 具体的には、事故点41において短絡等の事故が発生し、遮断器90aで事故の発生を検出すると、遮断器90aを開放し、遮断器90bを閉鎖する。なお、開放は、電流を遮断する動作であり、閉鎖は電流の遮断を解除する動作である。続いて、遮断器90cを開放し、遮断器90dを閉鎖する。 Specifically, when an accident such as a short circuit occurs at the accident point 41 and the circuit breaker 90a detects the occurrence of the accident, the circuit breaker 90a is opened and the circuit breaker 90b is closed. Note that opening is an operation of interrupting current, and closing is an operation of canceling the interruption of current. Subsequently, the circuit breaker 90c is opened and the circuit breaker 90d is closed.
 このとき、遮断器の動作に時間がかかり、瞬時電圧低下が発生し、負荷装置20の停止等の誤動作が発生する可能性があった。 At this time, it may take time for the circuit breaker to operate, an instantaneous voltage drop may occur, and a malfunction such as a stop of the load device 20 may occur.
 図2は、従来の給電系統切替装置の構成の一例を示す第二の図である。図2に示される給電系統切替装置は、複数の半導体遮断器30a、30b、30cおよび30dを備える。半導体遮断器の場合、単体での遮断速度は速くなるが、事故の発生を検出した半導体遮断器30aが短絡電流を検出し、短絡電流を検出したことを電気信号(または光信号)に変換し、電気信号を半導体遮断器30cおよび30dまで送信し、半導体遮断器30cおよび30dが当該電気信号(または光信号)を受信し、受信した信号が半導体遮断器30aにおいて短絡電流を検出したことを分析し、半導体遮断器30cおよび30dを動作させるなど、切替指示のための信号の変換および送受信に時間が掛かる場合があるため、時間的なロスの抑制が十分ではない。 FIG. 2 is a second diagram showing an example of the configuration of a conventional power supply system switching device. The feed system switching device shown in FIG. 2 includes a plurality of semiconductor circuit breakers 30a, 30b, 30c and 30d. In the case of a semiconductor circuit breaker, the breaking speed by itself is faster, but the semiconductor circuit breaker 30a that detects the occurrence of an accident detects a short-circuit current and converts the detection of the short-circuit current into an electrical signal (or optical signal). , send electrical signals to semiconductor circuit breakers 30c and 30d, semiconductor circuit breakers 30c and 30d receive the electrical signals (or optical signals), and analyze that the received signals detect short-circuit current in semiconductor circuit breaker 30a However, it may take time to convert and transmit/receive the signal for the switching instruction, such as operating the semiconductor circuit breakers 30c and 30d.
 図3は、本実施の形態に係る給電系統切替装置の構成の一例を示す図である。本実施の形態に係る給電系統切替装置1は、図2と同様の半導体遮断器30a、30b、30cおよび30dを備え、さらに、光変調器50と、変調検出器60と、を備える。 FIG. 3 is a diagram showing an example of the configuration of the power supply system switching device according to this embodiment. The power supply system switching device 1 according to the present embodiment includes semiconductor breakers 30a, 30b, 30c and 30d similar to those in FIG. 2, and further includes an optical modulator 50 and a modulation detector 60.
 光変調器50は、半導体遮断器30aまたは半導体遮断器30bで事故の発生が検出されると、光源70から受光部80に向けて発した光を変調させる。 The optical modulator 50 modulates the light emitted from the light source 70 toward the light receiving section 80 when the occurrence of an accident is detected by the semiconductor circuit breaker 30a or the semiconductor circuit breaker 30b.
 変調検出器60は、光源70から受光部80に向けて発した光の変調を検出する。半導体遮断器30cおよび半導体遮断器30dは、変調検出器60が変調を検出すると、開放と閉鎖とを切り替える。 The modulation detector 60 detects modulation of light emitted from the light source 70 toward the light receiving section 80 . Semiconductor circuit breaker 30c and semiconductor circuit breaker 30d switch between opening and closing when modulation detector 60 detects modulation.
 図4は、半導体遮断器の構成の一例を示す図である。図4に示す半導体遮断器30は、半導体遮断器30a、30b、30cおよび30dに共通する構成である。 FIG. 4 is a diagram showing an example of the configuration of a semiconductor circuit breaker. The semiconductor circuit breaker 30 shown in FIG. 4 has a configuration common to the semiconductor circuit breakers 30a, 30b, 30c and 30d.
 半導体遮断器30は、制御回路31と、IGBT(Insulated Gate Bipolar Transistor)32と、電圧抑制回路33と、電流センサ34と、を備える。 The semiconductor circuit breaker 30 includes a control circuit 31, an IGBT (Insulated Gate Bipolar Transistor) 32, a voltage suppression circuit 33, and a current sensor 34.
 制御回路31は、制御線35を介して、IGBT32の開放および閉鎖を制御する。なお、図4では電源内蔵型としているが、図示しない電源から電力の供給を受けても良い。 The control circuit 31 controls the opening and closing of the IGBT 32 via the control line 35. Although FIG. 4 shows a built-in power supply type, power may be supplied from a power supply (not shown).
 IGBT32は、絶縁ゲートバイポーラトランジスタであって、制御回路31の制御を受けて、正極側の電源ケーブル40aに流れる電流を遮断するか、電流の遮断を解除する。 The IGBT 32 is an insulated gate bipolar transistor, and is controlled by the control circuit 31 to cut off the current flowing through the power cable 40a on the positive electrode side or cancel the cutoff of the current.
 電圧抑制回路33は、コンデンサまたはダイオード等であって、正極側の電源ケーブル40aと負極側の電源ケーブル40bとの間に発生する電圧の上昇を抑制する回路である。IGBT32の両端に接続された2つの電圧抑制回路33によって、電流の遮断による電圧の急激な上昇を回避することができる。 The voltage suppression circuit 33 is a capacitor, a diode, or the like, and is a circuit that suppresses a rise in voltage generated between the power cable 40a on the positive electrode side and the power cable 40b on the negative electrode side. The two voltage suppression circuits 33 connected to both ends of the IGBT 32 can avoid a sudden rise in voltage due to current interruption.
 電流センサ34は、電源ケーブル40aに流れる電流値を計測し、制御回路31に電流値を示す信号を送信する。これによって、制御回路31は、短絡電流の発生を検出する。 The current sensor 34 measures the value of the current flowing through the power cable 40a and transmits a signal indicating the current value to the control circuit 31. Thereby, the control circuit 31 detects the occurrence of the short-circuit current.
 なお、負極側に半導体遮断器を設置する場合には、図4の電源ケーブル40aを負極側、電源ケーブル40bを正極側に読み替えた構成とすれば良い。 When a semiconductor circuit breaker is installed on the negative electrode side, the power cable 40a in FIG. 4 may be read as the negative electrode side and the power cable 40b as the positive electrode side.
 図5は、本発明の実施の形態に係る給電系統切替装置の動作の一例を示す第一の図である。 FIG. 5 is a first diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention.
 まず、光変調器50および変調検出器60の構成について説明する。光変調器50は、偏光子51と、電気光学結晶52a,52bと、を備える。偏光子51は、光源70から入射した光を一定の方向に偏光させる。電気光学結晶52a,52bは、電圧の印加によって光の偏光方向を変えるための素子である。 First, the configurations of the optical modulator 50 and the modulation detector 60 will be described. The optical modulator 50 includes a polarizer 51 and electro- optic crystals 52a and 52b. The polarizer 51 polarizes the light incident from the light source 70 in a certain direction. The electro- optic crystals 52a and 52b are elements for changing the polarization direction of light by applying a voltage.
 変調検出器60は、ハーフミラー61c,61dと、検光子62c,62dと、O/E変換器63c,63dと、を備える。ハーフミラー61c,61dは、入射する光の一部を検光子62c,62dに向けて反射し、一部を透過する鏡である。検光子62c,62dは、偏光の有無や偏光面の方向を検出するための素子である。O/E変換器63c,63dは、光信号を電気信号に変換する機器である。 The modulation detector 60 includes half mirrors 61c, 61d, analyzers 62c, 62d, and O/ E converters 63c, 63d. The half mirrors 61c and 61d are mirrors that reflect part of the incident light toward the analyzers 62c and 62d and transmit part of the light. The analyzers 62c and 62d are elements for detecting the presence or absence of polarized light and the direction of the plane of polarization. The O/ E converters 63c and 63d are devices that convert optical signals into electrical signals.
 また、半導体遮断器30aおよび半導体遮断器30bの間と、半導体遮断器30cおよび半導体遮断器30dの間は、連携線42を介して通信可能に接続されている。また、光変調器50と変調検出器60の間は、偏波面保持ファイバ43によって接続されている。 Also, the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b and the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d are connected via a link line 42 so as to be communicable. Also, the optical modulator 50 and the modulation detector 60 are connected by a polarization maintaining fiber 43 .
 次に、給電系統切替装置1の動作について説明する。系統1での電力の供給が行われている場合に、半導体遮断器30aと半導体遮断器30cの間の事故点で短絡が発生し(ステップS11)、半導体遮断器30aが短絡を検出する(ステップS12)。 Next, the operation of the power supply system switching device 1 will be described. When power is being supplied in system 1, a short circuit occurs at the fault point between semiconductor circuit breaker 30a and semiconductor circuit breaker 30c (step S11), and semiconductor circuit breaker 30a detects the short circuit (step S12).
 半導体遮断器30aは、制御回路31によってIGBT32を制御し、系統1の電流を遮断し(ステップS13)、あわせて連携線42を介して半導体遮断器30bに信号を送信する(ステップS14)。信号を受信した半導体遮断器30bは、系統2の電流の遮断を解除する。これにより、瞬時に、半導体遮断器30aおよび半導体遮断器30bの切り替え動作が行われる。 The semiconductor circuit breaker 30a controls the IGBT 32 by the control circuit 31 to cut off the current in the system 1 (step S13), and also transmits a signal to the semiconductor circuit breaker 30b via the link line 42 (step S14). Semiconductor circuit breaker 30 b that has received the signal cancels the cutoff of the current in system 2 . As a result, the switching operation of the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b is instantaneously performed.
 続いて、半導体遮断器30aが系統1の電流を遮断すると、その瞬間に電圧Vが電気光学結晶52aに印加され(ステップS15)、光源70から入射した直線偏光波の偏光面が例えば+45度回転する(ステップS16)。 Subsequently, when the semiconductor circuit breaker 30a cuts off the current in the system 1, the voltage V1 is applied to the electro-optic crystal 52a at that moment (step S15), and the plane of polarization of the linearly polarized wave incident from the light source 70 is changed to +45 degrees, for example. Rotate (step S16).
 光変調器50を出射した光は、偏波面保持ファイバ43を介して変調検出器60に入射する。偏光面の+45度回転した光である場合、ハーフミラー61cを反射して、検光子62cに入射する。検光子62cが入射された光を検出すると、O/E変換器63cは、光信号を電気信号に変換する(ステップS17)。 The light emitted from the optical modulator 50 enters the modulation detector 60 via the polarization maintaining fiber 43 . In the case of light whose plane of polarization has been rotated by +45 degrees, it is reflected by the half mirror 61c and enters the analyzer 62c. When the analyzer 62c detects the incident light, the O/E converter 63c converts the optical signal into an electrical signal (step S17).
 半導体遮断器30cは、変換された電気信号を受けて、制御回路31によってIGBT32を制御し、系統1の電流を遮断し(ステップS18)、あわせて連携線42を介して半導体遮断器30dに信号を送信する(ステップS19)。信号を受信した半導体遮断器30dは、系統2の電流の遮断を解除する。これにより、瞬時に、半導体遮断器30cおよび半導体遮断器30dの切り替え動作が行われ、系統1(第一の給電系統の一例)から系統2(第二の給電系統の一例)への切り替えが完了する。 The semiconductor circuit breaker 30c receives the converted electric signal, controls the IGBT 32 by the control circuit 31, cuts off the current in the system 1 (step S18), and simultaneously transmits the signal to the semiconductor circuit breaker 30d via the link line 42. is transmitted (step S19). Semiconductor circuit breaker 30 d that has received the signal releases the cutoff of the current in system 2 . As a result, the switching operation of the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d is instantaneously performed, and the switching from the system 1 (an example of the first power supply system) to the system 2 (an example of the second power supply system) is completed. do.
 図6は、本発明の実施の形態に係る給電系統切替装置の動作の一例を示す第二の図である。系統2での電力の供給が行われている場合に、半導体遮断器30bと半導体遮断器30dの間の事故点で短絡が発生し(ステップS21)、半導体遮断器30bが短絡を検出する(ステップS22)。 FIG. 6 is a second diagram showing an example of the operation of the power supply system switching device according to the embodiment of the present invention. When power is being supplied in system 2, a short circuit occurs at the fault point between semiconductor circuit breaker 30b and semiconductor circuit breaker 30d (step S21), and semiconductor circuit breaker 30b detects the short circuit (step S22).
 半導体遮断器30bは、制御回路31によってIGBT32を制御し、系統2の電流を遮断し(ステップS23)、あわせて連携線42を介して半導体遮断器30aに信号を送信する(ステップS24)。信号を受信した半導体遮断器30aは、系統1の電流の遮断を解除する。これにより、瞬時に、半導体遮断器30aおよび半導体遮断器30bの切り替え動作が行われる。 The semiconductor circuit breaker 30b controls the IGBT 32 by the control circuit 31 to cut off the current in the system 2 (step S23), and also transmits a signal to the semiconductor circuit breaker 30a via the link line 42 (step S24). Upon receiving the signal, the semiconductor circuit breaker 30a cancels the interruption of the current in the system 1. As a result, the switching operation of the semiconductor circuit breaker 30a and the semiconductor circuit breaker 30b is instantaneously performed.
 続いて、半導体遮断器30bが系統2の電流を遮断すると、その瞬間に電圧Vが電気光学結晶52bに印加され(ステップS25)、光源70から入射した直線偏光波の偏光面が例えば-45度回転する(ステップS26)。 Subsequently, when the semiconductor circuit breaker 30b cuts off the current in the system 2, the voltage V2 is applied to the electro-optic crystal 52b at that instant (step S25), and the plane of polarization of the linearly polarized wave incident from the light source 70 is changed to -45, for example. Rotate by degrees (step S26).
 光変調器50を出射した光は、偏波面保持ファイバ43を介して変調検出器60に入射する。偏光面の-45度回転した光である場合、ハーフミラー61dを反射して、検光子62dに入射する。検光子62dが入射された光を検出すると、O/E変換器63dは、光信号を電気信号に変換する(ステップS27)。 The light emitted from the optical modulator 50 enters the modulation detector 60 via the polarization maintaining fiber 43 . If the light has its plane of polarization rotated by -45 degrees, it is reflected by the half mirror 61d and enters the analyzer 62d. When the analyzer 62d detects the incident light, the O/E converter 63d converts the optical signal into an electrical signal (step S27).
 半導体遮断器30dは、変換された電気信号を受けて、制御回路31によってIGBT32を制御し、系統2の電流を遮断し(ステップS28)、あわせて連携線42を介して半導体遮断器30cに信号を送信する(ステップS29)。信号を受信した半導体遮断器30cは、系統1の電流の遮断を解除する。これにより、瞬時に、半導体遮断器30cおよび半導体遮断器30dの切り替え動作が行われ、系統2(第一の給電系統の一例)から系統1(第二の給電系統の一例)への切り替えが完了する。 The semiconductor circuit breaker 30d receives the converted electrical signal, controls the IGBT 32 by the control circuit 31, cuts off the current in the system 2 (step S28), and simultaneously transmits the signal to the semiconductor circuit breaker 30c via the link line 42. is transmitted (step S29). The semiconductor circuit breaker 30c that has received the signal cancels the interruption of the current in the system 1. As a result, the switching operation of the semiconductor circuit breaker 30c and the semiconductor circuit breaker 30d is instantaneously performed, and the switching from the system 2 (an example of the first power supply system) to the system 1 (an example of the second power supply system) is completed. do.
 本実施の形態に係る給電系統切替装置1によれば、第一の複数の遮断器(半導体遮断器30a,30b)に接続された光変調器50によって変調された光を、第二の複数の遮断器(半導体遮断器30c,30d)に接続された変調検出器60が検出する。これによって、第一の複数の遮断器(半導体遮断器30a,30b)から第二の複数の遮断器(半導体遮断器30c,30d)への情報の伝達において、第一の複数の遮断器が短絡電流を検出すると同時に光が変調されることによって、第一の複数の遮断器において短絡電流を検出したという情報を電気信号(あるいは光信号)に変換することなく(通信用のプロトコルを使うことなく)、光が変調されているか否かで第二の複数の遮断器に伝達できるため、従来手法である短絡電流を検出したという情報を電気信号(あるいは光信号)に変換し、当該電気信号を例えばIPネットワークで送信できるように変換し、当該信号の受信側で遮断器を制御する信号に変換するなどの時間的なロスを抑制することができる。これにより、複数の電力供給の系統を瞬時に切り替えることができる。 According to the power supply system switching device 1 according to the present embodiment, the light modulated by the optical modulator 50 connected to the first plurality of circuit breakers ( semiconductor circuit breakers 30a and 30b) is converted to the second plurality of circuit breakers. A modulation detector 60 connected to the circuit breakers ( semiconductor circuit breakers 30c and 30d) detects. Thereby, in the transmission of information from the first plurality of circuit breakers ( semiconductor circuit breakers 30a, 30b) to the second plurality of circuit breakers ( semiconductor circuit breakers 30c, 30d), the first plurality of circuit breakers are short-circuited. By modulating the light at the same time as the current is detected, the information that the short-circuit current is detected in the first plurality of circuit breakers is not converted into an electrical signal (or an optical signal) (without using a communication protocol). ), since it can be transmitted to the second plurality of circuit breakers depending on whether or not the light is modulated, the information that the short circuit current is detected in the conventional method is converted into an electric signal (or an optical signal), and the electric signal is For example, the time loss can be suppressed by converting the signal so that it can be transmitted over an IP network and converting it into a signal for controlling a circuit breaker on the receiving side of the signal. Thus, it is possible to instantaneously switch between a plurality of power supply systems.
 上述した電圧Vおよび電圧Vは、電流センサ34が電流を検出した際に発生させる電圧値でも良く、電流センサ34が発生させた電圧値を昇圧または降圧させた電圧値でも良い。 The voltage V1 and the voltage V2 described above may be voltage values generated when the current sensor 34 detects current, or may be voltage values obtained by stepping up or stepping down the voltage value generated by the current sensor 34 .
 本実施の形態に示した光変調器50および変調検出器60の構成は一例であって、電圧により光を変調する光変調技術と、変調された光を検出する変調検出技術であれば、他でも良い。 The configuration of the optical modulator 50 and the modulation detector 60 shown in the present embodiment is an example, and an optical modulation technology that modulates light with a voltage and a modulation detection technology that detects the modulated light can be used. But it's okay.
 半導体遮断器30a、30b、30c、30dは、遮断器の一例である。遮断器は、電子的なスイッチや電気制御可能なブレーカなどであっても良い。 The semiconductor circuit breakers 30a, 30b, 30c, and 30d are examples of circuit breakers. The circuit breaker may be an electronic switch, an electrically controllable breaker, or the like.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した給電系統切替装置および給電系統切替方法が記載されている。
(第1項)
 電源装置からの給電系統を切り替えるための給電系統切替装置であって、
 第一の系統の電流を遮断して、第二の系統の電流の遮断を解除する第一の複数の遮断器と、
 前記第一の複数の遮断器が検出した電流に比例して印加される電圧に基づいて、入射された光を変調して出射する光変調器と、
 前記光変調器から入射した光の変調を検出する変調検出器と、
 前記変調検出器が変調を検出すると、前記第一の系統の電流を遮断して前記第二の系統の電流の遮断を解除する第二の複数の遮断器と、を備える、
 給電系統切替装置。
(第2項)
 前記第一の複数の遮断器のそれぞれは、制御回路と、IGBTと、電流センサと、を備え、
 前記制御回路は、前記電流センサによって短絡電流の発生を検出すると、前記IGBTを制御して、前記第一の系統の電流を遮断させる。
(Summary of embodiment)
This specification describes at least a power supply system switching device and a power supply system switching method described in each of the following items.
(Section 1)
A power supply system switching device for switching a power supply system from a power supply,
a plurality of first circuit breakers that interrupt the current in the first system and cancel the interruption of the current in the second system;
an optical modulator that modulates and emits incident light based on a voltage that is applied in proportion to the current detected by the first plurality of circuit breakers;
a modulation detector for detecting modulation of light incident from the optical modulator;
a second plurality of circuit breakers that, when the modulation detector detects modulation, interrupts current in the first system and unblocks current in the second system;
Power supply system switching device.
(Section 2)
each of the first plurality of circuit breakers includes a control circuit, an IGBT, and a current sensor;
When the current sensor detects the occurrence of a short-circuit current, the control circuit controls the IGBT to cut off the current in the first system.
 第1項に記載の給電系統切替装置。
(第3項)
 前記第一の複数の遮断器のそれぞれは、連携線を介して互いに通信可能に接続され、前記第一の複数の遮断器に含まれるいずれかの遮断器が電流を検出すると、前記第一の複数の遮断器に含まれる他の遮断器に前記連携線を介して信号を送信する、
 第1項または第2項に記載の給電系統切替装置。
(第4項)
 前記第二の複数の遮断器のそれぞれは、連携線を介して互いに通信可能に接続され、前記第二の複数の遮断器に含まれるいずれかの遮断器が前記変調検出器から信号を受信すると、前記第二の複数の遮断器に含まれる他の遮断器に前記連携線を介して信号を送信する、
 第1項から第3項のいずれか1項に記載の給電系統切替装置。
(第5項)
 電源装置からの給電系統を切り替えるための給電系統切替装置が実行する給電系統切替方法であって、
 第一の系統の電流を遮断して、第二の系統の電流の遮断を解除するステップと、
 検出した電流に比例して印加される電圧に基づいて、入射された光を変調して出射するステップと、
 入射した光の変調を検出するステップと、
 変調を検出すると、前記第一の系統の電流を遮断して前記第二の系統の電流の遮断を解除するステップと、を備える、
 給電系統切替方法。
The power supply system switching device according to claim 1.
(Section 3)
Each of the first plurality of circuit breakers is communicably connected to each other via a link line, and when any one of the circuit breakers included in the first plurality of circuit breakers detects a current, the first circuit breaker Sending a signal via the link line to other circuit breakers included in the plurality of circuit breakers,
3. The feed system switching device according to claim 1 or 2.
(Section 4)
Each of the second plurality of circuit breakers is communicatively connected to each other via a link line, and when any circuit breaker included in the second plurality of circuit breakers receives a signal from the modulation detector , transmitting a signal via the connecting line to other circuit breakers included in the second plurality of circuit breakers;
The power supply system switching device according to any one of items 1 to 3.
(Section 5)
A power supply system switching method executed by a power supply system switching device for switching a power supply system from a power supply,
a step of interrupting the current in the first system and canceling the interruption of the current in the second system;
modulating and emitting incident light based on an applied voltage proportional to the detected current;
detecting the modulation of the incident light;
upon detection of modulation, interrupting the current in the first system and unblocking the current in the second system;
Power supply system switching method.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes are possible within the scope of the gist of the present invention described in the claims. is.
1 給電系統切替装置
10 電源装置
20 負荷装置
30 半導体遮断器
31 制御回路
32 IGBT
33 電圧抑制回路
34 電流センサ
35 制御線
40 電源ケーブル
41 事故点
42 連携線
43 偏波面保持ファイバ
50 光変調器
51 偏光子
52 電気光学結晶
60 変調検出器
61 ハーフミラー
62 検光子
63 O/E変換器
70 光源
80 受光部
90 遮断器
1 power supply system switching device 10 power supply device 20 load device 30 semiconductor circuit breaker 31 control circuit 32 IGBT
33 voltage suppression circuit 34 current sensor 35 control line 40 power cable 41 fault point 42 link line 43 polarization maintaining fiber 50 optical modulator 51 polarizer 52 electro-optic crystal 60 modulation detector 61 half mirror 62 analyzer 63 O/E conversion device 70 light source 80 light receiving unit 90 circuit breaker

Claims (5)

  1.  電源装置からの給電系統を切り替えるための給電系統切替装置であって、
     第一の系統の電流を遮断して、第二の系統の電流の遮断を解除する第一の複数の遮断器と、
     前記第一の複数の遮断器が検出した電流に比例して印加される電圧に基づいて、入射された光を変調して出射する光変調器と、
     前記光変調器から入射した光の変調を検出する変調検出器と、
     前記変調検出器が変調を検出すると、前記第一の系統の電流を遮断して前記第二の系統の電流の遮断を解除する第二の複数の遮断器と、を備える、
     給電系統切替装置。
    A power supply system switching device for switching a power supply system from a power supply,
    a plurality of first circuit breakers that interrupt the current in the first system and cancel the interruption of the current in the second system;
    an optical modulator that modulates and emits incident light based on a voltage that is applied in proportion to the current detected by the first plurality of circuit breakers;
    a modulation detector for detecting modulation of light incident from the optical modulator;
    a second plurality of circuit breakers that, when the modulation detector detects modulation, interrupts current in the first system and unblocks current in the second system;
    Power supply system switching device.
  2.  前記第一の複数の遮断器のそれぞれは、制御回路と、IGBTと、電流センサと、を備え、
     前記制御回路は、前記電流センサによって短絡電流の発生を検出すると、前記IGBTを制御して、前記第一の系統の電流を遮断させる。
     請求項1に記載の給電系統切替装置。
    each of the first plurality of circuit breakers includes a control circuit, an IGBT, and a current sensor;
    When the current sensor detects the occurrence of a short-circuit current, the control circuit controls the IGBT to cut off the current in the first system.
    The power supply system switching device according to claim 1.
  3.  前記第一の複数の遮断器のそれぞれは、連携線を介して互いに通信可能に接続され、前記第一の複数の遮断器に含まれるいずれかの遮断器が電流を検出すると、前記第一の複数の遮断器に含まれる他の遮断器に前記連携線を介して信号を送信する、
     請求項1または2に記載の給電系統切替装置。
    Each of the first plurality of circuit breakers is communicably connected to each other via a link line, and when any one of the circuit breakers included in the first plurality of circuit breakers detects a current, the first circuit breaker Sending a signal via the link line to other circuit breakers included in the plurality of circuit breakers,
    The power supply system switching device according to claim 1 or 2.
  4.  前記第二の複数の遮断器のそれぞれは、連携線を介して互いに通信可能に接続され、前記第二の複数の遮断器に含まれるいずれかの遮断器が前記変調検出器から信号を受信すると、前記第二の複数の遮断器に含まれる他の遮断器に前記連携線を介して信号を送信する、
     請求項1から3のいずれか1項に記載の給電系統切替装置。
    Each of the second plurality of circuit breakers is communicatively connected to each other via a link line, and when any circuit breaker included in the second plurality of circuit breakers receives a signal from the modulation detector , transmitting a signal via the connecting line to other circuit breakers included in the second plurality of circuit breakers;
    The power supply system switching device according to any one of claims 1 to 3.
  5.  電源装置からの給電系統を切り替えるための給電系統切替装置が実行する給電系統切替方法であって、
     第一の系統の電流を遮断して、第二の系統の電流の遮断を解除するステップと、
     検出した電流に比例して印加される電圧に基づいて、入射された光を変調して出射するステップと、
     入射した光の変調を検出するステップと、
     変調を検出すると、前記第一の系統の電流を遮断して前記第二の系統の電流の遮断を解除するステップと、を備える、
     給電系統切替方法。
    A power supply system switching method executed by a power supply system switching device for switching a power supply system from a power supply,
    a step of interrupting the current in the first system and canceling the interruption of the current in the second system;
    modulating and emitting incident light based on an applied voltage proportional to the detected current;
    detecting the modulation of the incident light;
    upon detection of modulation, interrupting the current in the first system and unblocking the current in the second system;
    Power supply system switching method.
PCT/JP2021/020088 2021-05-26 2021-05-26 Power supply system switching device and power supply system switching method WO2022249366A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523837A JPWO2022249366A1 (en) 2021-05-26 2021-05-26
PCT/JP2021/020088 WO2022249366A1 (en) 2021-05-26 2021-05-26 Power supply system switching device and power supply system switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020088 WO2022249366A1 (en) 2021-05-26 2021-05-26 Power supply system switching device and power supply system switching method

Publications (1)

Publication Number Publication Date
WO2022249366A1 true WO2022249366A1 (en) 2022-12-01

Family

ID=84229747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020088 WO2022249366A1 (en) 2021-05-26 2021-05-26 Power supply system switching device and power supply system switching method

Country Status (2)

Country Link
JP (1) JPWO2022249366A1 (en)
WO (1) WO2022249366A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648828A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Operating method for dc transmission system
JPH0865877A (en) * 1994-08-18 1996-03-08 Ngk Insulators Ltd Protection relay device with magneto-optical sensor
JP2015164374A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power supply control apparatus, and power supply control method and program in power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648828A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Operating method for dc transmission system
JPH0865877A (en) * 1994-08-18 1996-03-08 Ngk Insulators Ltd Protection relay device with magneto-optical sensor
JP2015164374A (en) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ Power supply system, power supply control apparatus, and power supply control method and program in power supply system

Also Published As

Publication number Publication date
JPWO2022249366A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2019170035A1 (en) Igbt drive circuit for motor controller, and motor controller
US9941823B2 (en) Motor control device
US9008500B2 (en) Protection system, method and apparatus for optical network
US20150295524A1 (en) Safe torque off procedure
WO2022249366A1 (en) Power supply system switching device and power supply system switching method
WO2008044595A1 (en) Optical transmission system and optical transmission control method
EP3460995B1 (en) Power conversion device and safety function module
EP2990893B1 (en) Power supply returning apparatus
CN113285751B (en) Optical fiber communication system and optical fiber line switching protection method
FR2537806A1 (en) SWITCHING DEVICE FOR CHOOSING A MODULATOR, AMONG TWO, AND CONNECTING IT IN A TRANSMITTER, AND TELEVISION TRANSMITTER COMPRISING SUCH A DEVICE
JPH09121531A (en) Power converting equipment
US11356090B2 (en) Electronic current-switching system provided with a redundant control solution
CS248702B2 (en) Connection of the remonte control carrier frequency with duplex operation for the loaders with cutting cylinders
CN116338447B (en) Method for monitoring opening and closing states of isolating switch
JPS6142978B2 (en)
KR0131035B1 (en) Digital communication apparatus for pilot relay
JPH01125133A (en) Optical repeater equipment
KR910003659B1 (en) Emergency circuit
JP3701525B2 (en) Optical transmission system and optical transmission device
SU1726331A1 (en) Device for blocking conveyer drive
JPS581577B2 (en) Optical transmission method
KR20200102782A (en) Apparatus for protecting inverter
CN111355428A (en) Safe torque turn-off circuit and motor control system applying same
JPH05235864A (en) Automatic transmission line switching device
KR20150136853A (en) Circuit breaker control system and method for distributing board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523837

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE