WO2022185533A1 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
WO2022185533A1
WO2022185533A1 PCT/JP2021/008711 JP2021008711W WO2022185533A1 WO 2022185533 A1 WO2022185533 A1 WO 2022185533A1 JP 2021008711 W JP2021008711 W JP 2021008711W WO 2022185533 A1 WO2022185533 A1 WO 2022185533A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
layer
lines
inverter device
inverter
Prior art date
Application number
PCT/JP2021/008711
Other languages
French (fr)
Japanese (ja)
Inventor
里早 三浦
正人 半田
圭一朗 志津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/008711 priority Critical patent/WO2022185533A1/en
Priority to JP2023503322A priority patent/JP7471504B2/en
Publication of WO2022185533A1 publication Critical patent/WO2022185533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to an inverter device that converts DC voltage into AC voltage.
  • the inverter device be miniaturized.
  • a cylindrical insulator is sandwiched between a cylindrical positive electrode side bus bar metal plate and a cylindrical negative electrode side bus bar metal plate, and a pair of positive electrode side bus bar metal plates and a negative electrode side bus bar metal plate are provided.
  • a substrate structure is realized in which the busbar metal plate is opposed.
  • the present disclosure has been made in view of the above, and aims to obtain an inverter device that is easily miniaturized.
  • the inverter device of the present disclosure includes an inverter module that controls the current supplied to the compressor by switching operation, and an electrolytic capacitor that smoothes the current supplied to the inverter module. and Further, the inverter device of the present disclosure includes a first power supply line that is connected to the inverter module and the electrolytic capacitor and through which the negative current flows, and a first power supply line that is connected to the inverter module and the electrolytic capacitor and through which the positive current flows. and a second power supply line. The first power supply line is arranged on the first layer and on the second layer and is duplicated, and the second power supply line is arranged on the third layer and on the fourth layer and is duplicated.
  • FIG. 1 is a perspective view showing the configuration of an inverter device according to an embodiment
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the structure of the inverter apparatus concerning embodiment
  • FIG. 4 is a diagram for explaining stray capacitance in a comparative inverter device in which the P line and the N line are not duplicated
  • FIG. 4 is a diagram for explaining stray capacitance in an inverter device according to an embodiment in which P lines and N lines are duplicated;
  • FIG. 1 is a perspective view of the configuration of an inverter device according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of the inverter device according to the embodiment.
  • the two axes in the plane parallel to the upper surface of the substrate 1A of the inverter device 100 and perpendicular to each other are defined as the X-axis and the Y-axis.
  • the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
  • the positive Z-axis direction may be referred to as the upper side of the inverter device 100 and the negative Z-axis direction may be referred to as the lower side of the inverter device 100 .
  • the inverter device 100 is a device that converts a DC voltage into an AC voltage by switching operation.
  • the inverter device 100 includes a base material 1A that is a base material for the first layer, a base material 1B that is a base material for the second layer, a base material 1C that is a base material for the third layer, and a fourth layer. and a base material 1D that is the base material of the eye.
  • the base material 1A is the first base material
  • the base material 1B is the second base material.
  • the base material 1C is the third base material
  • the base material 1D is the fourth base material.
  • FIG. 1 shows the state of the inverter device 100 before the base materials 1A to 1D are joined.
  • FIG. 2 shows a cross-sectional configuration of the inverter device 100 when the inverter device 100 is cut along a plane parallel to the XZ plane.
  • the base materials 1A to 1D are each formed using a plate-like member having a rectangular top surface and bottom surface.
  • the substrates 1A to 1D have top and bottom surfaces of the same size and shape.
  • the substrates 1A-1D are insulators. Examples of substrates 1A-1D are printed circuit boards.
  • the base materials 1A and 1B are joined so that the bottom surface of the base material 1A and the top surface of the base material 1B overlap.
  • the base materials 1B and 1C are joined so that the bottom surface of the base material 1B and the top surface of the base material 1C overlap.
  • the base materials 1C and 1D are joined so that the bottom surface of the base material 1C and the top surface of the base material 1D overlap.
  • the substrates 1A to 1D are joined together so that the vertices of the plate members overlap when viewed from the Z-axis direction.
  • electrolytic capacitors 2 to 5 On the substrate 1A, electrolytic capacitors 2 to 5, an inverter module 8, a DC (Direct Current) line (N line) 9, which is a power line on the low potential side of the inverter module 8 and through which current on the negative electrode side flows. , an overcurrent cutoff circuit 6 and a gate voltage control circuit 7 .
  • DC Direct Current
  • the electrolytic capacitors 2-5 smooth the current supplied to the inverter module 8.
  • the electrolytic capacitors 2-5 are used as an electrolytic capacitor 32, which will be described later.
  • the overcurrent cutoff circuit 6 cuts off the overcurrent flowing through the inverter module 8 by controlling the current flowing through the inverter module 8 .
  • the gate voltage control circuit 7, which is a control circuit, controls the current flowing through the inverter module 8 by controlling the gate voltage of the semiconductor switching elements (semiconductor switching elements 33 to 38 described later) included in the inverter module 8.
  • the inverter module 8 is a module corresponding to the inverter circuit section 39 which will be described later.
  • the inverter module 8 drives the compressor 40 by controlling the current supplied to the compressor 40 (described later) by switching operation.
  • the base material 1B is a power line on the high potential side and has a DC line (P line) 10 through which current on the positive electrode side flows
  • the base material 1C is a power line on the high potential side and is on the positive electrode side.
  • the substrate 1D also has a DC line (N line) 14, which is a power line on the low-potential side and through which current on the negative electrode side flows.
  • the DC line 9 is arranged as a wiring pattern on the upper surface of the base material 1A, and the DC line 10 is arranged as a wiring pattern on the upper surface of the base material 1B.
  • the DC lines 12 are arranged as wiring patterns on the upper surface of the substrate 1C, and the DC lines 14 are arranged as wiring patterns on the upper surface of the substrate 1D.
  • the DC lines 9 and 14 are the first power lines, and the DC lines 10 and 12 are the second power lines.
  • the layer on the substrate 1A on which the DC lines 9 are arranged is the first layer, and the layer on the substrate 1D on which the DC lines 14 are arranged is the second layer.
  • the layer on the substrate 1B on which the DC lines 10 are arranged is the third layer, and the layer on the substrate 1C on which the DC lines 12 are arranged is the fourth layer.
  • DC line 9 is the first line and DC line 14 is the second line.
  • DC line 10 is the third line and DC line 12 is the fourth line.
  • the DC line 10 which is a P line, is arranged on the top surface of the base material 1B, and is formed as an inner layer between the base materials 1A and 1B by joining the bottom surface of the base material 1A and the top surface of the base material 1B. .
  • the DC line 12 which is the P line, is arranged on the upper surface of the base material 1C, and the bottom surface of the base material 1B and the upper surface of the base material 1C are joined to form an inner layer between the base materials 1B and 1C. be done.
  • the DC line 14 which is the N line, is arranged on the upper surface of the base material 1D, and the bottom surface of the base material 1C and the upper surface of the base material 1D are joined to form an inner layer between the base materials 1C and 1D. be done.
  • the DC line 14 has the same shape and size pattern as the DC line 9 and is arranged below the DC line 9 .
  • the DC line 12 has the same shape and size pattern as the DC line 10 and is arranged below the DC line 10 .
  • the DC line 9 connects the inverter module 8 and the electrolytic capacitors 2 and 4.
  • the DC line 14 is arranged at the same position as the DC line 9 when the inverter device 100 is viewed from the Z-axis direction.
  • the DC lines 10, 12 are arranged at positions connecting the inverter module 8 and the electrolytic capacitors 3, 5 when the inverter device 100 is viewed from the Z-axis direction.
  • the DC line 12 is arranged at the same position as the DC line 10 when the inverter device 100 is viewed from the Z-axis direction.
  • the substrates 1A-1C are provided with through-holes 47, 49 passing through the substrates 1A-1C, and the DC lines 9, 14 are connected through the through-holes 47, 49.
  • the base material 1B is provided with through holes 48 and 50 penetrating through the base material 1B, and the DC lines 10 and 12 are connected through the through holes 48 and 50, respectively. All of the DC lines 9 , 10 , 12 , 14 are thereby connected to the inverter module 8 .
  • the DC lines 9 and 14 are duplicated within the inverter device 100 .
  • the DC lines 10 and 12 are duplicated within the inverter device 100 .
  • Through holes 47 and 49 are first through holes
  • through holes 48 and 50 are second through holes.
  • the inverter device 100 is formed into four layers by stacking the base materials 1A to 1D.
  • the DC lines 9 and 14 can be duplicated, and the DC lines 10 and 12 can be duplicated. Therefore, the pattern width for one layer of P lines can be halved, and the pattern width for one layer of N lines can be halved. Empty space in the substrate 1A increases. Also, the patterns of the DC lines 9, 10, 12, 14 can be drawn around in the inner layer portions of the substrates 1A to 1D. As a result, in the inverter device 100, the degree of freedom in pattern routing of the DC lines 9, 10, 12, 14 is improved.
  • the distance between the components connected to the DC lines 9, 10, 12, 14 can be shortened. Specifically, the distance between the inverter module 8 connected to the DC lines 9, 14 and the electrolytic capacitors 2, 4 can be shortened. Also, the distance between the inverter module 8 connected to the DC lines 10, 12 and the electrolytic capacitors 3, 5 can be shortened. As a result, the pattern wiring lengths of the DC lines 9, 10, 12, and 14 are shortened, and the line impedance can be reduced.
  • the impurities are affected by humidity and the like. It absorbs moisture and turns into an aqueous solution.
  • a potential difference is generated between the patterns of the DC lines 9, 10, 12, and 14 via the aqueous solution, causing current to flow.
  • the pattern is electrolyzed and corroded.
  • the DC lines 10 and 12 which are the P lines on the high potential side, are internalized and doubled with the base material 1B, which is an insulator, interposed therebetween.
  • the DC lines 10 and 12, which are P lines are prevented from generating a potential difference between them and the DC lines 9, 14, which are N lines, and the adhesion of impurities can be prevented.
  • the P line has a higher potential than the N line, a potential difference is more likely to occur and impurities are more likely to adhere.
  • the DC line 14, which is the N line is formed as an inner layer, it is possible to prevent impurities from adhering to the DC line 14 as well, thereby obtaining an anticorrosion effect.
  • only DC line 9 needs to be coated for corrosion prevention.
  • the stray capacitance between the P line and the N line when the P line and the N line are not duplicated, and the stray capacitance between the P line and the N line when the P line and the N line are duplicated capacity.
  • FIG. 3 is a diagram for explaining stray capacitance in a comparative inverter device in which the P line and the N line are not duplicated.
  • FIG. 4 is a diagram for explaining stray capacitance in an inverter device according to an embodiment in which P lines and N lines are duplicated; 3 and 4, the stray capacitances 41 and 42 are illustrated as capacitors. Also, in FIG. 4, the stray capacitances 45 and 46 are illustrated as capacitors.
  • FIG. 3 shows a circuit diagram of the inverter device 101 of the comparative example and stray capacitance generated in the inverter device 101.
  • FIG. FIG. 4 shows a circuit diagram of the inverter device 100 according to the embodiment and stray capacitance generated in the inverter device 100. As shown in FIG. 3 and 4, illustration of the overcurrent cutoff circuit 6 and the gate voltage control circuit 7 is omitted.
  • the inverter device 101 and the inverter device 100 have the same circuit configuration except for duplication of the DC line, the circuit configuration of the inverter device 100 will be described here.
  • the inverter device 100 is connected to the AC power supply 16 and the compressor 40 .
  • the inverter device 100 includes a noise filter circuit section 21, a resistor 22, a relay 23, a diode bridge 24, reactors 25 and 26, a converter circuit section 31, an electrolytic capacitor 32, and an inverter circuit section 39.
  • the noise filter circuit section 21 has coils 17 and 18 and capacitors 19 and 20 .
  • the coil 17 is connected to the capacitor 19
  • the capacitor 19 is connected to the coil 18
  • the coil 18 is connected to the capacitor 20
  • the capacitor 20 is connected to the coil 17 .
  • the AC power supply 16 is connected to a connection point between the coil 17 and the capacitor 19 and to a connection point between the coil 18 and the capacitor 19 .
  • a connection point between the capacitor 20 and the coil 17 is connected to one end of the resistor 22 and one end of the relay 23 .
  • a connection point connecting the other end of the resistor 22 and the other end of the relay 23 is connected to the diode bridge 24 .
  • a connection point between the coil 18 and the capacitor 20 is connected to a diode bridge 24 .
  • the diode bridge 24 is connected to one end of the reactor 25 and one end of the reactor 26 . Also, the diode bridge 24 is connected to a connection point between the electrolytic capacitor 32 and the inverter circuit section 39 .
  • the converter circuit section 31 has diodes 27 and 28 and semiconductor switching elements 29 and 30 .
  • Each of the semiconductor switching elements 29 and 30 is constructed by connecting a transistor and a diode in parallel.
  • the anode of the diode 27 is connected to the other end of the reactor 25, the collector of the transistor provided in the semiconductor switching element 30, and the cathode of the diode.
  • the anode of the diode 28 is connected to the other end of the reactor 26, the collector of the transistor provided in the semiconductor switching element 29, and the cathode of the diode.
  • a connection point connecting the cathode of the diode 27 and the cathode of the diode 28 is connected to the electrolytic capacitor 32 .
  • the emitters of the transistors and the anodes of the diodes provided in the semiconductor switching elements 29 and 30 are connected to connection lines that connect the diode bridge 24 and the electrolytic capacitor 32, respectively.
  • the inverter circuit section 39 has semiconductor switching elements 33-38.
  • the inverter circuit section 39 is a circuit in which a plurality of transistors and diodes are connected in parallel and formed into a three-phase bridge. Specifically, inverter circuit section 39 has three legs, and each leg is connected in parallel between bus 43 and bus 44 .
  • Bus 43 is a duplicated P line, ie DC lines 10,12
  • bus 44 is a duplicated N line, ie DC lines 9,14.
  • the inverter device 101 has bus lines 51 and 52 instead of the bus lines 43 and 44 .
  • the bus 51 is a non-duplicated P-line
  • the bus 52 is a non-duplexed N-line.
  • the first leg is a circuit section in which a semiconductor switching element 33 that is a U-phase upper arm switching element and a semiconductor switching element 34 that is a U-phase lower arm switching element are connected in series.
  • the second leg is a circuit section in which a semiconductor switching element 35 that is a V-phase upper arm switching element and a semiconductor switching element 36 that is a V-phase lower arm switching element are connected in series.
  • the third leg is a circuit section in which a semiconductor switching element 37, which is a W-phase upper arm switching element, and a semiconductor switching element 38, which is a W-phase lower arm switching element, are connected in series.
  • the bus 43 is connected to the connection point between the diodes 27 and 28 and the electrolytic capacitor 32 .
  • U-phase, V-phase, and W-phase upper arm switching elements are connected to the bus 43 .
  • a transistor collector and a diode cathode provided in each of semiconductor switching elements 33 , 35 and 37 are connected to bus line 43 .
  • the bus 44 is connected to the connection point between the diode bridge 24 and the electrolytic capacitor 32 .
  • U-phase, V-phase, and W-phase lower arm switching elements are connected to the bus 44 .
  • the transistor emitter and the diode anode of each of the semiconductor switching elements 34 , 36 , 38 are connected to the bus 44 .
  • a connection point between the semiconductor switching elements 33 and 34 , a connection point between the semiconductor switching elements 35 and 36 , and a connection point between the semiconductor switching elements 37 and 38 are connected to the compressor 40 .
  • the inverter circuit unit 39 When an AC voltage is output from the AC power supply 16 to the inverter device 100 , the AC voltage is applied to the noise filter circuit section 21 and the converter circuit section 31 , and the AC voltage is forward-converted to the inverter circuit section 39 as a DC voltage. A voltage is applied. As a result, the inverter circuit unit 39 reversely converts the DC voltage and outputs an AC current to drive the compressor 40 .
  • stray capacitances 41 and 42 are included between the P line and the N line of the DC lines, that is, between the bus lines 51 and 52.
  • stray capacitances 41 and 42 are included between the P line and the N line of the DC lines, that is, between the bus lines 43 and 44.
  • stray capacitances 45 and 46 are included between the buses 43 and 44 due to the duplication of the DC lines.
  • a stray capacitance 45 is a stray capacitance between the DC lines 9 and 10
  • a stray capacitance 46 is a stray capacitance between the DC lines 12 and 14 .
  • the stray capacitance between the P line and the N line increases more than when the DC line is not duplicated.
  • stray capacitance is included between the P line and the N line, that is, between the bus lines 43 and 44. Therefore, in the inverter device 100, since the DC line is duplicated, the portion where the P line and the N line overlap increases, so the stray capacitance between the P line and the N line also increases. That is, due to the duplication of the DC lines, stray capacitance is generated between the DC lines 9 and 10 and stray capacitance is generated between the DC lines 12 and 14 .
  • the inverter devices 100 and 101 include the capacitors 19 and 20 mounted in the noise filter circuit section 21 and the capacitors corresponding to the stray capacitances 41 and 42 included in the pattern between the P line and the N line. has Furthermore, the inverter device 100 has capacitors corresponding to the increased stray capacitances 45 and 46 due to the duplication of the DC lines.
  • the inverter device 100 the stray capacitances 45 and 46 are generated due to the duplication of the DC lines, so noise on the substrates 1A to 1D can be easily absorbed. Therefore, the inverter device 100 has improved noise resistance.
  • the size of the inverter device 100 can be easily reduced because it is not necessary to configure the positive electrode side busbar and the negative electrode side busbar with tubular metal plates.
  • the area of the DC line that comes into contact with air increases, so the coating area of the DC line increases. Production cost is high.
  • the base materials 1A to 1D are laminated and the DC lines 10, 12, 14 are internalized, so the DC lines 9 may be coated. Since the area of the DC line 9 is smaller than that of the DC line provided in the inverter device 101, the cost of coating for corrosion prevention can be kept low.
  • the DC lines 10, 12 and the DC lines 9, 14 are doubled and the substrates 1A to 1D are laminated, so that the pattern width of the DC lines is halved.
  • the degree of freedom in routing the pattern of the DC line 9 increases, and the area in which the inverter module 8, the electrolytic capacitors 2 to 5, and other electronic components can be arranged becomes wider.
  • the distance between the components on the base material 1A can be shortened, and since the DC line 9 is the only DC line to be arranged on the base material 1A, the area of the top surface of the base material 1A can be reduced. Become. Therefore, a miniaturized inverter device 100 can be realized.
  • the DC lines 10, 12 and the DC lines 9, 14 are duplicated, the stray capacitance between the DC lines increases, noise is easily absorbed, and noise resistance is improved.
  • the DC lines 10, 12, 14 are internalized by laminating the base materials 1A to 1D, the DC lines 10, 12, 14 do not need to be coated for corrosion prevention. Therefore, the cost of the anti-corrosion coating can be kept low.
  • 1A to 1D base material 2 to 5, 32 electrolytic capacitor, 6 overcurrent cutoff circuit, 7 gate voltage control circuit, 8 inverter module, 9, 10, 12, 14 DC line, 16 AC power supply, 17, 18 coil, 19 , 20 capacitor, 21 noise filter circuit, 22 resistor, 23 relay, 24 diode bridge, 25, 26 reactor, 27, 28 diode, 29, 30, 33 to 38 semiconductor switching element, 31 converter circuit, 39 inverter circuit , 40 compressor, 41, 42, 45, 46 floating capacity, 43, 44, 51, 52 busbar, 47-50 through hole, 100, 101 inverter device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

This inverter device (100) is provided with an inverter module (8) that controls a current to be applied to a compressor by a switching operation, electrolytic capacitors (2-5) that smooth a current supplied to the inverter module (8), DC lines (9, 14) connected to the inverter module (8) and the electrolytic capacitors (2-5) and through which a negative electrode-side current flows, and DC lines (10, 12) connected to the inverter module (8) and the electrolytic capacitors and through which a positive electrode-side current flows. The DC lines (9, 14) are disposed and duplicated on a first layer and a second layer, and the DC lines (10, 12) are disposed and duplicated on a third layer and a fourth layer.

Description

インバータ装置Inverter device
 本開示は、直流電圧を交流電圧に変換するインバータ装置に関する。 The present disclosure relates to an inverter device that converts DC voltage into AC voltage.
 インバータ装置は、小型化されることが望まれている。特許文献1に記載のインバータ装置は、筒状の正極側母線金属板と、筒状の負極側母線金属板との間に筒状の絶縁体を挟み、一対の正極側母線金属板と負極側母線金属板とを対向させる基板構造を実現している。 It is desired that the inverter device be miniaturized. In the inverter device described in Patent Document 1, a cylindrical insulator is sandwiched between a cylindrical positive electrode side bus bar metal plate and a cylindrical negative electrode side bus bar metal plate, and a pair of positive electrode side bus bar metal plates and a negative electrode side bus bar metal plate are provided. A substrate structure is realized in which the busbar metal plate is opposed.
特開平9-205778号公報JP-A-9-205778
 しかしながら、上記特許文献1の技術では、正極側母線金属板、負極側母線金属板、および絶縁体を筒状にする必要があるので、インバータ装置を小型化することが困難であるという問題があった。 However, in the technique of Patent Document 1, the positive electrode side bus bar metal plate, the negative electrode side bus bar metal plate, and the insulator need to be cylindrical, so there is a problem that it is difficult to reduce the size of the inverter device. rice field.
 本開示は、上記に鑑みてなされたものであって、容易に小型化されたインバータ装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain an inverter device that is easily miniaturized.
 上述した課題を解決し、目的を達成するために、本開示のインバータ装置は、スイッチング動作によって圧縮機に通電する電流を制御するインバータモジュールと、インバータモジュールに供給される電流を平滑化する電解コンデンサとを備える。また、本開示のインバータ装置は、インバータモジュールおよび電解コンデンサに接続されるとともに負極側の電流が流される第1の電源ラインと、インバータモジュールおよび電解コンデンサに接続されるとともに正極側の電流が流される第2の電源ラインとを備える。第1の電源ラインは、第1の層上および第2の層上に配置されて二重化され、第2の電源ラインは、第3の層上および第4の層上に配置されて二重化されている。 In order to solve the above-described problems and achieve the object, the inverter device of the present disclosure includes an inverter module that controls the current supplied to the compressor by switching operation, and an electrolytic capacitor that smoothes the current supplied to the inverter module. and Further, the inverter device of the present disclosure includes a first power supply line that is connected to the inverter module and the electrolytic capacitor and through which the negative current flows, and a first power supply line that is connected to the inverter module and the electrolytic capacitor and through which the positive current flows. and a second power supply line. The first power supply line is arranged on the first layer and on the second layer and is duplicated, and the second power supply line is arranged on the third layer and on the fourth layer and is duplicated. there is
 本開示によれば、インバータ装置を容易に小型化することができるという効果を奏する。 According to the present disclosure, it is possible to easily miniaturize the inverter device.
実施の形態にかかるインバータ装置の構成を示す斜視図1 is a perspective view showing the configuration of an inverter device according to an embodiment; FIG. 実施の形態にかかるインバータ装置の構成を示す断面図BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the structure of the inverter apparatus concerning embodiment PラインおよびNラインが二重化されていない比較例のインバータ装置における浮遊容量を説明するための図FIG. 4 is a diagram for explaining stray capacitance in a comparative inverter device in which the P line and the N line are not duplicated; PラインおよびNラインが二重化されている実施の形態にかかるインバータ装置における浮遊容量を説明するための図FIG. 4 is a diagram for explaining stray capacitance in an inverter device according to an embodiment in which P lines and N lines are duplicated;
 以下に、本開示の実施の形態にかかるインバータ装置を図面に基づいて詳細に説明する。 Below, the inverter device according to the embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態.
 図1は、実施の形態にかかるインバータ装置の構成を示す斜視図である。図2は、実施の形態にかかるインバータ装置の構成を示す断面図である。実施の形態では、インバータ装置100が備える基材1Aの上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。以下の説明では、プラスZ軸方向をインバータ装置100の上側といい、マイナスZ軸方向をインバータ装置100の下側という場合がある。
Embodiment.
FIG. 1 is a perspective view of the configuration of an inverter device according to an embodiment. FIG. 2 is a cross-sectional view showing the configuration of the inverter device according to the embodiment. In the embodiment, the two axes in the plane parallel to the upper surface of the substrate 1A of the inverter device 100 and perpendicular to each other are defined as the X-axis and the Y-axis. Also, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis. In the following description, the positive Z-axis direction may be referred to as the upper side of the inverter device 100 and the negative Z-axis direction may be referred to as the lower side of the inverter device 100 .
 インバータ装置100は、スイッチング動作によって直流電圧を交流電圧に変換する装置である。インバータ装置100は、第1層目の基材である基材1Aと、第2層目の基材である基材1Bと、第3層目の基材である基材1Cと、第4層目の基材である基材1Dとを備えている。基材1Aが第1の基材であり、基材1Bが第2の基材である。基材1Cが第3の基材であり、基材1Dが第4の基材である。 The inverter device 100 is a device that converts a DC voltage into an AC voltage by switching operation. The inverter device 100 includes a base material 1A that is a base material for the first layer, a base material 1B that is a base material for the second layer, a base material 1C that is a base material for the third layer, and a fourth layer. and a base material 1D that is the base material of the eye. The base material 1A is the first base material, and the base material 1B is the second base material. The base material 1C is the third base material, and the base material 1D is the fourth base material.
 図1では、基材1A~1Dが接合される前のインバータ装置100の状態を示している。図2では、インバータ装置100をXZ平面に平行な面で切断した場合のインバータ装置100の断面構成を示している。 FIG. 1 shows the state of the inverter device 100 before the base materials 1A to 1D are joined. FIG. 2 shows a cross-sectional configuration of the inverter device 100 when the inverter device 100 is cut along a plane parallel to the XZ plane.
 基材1A~1Dは、それぞれ矩形状の上面および底面を有した板状部材を用いて形成されている。基材1A~1Dは、それぞれ同じ大きさで同じ形状の上面および底面を有している。基材1A~1Dは、絶縁体である。基材1A~1Dの例は、プリント基板である。 The base materials 1A to 1D are each formed using a plate-like member having a rectangular top surface and bottom surface. The substrates 1A to 1D have top and bottom surfaces of the same size and shape. The substrates 1A-1D are insulators. Examples of substrates 1A-1D are printed circuit boards.
 基材1A,1Bは、基材1Aの底面と基材1Bの上面とが重なるように接合される。また、基材1B,1Cは、基材1Bの底面と基材1Cの上面とが重なるように接合される。また、基材1C,1Dは、基材1Cの底面と基材1Dの上面とが重なるように接合される。基材1A~1Dは、Z軸方向から見た場合に、板状部材の各頂点が重なるように接合される。 The base materials 1A and 1B are joined so that the bottom surface of the base material 1A and the top surface of the base material 1B overlap. Moreover, the base materials 1B and 1C are joined so that the bottom surface of the base material 1B and the top surface of the base material 1C overlap. Moreover, the base materials 1C and 1D are joined so that the bottom surface of the base material 1C and the top surface of the base material 1D overlap. The substrates 1A to 1D are joined together so that the vertices of the plate members overlap when viewed from the Z-axis direction.
 基材1Aには、電解コンデンサ2~5と、インバータモジュール8と、インバータモジュール8の低電位側の電力ラインであり、負極側の電流が流されるDC(Direct Current)ライン(Nライン)9と、過電流遮断回路6と、ゲート電圧制御回路7とを有している。 On the substrate 1A, electrolytic capacitors 2 to 5, an inverter module 8, a DC (Direct Current) line (N line) 9, which is a power line on the low potential side of the inverter module 8 and through which current on the negative electrode side flows. , an overcurrent cutoff circuit 6 and a gate voltage control circuit 7 .
 電解コンデンサ2~5は、インバータモジュール8に供給される電流を平滑化する。電解コンデンサ2~5は、後述する電解コンデンサ32として用いられる。過電流遮断回路6は、インバータモジュール8に流れる電流を制御することで、インバータモジュール8に流れる過電流を遮断する。 The electrolytic capacitors 2-5 smooth the current supplied to the inverter module 8. The electrolytic capacitors 2-5 are used as an electrolytic capacitor 32, which will be described later. The overcurrent cutoff circuit 6 cuts off the overcurrent flowing through the inverter module 8 by controlling the current flowing through the inverter module 8 .
 制御回路であるゲート電圧制御回路7は、インバータモジュール8に含まれる半導体スイッチング素子(後述する半導体スイッチング素子33~38)のゲート電圧を制御することで、インバータモジュール8に流れる電流を制御する。 The gate voltage control circuit 7, which is a control circuit, controls the current flowing through the inverter module 8 by controlling the gate voltage of the semiconductor switching elements (semiconductor switching elements 33 to 38 described later) included in the inverter module 8.
 インバータモジュール8は、後述するインバータ回路部39に対応するモジュールである。インバータモジュール8は、スイッチング動作によって後述する圧縮機40に通電する電流を制御し、圧縮機40を駆動する。 The inverter module 8 is a module corresponding to the inverter circuit section 39 which will be described later. The inverter module 8 drives the compressor 40 by controlling the current supplied to the compressor 40 (described later) by switching operation.
 また、基材1Bは、高電位側の電力ラインであり、正極側の電流が流されるDCライン(Pライン)10を有し、基材1Cは、高電位側の電力ラインであり、正極側の電流が流されるDCライン(Pライン)12を有している。また、基材1Dは、低電位側の電力ラインであり、負極側の電流が流されるDCライン(Nライン)14を有している。 In addition, the base material 1B is a power line on the high potential side and has a DC line (P line) 10 through which current on the positive electrode side flows, and the base material 1C is a power line on the high potential side and is on the positive electrode side. has a DC line (P line) 12 through which a current of . The substrate 1D also has a DC line (N line) 14, which is a power line on the low-potential side and through which current on the negative electrode side flows.
 DCライン9は、基材1Aの上面に配線パターンとして配置され、DCライン10は、基材1Bの上面に配線パターンとして配置されている。DCライン12は、基材1Cの上面に配線パターンとして配置され、DCライン14は、基材1Dの上面に配線パターンとして配置されている。 The DC line 9 is arranged as a wiring pattern on the upper surface of the base material 1A, and the DC line 10 is arranged as a wiring pattern on the upper surface of the base material 1B. The DC lines 12 are arranged as wiring patterns on the upper surface of the substrate 1C, and the DC lines 14 are arranged as wiring patterns on the upper surface of the substrate 1D.
 DCライン9,14が第1の電源ラインであり、DCライン10,12が第2の電源ラインである。DCライン9が配置される基材1A上の層が第1の層であり、DCライン14が配置される基材1D上の層が第2の層である。DCライン10が配置される基材1B上の層が第3の層であり、DCライン12が配置される基材1C上の層が第4の層である。DCライン9が第1のラインであり、DCライン14が第2のラインである。DCライン10が第3のラインであり、DCライン12が第4のラインである。 The DC lines 9 and 14 are the first power lines, and the DC lines 10 and 12 are the second power lines. The layer on the substrate 1A on which the DC lines 9 are arranged is the first layer, and the layer on the substrate 1D on which the DC lines 14 are arranged is the second layer. The layer on the substrate 1B on which the DC lines 10 are arranged is the third layer, and the layer on the substrate 1C on which the DC lines 12 are arranged is the fourth layer. DC line 9 is the first line and DC line 14 is the second line. DC line 10 is the third line and DC line 12 is the fourth line.
 PラインであるDCライン10は、基材1Bの上面に配置されており、基材1Aの底面と基材1Bの上面とが接合されることにより、基材1A,1B間に内層化される。 The DC line 10, which is a P line, is arranged on the top surface of the base material 1B, and is formed as an inner layer between the base materials 1A and 1B by joining the bottom surface of the base material 1A and the top surface of the base material 1B. .
 また、PラインであるDCライン12は、基材1Cの上面に配置されており、基材1Bの底面と基材1Cの上面とが接合されることにより、基材1B,1C間に内層化される。 In addition, the DC line 12, which is the P line, is arranged on the upper surface of the base material 1C, and the bottom surface of the base material 1B and the upper surface of the base material 1C are joined to form an inner layer between the base materials 1B and 1C. be done.
 また、NラインであるDCライン14は、基材1Dの上面に配置されており、基材1Cの底面と基材1Dの上面とが接合されることにより、基材1C,1D間に内層化される。 In addition, the DC line 14, which is the N line, is arranged on the upper surface of the base material 1D, and the bottom surface of the base material 1C and the upper surface of the base material 1D are joined to form an inner layer between the base materials 1C and 1D. be done.
 DCライン14は、DCライン9と同じ形状且つ同じ大きさのパターンであり、DCライン9よりも下側に配置されている。DCライン12は、DCライン10と同じ形状且つ同じ大きさのパターンであり、DCライン10よりも下側に配置されている。 The DC line 14 has the same shape and size pattern as the DC line 9 and is arranged below the DC line 9 . The DC line 12 has the same shape and size pattern as the DC line 10 and is arranged below the DC line 10 .
 DCライン9は、インバータモジュール8と電解コンデンサ2,4とを接続する。DCライン14は、インバータ装置100をZ軸方向から見た場合に、DCライン9と同じ位置に配置されている。 The DC line 9 connects the inverter module 8 and the electrolytic capacitors 2 and 4. The DC line 14 is arranged at the same position as the DC line 9 when the inverter device 100 is viewed from the Z-axis direction.
 DCライン10,12は、インバータ装置100をZ軸方向から見た場合に、インバータモジュール8と電解コンデンサ3,5とを接続する位置に配置されている。DCライン12は、インバータ装置100をZ軸方向から見た場合にDCライン10と同じ位置に配置されている。 The DC lines 10, 12 are arranged at positions connecting the inverter module 8 and the electrolytic capacitors 3, 5 when the inverter device 100 is viewed from the Z-axis direction. The DC line 12 is arranged at the same position as the DC line 10 when the inverter device 100 is viewed from the Z-axis direction.
 基材1A~1Cには基材1A~1Cを貫通するスルーホール47,49が設けられており、DCライン9,14がスルーホール47,49を介して接続されている。また、基材1Bには基材1Bを貫通するスルーホール48,50が設けられており、DCライン10,12がスルーホール48,50を介して接続されている。これにより、DCライン9,10,12,14の全てがインバータモジュール8に接続されている。このように、DCライン9,14は、インバータ装置100内で二重化されている。また、DCライン10,12は、インバータ装置100内で二重化されている。スルーホール47,49が第1のスルーホールであり、スルーホール48,50が第2のスルーホールである。 The substrates 1A-1C are provided with through- holes 47, 49 passing through the substrates 1A-1C, and the DC lines 9, 14 are connected through the through- holes 47, 49. Further, the base material 1B is provided with through holes 48 and 50 penetrating through the base material 1B, and the DC lines 10 and 12 are connected through the through holes 48 and 50, respectively. All of the DC lines 9 , 10 , 12 , 14 are thereby connected to the inverter module 8 . Thus, the DC lines 9 and 14 are duplicated within the inverter device 100 . Also, the DC lines 10 and 12 are duplicated within the inverter device 100 . Through holes 47 and 49 are first through holes, and through holes 48 and 50 are second through holes.
 このように、インバータ装置100は、基材1A~1Dが積層されることで4層化されている。これにより、DCライン9,14を二重化することができるとともに、DCライン10,12を二重化することができる。したがって、Pラインの1層分のパターン幅を半減できるとともに、Nラインの1層分のパターン幅を半減できる。基材1Aにおける空きスペースが増える。また、基材1A~1Dの内層部でもDCライン9,10,12,14のパターンを引き回しできる。この結果、インバータ装置100では、DCライン9,10,12,14のパターン引き回しの自由度が向上する。 In this way, the inverter device 100 is formed into four layers by stacking the base materials 1A to 1D. Thereby, the DC lines 9 and 14 can be duplicated, and the DC lines 10 and 12 can be duplicated. Therefore, the pattern width for one layer of P lines can be halved, and the pattern width for one layer of N lines can be halved. Empty space in the substrate 1A increases. Also, the patterns of the DC lines 9, 10, 12, 14 can be drawn around in the inner layer portions of the substrates 1A to 1D. As a result, in the inverter device 100, the degree of freedom in pattern routing of the DC lines 9, 10, 12, 14 is improved.
 DCライン9,10,12,14のパターン引き回しの自由度が向上することにより、DCライン9,10,12,14に接続される部品間の距離を短くすることができる。具体的には、DCライン9,14に接続されるインバータモジュール8と電解コンデンサ2,4との間の距離を短くすることができる。また、DCライン10,12に接続されるインバータモジュール8と電解コンデンサ3,5との間の距離を短くすることができる。これにより、DCライン9,10,12,14のパターン配線の長さが短くなり、線路インピーダンスを低減することができる。 By improving the degree of freedom of pattern routing of the DC lines 9, 10, 12, 14, the distance between the components connected to the DC lines 9, 10, 12, 14 can be shortened. Specifically, the distance between the inverter module 8 connected to the DC lines 9, 14 and the electrolytic capacitors 2, 4 can be shortened. Also, the distance between the inverter module 8 connected to the DC lines 10, 12 and the electrolytic capacitors 3, 5 can be shortened. As a result, the pattern wiring lengths of the DC lines 9, 10, 12, and 14 are shortened, and the line impedance can be reduced.
 DCライン9,10,12,14がコーティングされていない状態で、基材1A~1D上に、電流を流すことが可能な不純物(硫黄、塩分等)が付着すると、湿度等の影響によって不純物が吸湿し水溶液化する。この場合において基材1A~1D内で通電すると、水溶液を介して、DCライン9,10,12,14のパターン間に電位差が生じて電流が流れる。これにより、パターンが電気分解されてパターンに腐食が発生する。 When the DC lines 9, 10, 12, and 14 are not coated and impurities (sulfur, salt, etc.) that allow current to flow adhere to the substrates 1A to 1D, the impurities are affected by humidity and the like. It absorbs moisture and turns into an aqueous solution. In this case, when current is passed through the substrates 1A to 1D, a potential difference is generated between the patterns of the DC lines 9, 10, 12, and 14 via the aqueous solution, causing current to flow. As a result, the pattern is electrolyzed and corroded.
 本実施の形態のインバータ装置100は、高電位側のPラインであるDCライン10,12が内層化されており、絶縁体である基材1Bを挟んで二重化されている。これにより、PラインであるDCライン10,12は、NラインであるDCライン9,14との間の電位差の発生が抑えられるとともに、不純物の付着を防ぐことができる。また、Pラインの方がNラインよりも電位が高いので、電位差が発生しやすく不純物が付着しやすいが、Pラインが内層化されているので、防腐効果が得られる。また、NラインであるDCライン14が内層化されているので、DCライン14に対しても不純物の付着を防ぐことができ、防腐効果が得られる。インバータ装置100へは、DCライン9に対してのみ腐食防止用のコーティングが行なわれればよい。 In the inverter device 100 of the present embodiment, the DC lines 10 and 12, which are the P lines on the high potential side, are internalized and doubled with the base material 1B, which is an insulator, interposed therebetween. As a result, the DC lines 10 and 12, which are P lines, are prevented from generating a potential difference between them and the DC lines 9, 14, which are N lines, and the adhesion of impurities can be prevented. Also, since the P line has a higher potential than the N line, a potential difference is more likely to occur and impurities are more likely to adhere. In addition, since the DC line 14, which is the N line, is formed as an inner layer, it is possible to prevent impurities from adhering to the DC line 14 as well, thereby obtaining an anticorrosion effect. In inverter device 100, only DC line 9 needs to be coated for corrosion prevention.
 ここで、PラインおよびNラインが二重化されていない場合のPラインとNラインとの間の浮遊容量と、PラインおよびNラインが二重化されている場合のPラインとNラインとの間の浮遊容量とについて説明する。 Here, the stray capacitance between the P line and the N line when the P line and the N line are not duplicated, and the stray capacitance between the P line and the N line when the P line and the N line are duplicated capacity.
 図3は、PラインおよびNラインが二重化されていない比較例のインバータ装置における浮遊容量を説明するための図である。図4は、PラインおよびNラインが二重化されている実施の形態にかかるインバータ装置における浮遊容量を説明するための図である。なお、図3および図4では、浮遊容量41,42をコンデンサとして図示している。また、図4では、浮遊容量45,46をコンデンサとして図示している。 FIG. 3 is a diagram for explaining stray capacitance in a comparative inverter device in which the P line and the N line are not duplicated. FIG. 4 is a diagram for explaining stray capacitance in an inverter device according to an embodiment in which P lines and N lines are duplicated; 3 and 4, the stray capacitances 41 and 42 are illustrated as capacitors. Also, in FIG. 4, the stray capacitances 45 and 46 are illustrated as capacitors.
 図3では、比較例のインバータ装置101の回路図と、インバータ装置101に発生する浮遊容量とを示している。図4では、実施の形態にかかるインバータ装置100の回路図と、インバータ装置100に発生する浮遊容量とを示している。なお、図3および図4では、過電流遮断回路6およびゲート電圧制御回路7の図示を省略している。 FIG. 3 shows a circuit diagram of the inverter device 101 of the comparative example and stray capacitance generated in the inverter device 101. FIG. FIG. 4 shows a circuit diagram of the inverter device 100 according to the embodiment and stray capacitance generated in the inverter device 100. As shown in FIG. 3 and 4, illustration of the overcurrent cutoff circuit 6 and the gate voltage control circuit 7 is omitted.
 インバータ装置101とインバータ装置100とは、DCラインの二重化以外は同様の回路構成となっているので、ここではインバータ装置100の回路構成について説明する。 Since the inverter device 101 and the inverter device 100 have the same circuit configuration except for duplication of the DC line, the circuit configuration of the inverter device 100 will be described here.
 インバータ装置100は、交流電源16および圧縮機40に接続されている。インバータ装置100は、ノイズフィルタ回路部21と、抵抗22と、リレー23と、ダイオードブリッジ24と、リアクタ25,26と、コンバータ回路部31と、電解コンデンサ32と、インバータ回路部39とを備えている。 The inverter device 100 is connected to the AC power supply 16 and the compressor 40 . The inverter device 100 includes a noise filter circuit section 21, a resistor 22, a relay 23, a diode bridge 24, reactors 25 and 26, a converter circuit section 31, an electrolytic capacitor 32, and an inverter circuit section 39. there is
 ノイズフィルタ回路部21は、コイル17,18およびコンデンサ19,20を有している。ノイズフィルタ回路部21では、コイル17がコンデンサ19に接続され、コンデンサ19がコイル18に接続され、コイル18がコンデンサ20に接続されコンデンサ20がコイル17に接続されている。交流電源16は、コイル17とコンデンサ19との接続点に接続されるとともに、コイル18とコンデンサ19との接続点に接続されている。 The noise filter circuit section 21 has coils 17 and 18 and capacitors 19 and 20 . In the noise filter circuit section 21 , the coil 17 is connected to the capacitor 19 , the capacitor 19 is connected to the coil 18 , the coil 18 is connected to the capacitor 20 , and the capacitor 20 is connected to the coil 17 . The AC power supply 16 is connected to a connection point between the coil 17 and the capacitor 19 and to a connection point between the coil 18 and the capacitor 19 .
 コンデンサ20とコイル17との接続点には、抵抗22の一端およびリレー23の一端が接続されている。抵抗22の他端とリレー23の他端とを接続する接続点は、ダイオードブリッジ24に接続されている。また、コイル18とコンデンサ20との接続点は、ダイオードブリッジ24に接続されている。 A connection point between the capacitor 20 and the coil 17 is connected to one end of the resistor 22 and one end of the relay 23 . A connection point connecting the other end of the resistor 22 and the other end of the relay 23 is connected to the diode bridge 24 . A connection point between the coil 18 and the capacitor 20 is connected to a diode bridge 24 .
 ダイオードブリッジ24は、リアクタ25の一端およびリアクタ26の一端に接続されている。また、ダイオードブリッジ24は、電解コンデンサ32とインバータ回路部39との接続点に接続されている。 The diode bridge 24 is connected to one end of the reactor 25 and one end of the reactor 26 . Also, the diode bridge 24 is connected to a connection point between the electrolytic capacitor 32 and the inverter circuit section 39 .
 コンバータ回路部31は、ダイオード27,28および半導体スイッチング素子29,30を有している。半導体スイッチング素子29,30は、それぞれトランジスタとダイオードとが並列に接続されて構成されている。 The converter circuit section 31 has diodes 27 and 28 and semiconductor switching elements 29 and 30 . Each of the semiconductor switching elements 29 and 30 is constructed by connecting a transistor and a diode in parallel.
 ダイオード27のアノードは、リアクタ25の他端および半導体スイッチング素子30が備えるトランジスタのコレクタおよびダイオードのカソードに接続されている。ダイオード28のアノードは、リアクタ26の他端および半導体スイッチング素子29が備えるトランジスタのコレクタおよびダイオードのカソードに接続されている。また、ダイオード27のカソードとダイオード28のカソードとを接続する接続点は、電解コンデンサ32に接続されている。 The anode of the diode 27 is connected to the other end of the reactor 25, the collector of the transistor provided in the semiconductor switching element 30, and the cathode of the diode. The anode of the diode 28 is connected to the other end of the reactor 26, the collector of the transistor provided in the semiconductor switching element 29, and the cathode of the diode. A connection point connecting the cathode of the diode 27 and the cathode of the diode 28 is connected to the electrolytic capacitor 32 .
 半導体スイッチング素子29,30が備えるトランジスタのエミッタおよびダイオードのアノードは、それぞれダイオードブリッジ24と電解コンデンサ32とを接続する接続線に接続されている。 The emitters of the transistors and the anodes of the diodes provided in the semiconductor switching elements 29 and 30 are connected to connection lines that connect the diode bridge 24 and the electrolytic capacitor 32, respectively.
 インバータ回路部39は、半導体スイッチング素子33~38を有している。インバータ回路部39は、複数のトランジスタとダイオードとをそれぞれ並列に接続し、かつ三相ブリッジにした回路である。具体的には、インバータ回路部39は、3つのレグを有しており、各レグが、母線43と母線44との間で並列に接続されている。母線43が二重化されたPライン、すなわちDCライン10,12であり、母線44が二重化されたNライン、すなわちDCライン9,14である。 The inverter circuit section 39 has semiconductor switching elements 33-38. The inverter circuit section 39 is a circuit in which a plurality of transistors and diodes are connected in parallel and formed into a three-phase bridge. Specifically, inverter circuit section 39 has three legs, and each leg is connected in parallel between bus 43 and bus 44 . Bus 43 is a duplicated P line, ie DC lines 10,12, and bus 44 is a duplicated N line, ie DC lines 9,14.
 なお、インバータ装置101は、母線43,44の代わりに母線51,52を有している。母線51が二重化されていないPラインであり、母線52が二重化されていないNラインである。 Note that the inverter device 101 has bus lines 51 and 52 instead of the bus lines 43 and 44 . The bus 51 is a non-duplicated P-line, and the bus 52 is a non-duplexed N-line.
 第1のレグは、U相の上アームスイッチング素子である半導体スイッチング素子33と、U相の下アームスイッチング素子である半導体スイッチング素子34とが直列に接続された回路部である。 The first leg is a circuit section in which a semiconductor switching element 33 that is a U-phase upper arm switching element and a semiconductor switching element 34 that is a U-phase lower arm switching element are connected in series.
 第2のレグは、V相の上アームスイッチング素子である半導体スイッチング素子35と、V相の下アームスイッチング素子である半導体スイッチング素子36とが直列に接続された回路部である。 The second leg is a circuit section in which a semiconductor switching element 35 that is a V-phase upper arm switching element and a semiconductor switching element 36 that is a V-phase lower arm switching element are connected in series.
 第3のレグは、W相の上アームスイッチング素子である半導体スイッチング素子37と、W相の下アームスイッチング素子である半導体スイッチング素子38とが直列に接続された回路部である。 The third leg is a circuit section in which a semiconductor switching element 37, which is a W-phase upper arm switching element, and a semiconductor switching element 38, which is a W-phase lower arm switching element, are connected in series.
 母線43は、ダイオード27,28と電解コンデンサ32との接続点に接続されている。また、母線43には、U相、V相、およびW相の上アームスイッチング素子が接続されている。具体的には、半導体スイッチング素子33,35,37のそれぞれが備える、トランジスタのコレクタおよびダイオードのカソードが、母線43に接続されている。 The bus 43 is connected to the connection point between the diodes 27 and 28 and the electrolytic capacitor 32 . In addition, U-phase, V-phase, and W-phase upper arm switching elements are connected to the bus 43 . Specifically, a transistor collector and a diode cathode provided in each of semiconductor switching elements 33 , 35 and 37 are connected to bus line 43 .
 母線44は、ダイオードブリッジ24と電解コンデンサ32との接続点に接続されている。また、母線44には、U相、V相、およびW相の下アームスイッチング素子が接続されている。具体的には、半導体スイッチング素子34,36,38のそれぞれが備える、トランジスタのエミッタおよびダイオードのアノードが、母線44に接続されている。 The bus 44 is connected to the connection point between the diode bridge 24 and the electrolytic capacitor 32 . In addition, U-phase, V-phase, and W-phase lower arm switching elements are connected to the bus 44 . Specifically, the transistor emitter and the diode anode of each of the semiconductor switching elements 34 , 36 , 38 are connected to the bus 44 .
 そして、半導体スイッチング素子33,34の接続点、半導体スイッチング素子35,36の接続点、および半導体スイッチング素子37,38の接続点が、圧縮機40に接続されている。 A connection point between the semiconductor switching elements 33 and 34 , a connection point between the semiconductor switching elements 35 and 36 , and a connection point between the semiconductor switching elements 37 and 38 are connected to the compressor 40 .
 インバータ装置100に対し、交流電源16から交流電圧が出力されると、交流電圧がノイズフィルタ回路部21と、コンバータ回路部31とに印加され、交流電圧が順変換されてインバータ回路部39に直流電圧が印加される。これにより、インバータ回路部39は、直流電圧を逆変換して交流電流を出力し、圧縮機40を駆動する。 When an AC voltage is output from the AC power supply 16 to the inverter device 100 , the AC voltage is applied to the noise filter circuit section 21 and the converter circuit section 31 , and the AC voltage is forward-converted to the inverter circuit section 39 as a DC voltage. A voltage is applied. As a result, the inverter circuit unit 39 reversely converts the DC voltage and outputs an AC current to drive the compressor 40 .
 この場合において、インバータ装置101では、DCラインのPラインとNラインとの間、すなわち母線51,52間には浮遊容量41,42が含まれることとなる。 In this case, in the inverter device 101, stray capacitances 41 and 42 are included between the P line and the N line of the DC lines, that is, between the bus lines 51 and 52.
 同様に、インバータ装置100では、DCラインのPラインとNラインとの間、すなわち母線43,44間には浮遊容量41,42が含まれることとなる。さらに、インバータ装置100では、DCラインが二重化されたことによって母線43,44間には浮遊容量45,46が含まれることになる。浮遊容量45は、DCライン9とDCライン10との間の浮遊容量であり、浮遊容量46は、DCライン12とDCライン14との間の浮遊容量である。インバータ装置100では、DCラインが二重化されているので、二重化されていない場合よりもPラインとNラインとの間の浮遊容量が増加する。 Similarly, in the inverter device 100, stray capacitances 41 and 42 are included between the P line and the N line of the DC lines, that is, between the bus lines 43 and 44. Furthermore, in the inverter device 100, stray capacitances 45 and 46 are included between the buses 43 and 44 due to the duplication of the DC lines. A stray capacitance 45 is a stray capacitance between the DC lines 9 and 10 , and a stray capacitance 46 is a stray capacitance between the DC lines 12 and 14 . In the inverter device 100, since the DC line is duplicated, the stray capacitance between the P line and the N line increases more than when the DC line is not duplicated.
 このように、インバータ装置100では、浮遊容量は、PラインとNラインとの間、すなわち母線43,44間に含まれることとなる。このため、インバータ装置100では、DCラインが二重化されることによって、PラインとNラインが重なる部分が増えるので、PラインとNライン間の浮遊容量も増加する。すなわち、DCラインが二重化されることによって、DCライン9とDCライン10との間に浮遊容量が発生し、DCライン12とDCライン14との間に浮遊容量が発生する。 Thus, in the inverter device 100, stray capacitance is included between the P line and the N line, that is, between the bus lines 43 and 44. Therefore, in the inverter device 100, since the DC line is duplicated, the portion where the P line and the N line overlap increases, so the stray capacitance between the P line and the N line also increases. That is, due to the duplication of the DC lines, stray capacitance is generated between the DC lines 9 and 10 and stray capacitance is generated between the DC lines 12 and 14 .
 このように、インバータ装置100,101は、ノイズフィルタ回路部21に実装されているコンデンサ19,20と、PラインとNラインとの間のパターンに含まれる浮遊容量41,42に対応するコンデンサとを有していることになる。さらに、インバータ装置100は、DCラインが二重化されたことにより増加した浮遊容量45,46に対応するコンデンサを有していることになる。 In this way, the inverter devices 100 and 101 include the capacitors 19 and 20 mounted in the noise filter circuit section 21 and the capacitors corresponding to the stray capacitances 41 and 42 included in the pattern between the P line and the N line. has Furthermore, the inverter device 100 has capacitors corresponding to the increased stray capacitances 45 and 46 due to the duplication of the DC lines.
 このように、インバータ装置100は、DCラインが二重化されたことによって浮遊容量45,46が発生するので、基材1A~1D上のノイズを吸収しやすくなる。したがって、インバータ装置100は、耐ノイズ性が向上する。 Thus, in the inverter device 100, the stray capacitances 45 and 46 are generated due to the duplication of the DC lines, so noise on the substrates 1A to 1D can be easily absorbed. Therefore, the inverter device 100 has improved noise resistance.
 インバータ装置100は、正極側の母線および負極側の母線を筒状の金属板で構成する必要がないので小型化が容易である。正極側の母線および負極側の母線が筒状の金属板で構成されたインバータ装置の場合、DCラインが空気と触れる面積が大きくなるので、DCラインのコーティング面積が増加してしまい、インバータ装置の作製コストが高くなる。 The size of the inverter device 100 can be easily reduced because it is not necessary to configure the positive electrode side busbar and the negative electrode side busbar with tubular metal plates. In the case of an inverter device in which the positive electrode side busbar and the negative electrode side busbar are made of cylindrical metal plates, the area of the DC line that comes into contact with air increases, so the coating area of the DC line increases. Production cost is high.
 一方、インバータ装置100は、基材1A~1Dが積層されてDCライン10,12,14が内層化されているので、DCライン9に対してコーティングが行われればよい。DCライン9の面積は、インバータ装置101が備えるDCラインよりも、面積が小さいので、腐食防止用のコーティングコストを低く抑えることができる。 On the other hand, in the inverter device 100, the base materials 1A to 1D are laminated and the DC lines 10, 12, 14 are internalized, so the DC lines 9 may be coated. Since the area of the DC line 9 is smaller than that of the DC line provided in the inverter device 101, the cost of coating for corrosion prevention can be kept low.
 このように実施の形態によれば、DCライン10,12およびDCライン9,14が二重化されるとともに、基材1A~1Dが積層されているので、DCラインのパターン幅が半減する。これにより、DCライン9のパターンの引き回しの自由度が上がり、インバータモジュール8、電解コンデンサ2~5、およびその他の電子部品を配置できるエリアが広くなる。これにより、基材1A上の部品の距離を近づけることができるとともに、基材1Aに配置されるDCラインがDCライン9だけでよいので、基材1Aの上面の面積を狭くすることが可能となる。したがって、小型化されたインバータ装置100を実現することができる。 Thus, according to the embodiment, the DC lines 10, 12 and the DC lines 9, 14 are doubled and the substrates 1A to 1D are laminated, so that the pattern width of the DC lines is halved. As a result, the degree of freedom in routing the pattern of the DC line 9 increases, and the area in which the inverter module 8, the electrolytic capacitors 2 to 5, and other electronic components can be arranged becomes wider. As a result, the distance between the components on the base material 1A can be shortened, and since the DC line 9 is the only DC line to be arranged on the base material 1A, the area of the top surface of the base material 1A can be reduced. Become. Therefore, a miniaturized inverter device 100 can be realized.
 また、DCライン10,12およびDCライン9,14が二重化されているので、DCライン間の浮遊容量が増大し、ノイズを吸収しやすくなり、耐ノイズ性が向上する。 Also, since the DC lines 10, 12 and the DC lines 9, 14 are duplicated, the stray capacitance between the DC lines increases, noise is easily absorbed, and noise resistance is improved.
 また、基材1A~1Dを積層することでDCライン10,12,14を内層化しているので、DCライン10,12,14に対して腐食防止用のコーティングが不要となる。したがって、腐食防止用のコーティングコストを低く抑えることができる。 In addition, since the DC lines 10, 12, 14 are internalized by laminating the base materials 1A to 1D, the DC lines 10, 12, 14 do not need to be coated for corrosion prevention. Therefore, the cost of the anti-corrosion coating can be kept low.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1A~1D 基材、2~5,32 電解コンデンサ、6 過電流遮断回路、7 ゲート電圧制御回路、8 インバータモジュール、9,10,12,14 DCライン、16 交流電源、17,18 コイル、19,20 コンデンサ、21 ノイズフィルタ回路部、22 抵抗、23 リレー、24 ダイオードブリッジ、25,26 リアクタ、27,28 ダイオード、29,30,33~38 半導体スイッチング素子、31 コンバータ回路部、39 インバータ回路部、40 圧縮機、41,42,45,46 浮遊容量、43,44,51,52 母線、47~50 スルーホール、100,101 インバータ装置。 1A to 1D base material, 2 to 5, 32 electrolytic capacitor, 6 overcurrent cutoff circuit, 7 gate voltage control circuit, 8 inverter module, 9, 10, 12, 14 DC line, 16 AC power supply, 17, 18 coil, 19 , 20 capacitor, 21 noise filter circuit, 22 resistor, 23 relay, 24 diode bridge, 25, 26 reactor, 27, 28 diode, 29, 30, 33 to 38 semiconductor switching element, 31 converter circuit, 39 inverter circuit , 40 compressor, 41, 42, 45, 46 floating capacity, 43, 44, 51, 52 busbar, 47-50 through hole, 100, 101 inverter device.

Claims (5)

  1.  スイッチング動作によって圧縮機に通電する電流を制御するインバータモジュールと、
     前記インバータモジュールに供給される電流を平滑化する電解コンデンサと、
     前記インバータモジュールおよび前記電解コンデンサに接続されるとともに負極側の電流が流される第1の電源ラインと、
     前記インバータモジュールおよび前記電解コンデンサに接続されるとともに正極側の電流が流される第2の電源ラインと、
     を備え、
     前記第1の電源ラインは、第1の層上および第2の層上に配置されて二重化され、
     前記第2の電源ラインは、第3の層上および第4の層上に配置されて二重化されている、
     インバータ装置。
    an inverter module that controls current supplied to the compressor by switching operation;
    an electrolytic capacitor that smoothes the current supplied to the inverter module;
    a first power supply line connected to the inverter module and the electrolytic capacitor and through which current on the negative electrode side flows;
    a second power supply line connected to the inverter module and the electrolytic capacitor and through which positive current flows;
    with
    the first power supply line is arranged and duplicated on the first layer and the second layer;
    The second power supply line is arranged and duplicated on the third layer and the fourth layer,
    inverter device.
  2.  前記インバータモジュールおよび前記電解コンデンサが配置された第1の基材と、
     前記第1の基材の底面に接合された第2の基材と、
     前記第2の基材の底面に接合された第3の基材と、
     前記第3の基材の底面に接合された第4の基材と、
     をさらに備え、
     前記第1の層は、前記第1の基材上の層であり、
     前記第2の層は、前記第4の基材上の層であり、
     前記第3の層は、前記第2の基材上の層であり、
     前記第4の層は、前記第3の基材上の層である、
     請求項1に記載のインバータ装置。
    a first base on which the inverter module and the electrolytic capacitor are arranged;
    a second substrate bonded to the bottom surface of the first substrate;
    a third substrate bonded to the bottom surface of the second substrate;
    a fourth substrate bonded to the bottom surface of the third substrate;
    further comprising
    the first layer is a layer on the first substrate;
    the second layer is a layer on the fourth substrate;
    the third layer is a layer on the second substrate;
    The fourth layer is a layer on the third substrate,
    The inverter device according to claim 1.
  3.  前記第1の電源ラインは、前記第1の層上に配置された第1のラインと、前記第2の層上に配置された第2のラインとを用いて二重化され、
     前記第2の電源ラインは、前記第3の層上に配置された第3のラインと、前記第4の層上に配置された第4のラインとを用いて二重化され、
     前記第1のラインと前記第2のラインとは、同じ形状且つ同じ大きさのパターンであり、
     前記第3のラインと前記第4のラインとは、同じ形状且つ同じ大きさのパターンである、
     請求項2に記載のインバータ装置。
    the first power supply line is duplicated using a first line arranged on the first layer and a second line arranged on the second layer;
    the second power supply line is duplicated using a third line arranged on the third layer and a fourth line arranged on the fourth layer;
    The first line and the second line are patterns of the same shape and size,
    The third line and the fourth line are patterns of the same shape and size,
    The inverter device according to claim 2.
  4.  前記第1のラインと、前記第2のラインとは、第1のスルーホールを介して接続され、
     前記第3のラインと、前記第4のラインとは、第2のスルーホールを介して接続されている、
     請求項3に記載のインバータ装置。
    the first line and the second line are connected via a first through hole,
    The third line and the fourth line are connected via a second through hole,
    The inverter device according to claim 3.
  5.  前記第1の基材には、前記インバータモジュールに流れる過電流を遮断する過電流遮断回路と、前記インバータモジュールに流れる電流を制御する制御回路とが配置されている、
     請求項2から4の何れか1つに記載のインバータ装置。
    An overcurrent cutoff circuit that cuts off an overcurrent flowing through the inverter module and a control circuit that controls the current flowing through the inverter module are arranged on the first substrate.
    The inverter device according to any one of claims 2 to 4.
PCT/JP2021/008711 2021-03-05 2021-03-05 Inverter device WO2022185533A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/008711 WO2022185533A1 (en) 2021-03-05 2021-03-05 Inverter device
JP2023503322A JP7471504B2 (en) 2021-03-05 2021-03-05 Inverter Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008711 WO2022185533A1 (en) 2021-03-05 2021-03-05 Inverter device

Publications (1)

Publication Number Publication Date
WO2022185533A1 true WO2022185533A1 (en) 2022-09-09

Family

ID=83154121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008711 WO2022185533A1 (en) 2021-03-05 2021-03-05 Inverter device

Country Status (2)

Country Link
JP (1) JP7471504B2 (en)
WO (1) WO2022185533A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172329A (en) * 2010-02-17 2011-09-01 Hitachi Cable Ltd Circuit board, and power conversion device using the same
JP2016092924A (en) * 2014-10-31 2016-05-23 日産自動車株式会社 Power conversion device
WO2016194050A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Power conversion device
JP2019004633A (en) * 2017-06-16 2019-01-10 株式会社豊田自動織機 Electric power conversion system
JP2019134591A (en) * 2018-01-31 2019-08-08 ニチコン株式会社 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172329A (en) * 2010-02-17 2011-09-01 Hitachi Cable Ltd Circuit board, and power conversion device using the same
JP2016092924A (en) * 2014-10-31 2016-05-23 日産自動車株式会社 Power conversion device
WO2016194050A1 (en) * 2015-05-29 2016-12-08 日産自動車株式会社 Power conversion device
JP2019004633A (en) * 2017-06-16 2019-01-10 株式会社豊田自動織機 Electric power conversion system
JP2019134591A (en) * 2018-01-31 2019-08-08 ニチコン株式会社 Power converter

Also Published As

Publication number Publication date
JP7471504B2 (en) 2024-04-19
JPWO2022185533A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2010047366A1 (en) Power converter and in-car electrical system
JP6397795B2 (en) Power converter
JP6288769B2 (en) Semiconductor power module, power conversion device, and moving body using the same
WO2014021112A1 (en) Switching element unit
US7633166B2 (en) Terminal connection structure for semiconductor device
JP2017117964A (en) Electric circuit device
WO2022185533A1 (en) Inverter device
WO2016117403A1 (en) Power conversion device
JP2009055664A (en) Three-level power converter
JP2005237118A (en) Bus bar structure and power converting apparatus utilizing the same
JP2017017881A (en) Power converter
JP4957842B2 (en) Power converter
WO2013179463A1 (en) Power conversion apparatus
JP2012043686A (en) Laminated bus bar and method of manufacturing the same
JP2021068757A (en) Wiring board
WO2018012150A1 (en) Current measurement device
WO2020213534A1 (en) Power converter
JP2008306867A (en) Power conversion equipment and method of connecting electrical part
JP2019037048A (en) Power converter
JP6701878B2 (en) Power converter
JP6984171B2 (en) Semiconductor device
JP6759874B2 (en) Power converter
JP6429246B2 (en) Power circuit
JP4828170B2 (en) Power converter
JP5012233B2 (en) Power converter and method for connecting laminated wiring conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929105

Country of ref document: EP

Kind code of ref document: A1