WO2022176223A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2022176223A1
WO2022176223A1 PCT/JP2021/022215 JP2021022215W WO2022176223A1 WO 2022176223 A1 WO2022176223 A1 WO 2022176223A1 JP 2021022215 W JP2021022215 W JP 2021022215W WO 2022176223 A1 WO2022176223 A1 WO 2022176223A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inverter circuit
power supply
control device
voltage
Prior art date
Application number
PCT/JP2021/022215
Other languages
French (fr)
Japanese (ja)
Inventor
康正 小平
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022176223A1 publication Critical patent/WO2022176223A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a motor control device that drives and controls a motor using an inverter circuit.
  • the DC power from the battery is converted into AC power supplied to the motor, and the motor rotation speed, drive torque, etc. are controlled to accelerate and decelerate the vehicle.
  • An inverter device power conversion device
  • the power supply for driving the motor to the inverter device includes a method of supplying power directly from an external battery, a method of supplying power generated by a converter to the inverter device, and the like.
  • a converter there is also known a method of varying the power supply voltage supplied from the converter to the inverter according to the load condition of the motor.
  • Patent Document 1 discloses a configuration for setting the input DC voltage of the inverter according to the load of the motor, that is, when the duty ratio of the inverter is equal to or higher than a predetermined value, the DC voltage booster circuit is controlled to input the DC voltage to the inverter.
  • a motor driving device that changes the DC voltage applied to the inverter and stops boosting the input DC voltage of the inverter by the booster circuit if the duty factor is less than a predetermined value.
  • Patent Document 2 in an inverter device in which a current is input from a converter section that converts alternating current from an alternating current power supply into direct current and supplies drive current to a load such as a motor, the converter section is in a low load region.
  • PWM pulse width modulation
  • the AC power supply voltage from the AC power supply is converted into a DC voltage having a voltage value approximately twice as high as that and is maintained, and the DC voltage is boosted by a booster circuit to increase the output DC voltage of the booster circuit.
  • the input DC voltage of the inverter that drives the motor is the input DC voltage of the inverter that drives the motor.
  • the boost converter since the boost converter is driven to supply current to the inverter when the load is high, components that support large capacity are required in the converter, and the size of the rectifying coil, smoothing capacitor, etc. increases in proportion to the capacity. Become. Also, there is a problem that the component size cannot be reduced even if the switching frequency of the converter is increased.
  • the present invention has been made in view of the problems described above, and an object thereof is to provide a motor control device capable of reducing noise generation in an inverter for driving a motor.
  • a first exemplary invention of the present application is a motor control device comprising an inverter circuit for driving a motor, a converter circuit for stepping down a voltage input from a DC power supply to a predetermined DC voltage and outputting the DC voltage, and means for determining a load condition of the motor in the inverter circuit; a first power supply mode for supplying power from the converter circuit to the inverter circuit according to the load condition; and supplying power from the DC power supply to the inverter circuit.
  • a power supply switching unit for switching to any one of a second power supply mode, wherein the first power supply mode corresponds to a state in which the load state is lower than a predetermined load, and the second power supply mode corresponds to the load state.
  • the load condition corresponds to a load condition higher than a predetermined load.
  • An exemplary second invention of the present application is an electric oil pump, characterized in that the motor control device according to the exemplary first invention is used as a pump driving section.
  • An exemplary third invention of the present application is a shift-by-wire system, characterized in that the motor control device according to the exemplary first invention is used as a shaft rotation driving portion of a rotary actuator.
  • a low-voltage power source is supplied from the step-down converter to the inverter, and when the load is high, the converter is deactivated and high-voltage power is supplied. It can reduce the generation and avoid the decrease in efficiency (loss) at high load.
  • FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention.
  • FIG. 2 is a flowchart showing a control procedure for power supply to the inverter circuit in the motor control device in chronological order.
  • FIG. 3 is a diagram showing the voltage waveform of the power supply to the inverter circuit in this embodiment in comparison with the conventional example.
  • FIG. 4 is a diagram showing an example in which the switching voltage between the low load state and the high load state has hysteresis.
  • FIG. 5 is a block diagram showing a first configuration example for supplying a plurality of systems of DC power sources with different voltage values to an inverter circuit.
  • FIG. 6 is a block diagram showing a second configuration example for supplying a plurality of systems of DC power sources with different voltage values to the inverter circuit.
  • FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention.
  • the motor control device 1 shown in FIG. 1 includes a motor control unit 10 composed of a microprocessor, for example, which controls the entire device, an inverter circuit 20 which supplies a predetermined drive current to the motor 15 and functions as a motor drive unit, and a DC power supply.
  • a converter circuit 30 is provided for stepping down the input DC voltage to a predetermined DC voltage.
  • the inverter circuit 20 includes an FET bridge circuit composed of a plurality of semiconductor switching elements (FET1 to FET6), an inverter control section 21, and the like.
  • the inverter control section 21 has a pre-driver section (not shown) that receives a control signal from the motor control section 10 and generates a motor drive signal (PWM signal).
  • the motor 15 is, for example, a three-phase brushless DC motor, and the FET1 to FET6 forming the inverter circuit 20 correspond to the respective phases of the motor 15 (U phase, V phase, W phase). That is, FETs 1 and 2 correspond to the U phase, FETs 3 and 4 correspond to the V phase, and FETs 5 and 6 correspond to the W phase.
  • FETs 1, 3, and 5 are upper arm (high side (HiSide)) switching elements of the U, V, and W phases, respectively, and FETs 2, 4, and 6 are lower switching elements of the U, V, and W phases, respectively. It is an arm (low side (LoSide)) switching element.
  • a switching element (FET) is also called a power element, and uses a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • the drain terminals of FETs 1, 3, and 5 that constitute a bridge circuit are connected to the power supply side, and the source terminals are connected to the drain terminals of FETs 2, 4, and 6. Source terminals of FETs 2, 4 and 6 are connected to the ground (GND) side.
  • GND ground
  • the pre-driver section of the inverter circuit 20 drives the FET1 to FET6 that constitute the FET bridge circuit, thereby supplying each motor coil of the motor 15 with a drive current.
  • the inverter circuit 20 includes current sensors 23 and 25 in the current supply lines of the U-phase and W-phase of the motor 15 to detect the current flowing through the motor 15 .
  • Current values detected by the current sensors 23 and 25 are input to the motor control section 10 .
  • the current sensors 23 and 25 are, for example, phase current sensors using Hall elements.
  • the current flowing into the motor 15 can be detected by providing current sensors in at least two phases of the U-phase, V-phase, and W-phase (U-phase and W-phase in the above example).
  • a current sensor may be provided on the power line to detect the current.
  • the detection of the current flowing into the motor 15 is not limited to the example using the phase current sensor described above. may be detected.
  • Converter circuit 30 converts (steps down) input voltage (voltage of DC power supply BT) Vcc to predetermined voltages VL and VM by controlling switching elements (FET) Q1 and Q2 by converter control unit 31.
  • the converter circuit 30 has a switching element (high-side switch) Q1 arranged between the supply side of the power supply voltage Vcc indicated by symbol A in FIG. 1 and the output terminal indicated by symbol B. is connected in series with a switching element (low-side switch) Q2 arranged between the ground side indicated by .
  • the converter control section 31 sends control signals to Q1 and Q2 based on the signal from the motor control section 10, and controls ON/OFF with a predetermined switching frequency.
  • converter control unit 31 outputs a pulse signal that switches Q1 and Q2 at a switching frequency (f CONV ) required for outputting a predetermined voltage from converter circuit 30 .
  • f CONV switching frequency
  • a pulse voltage waveform (pulse width modulated voltage waveform) having a predetermined duty ratio according to fCONV is output from the connection point B of Q1 and Q2.
  • connection point B The output from the connection point B is a filter circuit composed of an inductor (coil) L1, one end of which is connected to the connection point B, and an output capacitor C2, which is connected between the other end of L1 and the ground side G. (low-pass filter) and smoothed. Thereby, the power supply voltage Vout to be supplied to the inverter circuit 20 is generated.
  • the converter circuit 30 feeds back the voltage Vout of the output terminal C to the terminal FB of the converter control section 31 to monitor whether the output voltage value is within a predetermined range.
  • the switching frequency (f CONV ) in the converter control unit 31 of the converter circuit 30 is, for example, a frequency outside the audible band (20 kHz or higher), or 10 times the frequency (f INV ) of the motor drive signal (PWM signal) in the inverter circuit 20. or higher frequency.
  • the inverter circuit 20 power is supplied to the inverter circuit 20 in two different power supply modes. That is, in the first power supply mode, the power generated by the converter circuit 30 is supplied to the inverter circuit 20, and in the second power supply mode, the DC power supply (external battery) BT is supplied via the power supply switching unit 3 to be described later.
  • the inverter circuit 20 is supplied with power for driving the motor.
  • a power supply from the battery BT (the voltage of which is expressed as Vcc or VH as described later) is smoothed by an input capacitor C1, which is a power supply smoothing capacitor, and supplied to the inverter circuit 20.
  • FIG. 2 is a flowchart showing the control procedure for power supply to the inverter circuit in the motor control device 1 in chronological order.
  • the motor control unit 10 of the motor control device 1 performs power supply control (switching between the first power supply mode and the second power supply mode) according to the load state of the motor 15 according to the processing program stored in the memory 13. to run.
  • the memory 13 temporarily stores, together with the power supply control processing program, command values and the like required for duty generation of the pulse width modulation signal (PWM signal) for the pre-driver section to drive the motor 15. be done.
  • PWM signal pulse width modulation signal
  • FIG. 3 shows an example of the power supply voltage waveform supplied to the inverter circuit.
  • FIG. 3(a) shows a conventional power supply voltage waveform.
  • the load of the inverter circuit (motor current, etc.) shifts from a low load to a high load, the crest value of the power supply voltage waveform is kept constant. Control is performed to increase the ON duty ratio step by step.
  • the duty ratio is increased (the ON time ⁇ is increased) when the output voltage is to be increased, and the duty ratio is decreased (the ON time ⁇ is decreased) when the output voltage is to be decreased. Therefore, in the example shown in FIG. 3A, "ON duty ratio of power supply voltage waveform at low load ( ⁇ 1/T1)" is less than "ON duty ratio of power supply voltage waveform at high load ( ⁇ 2/T2)". It has to do with being small.
  • the motor control device 1 according to the present embodiment, as shown in FIG.
  • the ON duty ratio ( ⁇ /T) of is constant in both low load and high load states, and the voltage peak value is increased step by step according to the change from low load to high load. conduct.
  • the converter circuit 30 has an average voltage when the peak value of the voltage is lowered and the ON duty ratio is increased at the time of low load.
  • the output voltage Vout is generated so as to have the same voltage value as the average voltage at low load in the conventional method shown in FIG.
  • the average voltage of the power supply voltage fluctuates according to load fluctuations in the inverter circuit.
  • the peak value of the voltage supplied to the inverter circuit is increased stepwise according to the transition from low load to high load, and the ON duty ratio of the voltage waveform is changed to obtain a predetermined average voltage.
  • the configuration may be changed as appropriate.
  • step S11 of FIG. 2 the motor control unit 10 of the motor control device 1 shown in FIG. Then, the position (rotational angle) of the motor 15 obtained from magnetic field detection by the position detection unit 12 made up of, for example, a Hall element is acquired.
  • the motor control unit 10 determines the load state (operating state) of the motor 15 in subsequent step S13. Specifically, it is determined whether or not the current value obtained in step S11 and the motor rotation speed calculated from the rotation angle are in a "low load state" below a predetermined value.
  • step S15 the mode is shifted to the first power supply mode. Therefore, the motor control unit 10 sends a control signal to the converter control unit 31 to turn off the power switching unit 3 (non-energized state).
  • step S ⁇ b>17 the path for supplying output voltage Vcc of DC power supply BT to inverter circuit 20 is cut off, and output voltage Vout from converter circuit 30 is supplied to inverter circuit 20 .
  • the converter circuit 30 controls the voltage Vout supplied to the inverter circuit 20 to be the minimum voltage VL required to drive the motor 15, as shown in FIG. 3(b).
  • step S19 the motor control unit 10 determines that the ON duty of the motor drive signal (PWM signal) in the inverter circuit 20 is set to 80% for a predetermined period of time, for example, 10 cycles, based on the current value flowing into the motor 15 and the motor rotation speed. is exceeded (referred to as load state 1).
  • PWM signal motor drive signal
  • step S23 the motor control unit 10 determines whether or not the motor 15 in the inverter circuit 20 is in a load state (high load state) exceeding the maximum supply voltage VM of the converter circuit 30.
  • the motor control unit 10 determines whether or not the inverter circuit 20 is in the load state 2 in step S25.
  • load state 2 it is determined whether or not the ON duty of the motor drive signal (PWM signal) of the inverter circuit 20 is below 20% for a predetermined period of time, for example, 10 cycles.
  • step S27 the converter output voltage Vout is decreased by one step.
  • one step is set to 10% of Vout, for example, and the converter output voltage Vout is lowered from VM to VL (see FIG. 3(b)).
  • step S13 the motor control unit 10 determines that the load state of the motor 15 based on the current value obtained in step S11 and the motor rotation speed calculated from the rotation angle exceeds a predetermined value ("high load state"). , the process proceeds to step S31.
  • step S23 if it is determined in step S23 that the inverter circuit 20 is in a high load state, the motor control unit 10 also proceeds to step S31.
  • step S31 the motor control unit 10 sends a control signal to the converter control unit 31 to turn on the power supply switching unit 3 (energized state), and shifts to the second power supply mode.
  • step S ⁇ b>33 the path through which the output voltage from converter circuit 30 is supplied to inverter circuit 20 is cut off, and output voltage Vcc of DC power supply BT is supplied to inverter circuit 20 .
  • step S33 the power supply voltage changes from VM to VH as shown in FIG. 3(b).
  • the DC voltage step-down operation in the converter circuit 30 stops, the converter circuit 30 is bypassed, and the voltage Vcc of the DC power supply BT is supplied to the inverter circuit 20 in the second power supply mode.
  • Turning on the power supply switching unit 3 during high load means that power is supplied from the power supply line to the inverter circuit 20 only through the low resistance switch during high load. As a result, the power loss is generated only by the loss in the switch, so that the voltage Vcc of the battery BT can be supplied to the inverter circuit 20 almost losslessly, thereby suppressing a decrease in motor drive efficiency under high load.
  • the power switching unit 3 also functions as a reverse connection protection unit connected between the battery BT, which is a DC power supply, and the inverter circuit 20 in the second power supply mode. Therefore, the elements already installed in the motor control device can be used for both reverse connection prevention and power switching, so that the circuit configuration can be simplified and the cost can be reduced.
  • step S35 the motor control unit 10 determines whether or not the load state of the inverter circuit 20 is in the "low load state" (here, the load state is changed from the "high load state” to the "low load state”) as in the above step S13. ). If the "high load state” continues, the motor control unit 10 continues the process of step S33. mode to the first power supply mode.
  • the converter circuit 30 changes the output voltage Vout according to the load state of the inverter circuit 20 as shown in FIG. VM (VL ⁇ VM). At this time, the ON duty ratio of Vout is increased (the pulse width is widened) to maintain the average voltage of Vout, and the power supply voltage corresponding to the load state is supplied to the inverter circuit 20 .
  • two voltages, VM1 and VM2 are defined as VM, and when the "low load state" changes to the "high load state", the power supply voltage for the inverter circuit 20 is switched from VM1 to VH. , and the power supply voltage is switched from VH to VM2 when shifting from the "high load state” to the "low load state”.
  • a semiconductor switch FET
  • a mechanical switch such as a relay
  • the motor control device has a configuration in which low-voltage power is supplied from the step-down converter circuit to the inverter circuit when the load on the inverter circuit is low, thereby reducing the switching control voltage of the inverter circuit.
  • EMI noise, vibration noise (noise), etc. can be reduced. Also, it is possible to suppress the occurrence of overshoot and ringing in the switching control voltage.
  • the converter circuit can be configured with parts and circuit formats that are small in rating, size, etc., and that match the load capacity of the motor when it is operating at low load. .
  • the motor can be driven with high efficiency for a wide range of load conditions in the inverter circuit.
  • a plurality of converter circuits may be provided in the motor control device so that the voltage can be stepped down to a plurality of DC voltages according to the output voltage of the DC power supply (battery).
  • the plurality of converter circuits may be provided for each phase of the three-phase motor.
  • ⁇ Modification 2> From the viewpoint of making the power supply voltage to the inverter circuit variable according to the operating state of the motor, a plurality of systems of DC power supplies with different voltage values supplied to the inverter circuit are provided, for example, by the configuration shown in FIGS. , DC power supplies VH, VM, VL of a system corresponding to the load state may be selected from a plurality of systems and supplied to the inverter circuits 20a, 20b.
  • VH, VM, VL of a system corresponding to the load state may be selected from a plurality of systems and supplied to the inverter circuits 20a, 20b.
  • the inverter control unit 21, the converter control unit 31, and the motor control unit 10 that performs switching control of the power supply switching unit 3 are separately provided, and control is decentralized and controlled according to each function.
  • control is not limited to this.
  • the functions of these controllers 10, 21, and 31 may be configured to be executed by a single controller. This enables centralization and simplification of control.
  • motor control device 3 power supply switching unit 10 motor control unit 12 position detection unit 13 memory 15 motor 20 inverter circuit 21 inverter control units 23, 25 current sensor 30 converter circuit 31 converter control unit BT battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)

Abstract

This motor control device comprises: an inverter circuit that drives a motor; a converter circuit that steps down a voltage inputted from a direct current power source, to a predetermined direct current voltage, and outputs the stepped-down voltage; a means for determining, in the inverter circuit, a load state of the motor; and a power source switching unit that, in response to the load state, switches between a first power source supply mode for supplying power from the converter circuit to the inverter circuit, and a second power source supply mode for supplying power from the direct current power source to the inverter circuit, wherein the first power source supply mode corresponds to a state of a load lower than a predetermined load, and the second power source supply mode corresponds to a state of a load higher than a predetermined load.

Description

モータ制御装置motor controller
 本発明は、インバータ回路によりモータを駆動制御するモータ制御装置に関する。 The present invention relates to a motor control device that drives and controls a motor using an inverter circuit.
 モータを駆動源とする電気自動車、ハイブリッド自動車等には、バッテリからの直流電力を、モータへ供給する交流電力に変換し、モータの回転数、駆動トルク等を制御して車両の加減速を行うインバータ装置(電力変換装置)が搭載されている。  In electric vehicles, hybrid vehicles, etc., which use a motor as a drive source, the DC power from the battery is converted into AC power supplied to the motor, and the motor rotation speed, drive torque, etc. are controlled to accelerate and decelerate the vehicle. An inverter device (power conversion device) is installed. 
 インバータ装置へのモータ駆動用の電源供給は、外部バッテリより直接、電源を供給する方法、コンバータで生成した電源をインバータ装置へ供給する方法等がある。コンバータを使用する場合、モータの負荷状態に応じて、コンバータからインバータに供給する電源電圧を可変する方法も知られている。   The power supply for driving the motor to the inverter device includes a method of supplying power directly from an external battery, a method of supplying power generated by a converter to the inverter device, and the like. When using a converter, there is also known a method of varying the power supply voltage supplied from the converter to the inverter according to the load condition of the motor. 
 例えば、特許文献1は、電動機の負荷等に応じてインバータの入力直流電圧を設定する構成、すなわち、インバータの通流率が所定値以上の場合、直流電圧の昇圧回路を制御してインバータへ入力する直流電圧を変化させ、通流率が所定値以下であれば、昇圧回路によるインバータの入力直流電圧の昇圧を停止する電動機駆動装置を開示している。  For example, Patent Document 1 discloses a configuration for setting the input DC voltage of the inverter according to the load of the motor, that is, when the duty ratio of the inverter is equal to or higher than a predetermined value, the DC voltage booster circuit is controlled to input the DC voltage to the inverter. Disclosed is a motor driving device that changes the DC voltage applied to the inverter and stops boosting the input DC voltage of the inverter by the booster circuit if the duty factor is less than a predetermined value. 
 特許文献2には、交流電源からの交流を直流に変換するコンバータ部より電流が入力され、モータ等の負荷に駆動電流を供給するインバータ装置において、コンバータ部は、それが低負荷領域にある場合、スイッチング素子をオン/オフするパルス幅変調(PWM)制御を行わず、高負荷領域にある場合にはPWM制御を行う構成が開示されている。 In Patent Document 2, in an inverter device in which a current is input from a converter section that converts alternating current from an alternating current power supply into direct current and supplies drive current to a load such as a motor, the converter section is in a low load region. , discloses a configuration in which pulse width modulation (PWM) control for turning ON/OFF a switching element is not performed, and PWM control is performed in a high load region.
特開平10-174477号公報JP-A-10-174477 特許第6596323号公報Japanese Patent No. 6596323
 上記特許文献1では、交流電源からの交流電源電圧を、そのほぼ2倍の電圧値の直流電圧に変換して維持し、その直流電圧を昇圧回路で昇圧して、昇圧回路の出力直流電圧を、電動機を駆動するインバータの入力直流電圧としている。すなわち、高負荷時に昇圧コンバータを駆動してインバータへ電流を供給する構成としているため、コンバータにおいて大容量に対応した部品が必要になり、整流コイル、平滑コンデンサ等のサイズが容量に比例して大きくなる。また、コンバータのスイッチング周波数を高くしても部品サイズを小さくできないという問題がある。  In Patent Document 1, the AC power supply voltage from the AC power supply is converted into a DC voltage having a voltage value approximately twice as high as that and is maintained, and the DC voltage is boosted by a booster circuit to increase the output DC voltage of the booster circuit. , is the input DC voltage of the inverter that drives the motor. In other words, since the boost converter is driven to supply current to the inverter when the load is high, components that support large capacity are required in the converter, and the size of the rectifying coil, smoothing capacitor, etc. increases in proportion to the capacity. Become. Also, there is a problem that the component size cannot be reduced even if the switching frequency of the converter is increased. 
 特に特許文献2の構成では、平滑コンデンサをスイッチング用と共用しているため、サイズを小さくできず、部品の最適化が困難になる。その結果、コンバータが大容量の要求に対応できず、装置の小型化を実現できない。  Especially in the configuration of Patent Document 2, since the smoothing capacitor is shared with the switching capacitor, the size cannot be reduced, making it difficult to optimize the parts. As a result, the converter cannot meet the demand for large capacity, and miniaturization of the device cannot be achieved. 
 さらには、昇圧コンバータを使用した場合、電力の変換効率がコイルとコンデンサに依存し、電流入力側においてコイルが障害となり、出力側において平滑コンデンサで電圧降下が発生するので、高負荷時に電源効率が上がらないという問題がある。  Furthermore, when a boost converter is used, power conversion efficiency depends on the coil and capacitor. The coil becomes an obstacle on the current input side, and a voltage drop occurs at the smoothing capacitor on the output side. I have a problem with not going up. 
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、モータ駆動用のインバータにおけるノイズの発生を低減可能なモータ制御装置を提供することである。 The present invention has been made in view of the problems described above, and an object thereof is to provide a motor control device capable of reducing noise generation in an inverter for driving a motor.
 上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち、本願の例示的な第1の発明は、モータ制御装置であって、モータを駆動するインバータ回路と、直流電源より入力した電圧を所定の直流電圧に降圧して出力するコンバータ回路と、前記インバータ回路における前記モータの負荷状態を判定する手段と、前記負荷状態に応じて、前記コンバータ回路から前記インバータ回路へ電源供給する第1の電源供給モードと、前記直流電源から前記インバータ回路へ電源供給する第2の電源供給モードのいずれかに切り替える電源切替え部とを備え、前記第1の電源供給モードは前記負荷状態が所定負荷よりも低負荷の状態に対応し、前記第2の電源供給モードは前記負荷状態が所定負荷よりも高負荷の状態に対応することを特徴とする。  The following configuration is provided as a means of achieving the above objectives and solving the above problems. That is, a first exemplary invention of the present application is a motor control device comprising an inverter circuit for driving a motor, a converter circuit for stepping down a voltage input from a DC power supply to a predetermined DC voltage and outputting the DC voltage, and means for determining a load condition of the motor in the inverter circuit; a first power supply mode for supplying power from the converter circuit to the inverter circuit according to the load condition; and supplying power from the DC power supply to the inverter circuit. a power supply switching unit for switching to any one of a second power supply mode, wherein the first power supply mode corresponds to a state in which the load state is lower than a predetermined load, and the second power supply mode corresponds to the load state. is characterized in that the load condition corresponds to a load condition higher than a predetermined load.
 本願の例示的な第2の発明は、電動オイルポンプであって、上記例示的な第1の発明に係るモータ制御装置をポンプ駆動部としたことを特徴とする。 An exemplary second invention of the present application is an electric oil pump, characterized in that the motor control device according to the exemplary first invention is used as a pump driving section.
 本願の例示的な第3の発明は、シフトバイワイヤシステムであって、上記例示的な第1の発明に係るモータ制御装置をロータリアクチュエータのシャフト回転駆動部としたことを特徴とする。 An exemplary third invention of the present application is a shift-by-wire system, characterized in that the motor control device according to the exemplary first invention is used as a shaft rotation driving portion of a rotary actuator.
 本発明によれば、モータの低負荷時に降圧コンバータより低電圧の電源をインバータに供給し、高負荷時にコンバータを不作動にして高圧電源を供給することで、インバータでの低負荷時におけるノイズの発生を低減し、高負荷時において効率の低下(損失)を回避できる。 According to the present invention, when the load of the motor is low, a low-voltage power source is supplied from the step-down converter to the inverter, and when the load is high, the converter is deactivated and high-voltage power is supplied. It can reduce the generation and avoid the decrease in efficiency (loss) at high load.
図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention. 図2は、モータ制御装置におけるインバータ回路への電源供給の制御手順を時系列で示すフローチャートである。FIG. 2 is a flowchart showing a control procedure for power supply to the inverter circuit in the motor control device in chronological order. 図3は、本実施形態におけるインバータ回路への供給電源の電圧波形を従来例と対比して示す図である。FIG. 3 is a diagram showing the voltage waveform of the power supply to the inverter circuit in this embodiment in comparison with the conventional example. 図4は、低負荷状態と高負荷状態間の切替え電圧にヒステリシスを持たせた例を示す図である。FIG. 4 is a diagram showing an example in which the switching voltage between the low load state and the high load state has hysteresis. 図5は、電圧値の異なる複数系統の直流電源をインバータ回路へ供給する第1の構成例を示すブロック図である。FIG. 5 is a block diagram showing a first configuration example for supplying a plurality of systems of DC power sources with different voltage values to an inverter circuit. 図6は、電圧値の異なる複数系統の直流電源をインバータ回路へ供給する第2の構成例を示すブロック図である。FIG. 6 is a block diagram showing a second configuration example for supplying a plurality of systems of DC power sources with different voltage values to the inverter circuit.
 以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing the overall configuration of a motor control device according to an embodiment of the invention.
 図1に示すモータ制御装置1は、装置全体の制御を司る、例えばマイクロプロセッサからなるモータ制御部10、モータ15に所定の駆動電流を供給し、モータ駆動部として機能するインバータ回路20、直流電源より入力された直流電圧を所定の直流電圧に降圧するコンバータ回路30を備える。 The motor control device 1 shown in FIG. 1 includes a motor control unit 10 composed of a microprocessor, for example, which controls the entire device, an inverter circuit 20 which supplies a predetermined drive current to the motor 15 and functions as a motor drive unit, and a DC power supply. A converter circuit 30 is provided for stepping down the input DC voltage to a predetermined DC voltage.
 インバータ回路20は、複数の半導体スイッチング素子(FET1~FET6)からなるFETブリッジ回路、インバータ制御部21等を含んで構成される。インバータ制御部21は、モータ制御部10から制御信号を受けてモータ駆動信号(PWM信号)を生成するプリドライバ部(不図示)を有する。 The inverter circuit 20 includes an FET bridge circuit composed of a plurality of semiconductor switching elements (FET1 to FET6), an inverter control section 21, and the like. The inverter control section 21 has a pre-driver section (not shown) that receives a control signal from the motor control section 10 and generates a motor drive signal (PWM signal).
 モータ15は、例えば3相ブラシレスDCモータであり、インバータ回路20を構成するFET1~FET6は、モータ15の各相(U相、V相、W相)に対応している。すなわち、FET1,2がU相に、FET3,4がV相に、そして、FET5,6がW相にそれぞれ対応している。 The motor 15 is, for example, a three-phase brushless DC motor, and the FET1 to FET6 forming the inverter circuit 20 correspond to the respective phases of the motor 15 (U phase, V phase, W phase). That is, FETs 1 and 2 correspond to the U phase, FETs 3 and 4 correspond to the V phase, and FETs 5 and 6 correspond to the W phase.
 FET1,3,5は、それぞれU相、V相、W相の上アーム(ハイサイド(HiSide))のスイッチング素子であり、FET2,4,6は、それぞれU相、V相、W相の下アーム(ローサイド(LoSide))のスイッチング素子である。スイッチング素子(FET)はパワー素子とも呼ばれ、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を用いる。 FETs 1, 3, and 5 are upper arm (high side (HiSide)) switching elements of the U, V, and W phases, respectively, and FETs 2, 4, and 6 are lower switching elements of the U, V, and W phases, respectively. It is an arm (low side (LoSide)) switching element. A switching element (FET) is also called a power element, and uses a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
 ブリッジ回路を構成するFET1,3,5のドレイン端子は電源側に接続され、ソース端子はFET2,4,6のドレイン端子に接続されている。また、FET2,4,6のソース端子は、接地(GND)側に接続されている。なお、図1では、モータ15への駆動電流を通電するスイッチングFETの図示を省略している。 The drain terminals of FETs 1, 3, and 5 that constitute a bridge circuit are connected to the power supply side, and the source terminals are connected to the drain terminals of FETs 2, 4, and 6. Source terminals of FETs 2, 4 and 6 are connected to the ground (GND) side. In FIG. 1, illustration of a switching FET for supplying a drive current to the motor 15 is omitted.
 インバータ回路20のプリドライバ部は、FETブリッジ回路を構成するFET1~FET6を駆動し、それによって、モータ15の各モータコイルに駆動電流が供給される。 The pre-driver section of the inverter circuit 20 drives the FET1 to FET6 that constitute the FET bridge circuit, thereby supplying each motor coil of the motor 15 with a drive current.
 さらにインバータ回路20は、モータ15のU相とW相それぞれの電流供給ラインに電流センサ23,25を備え、モータ15に流れる電流を検出する。電流センサ23,25で検出された電流値は、モータ制御部10に入力される。電流センサ23,25は、例えばホール素子を用いた相電流センサである。 Further, the inverter circuit 20 includes current sensors 23 and 25 in the current supply lines of the U-phase and W-phase of the motor 15 to detect the current flowing through the motor 15 . Current values detected by the current sensors 23 and 25 are input to the motor control section 10 . The current sensors 23 and 25 are, for example, phase current sensors using Hall elements.
 モータ15へ流入する電流の検出は、U相、V相、W相の少なくとも2相(上記の例ではU相とW相)の電力線に電流センサを設けることで可能であるが、すべての相の電力線に電流センサを設けて電流を検出してもよい。 The current flowing into the motor 15 can be detected by providing current sensors in at least two phases of the U-phase, V-phase, and W-phase (U-phase and W-phase in the above example). A current sensor may be provided on the power line to detect the current.
 モータ15への流入電流の検出は、上記の相電流センサを用いる例に限定されず、例えば、過電流保護用に取り付けられた抵抗器(シャント抵抗器)の両端の電位差をもとに電流を検出してもよい。 The detection of the current flowing into the motor 15 is not limited to the example using the phase current sensor described above. may be detected.
 コンバータ回路30は、コンバータ制御部31によってスイッチング素子(FET)Q1,Q2を制御することで、入力電圧(直流電源BTの電圧)Vccを所定の電圧VL,VMに変換(降圧)する、直流/直流電力変換部である。コンバータ回路30は、図1において符号Aで示す、電源電圧Vccの供給側と符号Bで示す出力端との間に配置されたスイッチング素子(ハイサイドスイッチ)Q1が、その出力端Bと符号Gで示す接地側との間に配置されたスイッチング素子(ローサイドスイッチ)Q2と直列に接続された構成を有する。 Converter circuit 30 converts (steps down) input voltage (voltage of DC power supply BT) Vcc to predetermined voltages VL and VM by controlling switching elements (FET) Q1 and Q2 by converter control unit 31. DC power converter. The converter circuit 30 has a switching element (high-side switch) Q1 arranged between the supply side of the power supply voltage Vcc indicated by symbol A in FIG. 1 and the output terminal indicated by symbol B. is connected in series with a switching element (low-side switch) Q2 arranged between the ground side indicated by .
 コンバータ制御部31は、モータ制御部10からの信号をもとにQ1,Q2に制御信号を送って、所定のスイッチング周波数によりON/OFFを制御する。 The converter control section 31 sends control signals to Q1 and Q2 based on the signal from the motor control section 10, and controls ON/OFF with a predetermined switching frequency.
 具体的にはコンバータ制御部31は、コンバータ回路30から所定電圧を出力するために必要となるスイッチング周波数(fCONV)でQ1とQ2を切換えるパルス信号を出力する。その結果、Q1とQ2の接続点Bからは、fCONVに従った所定のデューティ比を有するパルス電圧波形(パルス幅変調された電圧波形)が出力される。 Specifically, converter control unit 31 outputs a pulse signal that switches Q1 and Q2 at a switching frequency (f CONV ) required for outputting a predetermined voltage from converter circuit 30 . As a result, a pulse voltage waveform (pulse width modulated voltage waveform) having a predetermined duty ratio according to fCONV is output from the connection point B of Q1 and Q2.
 接続点Bからの出力は、一端がその接続点Bに接続されたインダクタ(コイル)L1と、L1の他端と接地側Gとの間に接続された出力コンデンサC2とで構成されるフィルタ回路(ローパスフィルタ)に入力されて平滑化される。これにより、インバータ回路20へ供給される電源電圧Voutが生成される。 The output from the connection point B is a filter circuit composed of an inductor (coil) L1, one end of which is connected to the connection point B, and an output capacitor C2, which is connected between the other end of L1 and the ground side G. (low-pass filter) and smoothed. Thereby, the power supply voltage Vout to be supplied to the inverter circuit 20 is generated.
 コンバータ回路30は、出力端Cの電圧Voutをコンバータ制御部31の端子FBにフィードバックして、出力電圧値が所定範囲内にあるかを監視している。 The converter circuit 30 feeds back the voltage Vout of the output terminal C to the terminal FB of the converter control section 31 to monitor whether the output voltage value is within a predetermined range.
 コンバータ回路30のコンバータ制御部31におけるスイッチング周波数(fCONV)は、例えば可聴帯域外(20KHz以上)の周波数、あるいは、インバータ回路20におけるモータ駆動信号(PWM信号)の周波数(fINV)の10倍以上の周波数とする。このようにコンバータ回路30のスイッチング周波数を高くすることで、使用する整流コイル、コンデンサ等のサイズを小さくでき、モータ制御装置の低コスト化、小型化が可能になる。 The switching frequency (f CONV ) in the converter control unit 31 of the converter circuit 30 is, for example, a frequency outside the audible band (20 kHz or higher), or 10 times the frequency (f INV ) of the motor drive signal (PWM signal) in the inverter circuit 20. or higher frequency. By increasing the switching frequency of the converter circuit 30 in this manner, the sizes of the rectifying coils and capacitors used can be reduced, and the cost and size of the motor control device can be reduced.
 次に、本実施形態に係るモータ制御装置の動作等について具体的に説明する。 Next, the operation and the like of the motor control device according to this embodiment will be specifically described.
 本実施形態に係るモータ制御装置1において、2つの異なる電源供給モードによりインバータ回路20へ電源が供給される。すなわち、第1の電源供給モードでは、コンバータ回路30で生成された電源をインバータ回路20へ供給し、第2の電源供給モードでは、後述する電源切替部3を介して直流電源(外部バッテリ)BTよりインバータ回路20へモータ駆動用の電源を供給する。 In the motor control device 1 according to this embodiment, power is supplied to the inverter circuit 20 in two different power supply modes. That is, in the first power supply mode, the power generated by the converter circuit 30 is supplied to the inverter circuit 20, and in the second power supply mode, the DC power supply (external battery) BT is supplied via the power supply switching unit 3 to be described later. The inverter circuit 20 is supplied with power for driving the motor.
 バッテリBTからの電源(後述するように、その電圧をVccあるいはVHと表記する)は、電源平滑用コンデンサである入力コンデンサC1で平滑されて、インバータ回路20へ供給される。 A power supply from the battery BT (the voltage of which is expressed as Vcc or VH as described later) is smoothed by an input capacitor C1, which is a power supply smoothing capacitor, and supplied to the inverter circuit 20.
 図2は、モータ制御装置1におけるインバータ回路への電源供給の制御手順を時系列で示すフローチャートである。モータ制御装置1のモータ制御部10は、メモリ13に格納された処理プログラムに従って、モータ15の負荷状態に応じた電源供給制御(第1の電源供給モードと第2の電源供給モードの切り替え)等を実行する。 FIG. 2 is a flowchart showing the control procedure for power supply to the inverter circuit in the motor control device 1 in chronological order. The motor control unit 10 of the motor control device 1 performs power supply control (switching between the first power supply mode and the second power supply mode) according to the load state of the motor 15 according to the processing program stored in the memory 13. to run.
 なお、メモリ13には、電源供給制御の処理プログラムとともに、上述したプリドライバ部がモータ15を駆動するためのパルス幅変調信号(PWM信号)のデューティ生成に必要な指令値等が一時的に記憶される。 The memory 13 temporarily stores, together with the power supply control processing program, command values and the like required for duty generation of the pulse width modulation signal (PWM signal) for the pre-driver section to drive the motor 15. be done.
 図3は、インバータ回路へ供給される電源電圧波形の一例を示している。図3(a)は、従来方式の電源電圧波形であり、ここでは、インバータ回路の負荷(モータ電流等)が低負荷から高負荷に移行した場合、電源電圧波形の波高値を一定にして、ONデューティ比を段階的に大きくする制御をしている。 FIG. 3 shows an example of the power supply voltage waveform supplied to the inverter circuit. FIG. 3(a) shows a conventional power supply voltage waveform. Here, when the load of the inverter circuit (motor current, etc.) shifts from a low load to a high load, the crest value of the power supply voltage waveform is kept constant. Control is performed to increase the ON duty ratio step by step.
 したがって従来の方式は、出力電圧を高くしたい場合、デューティ比を大きくし(ON時間τを長くし)、出力電圧を低くしたい場合にはデューティ比を小さく(ON時間τを短く)している。よって、図3(a)に示す例では、「低負荷時の電源電圧波形のONデューティ比(τ1/T1)」は「高負荷時の電源電圧波形のONデューティ比(τ2/T2)」より小さいという関係がある。 Therefore, in the conventional method, the duty ratio is increased (the ON time τ is increased) when the output voltage is to be increased, and the duty ratio is decreased (the ON time τ is decreased) when the output voltage is to be decreased. Therefore, in the example shown in FIG. 3A, "ON duty ratio of power supply voltage waveform at low load (τ1/T1)" is less than "ON duty ratio of power supply voltage waveform at high load (τ2/T2)". It has to do with being small.
 一方、本実施形態に係るモータ制御装置1は、図3(b)に示すように、インバータ回路が低負荷から高負荷に移行する際、インバータ回路へ供給する電源電圧波形(パルス幅変調信号)のONデューティ比(τ/T)を、低負荷と高負荷のいずれの状態においても一定とし、かつ、低負荷から高負荷への変化に応じて電圧の波高値を段階的に高くする制御を行う。 On the other hand, the motor control device 1 according to the present embodiment, as shown in FIG. The ON duty ratio (τ/T) of is constant in both low load and high load states, and the voltage peak value is increased step by step according to the change from low load to high load. conduct.
 よって、コンバータ回路30は、図3(b)において破線で示すように、低負荷時に電圧の波高値を低くしてONデューティ比を上げたときの平均電圧が、図3(a)において破線で示す従来方式による低負荷時の平均電圧と同じ電圧値となるように出力電圧Voutを生成する。 Therefore, as shown by the dashed line in FIG. 3(b), the converter circuit 30 has an average voltage when the peak value of the voltage is lowered and the ON duty ratio is increased at the time of low load. The output voltage Vout is generated so as to have the same voltage value as the average voltage at low load in the conventional method shown in FIG.
 なお、インバータ回路において負荷変動に応じて電源電圧の平均電圧が揺れる場合も想定される。その場合、上記のようにインバータ回路への供給電圧の波高値を低負荷から高負荷への移行に合わせて段階的に高くするとともに、所定の平均電圧を得るために電圧波形のONデューティ比を適宜、変える構成にしてもよい。 It should be noted that it is also assumed that the average voltage of the power supply voltage fluctuates according to load fluctuations in the inverter circuit. In that case, as described above, the peak value of the voltage supplied to the inverter circuit is increased stepwise according to the transition from low load to high load, and the ON duty ratio of the voltage waveform is changed to obtain a predetermined average voltage. The configuration may be changed as appropriate.
 図1に示すモータ制御装置1のモータ制御部10は、最初に図2のステップS11において、電流センサ23,25で検出された電流値(モータ15の駆動電流)と、モータ15の近傍に配置した、例えばホール素子からなる位置検出部12による磁界検出から求めたモータ15の位置(回転角度)を取得する。 First, in step S11 of FIG. 2, the motor control unit 10 of the motor control device 1 shown in FIG. Then, the position (rotational angle) of the motor 15 obtained from magnetic field detection by the position detection unit 12 made up of, for example, a Hall element is acquired.
 モータ制御部10は、続くステップS13において、モータ15の負荷状態(稼働状態)を判定する。具体的には、ステップS11で取得した電流値と、回転角度から演算したモータ回転速度が所定値未満の「低負荷状態」にあるか否かを判定する。 The motor control unit 10 determines the load state (operating state) of the motor 15 in subsequent step S13. Specifically, it is determined whether or not the current value obtained in step S11 and the motor rotation speed calculated from the rotation angle are in a "low load state" below a predetermined value.
 モータ15が「低負荷状態」にあれば、続くステップS15において、第1の電源供給モードに移行する。そのため、モータ制御部10は、コンバータ制御部31に対して、電源切替部3をOFF(非通電状態)とする制御信号を送る。その結果、ステップS17において、直流電源BTの出力電圧Vccをインバータ回路20へ供給する経路が絶たれ、コンバータ回路30からの出力電圧Voutがインバータ回路20へ供給される。 If the motor 15 is in the "low load state", then in step S15, the mode is shifted to the first power supply mode. Therefore, the motor control unit 10 sends a control signal to the converter control unit 31 to turn off the power switching unit 3 (non-energized state). As a result, in step S<b>17 , the path for supplying output voltage Vcc of DC power supply BT to inverter circuit 20 is cut off, and output voltage Vout from converter circuit 30 is supplied to inverter circuit 20 .
 ここでは、コンバータ回路30は、インバータ回路20へ供給する電圧Voutを、図3(b)に示すように、モータ15の駆動に必要な最小電圧であるVLとする制御を行う。 Here, the converter circuit 30 controls the voltage Vout supplied to the inverter circuit 20 to be the minimum voltage VL required to drive the motor 15, as shown in FIG. 3(b).
 ステップS19においてモータ制御部10は、モータ15へ流入する電流値とモータ回転速度から、インバータ回路20におけるモータ駆動信号(PWM信号)のONデューティが、あらかじめ決めた一定時間、例えば10周期、80%を超えた状態(負荷状態1という)にあるか否かを判断する。 In step S19, the motor control unit 10 determines that the ON duty of the motor drive signal (PWM signal) in the inverter circuit 20 is set to 80% for a predetermined period of time, for example, 10 cycles, based on the current value flowing into the motor 15 and the motor rotation speed. is exceeded (referred to as load state 1).
 インバータ回路20において負荷状態1が満たされない場合、コンバータ回路30によりVout=VLとするステップS17の処理を継続する。一方、負荷状態1が成立する場合には、ステップS21において、コンバータ出力電圧Voutを1ステップ上げる処理を実行する。 If the load state 1 is not satisfied in the inverter circuit 20, the converter circuit 30 continues the process of step S17 where Vout=VL. On the other hand, when the load state 1 is established, in step S21, a process of increasing the converter output voltage Vout by one step is executed.
 具体的には、モータ15が、より多くの駆動電流を要求している状態にあると判断し、1ステップを例えばVoutの10%として、図3(b)に示すようにコンバータ出力電圧VoutをVLからVMに上げる。 Specifically, it is determined that the motor 15 is in a state requiring a larger drive current, and the converter output voltage Vout is reduced as shown in FIG. Raise from VL to VM.
 モータ制御部10は、ステップS23において、インバータ回路20におけるモータ15が、コンバータ回路30の最大供給電圧VMを超える負荷状態(高負荷状態)にあるか否かを判断する。 In step S23, the motor control unit 10 determines whether or not the motor 15 in the inverter circuit 20 is in a load state (high load state) exceeding the maximum supply voltage VM of the converter circuit 30.
 インバータ回路20が高負荷状態に至っていない場合、モータ制御部10は、ステップS25において、インバータ回路20が負荷状態2にあるか否かを判断する。ここでは負荷状態2として、インバータ回路20のモータ駆動信号(PWM信号)のONデューティが、あらかじめ決めた一定時間、例えば10周期、20%を下回った状態にあるか否かが判断される。 If the inverter circuit 20 has not reached the high load state, the motor control unit 10 determines whether or not the inverter circuit 20 is in the load state 2 in step S25. Here, as load state 2, it is determined whether or not the ON duty of the motor drive signal (PWM signal) of the inverter circuit 20 is below 20% for a predetermined period of time, for example, 10 cycles.
 インバータ回路20が負荷状態2にある場合、モータ15により要求される駆動電流が低下したと判断して、ステップS27において、コンバータ出力電圧Voutを1ステップ低下させる。ここでは、1ステップを例えばVoutの10%として、コンバータ出力電圧VoutをVMからVLに下げる(図3(b)参照)。 When the inverter circuit 20 is in load state 2, it is determined that the drive current required by the motor 15 has decreased, and in step S27, the converter output voltage Vout is decreased by one step. Here, one step is set to 10% of Vout, for example, and the converter output voltage Vout is lowered from VM to VL (see FIG. 3(b)).
 一方、モータ制御部10は、ステップS13において、上記のようにステップS11で取得した電流値と、回転角度から演算したモータ回転速度とに基づくモータ15の負荷状態が所定値を超える「高負荷状態」にあると判定した場合、処理をステップS31に移行する。 On the other hand, in step S13, the motor control unit 10 determines that the load state of the motor 15 based on the current value obtained in step S11 and the motor rotation speed calculated from the rotation angle exceeds a predetermined value ("high load state"). , the process proceeds to step S31.
 あるいは、ステップS23で、インバータ回路20が高負荷状態にあると判断された場合にも、モータ制御部10は処理をステップS31に移行する。 Alternatively, if it is determined in step S23 that the inverter circuit 20 is in a high load state, the motor control unit 10 also proceeds to step S31.
 モータ制御部10はステップS31において、コンバータ制御部31へ、電源切替部3をON(通電状態)とする制御信号を送り、第2の電源供給モードに移行する。その結果、ステップS33において、コンバータ回路30からの出力電圧がインバータ回路20へ供給される経路が絶たれ、直流電源BTの出力電圧Vccがインバータ回路20へ供給される。 In step S31, the motor control unit 10 sends a control signal to the converter control unit 31 to turn on the power supply switching unit 3 (energized state), and shifts to the second power supply mode. As a result, in step S<b>33 , the path through which the output voltage from converter circuit 30 is supplied to inverter circuit 20 is cut off, and output voltage Vcc of DC power supply BT is supplied to inverter circuit 20 .
 この場合、Vcc=VHと表記すると、ステップS33で電源電圧は、図3(b)に示すようにVMからVHに変化する。 In this case, if Vcc=VH, then in step S33 the power supply voltage changes from VM to VH as shown in FIG. 3(b).
 よって、コンバータ回路30における直流電圧の降圧動作が停止し、コンバータ回路30がバイパスされて、インバータ回路20に対して第2の電源供給モードにより直流電源BTの電圧Vccが供給される。 Therefore, the DC voltage step-down operation in the converter circuit 30 stops, the converter circuit 30 is bypassed, and the voltage Vcc of the DC power supply BT is supplied to the inverter circuit 20 in the second power supply mode.
 高負荷時に電源切替部3をONとすることは、高負荷時に電源ラインから低抵抗のスイッチのみを介してインバータ回路20に電源が供給されることになる。そのため、電力損失はスイッチでのロス分しか発生しないので、バッテリBTの電圧Vccをほぼロスレスでインバータ回路20に供給でき、高負荷時のモータ駆動効率の低下を抑制できる。 Turning on the power supply switching unit 3 during high load means that power is supplied from the power supply line to the inverter circuit 20 only through the low resistance switch during high load. As a result, the power loss is generated only by the loss in the switch, so that the voltage Vcc of the battery BT can be supplied to the inverter circuit 20 almost losslessly, thereby suppressing a decrease in motor drive efficiency under high load.
 なお、電源切替部3は、第2の電源供給モードにおいて、直流電源であるバッテリBTとインバータ回路20間に接続される逆接保護部としても機能する。よって、既にモータ制御装置に搭載されている素子を逆接防止用と電源切替え用の双方に使用できるので、回路構成の簡略化とコストダウンが可能になる。 The power switching unit 3 also functions as a reverse connection protection unit connected between the battery BT, which is a DC power supply, and the inverter circuit 20 in the second power supply mode. Therefore, the elements already installed in the motor control device can be used for both reverse connection prevention and power switching, so that the circuit configuration can be simplified and the cost can be reduced.
 モータ制御部10は、続くステップS35において、上記のステップS13と同様、インバータ回路20の負荷状態が「低負荷状態」にあるか否か(ここでは、「高負荷状態」から「低負荷状態」へ移行したか)を判定する。モータ制御部10は、「高負荷状態」が継続していればステップS33の処理を継続するが、「低負荷状態」へ移行したと判定した場合には、ステップS37において、第2の電源供給モードから第1の電源供給モードへ移行する。 In the following step S35, the motor control unit 10 determines whether or not the load state of the inverter circuit 20 is in the "low load state" (here, the load state is changed from the "high load state" to the "low load state") as in the above step S13. ). If the "high load state" continues, the motor control unit 10 continues the process of step S33. mode to the first power supply mode.
 その結果、ステップS39において、インバータ回路20への供給電圧をVHからVMに変化させる。すなわち、コンバータ回路30が直流電圧の降圧動作を開始し、コンバータ回路30からの出力電圧Vout(=VM)がインバータ回路20へ供給される。 As a result, in step S39, the voltage supplied to the inverter circuit 20 is changed from VH to VM. That is, the converter circuit 30 starts the DC voltage step-down operation, and the output voltage Vout (=VM) from the converter circuit 30 is supplied to the inverter circuit 20 .
 上記のようにコンバータ回路30は、図3(b)に示すようにインバータ回路20の負荷状態に応じて出力電圧Voutを変化させ、低負荷時において、高負荷時の電圧VHよりも低いVLからVMとする(VL<VM)。このとき、VoutのONデューティ比を大きく(パルス幅を広く)してVoutの平均電圧を維持して、負荷状態に対応した電源電圧をインバータ回路20に供給する。 As described above, the converter circuit 30 changes the output voltage Vout according to the load state of the inverter circuit 20 as shown in FIG. VM (VL<VM). At this time, the ON duty ratio of Vout is increased (the pulse width is widened) to maintain the average voltage of Vout, and the power supply voltage corresponding to the load state is supplied to the inverter circuit 20 .
 このようにコンバータ回路30が作動する低負荷時においてモータ15の動作条件に応じてコンバータ回路30の出力電圧を可変することで、インバータ回路20からのEMIノイズ、振動ノイズ等の発生をより低減できる。 By varying the output voltage of the converter circuit 30 according to the operating conditions of the motor 15 at low load when the converter circuit 30 operates in this way, the generation of EMI noise, vibration noise, etc. from the inverter circuit 20 can be further reduced. .
 なお、インバータ回路20におけるモータ15の負荷状態が、「低負荷状態」から「高負荷状態」へ移行する時と、「高負荷状態」から「低負荷状態」へ移行する時とにおいて、コンバータ回路30の出力電圧VMを固定値にすると、その電圧付近において、「低負荷状態」と「高負荷状態」、すなわち、VMとVHが繰り返されることが想定される。 Note that when the load state of the motor 15 in the inverter circuit 20 shifts from the "low load state" to the "high load state" and when it shifts from the "high load state" to the "low load state", the converter circuit If the output voltage VM of 30 is set to a fixed value, it is assumed that "low load state" and "high load state", that is, VM and VH, are repeated around that voltage.
 そこで、図4に示すように、VMとしてVM1とVM2の2つの電圧を規定し、「低負荷状態」から「高負荷状態」への移行時には、インバータ回路20に対する電源電圧の切替えをVM1からVHとし、「高負荷状態」から「低負荷状態」への移行時にはVHからVM2とする電源電圧の切替えを行う。 Therefore, as shown in FIG. 4, two voltages, VM1 and VM2, are defined as VM, and when the "low load state" changes to the "high load state", the power supply voltage for the inverter circuit 20 is switched from VM1 to VH. , and the power supply voltage is switched from VH to VM2 when shifting from the "high load state" to the "low load state".
 ここではVM1>VM2として、「低負荷状態」と「高負荷状態」における切替え電圧にヒステリシスを持たせることで、その切替え電圧付近においてコンバータ回路30からインバータ回路20へ供給される出力電圧が不用意に切り替わるのを防止できる。 Here, by setting VM1>VM2 and giving a hysteresis to the switching voltage in the "low load state" and the "high load state", the output voltage supplied from the converter circuit 30 to the inverter circuit 20 in the vicinity of the switching voltage is inadvertently generated. can be prevented from switching to
 図1に示すモータ制御装置では、電源切替部3として半導体スイッチ(FET)を使用しているが、これに限定されず、例えば、リレー等の機械式のスイッチでもよい。 In the motor control device shown in FIG. 1, a semiconductor switch (FET) is used as the power switching unit 3, but it is not limited to this, and for example, a mechanical switch such as a relay may be used.
 以上説明したように本実施形態に係るモータ制御装置は、インバータ回路が低負荷時にあるとき降圧型のコンバータ回路からインバータ回路へ低電圧の電源を供給する構成により、インバータ回路のスイッチング制御電圧を低くしてEMIノイズ、振動ノイズ(騒音)等を低減できる。また、スイッチング制御電圧におけるオーバーシュート、リンギングの発生を抑制できる。 As described above, the motor control device according to the present embodiment has a configuration in which low-voltage power is supplied from the step-down converter circuit to the inverter circuit when the load on the inverter circuit is low, thereby reducing the switching control voltage of the inverter circuit. EMI noise, vibration noise (noise), etc. can be reduced. Also, it is possible to suppress the occurrence of overshoot and ringing in the switching control voltage.
 さらに、低負荷時のみコンバータ回路を使用した電力変換をするので、モータの低負荷動作時に対応した、すなわち負荷容量に合致した、定格、サイズ等の小さい部品、および回路形式でコンバータ回路を構成できる。併せて、インバータ回路における幅広い負荷状態に対して高い効率でモータを駆動できる。 In addition, since power conversion is performed using the converter circuit only when the load is low, the converter circuit can be configured with parts and circuit formats that are small in rating, size, etc., and that match the load capacity of the motor when it is operating at low load. . In addition, the motor can be driven with high efficiency for a wide range of load conditions in the inverter circuit.
 例えば、電動オイルポンプにおいて、上記の実施形態に係るモータ制御装置をポンプ駆動部とすることで、電動オイルポンプの動作時においてポンプ駆動部より発生するノイズを低減できる。 For example, in an electric oil pump, by using the motor control device according to the above embodiment as a pump drive section, noise generated from the pump drive section during operation of the electric oil pump can be reduced.
 さらには、例えば、シフトバイワイヤシステム(SBW)において、上記の実施形態に係るモータ制御装置をロータリアクチュエータのシャフト回転駆動部とすることによって、シフトバイワイヤシステムの動作時において回転駆動部より発生するノイズを低減できる。 Furthermore, for example, in a shift-by-wire system (SBW), by using the motor control device according to the above-described embodiment as a shaft rotation drive section of a rotary actuator, noise generated from the rotation drive section during operation of the shift-by-wire system can be reduced. can be reduced.
 加えて、車載製品としての、これら電動オイルポンプとシフトバイワイヤシステムには、上述したようにバッテリBTとインバータ回路間にもともと逆接保護部を備えているので、上記のコンバータ回路を追加することで上記実施形態に係るモータ制御装置と同様の機能を実現できる。 In addition, these electric oil pumps and shift-by-wire systems as in-vehicle products are originally equipped with a reverse connection protection unit between the battery BT and the inverter circuit as described above. A function similar to that of the motor control device according to the embodiment can be realized.
 本発明は上述した実施形態に限定されず、種々の変形が可能である。 The present invention is not limited to the above-described embodiments, and various modifications are possible.
<変形例1>
 モータ制御装置に複数のコンバータ回路を設けて、直流電源(バッテリー)の出力電圧に応じて複数の直流電圧に降圧可能な構成としてもよい。この場合、これら複数のコンバータ回路を、3相モータの各相に対応して設けてもよい。これにより、低負荷時において、3相モータを駆動するインバータ回路に対して相毎に低電圧を供給できる。
<Modification 1>
A plurality of converter circuits may be provided in the motor control device so that the voltage can be stepped down to a plurality of DC voltages according to the output voltage of the DC power supply (battery). In this case, the plurality of converter circuits may be provided for each phase of the three-phase motor. As a result, when the load is low, a low voltage can be supplied for each phase to the inverter circuit that drives the three-phase motor.
<変形例2>
 モータの動作状態に応じてインバータ回路への電源電圧を可変にするという観点から、インバータ回路に供給される電圧値の異なる複数系統の直流電源を備え、例えば、図5,図6に示す構成によって、複数系統のうち負荷状態に対応した系統の直流電源VH,VM,VLを選択してインバータ回路20a,20bへ供給するようにしてもよい。このように複数系統の電源電圧をモータの動作状態に応じて適宜、選択して、インバータ回路への電源電圧を可変にすることで、より効果的にノイズの発生を低減できる。
<Modification 2>
From the viewpoint of making the power supply voltage to the inverter circuit variable according to the operating state of the motor, a plurality of systems of DC power supplies with different voltage values supplied to the inverter circuit are provided, for example, by the configuration shown in FIGS. , DC power supplies VH, VM, VL of a system corresponding to the load state may be selected from a plurality of systems and supplied to the inverter circuits 20a, 20b. By appropriately selecting the power supply voltages of a plurality of systems according to the operating state of the motor and making the power supply voltage to the inverter circuit variable, noise generation can be more effectively reduced.
<変形例3>
 上記実施形態では、インバータ制御部21と、コンバータ制御部31と、電源切替部3の切替え制御等を行うモータ制御部10とを個別に設けて、それぞれの機能に応じた制御の分散化、制御の専用化を実現しているが、これに限定されない。例えば、これらの制御部10,21,31の機能を単一の制御部で実行する構成としてもよい。これにより、制御の集中化、簡略化が可能になる。
<Modification 3>
In the above-described embodiment, the inverter control unit 21, the converter control unit 31, and the motor control unit 10 that performs switching control of the power supply switching unit 3 are separately provided, and control is decentralized and controlled according to each function. However, it is not limited to this. For example, the functions of these controllers 10, 21, and 31 may be configured to be executed by a single controller. This enables centralization and simplification of control.
1 モータ制御装置
3 電源切替部
10 モータ制御部
12 位置検出部
13 メモリ
15 モータ
20 インバータ回路
21 インバータ制御部
23,25 電流センサ
30 コンバータ回路
31 コンバータ制御部
BT バッテリ
1 motor control device 3 power supply switching unit 10 motor control unit 12 position detection unit 13 memory 15 motor 20 inverter circuit 21 inverter control units 23, 25 current sensor 30 converter circuit 31 converter control unit BT battery

Claims (13)

  1.  モータを駆動するインバータ回路と、
     直流電源より入力した電圧を所定の直流電圧に降圧して出力するコンバータ回路と、
     前記インバータ回路における前記モータの負荷状態を判定する手段と、
     前記負荷状態に応じて、前記コンバータ回路から前記インバータ回路へ電源供給する第1の電源供給モードと、前記直流電源から前記インバータ回路へ電源供給する第2の電源供給モードのいずれかに切り替える電源切替え部と、
    を備え、
     前記第1の電源供給モードは前記負荷状態が所定負荷よりも低負荷の状態に対応し、前記第2の電源供給モードは前記負荷状態が所定負荷よりも高負荷の状態に対応することを特徴とするモータ制御装置。
    an inverter circuit that drives the motor;
    a converter circuit for stepping down a voltage input from a DC power supply to a predetermined DC voltage and outputting the DC voltage;
    means for determining a load state of the motor in the inverter circuit;
    Power supply switching between a first power supply mode in which power is supplied from the converter circuit to the inverter circuit and a second power supply mode in which power is supplied from the DC power supply to the inverter circuit according to the load state. Department and
    with
    The first power supply mode corresponds to a state in which the load state is lower than a predetermined load, and the second power supply mode corresponds to a state in which the load state is higher than the predetermined load. and a motor controller.
  2.  前記コンバータ回路は第1のスイッチング周波数のパルス幅変調による出力制御を行い、前記インバータ回路は前記第1のスイッチング周波数とは異なる第2のスイッチング周波数のパルス幅変調による出力制御を行う請求項1に記載のモータ制御装置。 2. The apparatus according to claim 1, wherein said converter circuit performs output control by pulse width modulation of a first switching frequency, and said inverter circuit performs output control by pulse width modulation of a second switching frequency different from said first switching frequency. A motor controller as described.
  3.  前記コンバータ回路は前記出力制御において、前記負荷状態が低負荷になるほど出力電圧を低下させ、高負荷になるほど出力電圧を上昇させる請求項2に記載のモータ制御装置。 3. The motor control device according to claim 2, wherein in the output control, the converter circuit lowers the output voltage as the load condition becomes lower and raises the output voltage as the load condition becomes higher.
  4.  前記第1のスイッチング周波数は可聴帯域外であって、前記第2のスイッチング周波数の10倍以上の周波数である請求項2に記載のモータ制御装置。 3. The motor control device according to claim 2, wherein said first switching frequency is outside the audible band and is ten times or more as high as said second switching frequency.
  5.  前記電源切替え部はスイッチである請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the power switching unit is a switch.
  6.  前記電源切替え部は、前記第2の電源供給モードにおいて前記直流電源と前記インバータ回路間に接続される逆接保護部としても機能する請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the power switching unit also functions as a reverse connection protection unit connected between the DC power supply and the inverter circuit in the second power supply mode.
  7.  前記インバータ回路に供給される電圧値の異なる直流電源を複数系統有し、該複数系統のうち前記負荷状態に対応した系統の直流電源を前記インバータ回路へ供給する請求項1に記載のモータ制御装置。 2. The motor control device according to claim 1, wherein a plurality of systems of DC power sources having different voltage values supplied to said inverter circuit are provided, and the DC power source of said plurality of systems corresponding to said load state is supplied to said inverter circuit. .
  8.  前記インバータ回路の制御部と、前記コンバータ回路の制御部と、前記電源切替え部の切替え制御部とを個別に設ける請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein a control section for the inverter circuit, a control section for the converter circuit, and a switching control section for the power supply switching section are provided separately.
  9.  前記インバータ回路の制御と、前記コンバータ回路の制御と、前記電源切替え部の切替え制御とを単一の制御部で実行する請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein control of the inverter circuit, control of the converter circuit, and switching control of the power switching unit are performed by a single control unit.
  10.  前記コンバータ回路を複数設けた請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein a plurality of said converter circuits are provided.
  11.  前記モータは3相モータであり、前記複数のコンバータ回路を前記3相の各相に対応して設けた請求項10に記載のモータ制御装置。 The motor control device according to claim 10, wherein the motor is a three-phase motor, and the plurality of converter circuits are provided corresponding to each of the three phases.
  12.  請求項1~11に記載のモータ制御装置をポンプ駆動部とする電動オイルポンプ。 An electric oil pump having the motor control device according to any one of claims 1 to 11 as a pump driving part.
  13.  請求項1~11に記載のモータ制御装置をロータリアクチュエータのシャフト回転駆動部とするシフトバイワイヤシステム。 A shift-by-wire system in which the motor control device according to any one of claims 1 to 11 is used as a shaft rotation driving part of a rotary actuator.
PCT/JP2021/022215 2021-02-19 2021-06-10 Motor control device WO2022176223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025187 2021-02-19
JP2021-025187 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176223A1 true WO2022176223A1 (en) 2022-08-25

Family

ID=82931279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022215 WO2022176223A1 (en) 2021-02-19 2021-06-10 Motor control device

Country Status (1)

Country Link
WO (1) WO2022176223A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036308A (en) * 1998-07-16 2000-02-02 Toyota Motor Corp Fuel cell system
JP2007312543A (en) * 2006-05-19 2007-11-29 Auto Network Gijutsu Kenkyusho:Kk Power supply module
JP2008091319A (en) * 2006-09-04 2008-04-17 Toyota Motor Corp Fuel cell system
JP2009173147A (en) * 2008-01-24 2009-08-06 Nissan Motor Co Ltd Vehicle electric system control device and control method
JP2013247803A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Vehicular power supply circuit
JP2018093674A (en) * 2016-12-06 2018-06-14 キヤノン株式会社 Power supply device and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036308A (en) * 1998-07-16 2000-02-02 Toyota Motor Corp Fuel cell system
JP2007312543A (en) * 2006-05-19 2007-11-29 Auto Network Gijutsu Kenkyusho:Kk Power supply module
JP2008091319A (en) * 2006-09-04 2008-04-17 Toyota Motor Corp Fuel cell system
JP2009173147A (en) * 2008-01-24 2009-08-06 Nissan Motor Co Ltd Vehicle electric system control device and control method
JP2013247803A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Vehicular power supply circuit
JP2018093674A (en) * 2016-12-06 2018-06-14 キヤノン株式会社 Power supply device and image forming apparatus

Similar Documents

Publication Publication Date Title
US6392905B1 (en) Method and circuit for reducing battery ripple current in a multiple inverter system of an electrical machine
US6373728B1 (en) Frequency converter with an intermediate buck-boost converter for controlling an electric motor
CN110249518B (en) Power conversion device
JP5521914B2 (en) Power conversion device and electric power steering device using the same
JP2009065485A (en) Switching control apparatus and motor drive
JP5906971B2 (en) Motor drive device
JP6550884B2 (en) Motor drive device
WO2014080486A1 (en) Alternating current electric power generator for vehicle
JP6241453B2 (en) Motor drive device
JP6384316B2 (en) Power converter and control method of power converter
WO2015045107A1 (en) Inrush current limiting circuit and power conversion device
JP2007526739A (en) Switch mode power supply
US20190367080A1 (en) Control device and electric power steering device using same
WO2022176223A1 (en) Motor control device
JP2018007502A (en) Power conversion device, air conditioner and control method for power conversion device
CN110581664A (en) Control for electric power steering
JP6673192B2 (en) Control device for power conversion circuit
WO2023079960A1 (en) Motor drive device
JP4695924B2 (en) Motor drive device
WO2018043258A1 (en) Power conversion device and air conditioner equipped with same
WO2023089746A1 (en) Motor control device
JP2013135516A (en) Electric power conversion system and air conditioner
CN111987974B (en) Rotary electric machine control device
WO2024075305A1 (en) Electric power conversion device
WO2021230177A1 (en) Control circuit for power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP