WO2022158134A1 - Power supply circuit, and power generation system including same - Google Patents

Power supply circuit, and power generation system including same Download PDF

Info

Publication number
WO2022158134A1
WO2022158134A1 PCT/JP2021/044252 JP2021044252W WO2022158134A1 WO 2022158134 A1 WO2022158134 A1 WO 2022158134A1 JP 2021044252 W JP2021044252 W JP 2021044252W WO 2022158134 A1 WO2022158134 A1 WO 2022158134A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
storage unit
unit
power storage
Prior art date
Application number
PCT/JP2021/044252
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 野田
康平 橘田
泰明 亀山
清仁 丸尾
優作 清水
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022577016A priority Critical patent/JPWO2022158134A1/ja
Publication of WO2022158134A1 publication Critical patent/WO2022158134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present disclosure relates to a power supply circuit and a power generation system including the same. More specifically, the present disclosure relates to a power supply circuit that performs voltage conversion of the output of a power generation unit that performs energy harvesting, and a power generation system that includes the same.
  • Patent Document 1 discloses a power generation system that includes a starter that has an adsorbent and moves from a start point to an end point, and a cantilever-shaped power generation section that generates power by vibrating.
  • a starter that has an adsorbent and moves from a start point to an end point
  • a cantilever-shaped power generation section that generates power by vibrating.
  • the power generating unit bends and tilts as the attracting member of the starting unit and the power generating unit move toward the end point while being attracted to each other.
  • the adsorbent is detached from the power generation unit, the adsorbent starts to vibrate, and the power generation unit generates power according to the vibration of the adsorption unit.
  • An object of the present disclosure is to provide a power supply circuit and a power generation system capable of efficiently extracting power from at least two types of power generation units.
  • a power supply circuit is a power supply circuit to which power is supplied from a first power generation unit and a second power generation unit, and includes a first power storage unit, a second power storage unit, a switch, and a voltage conversion unit. And prepare.
  • the first power storage unit charges electric power generated by the first power generation unit.
  • a said 2nd electrical storage part charges the electric power which a said 2nd electric power generation part generates.
  • the switch is electrically connected to the second power storage unit.
  • the voltage conversion unit is electrically connected to the first power storage unit and electrically connected to the second power storage unit via the switch.
  • a power generation system includes the power supply circuit, the first power generation section, and the second power generation section.
  • a power generation system includes a first power generation unit, a second power generation unit that starts generating power after the first power generation unit generates power, and electrically connecting the first power generation unit and the second power generation unit. and the power supply circuit connected thereto.
  • FIG. 1 is a circuit diagram showing an overview of a power supply circuit and a power generation system including the same according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic circuit diagram of a power supply circuit according to Embodiment 1 of the present disclosure and a power generation system including the same.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the same power generation system.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the same power generation system.
  • FIG. 5 is a schematic circuit diagram for explaining a specific configuration of the power supply circuit and a power generation system including the same.
  • FIG. 6 is a graph showing an example of temporal changes in the charging voltages of the first power storage unit and the second power storage unit included in the power supply circuit and the on/off state of the switch.
  • FIG. 7 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 1.
  • FIG. 8 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 2.
  • FIG. 9 is a schematic circuit diagram of a power supply circuit according to Embodiment 2 of the present disclosure and a power generation system including the same.
  • FIG. 10 is a graph showing an example of temporal changes in the charged voltages of the first power storage unit and the second power storage unit included in the power supply circuit and the on/off state of the diode.
  • FIG. 11 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 1. As shown in FIG.
  • a power supply circuit 1 of the present embodiment and a power generation system 100 including the same will be described with reference to FIG.
  • the power supply circuit 1 of this embodiment is supplied with electric power from a first power generation section 11 and a second power generation section 12 .
  • the power supply circuit 1 includes a first power storage unit 21, a second power storage unit 22, a switch SW1, and a voltage conversion unit 3.
  • the first power storage unit 21 charges the electric power generated by the first power generation unit 11 .
  • the second power storage unit 22 charges the electric power generated by the second power generation unit 12 .
  • the switch SW1 is electrically connected to the second power storage unit 22 .
  • the voltage conversion unit 3 is electrically connected to the first power storage unit 21 and electrically connected to the second power storage unit 22 via the switch SW1.
  • switch SW1 is in a conductive state for electrically connecting second power storage unit 22 and voltage conversion unit 3 and in a non-conductive state for electrically disconnecting second power storage unit 22 and voltage conversion unit 3 . It is a circuit element that can be switched between a conducting state and a conducting state.
  • the switch SW1 is, for example, a semiconductor switch that switches between a conducting state and a non-conducting state according to a control signal input from a control circuit or the like, or a diode that switches between a conducting state and a non-conducting state according to the voltage relationship between the anode and the cathode. may include circuit elements such as When the switch SW1 is turned on, the second power storage unit 22 is electrically connected to the voltage conversion unit 3 via the switch SW1.
  • the switch SW1 is set to a condition related to at least one of the magnitude relationship between the voltage of the first power storage unit 21 and the voltage of the second power storage unit 22, the state of charge of the first power storage unit 21, and the state of power generation of the first power generation unit 11. It is preferably arranged to switch between the conducting state and the non-conducting state in response to .
  • the power generation system 100 of this embodiment includes the power supply circuit 1 described above, and the first power generation section 11 and the second power generation section 12 .
  • the power supply circuit 1 of the present embodiment is a power supply circuit to which power is supplied from at least two types of power generation units 10.
  • at least two types of power generation units 10 are a first power generation unit 11 and a second power generation unit 11.
  • a case in which the power generation unit 12 is included will be described as an example.
  • a case where at least two power storage units 2 charged with power generated by at least two types of power generation units 10 include a first power storage unit 21 and a second power storage unit 22 will be described as an example. do.
  • the capacity value of the power storage unit is determined according to the power generation unit 10 with the smaller power generation amount, the power storage unit cannot store all the output of the power generation unit 10 with the larger power generation amount, and the power that is wasted increases. , there is a possibility that power cannot be extracted efficiently.
  • the power generated by the first power generation unit 11 and the second power generation unit 12 is stored in the corresponding first power storage unit 21 and second power storage unit 22, respectively. Therefore, the capacity values of the first power storage unit 21 and the second power storage unit 22 can be set according to the power generation amounts of the corresponding first power generation unit 11 and the second power generation unit 12, respectively. Power can be efficiently extracted from 10.
  • the first power generation unit 11 and the second power generation unit 12 generate power by, for example, energy harvesting.
  • Energy harvesting also known as energy harvesting, is a power generation method that recovers energy such as light, vibration, heat, and electromagnetic waves in the environment and converts it into electric power.
  • the vibration in the environment may include vibration generated by a machine such as an electric motor, as well as vibration generated by a user pressing a switch button or the like.
  • the power generation unit 10 generates two types of power generation according to at least one of forward movement and return movement of the movable part 4 (see FIGS. 3 and 4) that reciprocates according to the user's operation.
  • the at least two types of power generation units 10 may be at least two power generation units having different power generation methods, or may have the same power generation method and the same power generation amount or power generation period. At least two power generation units different from each other may be used. Moreover, the at least two types of power generation units 10 are not limited to those that perform environmental power generation, and may be those that generate power by other power generation methods.
  • the load L1 may be, for example, a communication unit that performs wireless communication or the like, a light source, a sound generator, or a sensor. Moreover, the load L1 may be a combination of a sensor or a switch and a communication unit that wirelessly transmits the output signal of the sensor or the switch to the outside.
  • Embodiment 1 A power supply circuit 1 according to Embodiment 1 and a power generation system 100 including the same will be described below with reference to FIGS. 2 to 8.
  • FIG. 1 A power supply circuit 1 according to Embodiment 1 and a power generation system 100 including the same will be described below with reference to FIGS. 2 to 8.
  • FIG. 1 A power supply circuit 1 according to Embodiment 1 and a power generation system 100 including the same will be described below with reference to FIGS. 2 to 8.
  • FIG. 1 A power supply circuit 1 according to Embodiment 1 and a power generation system 100 including the same will be described below with reference to FIGS. 2 to 8.
  • the switch SW1 includes the first semiconductor switch 7, as shown in FIG.
  • the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 is charged.
  • the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 is charged.
  • “after first power storage unit 21 is charged” is preferably after first power storage unit 21 is completely charged.
  • “after first power storage unit 21 is charged” is not limited to being after first power storage unit 21 is completely charged, and may be after charging of first power storage unit 21 is started. .
  • the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3, the power generated by the second power generation unit 12 and stored in the second power storage unit 22 is supplied to the voltage conversion unit 3.
  • the power generation unit 10 includes a first power generation unit 11 and a second power generation unit 12 as two types of power generation units.
  • the power generation unit 10 of the present embodiment performs environmental power generation by extracting, as electric energy, changes in potential energy associated with movement of the movable unit 4 held in the housing 53 in a reciprocating state.
  • the movable part 4 performs reciprocating motion according to the operation of the control lever 51 by the user, and the power generation part 10 of the present embodiment is configured to generate power in each of the outward motion and the homeward motion of the movable part 4 .
  • the movable part 4 is movable between a first position (upper limit position) and a second position (lower limit position) along one direction.
  • the movable portion 4 is positioned at the first position when the operating lever 51 is not operated, and moves from the first position to the second position when the operating lever 51 is pushed by the user, for example.
  • the direction in which the movable part 4 can move (vertical direction in FIGS. 3 and 4) is also referred to as the "vertical direction”, and upward and downward directions in FIGS. 3 and 4 are also referred to as “up” and “down”, respectively.
  • 3 and 4 are also referred to as "left and right directions", and the left and right directions in FIGS. 3 and 4 are also referred to as "left” and "right”, respectively.
  • the movement of the movable portion 4 from the upper limit position to the lower limit position is called forward movement
  • the movement of the movable part 4 from the lower limit position to the upper limit position is also called return movement.
  • the housing 53 accommodates the first power generation section 11 , the second power generation section 12 , the movable section 4 , the support 45 , a portion (lower portion) of the operation lever 51 , and the return spring 52 .
  • the first power generation section 11 is a power generation section that generates power using, for example, a piezoelectric body
  • the second power generation section 12 is a power generation section that generates power by electromagnetic induction using, for example, a coil 120 .
  • the power generation unit 10 of the present embodiment includes two first power generation units 11 that generate power using piezoelectric bodies, respectively. They are denoted as 11A and 11B.
  • the first power generation section 11 (11A, 11B) and the second power generation section 12 will be described later.
  • the operating lever 51 is movable in the vertical direction.
  • the upper portion of the operating lever 51 is exposed outside the housing 53 and can be operated by the user.
  • the operating lever 51 receives a downward external force (for example, a force that a user pushes downward) and moves downward.
  • the movable part 4 includes a permanent magnet 41 , a first magnetic body 42 provided on the upper left side of the permanent magnet 41 , and a second magnetic body 43 provided on the lower left side of the permanent magnet 41 .
  • the permanent magnet 41 has an N pole on the upper side and an S pole on the lower side.
  • the movable portion 4 faces the operating lever 51 in the vertical direction. When the operating lever 51 moves downward, the movable portion 4 is pushed by the operating lever 51 and moves downward.
  • the return spring 52 is arranged between the lower surface of the movable part 4 and the inner bottom surface (upper surface) of the housing 53 .
  • the return spring 52 is bent due to the downward movement of the movable portion 4 .
  • the return spring 52 moves the movable portion 4 and the operating lever 51 upward by elastic force.
  • the support 45 is made of a magnetic material.
  • the support 45 is fixed to the left inner surface of the housing 53 .
  • the support 45 supports the two first power generation units 11A and 11B and the second power generation unit 12 .
  • One first power generation section 11A includes a vibrating body 46 and a power generation element 110 .
  • the vibrating body 46 is made of a magnetic material such as stainless steel and formed into a rectangular plate shape elongated in the left-right direction.
  • a first end 461 (left end) of the vibrating body 46 is supported by the supporting body 45 .
  • the vibrating body 46 can vibrate vertically with the first end 461 as a fixed end and the second end 462 (right end) as a free end.
  • a weight 463 is provided on the upper surface of the second end 462 of the vibrating body 46 .
  • the lower surface of the second end 462 of the vibrating body 46 faces the upper surface of the movable portion 4 .
  • the second end 462 of the vibrating body 46 is attracted to (here, in contact with) the movable part 4 by magnetic force.
  • the second end 462 is pulled by the movable portion 4, thereby bending the vibrating body 46 downward.
  • the lower surface of the vibrating body 46 comes into contact with the first stopper 54 provided in the housing 53 , further bending of the vibrating body 46 is restricted, and the movable part 4 separates from the vibrating body 46 .
  • the vibrating body 46 is released from the movable part 4, it vibrates according to the bending. That is, the vibrating body 46 starts vibrating in response to the downward movement of the movable portion 4, that is, the depression of the operating lever 51. As shown in FIG.
  • the power generation element 110 is supported by the vibrating body 46 .
  • the power generation element 110 converts the vibrational energy of the vibrating body 46 into electrical energy and outputs it as a current.
  • the current output from the power generation element 110 is alternating current.
  • the power generation element 110 includes two piezoelectric bodies 111 .
  • Each piezoelectric body 111 is provided with a first electrode and a second electrode that are arranged on the upper surface and the lower surface of the piezoelectric body 111, respectively, and sandwich the piezoelectric body 111 in the vertical direction.
  • the first electrode is arranged on the surface of the piezoelectric body 111 facing the vibrating body 46 .
  • the second electrode is arranged on the surface of the piezoelectric body 111 opposite to the surface facing the vibrating body 46 .
  • the first electrode of each piezoelectric body 111 is in contact with the vibrating body 46 .
  • the first electrodes of the two piezoelectric bodies 111 are electrically connected, for example, via wiring.
  • the two piezoelectric bodies 111 deform according to the vibration of the vibrating body 46 and generate voltage by the piezoelectric effect.
  • the power generating element 110 includes two piezoelectric bodies 111 that convert the force applied to the power generating element 110 into voltage in response to the vibration of the vibrating body 46 . Since the vibrating body 46 starts vibrating when the movable part 4 moves downward from the first position, the power generation element 110 starts generating power at the timing when the movable part 4 moves downward from the first position. Power generation continues while the vibration of 46 continues.
  • the other first power generation section 11B includes a vibrating body 47 and a power generation element 112 in the same manner as the first power generation section 11A.
  • the vibrating body 47 is made of a magnetic material such as stainless steel, and is shaped like a rectangular plate elongated in the left-right direction.
  • a first end 471 (left end) of the vibrating body 47 is supported by the supporting body 45 .
  • the vibrating body 47 can vibrate vertically with the first end 471 as a fixed end and the second end 472 (right end) as a free end.
  • a weight 473 is provided on the lower surface of the second end 472 of the vibrating body 47 .
  • the upper surface of the second end 472 of the vibrating body 47 faces the lower surface of the movable portion 4 .
  • the second end 472 of the vibrating body 47 is attracted to (here, in contact with) the movable part 4 by magnetic force.
  • the second end 472 is pulled by the movable portion 4, thereby bending the vibrating body 47 upward.
  • the upper surface of the vibrating body 47 comes into contact with the second stopper 55 provided in the housing 53 , further bending of the vibrating body 47 is restricted, and the movable part 4 separates from the vibrating body 47 .
  • the vibrating body 47 is released from the movable part 4, it vibrates according to the bending. In other words, the vibrating body 47 starts vibrating in response to the upward movement of the movable portion 4 , that is, the release of the operating lever 51 .
  • the power generation element 112 is supported by the vibrating body 47 .
  • the power generation element 112 converts the vibrational energy of the vibrating body 47 into electrical energy and outputs it as a current.
  • the current output from the power generation element 112 is alternating current.
  • power generating element 112 includes two piezoelectric bodies 113 that convert the applied force into voltage in response to vibration of vibrating body 47 . Since the vibrating body 47 starts vibrating when the movable part 4 moves upward from the second position, the power generation element 112 starts generating power at the timing when the movable part 4 moves upward from the second position. Power generation continues while the vibration of 47 continues.
  • the second power generation section 12 has a core 48 and a coil 120 .
  • the core 48 has a first end 481 (left end) supported by the support 45 .
  • the core 48 is provided on the support 45 so that the core 48 is positioned between the two vibrating bodies 46 and 47 .
  • the second end 482 (right end) of the core 48 is in contact with the second magnetic body 43 of the movable portion 4, and the movable portion 4 is permanently fixed.
  • the lower part (S A magnetic path (first magnetic path) returning to the pole surface) is formed.
  • the second end 482 (right end) of the core 48 faces (contacts) the first magnetic body 42 of the movable portion 4, and the movable portion 4 is permanently fixed. From the upper part (N pole surface) of the left surface of the magnet 41 to the lower part (S A magnetic path (second magnetic path) returning to the pole surface) is formed.
  • the direction of the magnetic flux passing through the core 48 is rightward when the movable part 4 is in the first position, and leftward when the movable part 4 is in the second position. In short, the direction of the magnetic flux passing through the core 48 is opposite to each other when the movable portion 4 is at the first position and when it is at the second position. Therefore, the magnetic flux passing through the core 48 changes depending on whether the movable portion 4 moves downward from the first position and when the movable portion 4 moves upward from the second position. .
  • the coil 120 is wound around the core 48 and generates current according to changes in magnetic flux passing through the core 48 .
  • the movable portion 4 When the operating lever 51 is not operated, the movable portion 4 is positioned at the first position (upper limit position) by the elastic force of the return spring 52 (see FIG. 3).
  • the movable portion 4 When the operating lever 51 is pushed downward by an external force (for example, a user's force pushing the operating lever 51), the movable portion 4 is also moved downward by being pushed by the operating lever 51. When the movable portion 4 moves downward, the second end 462 side of the vibrating body 46 is bent downward by being pulled by the movable portion 4 . When the movable portion 4 moves further downward, the lower surface of the second end 462 of the vibrating body 46 contacts the first stopper 54 , thereby restricting further bending of the vibrating body 46 . Leave. This causes the vibrating body 46 to start vibrating. The piezoelectric body 111 is repeatedly deformed according to the vibration of the vibrating body 46, so that the first power generating section 11A generates an alternating voltage.
  • the magnetic resistance of the first magnetic path increases.
  • the magnetic resistance of the first magnetic path increases as the movable part 4 moves downward.
  • the coil 120 generates current according to changes in the magnetic flux passing through the core 48 by electromagnetic induction.
  • the first power generating portion 11A starts generating power.
  • the second power generation portion 12 starts generating power.
  • the second magnetic body 43 is separated from the core 48 when the movable portion 4 moves downward from the first position by a predetermined distance.
  • the second power generation unit 12 starts generating power.
  • the vibrating body 46 continues vibrating even after the movable portion 4 reaches the second position (after the change in the magnetic flux passing through the core 48 ends). Therefore, the power generation period during which the first power generation unit 11A performs energy harvesting is longer than the power generation period during which the second power generation unit 12 performs energy harvesting. In other words, the power generation period of the second power generation section 12 is shorter than the power generation period of the first power generation section 11A.
  • the magnetic resistance of the second magnetic path increases.
  • the magnetic resistance of the second magnetic path increases as the movable portion 4 moves upward.
  • the coil 120 uses electromagnetic induction to generate current according to changes in the magnetic flux passing through the core 48 .
  • the direction in which the current flows in the coil 120 while the movable portion 4 moves upward is opposite to the direction in which the current flows in the coil 120 while the movable portion 4 moves downward.
  • the first power generating portion 11B starts generating power.
  • the second power generation part 12 when the first magnetic body 42 of the movable part 4 moves away from the core 48 according to the upward movement of the movable part 4 and the magnitude of the magnetic flux passing through the core 48 changes, the second power generation part 12 generates power.
  • the first magnetic body 42 is separated from the core 48 when the movable portion 4 moves upward from the second position by a predetermined distance.
  • the second power generation unit 12 starts generating power. Note that the vibrating body 47 continues vibrating even after the movable portion 4 reaches the first position (after the change in the magnetic flux passing through the core 48 ends). Therefore, the power generation period during which the first power generation unit 11B performs energy harvesting is longer than the power generation period during which the second power generation unit 12 performs energy harvesting.
  • the power generation system 100 of the present embodiment includes the first power generation section 11 and the second power generation section 12 of different types as the power generation section 10 that performs energy generation according to the movement of the movable section 4.
  • the second power generation section 12 that generates power by electromagnetic induction using the coil 120 generates power in each of the outward movement and the homeward movement of the movable section 4 .
  • the first power generation section 11 includes a first power generation section 11A that generates power when the movable section 4 moves forward and a first power generation section 11B that generates power when the movable section 4 moves back.
  • the power supply circuit 1 of the present embodiment includes the first power storage unit 21 that charges the power generated by the first power generation unit 11 and the second power storage unit 22 that charges the power generated by the second power generation unit 12. , a voltage converter 3 , and a first semiconductor switch 7 .
  • the power generation system 100 of the present embodiment includes two of the same type of first power generation units 11 (first power generation units 11A and 11B), and the power generated by the two first power generation units 11A and 11B is 1 storage unit 21 stores.
  • the power supply circuit 1 of the present embodiment includes a first rectifier circuit 81, a second rectifier circuit 82, It has
  • the input terminals of the first rectifier circuit 81 are connected to both ends of the power generation elements 110 and 112 provided in the first power generation section 11 . That is, the pair of input terminals of the first rectifier circuit 81 are connected to the second electrodes of the two piezoelectric bodies 111 of the power generation element 110, respectively. Similarly, the pair of input terminals of the first rectifier circuit 81 are connected to the second electrodes of the two piezoelectric bodies 111 of the power generation element 112 . As a result, the alternating current generated by the first power generation section 11 is input to the first rectifier circuit 81 .
  • the first rectifier circuit 81 is composed of, for example, a diode bridge circuit, and full-wave rectifies the alternating current input from the first power generation unit 11 (first power generation units 11A and 11B) and outputs the rectified current to the first power storage unit 21 .
  • the first power storage unit 21 is, for example, a capacitor such as an electrolytic capacitor.
  • the capacity value of the first power storage unit 21 is set to a value smaller than the capacity value with which the first power generation unit 11 can be fully charged with the amount of power generated per unit time. That is, the capacity value of the first power storage unit 21 is set to a value smaller than the amount of power generated per unit time of the first power generation unit 11, in other words, in one outward movement or one return movement of the movable part 4. there is Therefore, even when the current generated by the first power generation unit 11 is small, a large voltage can be generated in the first power storage unit 21 and the output of the first power generation unit 11 can be easily extracted.
  • a pair of input terminals of the second rectifier circuit 82 are connected to both ends of the coil 120 included in the second power generation section 12 , and the alternating current generated by the second power generation section 12 is input to the second rectifier circuit 82 .
  • the second rectifier circuit 82 is composed of, for example, a diode bridge circuit, and full-wave rectifies the alternating current input from the second power generation unit 12 and outputs the rectified current to the second power storage unit 22 .
  • the second power storage unit 22 is, for example, a capacitor such as an electrolytic capacitor.
  • the capacity value of the second power storage unit 22 is set to a capacity value that can fully charge the output (power generation amount) of the second power generation unit 12 per unit time. That is, the capacity value of the second power storage section 22 is set to a capacity value that can charge the entire power generation amount of the second power generation section 12 in one forward movement or one return movement of the movable section 4 .
  • the above unit time is the time during which the first power generation section 11, which has a longer power generation period than the second power generation section 12, performs environmental power generation according to the forward movement or return movement of the movable section 4. Therefore, the power generation amount of the first power generation unit 11 and the second power generation unit 12 per unit time is It can also be said that the amount of power generated by
  • a first semiconductor switch 7 is provided between the second power storage unit 22 and the voltage conversion unit 3 .
  • the first semiconductor switch 7 includes a semiconductor switch such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Note that the first semiconductor switch 7 may include an integrated circuit of a semiconductor switch such as a MOSFET.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the voltage conversion unit 3 includes a DC/DC converter such as a step-down chopper, a step-up chopper, or a step-up/step-down chopper. Voltage conversion unit 3 converts the input voltage input from first power storage unit 21 or second power storage unit 22 into a DC voltage having an appropriate voltage value, and outputs the DC voltage to load L1.
  • a DC/DC converter such as a step-down chopper, a step-up chopper, or a step-up/step-down chopper.
  • the power generation period of the second power generation section 12 that generates power by electromagnetic induction using the coil 120 is the period during which the movable section 4 moves, whereas the first power generation section that generates power using the piezoelectric bodies 111 and 113
  • the power generation period 11 is a period during which the vibrating bodies 46 and 47 that vibrate according to the movement of the movable portion 4 continue to vibrate.
  • the amount of power generated per unit time by the second power generation section 12 is greater than the amount of power generated per unit time by the first power generation section 11 .
  • the second power generation section 12 starts power generation after the first power generation section 11 starts power generation.
  • the power generation period of the first power generation section 11 is longer than the power generation period of the second power generation section 12, but the power generation amount per unit time of the first power generation section 11 is the unit of the second power generation section 12. It is smaller than the amount of power generated per hour.
  • the capacity values of the first power storage unit 21 and the second power storage unit 22 are set according to the outputs of the corresponding first power generation unit 11 and the second power generation unit 12, and the capacity value of the first power storage unit 21 is set to a value smaller than the capacitance value of second power storage unit 22 .
  • the capacity value of the first power storage unit 21 is set to be smaller than the capacity value that can charge all the power generated by the first power generation unit 11 so that the output of the first power generation unit 11 can be efficiently extracted. is set to As a result, even when the output of the first power generation unit 11 is lower than the output of the second power generation unit 12 , the first power storage unit 21 is fully charged by the output of the first power generation unit 11 . Since a sufficiently large voltage is generated at , it becomes easy to take out the output of the first power generation section 11 .
  • the capacity value of the second power storage unit 22 is set to a value that can charge the entire power generation amount per unit time of the second power generation unit 12, and is set to a larger value than the capacity value of the first power storage unit 21. It is As a result, even when the amount of power generated by the second power generation unit 12 per unit time is greater than the amount of power generated by the first power generation unit 11 per unit time, the second power storage unit 22 can store power generated by the second power generation unit 12 per unit time. can be fully charged. Second power storage unit 22 is connected to voltage conversion unit 3 via first semiconductor switch 7, and first semiconductor switch 7 is connected to second power storage unit 22 after first power storage unit 21 is charged. It conducts with the voltage converter 3 .
  • the first semiconductor switch 7 is turned on, so that the voltage conversion unit 3 performs voltage conversion using the first power storage unit 21 and the second power storage unit 22 as power sources. Action can be performed.
  • FIG. 5 is a schematic circuit diagram showing a specific example of the first semiconductor switch 7 and a circuit for driving the first semiconductor switch 7. As shown in FIG.
  • the first semiconductor switch 7 is composed of a series circuit of two MOSFETs Q1 and Q2 whose sources are connected to each other and whose gates are connected to each other.
  • the drain of the MOSFET Q1 is connected to the high voltage side terminal of the second power storage unit 22 .
  • the drain of the MOSFET Q2 is connected to the input terminal of the voltage conversion section 3 and the low-voltage side terminal of the first storage section 21 .
  • Control terminals (gates) of the MOSFETs Q1 and Q2 are connected to the control circuit 91 .
  • the two MOSFETs Q1 and Q2 may be implemented as an integrated circuit. That is, the first semiconductor switch 7 may include an integrated circuit of semiconductor switches such as MOSFETs.
  • the control circuit 91 obtains the operating voltage from the first power storage unit 21 and starts operating.
  • the control circuit 91 controls ON/OFF of the MOSFETs Q1 and Q2, for example, based on the result of comparison between the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 .
  • the control circuit 91 may obtain the operating voltage from the second power storage unit 22 or may obtain the operating voltage from both the first power storage unit 21 and the second power storage unit 22 .
  • the control circuit 91 is supplied with voltage from at least one of the first power generation section 11 and the second power generation section 12 to operate, and controls the on/off of the first semiconductor switch 7 .
  • the control circuit 91 turns off the first semiconductor switch 7 during the power generation period when the first power generation unit 11 is generating power, and while the first power storage unit 21 is being charged with the output of the first power generation unit 11, turns off the first semiconductor switch 7 .
  • the control circuit 91 turns on the first semiconductor switch 7 after the power generation of the first power generation unit 11 is finished and after the charging of the first power storage unit 21 by the output of the first power generation unit 11 is completed.
  • the second power storage unit 22 and the voltage conversion unit 3 are electrically connected. Accordingly, it is possible to suppress charging of the first power storage unit 21 by the output of the second power generation unit 12 .
  • the output of the second power generation unit 12 is not input to the first power storage unit 21, so the power generation period of the second power generation unit 12 is the same as that of the first power generation unit 11.
  • the order of power generation by the first power generation unit 11 and the second power generation unit 12 can be changed as appropriate.
  • control circuit 91 ensures that the charging voltage of the first power storage unit 21 is equal to or higher than the operating voltage of the voltage conversion unit 3, and that the charging voltage V1 of the first power storage unit 21 is higher than the charging voltage V2 of the second power storage unit 22.
  • the first semiconductor switch 7 is turned on to electrically connect the second power storage unit 22 and the voltage conversion unit 3 .
  • the control circuit 91 turns off both the MOSFETs Q1 and Q2.
  • the input voltage from the unit 21 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1.
  • the control circuit 91 turns on both the MOSFETs Q1 and Q2, and the voltage conversion unit 3 turns on the first power storage unit 21 and the second power storage unit 22 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1.
  • FIG. 6 is a graph showing the voltage waveforms of the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 and the ON/OFF states of the MOSFETs Q1 and Q2 when the operation lever 51 is pushed. is an example.
  • the first power generation unit 11 starts generating power
  • the power generated by the first power generation unit 11 charges the first power storage unit 21, and the charged voltage V1 of the first power storage unit 21 rises to To increase.
  • second power generation unit 12 starts generating power at time t2
  • second power storage unit 22 is charged with power generated by second power generation unit 12, and charging voltage V2 of second power storage unit 22 increases.
  • the control circuit 91 obtains an operating voltage from the charging voltage V1 of the first power storage unit 21, for example, and controls the on/off of the MOSFETs Q1 and Q2. During the period in which the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22 (from time t1 to time t3), the control circuit 91 controls the MOSFETs Q1 and Q2 to be off, and voltage conversion is performed. Unit 3 converts the input voltage from first power storage unit 21 into a DC voltage having a predetermined voltage value, and supplies the DC voltage to load L1.
  • the control circuit 91 turns on the MOSFETs Q1 and Q2, and the voltage conversion unit 3
  • the input voltage from the first power storage unit 21 and the second power storage unit 22 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1.
  • the capacity value of the first power storage unit 21 is set to a value smaller than the power generation amount of the first power generation unit 11 per unit time, so the power generation amount of the first power generation unit 11 per unit time is Even if the amount is smaller than that of the second power generation unit 12 , the charging voltage of the first power storage unit 21 can be increased, making it easier to take out the output of the first power generation unit 11 .
  • the capacity value of the second power storage unit 22 is a capacity value that can charge the entire amount of power generated per unit time of the second power generation unit 12, and the first semiconductor switch 7 (MOSFETs Q1, Q2) is the second power generation unit It turns on after 12 power generation is over.
  • the power generated by the second power generation unit 12 which is completely stored in the second power storage unit 22, is supplied to the voltage conversion unit 3, so that the second power generation unit 12 can be utilized at the optimum timing, and the extraction efficiency of the generated power from the second power generation section 12 can be enhanced.
  • the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 completes charging. It is possible to suppress charging of the first power storage unit 21 by the generated power. Further, if the first semiconductor switch 7 is non-conducting, the first power storage unit 21 is not charged by the power generated by the second power generation unit 12, so the power generation period of the second power generation unit 12 is equal to the power generation period of the first power generation unit 11. , and the order in which the first power generation unit 11 and the second power generation unit 12 generate power can be changed as appropriate.
  • FIG. 7 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 1. As shown in FIG.
  • the power supply circuit 1 of Modification 1 differs from the above embodiment in that it includes a delay circuit 92 instead of the control circuit 91 . Since the configuration other than the delay circuit 92 is the same as that of the above-described embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted.
  • the delay circuit 92 is electrically connected to at least one of the first power storage unit 21 and the second power storage unit 22 .
  • Delay circuit 92 delays the power output of at least one of first power storage unit 21 and second power storage unit 22 and outputs the power output to the control terminal of first semiconductor switch 7 to turn on first semiconductor switch 7 .
  • Delay time (timing). In other words, the delay circuit 92 turns on the first semiconductor switch 7 when a predetermined delay time has passed since at least one of the first power storage unit 21 and the second power storage unit 22 generated power.
  • the delay circuit 92 delays the charging voltage V2 of the second power storage unit 22 generated in response to the energy harvesting by the second power generation unit 12 to the control terminals of the first semiconductor switch 7, that is, the MOSFETs Q1 and Q1. Output to the control terminal (gate) of Q2.
  • the MOSFETs Q1 and Q2 are turned on at the timing when the delay time by the delay circuit 92 has elapsed after the second power generation unit 12 starts power generation, and the voltage conversion unit 3 operates the first power storage unit 21 and the second power storage unit 22 is converted into a voltage and supplied to the load L1.
  • the delay time from when the input voltage is input to the delay circuit 92 to when the output voltage corresponding to the input voltage is output is set to approximately the same time as the elapsed time until the end of Therefore, the charging voltage of the second power storage unit 22 is supplied to the voltage conversion unit 3 at the timing when the power generation of the first power generation unit 11 ends.
  • the delay time of the delay circuit 92 is preferably set to a time longer than the power generation period of the second power generation section 12, and the first semiconductor switch 7 is turned on after the power generation of the second power generation section 12 is completed. can do.
  • the delay circuit 92 sets the timing for switching the first semiconductor switch 7 on or off. In comparison, the configuration of the drive circuit for the first semiconductor switch 7 can be simplified.
  • FIG. 8 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 2. As shown in FIG.
  • the power supply circuit 1 of Modification 2 differs from the above-described embodiment in that it includes a third power generation unit 13, a third power storage unit 23, and a third rectifier circuit 83. Further, the power supply circuit 1 of Modification 2 differs from the above embodiment in that it includes a second semiconductor switch 7B in addition to the first semiconductor switch 7A.
  • the third power generation section 13 uses a coil to generate power through electromagnetic induction.
  • the third power generation unit 13 is a power generation unit that has a power generation method common to that of the second power generation unit 12 but differs from the second power generation unit 12 in the power generation amount.
  • the third power storage unit 23 is electrically connected to the second semiconductor switch 7B, and electrically connected to the voltage conversion unit 3 via the second semiconductor switch 7B.
  • the third power storage unit 23 is provided corresponding to the third power generation unit 13 and charges power generated by the third power generation unit 13 .
  • the third power storage unit 23 is, for example, a capacitor such as an electrolytic capacitor.
  • the capacity value of the third power storage unit 23 is set to a capacity value that can fully charge the power output (power generation amount) of the third power generation unit 13 per unit time. In other words, the capacity value of the third power storage unit 23 is set to a capacity value that can charge the entire power generation amount of the third power generation unit 13 in one forward movement or one return movement of the movable part 4 .
  • the third rectifier circuit 83 full-wave rectifies the power output of the third power generation unit 13 and outputs it to the third power storage unit 23 . That is, the third power storage unit 23 is charged by the output of the third power generation unit 13 .
  • the second semiconductor switch 7B is connected between the third power storage unit 23 and the voltage conversion unit 3. Second semiconductor switch 7B conducts third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged.
  • the second semiconductor switch 7B includes a semiconductor switch such as a MOSFET, for example.
  • a control circuit 91 controls on/off of the second semiconductor switch 7B.
  • Control circuit 91 compares the charging voltage V1 of first power storage unit 21 and the charging voltage V2 of second power storage unit 22, and individually turns on/off first semiconductor switch 7A based on the comparison result. Control. In addition, control circuit 91 compares the charging voltage V1 of first power storage unit 21 and the charging voltage V3 of third power storage unit 23, and turns on/off second semiconductor switch 7B based on the comparison result. Individually controlled.
  • the control circuit 91 turns off the first semiconductor switch 7A and the second semiconductor switch 7B, and the voltage Conversion unit 3 converts the input voltage from first power storage unit 21 and supplies the converted voltage to load L1.
  • the control circuit 91 turns on the first semiconductor switch 7A, and the voltage conversion unit 3 changes the input voltage from the first power storage unit 21 and the second power storage unit 22. is converted into voltage and supplied to the load L1.
  • the control circuit 91 turns on the second semiconductor switch 7B, and the voltage conversion unit 3 changes the input voltage from the first power storage unit 21 and the third power storage unit 23. is converted into voltage and supplied to the load L1. Further, when the charging voltage V1 becomes lower than both the charging voltages V2 and V3, the control circuit 91 turns on the first semiconductor switch 7A and the second semiconductor switch 7B, and the voltage conversion unit 3 turns on the first power storage unit 21 , the second power storage unit 22, and the third power storage unit 23 are converted into voltages and supplied to the load L1.
  • control circuit 91 preferably turns on second semiconductor switch 7B to electrically connect third power storage unit 23 and voltage conversion unit 3. It is possible to suppress charging of the first power storage unit 21 by the output of the power generation unit 13 . Further, when the second semiconductor switch 7B is off, the output of the third power generation unit 13 is not input to the first power storage unit 21, so the power generation period of the third power generation unit 13 is the same as that of the first power generation unit 11. It does not have to be after the power generation period, and the order of power generation by the first power generation unit 11 and the third power generation unit 13 can be changed as appropriate.
  • control circuit 91 controls that charging voltage V1 of first power storage unit 21 is equal to or higher than the operating voltage of voltage conversion unit 3, and charging voltage V1 of first power storage unit 21 is lower than charging voltage V3 of third power storage unit 23.
  • the power supply circuit 1 of Modification 2 is a power supply circuit to which electric power is further supplied from the third power generation section 13, and further includes the second semiconductor switch 7B, the voltage conversion section 3, and the third power storage section 23. Prepare.
  • the second semiconductor switch 7B is electrically connected to the voltage conversion section 3.
  • Third power storage unit 23 is electrically connected to second semiconductor switch 7B, and is electrically connected to voltage conversion unit 3 via second semiconductor switch 7B.
  • the third power storage unit 23 charges the electric power generated by the third power generation unit 13 .
  • Second semiconductor switch 7B conducts third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged. Since the third power storage unit 23 is provided corresponding to the third power generation unit 13, the capacity value of the third power storage unit 23 can be set to the capacity value according to the power generation amount of the corresponding third power generation unit 13. Thus, power can be efficiently extracted from the power generation unit 10 .
  • Second semiconductor switch 7B connects third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged. , it is possible to use the power generated by the third power generation unit 13 . Therefore, electric power can be efficiently extracted from the first to third power generation units 11 to 13 .
  • the second power storage unit 22 and the third power storage unit 23, which respectively store the power generated by the second power generation unit 12 and the third power generation unit 13 whose power generation period is shorter than that of the first power generation unit 11, are separated from the first semiconductor switch 7A and It is connected to the voltage converter 3 via the second semiconductor switch 7B. Therefore, the timing of supplying the charging voltages of the second power storage unit 22 and the third power storage unit 23 to the voltage conversion unit 3 can be set by the individual first semiconductor switch 7A and the second semiconductor switch 7B. When the power generation period ends, the first semiconductor switch 7A and the second semiconductor switch 7B are turned on to apply voltage from the second power storage unit 22 and the third power storage unit 23 to the voltage conversion unit 3 .
  • the number of power generation units 10 of different types is two or three, but the number of power generation units 10 of different types may be two or more, and two or more power storage units 2 corresponding to two or more power generation units 10 may be provided.
  • the power supply circuit 1 only needs to include two or more power storage units 2 that are charged with power generated by two or more types of power generation units 10, and the two or more power storage units 2 other than the first power storage unit 21 is connected to the voltage converter 3 via switches (first semiconductor switch 7A, second semiconductor switch 7B, etc.).
  • Embodiment 2 (Embodiment 2) (3.1) Outline
  • the power supply circuit 1 of Embodiment 2 and the power generation system 100 including the same will be described with reference to FIG. 9 .
  • the power supply circuit 1 of the present embodiment is the power supply circuit 1 to which power is supplied from the first power generation unit 11 and the second power generation unit 12.
  • the first power storage unit 21 and the second power storage unit A section 22 , a voltage conversion section 3 , and a first diode 9 are provided.
  • the switch SW1 includes the first diode 9 in the second embodiment.
  • the switch SW1 is realized by the first diode 9.
  • the first power storage unit 21 is charged with power generated by the first power generation unit 11 .
  • the second power storage unit 22 is charged with power generated by the second power generation unit 12 .
  • the first diode 9 is electrically connected to the second power storage unit 22 at its anode. That is, the second power storage unit 22 is electrically connected to the anode of the first diode 9 .
  • the voltage converter 3 is electrically connected to the first power storage unit 21 and electrically connected to the cathode of the first diode 9 . That is, voltage conversion unit 3 is electrically connected to first power storage unit 21 and the cathode of first diode 9 .
  • the power generation system 100 of the present embodiment includes the first power generation unit 11, the second power generation unit 12 that starts power generation after the first power generation unit 11 generates power, and the first power generation unit 11 and the second power generation unit 12. and the power supply circuit 1 electrically connected thereto.
  • the second power storage unit 22 is connected to the voltage conversion unit 3 via the first diode 9.
  • the first diode 9 When conductive, the charge stored in the second power storage unit 22 is supplied to the voltage conversion unit 3 . Therefore, the first diode 9 becomes conductive at the timing when the charging voltage of the first power storage unit 21 drops as the power generation output of the first power generation unit 11 drops, and the power stored in the second power storage unit 22 is transferred to the voltage converter. 3, the power generated by the second power generation section 12 can be used efficiently. Therefore, according to the power supply circuit 1 of the present embodiment, power can be efficiently extracted from at least two types of power generation units 10 .
  • the power generation unit 10 has a configuration common to that of the power generation unit 10 described in the first embodiment, so description thereof will be omitted.
  • the power supply circuit 1 of the present embodiment includes the first power storage unit 21 that charges the power generated by the first power generation unit 11 and the second power storage unit 22 that charges the power generated by the second power generation unit 12. , a voltage conversion unit 3 , and a first diode 9 .
  • the power generation system 100 of the present embodiment includes two of the same type of first power generation units 11 (first power generation units 11A and 11B), and the power generated by the two first power generation units 11A and 11B is 1 power storage unit 21 is charged.
  • the power supply circuit 1 of the present embodiment includes a first rectifier circuit 81 and a second rectifier circuit 82 in addition to the first power storage unit 21, the second power storage unit 22, the voltage conversion unit 3, and the first diode 9. I have it. Note that the configurations of the first power storage unit 21, the second power storage unit 22, the voltage conversion unit 3, the first rectifier circuit 81, and the second rectifier circuit 82 are the same as those of the first embodiment, so the common configuration will not be described. omitted.
  • a first diode 9 is connected between the second power storage unit 22 and the voltage conversion unit 3 .
  • the anode of the first diode 9 is connected to the high-voltage side terminal of the second power storage unit 22
  • the cathode of the first diode 9 is connected to the input terminal of the voltage conversion unit 3 . That is, the first diode 9 is connected in the direction in which the current flows from the second power storage unit 22 to the voltage conversion unit 3 .
  • the first power storage unit 21 Diode 9 is turned on, and current flows from second power storage unit 22 to voltage conversion unit 3 .
  • the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22, the first diode 9 is turned off, and the voltage between the second power storage unit 22 and the voltage conversion unit 3 is reduced. is electrically cut off.
  • the voltage conversion unit 3 receives power supply from the first power storage unit 21.
  • the second power storage unit 22 supplies power to the voltage conversion unit 3.
  • the electric power stored in the second power storage unit 22 is transferred to the voltage conversion unit. 3. That is, the power stored in the second power storage unit 22 is supplied to the voltage conversion unit 3 at the timing when the power output of the first power generation unit 11 decreases and the charging voltage V1 of the first power storage unit 21 accordingly decreases. , the first power storage unit 21 and the second power storage unit 22 as power sources, the voltage conversion unit 3 can perform the voltage conversion operation.
  • FIG. 10 shows the voltage waveforms of the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 and the ON/OFF state of the first diode 9 when the operation lever 51 is pushed. It is an example of a graph.
  • the first power generation unit 11 starts generating power, the power generated by the first power generation unit 11 is charged into the first power storage unit 21, and the charging voltage V1 of the first power storage unit 21 is reached. increases.
  • the charging voltage V1 is higher than the charging voltage V2 at time t11, the first diode 9 is non-conducting (OFF), and the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 to a predetermined voltage value. is converted into a DC voltage and supplied to the load L1.
  • the second power storage unit 22 is charged with the power generated by the second power generation unit 12, and the charging voltage V2 of the second power storage unit 22 increases. Since the charging voltage V1 is higher than the charging voltage V2 during the period from time t11 to time t12, the first diode 9 is non-conducting (OFF), and the voltage conversion unit 3 receives the input voltage from the first power storage unit 21. is converted into a DC voltage of a predetermined voltage value and supplied to the load L1.
  • the charging voltage V1 gradually decreases, and the first diode 9 turns on at time t13.
  • the charging voltage V2 of the second power storage unit 22 is lower than the charging voltage V1 of the first power storage unit 21.
  • the charging voltage V2 is lower than the charging voltage V1 during the period from time t11 to time t13.
  • the first diode 9 is off, and the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 into a DC voltage of a predetermined voltage value and supplies it to the load L1. supply.
  • the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 and the second power storage unit 22 into a DC voltage having a predetermined voltage value. and supply it to the load L1.
  • the capacity value of the first power storage unit 21 is set to a value smaller than the power generation amount of the first power generation unit 11 per unit time, so the power generation amount of the first power generation unit 11 per unit time is Even if the amount is smaller than that of the second power generation unit 12 , the charging voltage of the first power storage unit 21 can be increased, making it easier to take out the power output of the first power generation unit 11 .
  • the capacity value of the second power storage unit 22 is a capacity value that can charge the entire amount of power generated per unit time of the second power generation unit 12, and at the timing after the charging voltage V1 becomes lower than the charging voltage V2 The first diode 9 is turned on.
  • the power generated by the second power generation unit 12, the entire amount of which is stored in the second power storage unit 22, is supplied to the voltage conversion unit 3 after the power generation (environmental power generation) of the second power generation unit 12 is completed. Therefore, the power generation amount of the second power generation section 12 can be utilized at the optimum timing, and the extraction efficiency of the power generated by the second power generation section 12 can be improved.
  • the first diode 9 electrically connects or disconnects the second power storage unit 22 and the voltage conversion unit 3 , a semiconductor switch is connected between the second power storage unit 22 and the voltage conversion unit 3 . There is also the advantage that there is no need to provide a control circuit for the semiconductor switch, unlike the case where the semiconductor switch is provided.
  • FIG. 11 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 1. As shown in FIG.
  • the power supply circuit 1 of Modification 1 differs from Embodiment 2 in that power is further supplied from the third power generation section 13, and further includes a third power storage section 23 and a second diode 9B. Moreover, the power supply circuit 1 of Modification 1 further includes a third rectifier circuit 83 . Since configurations other than the third power storage unit 23, the third rectifier circuit 83, and the second diode 9B are common to the power supply circuit 1 of the second embodiment, common components are denoted by the same reference numerals. The explanation is omitted.
  • the third power generation section 13 uses a coil to generate power through electromagnetic induction.
  • the third power generation unit 13 is a power generation unit that has a power generation method common to that of the second power generation unit 12 but differs from the second power generation unit 12 in at least one of the power generation amount and the power generation period.
  • the third power storage unit 23 is provided corresponding to the third power generation unit 13 and charges the electric power generated by the third power generation unit 13 . That is, the power supply circuit 1 of Modification 1 further includes the third power storage unit 23 that charges the power generated by the third power generation unit 13 whose power generation period for energy harvesting is shorter than that of the first power generation unit 11 .
  • the third power storage unit 23 is, for example, a capacitor such as an electrolytic capacitor.
  • the capacity value of the third power storage unit 23 is set to a capacity value that can fully charge the output (power generation amount) of the third power generation unit 13 per unit time. In other words, the capacity value of the third power storage unit 23 is set to a capacity value that can charge the entire power generation amount of the third power generation unit 13 in one forward movement or one return movement of the movable part 4 .
  • the third rectifier circuit 83 full-wave rectifies the output of the third power generation section 13 and outputs it to the third power storage section 23 . That is, the third power storage unit 23 is charged by the output of the third power generation unit 13 .
  • the second diode 9B is connected between the third power storage unit 23 and the voltage conversion unit 3.
  • the third power storage unit 23 is connected to the voltage conversion unit 3 via the second diode 9B.
  • the second diode 9B is electrically connected to the third power storage unit 23 at its anode and electrically connected to the voltage conversion unit 3 at its cathode. It is connected to the.
  • Second power storage unit 22 is connected to voltage conversion unit 3 via first diode 9A.
  • both the first diode 9A and the second diode 9B are turned off, and the voltage conversion section 3 1 voltage conversion is performed on the input voltage from the power storage unit 21 and the converted voltage is supplied to the load L1.
  • the voltage conversion unit 3 converts the input voltages from the first power storage unit 21 and the second power storage unit 22 to the load. supply to L1.
  • the voltage conversion unit 3 converts the input voltages from the first power storage unit 21 and the third power storage unit 23 to the load. supply to L1. Further, when the charging voltage V1 is lower than the charging voltage V2 and the charging voltage V1 is lower than the charging voltage V3, and the first diode 9A and the second diode 9B become conductive, the voltage conversion unit 3 converts the first power storage The input voltages from the unit 21, the second power storage unit 22, and the third power storage unit 23 are voltage-converted and supplied to the load L1.
  • the number of power generation units 10 of different types is two or three, but the number of power generation units 10 of different types is The number may be two or more, and two or more power storage units 2 corresponding to two or more power generation units 10 may be provided.
  • the power supply circuit 1 only needs to include two or more power storage units 2 that are charged with power generated by two or more types of power generation units 10, and the two or more power storage units 2 other than the first power storage unit 21 is connected to the voltage converter 3 via diodes (first diode 9A, second diode 9B, etc.).
  • the power supply circuit (1) of the first aspect is a power supply circuit (1) to which electric power is supplied from the first power generation section (11) and the second power generation section (12). It includes a first power storage unit (21), a second power storage unit (22), a switch (SW1), and a voltage conversion unit (3).
  • the first power storage unit (21) charges the electric power generated by the first power generation unit (11).
  • the second power storage unit (22) charges the electric power generated by the second power generation unit (12).
  • the switch (SW1) is electrically connected to the second power storage unit (22).
  • a voltage conversion unit (3) is electrically connected to a first power storage unit (21) and electrically connected to a second power storage unit (22) via a switch (SW1).
  • the capacity values of the first power storage unit (21) and the second power storage unit (22) can be set according to the power generation amounts of the corresponding first power generation unit (11) and the second power generation unit (12), respectively. Electric power can be efficiently extracted from (11) and the second power generation section (12).
  • the switch (SW1) includes a first semiconductor switch (7, 7A).
  • the first semiconductor switch (7, 7A) electrically connects the second power storage unit (22) and the voltage conversion unit (3) after the first power storage unit (21) is charged.
  • the first semiconductor switch (7, 7A) conducts the second power storage unit (22) and the voltage conversion unit (3) after the first power storage unit (21) is charged.
  • the power generated by the second power generation section (12) at the timing when the power generated by the first power generation section (11) decreases. Therefore, electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)). Further, by using the first semiconductor switch (7, 7A) for the switch (SW1), power loss in the switch (SW1) can be reduced.
  • the power supply circuit (1) of the third aspect further comprises a control circuit (91) in the second aspect.
  • a control circuit (91) controls on/off of the first semiconductor switches (7, 7A).
  • the control circuit (91) is supplied with power from at least one of the first power generation section (11) and the second power generation section (12).
  • the on/off timing of the first semiconductor switch (7, 7A) can be changed by changing the control sequence of the control circuit (91).
  • the power supply circuit (1) of the fourth aspect further comprises a delay circuit (92) in the second aspect.
  • the delay circuit (92) is electrically connected to at least one of the first power generation section (11) and the second power generation section (12).
  • a delay circuit (92) delays the time to turn on the first semiconductor switch (7, 7A).
  • the circuit for controlling the on/off of the first semiconductor switch (7, 7A) can be configured with a simple circuit.
  • the capacity value of the first power storage unit (21) is equal to the power generation amount of the first power generation unit (11) per unit time. small in comparison.
  • the capacity value of the second power storage section (22) is a capacity value that can charge the entire amount of power generated per unit time of the second power generation section (12).
  • the first semiconductor switch (7, 7A) is turned on after the second power generation section (12) finishes generating power.
  • the second power storage unit (22) can be charged with the entire amount of power generated by the second power generation unit (12). It can be supplied to part (3). Therefore, electric power can be efficiently extracted from the first power generation section (11) and the second power generation section (12).
  • the power supply circuit (1) of the sixth aspect is the power supply circuit (1) of any one of the second to fifth aspects, to which electric power is further supplied from the third power generation section (13).
  • the power supply circuit (1) further includes a second semiconductor switch (7B) and a third power storage unit (23).
  • the second semiconductor switch (7B) is electrically connected to the voltage converter (3).
  • the third power storage unit (23) is electrically connected to the second semiconductor switch (7B), is electrically connected to the voltage conversion unit (3) via the second semiconductor switch (7B), and is electrically connected to the third power generation unit. (13) is charged by the power generated.
  • a second semiconductor switch (7B) electrically connects a third power storage unit (23) and a voltage conversion unit (3) after the first power storage unit (21) is charged.
  • electric power can be efficiently extracted from the first to third power generation units (11, 12, 13).
  • the first semiconductor switch (7, 7A) switches the second Conduction is established between the storage unit (22) and the voltage conversion unit (3).
  • the second semiconductor switch (7B) is connected to the third power storage unit (23) after charging of the first power storage unit (21) is completed. It conducts with the conversion part (3).
  • the first semiconductor switch (7, 7A) changes the charging voltage of the first storage unit (21) to the voltage conversion unit (3). ) and the charging voltage of the first power storage unit (21) is lower than the charging voltage of the second power storage unit (22), the second power storage unit (22) and the voltage conversion unit (3) to conduct.
  • the power generated by the second power generation section (12) can be supplied to the voltage conversion section (3) at the timing when the charging voltage of the first power storage section (21) drops.
  • the second semiconductor switch (7B) is configured such that the charging voltage of the first power storage unit (21) is equal to or higher than the operating voltage of the voltage conversion unit (3). , when the charging voltage of the first power storage unit (21) is lower than the charging voltage of the third power storage unit (23), the third power storage unit (23) and the voltage conversion unit (3) are electrically connected.
  • the power generated by the third power generation section (13) can be supplied to the voltage conversion section (3) at the timing when the charging voltage of the first power storage section (21) drops.
  • the power generation system (100) of the eleventh aspect comprises the power supply circuit (1) of any one of the first to tenth aspects, a first power generation section (11) and a second power generation section (12).
  • electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)).
  • the configurations according to the second to tenth aspects are not essential to the power supply circuit (1), and can be omitted as appropriate.
  • the switch (SW1) includes the first diode (9, 9A).
  • the second power storage unit (22) is electrically connected to the anode of the first diode (9, 9A).
  • the voltage converter (3) is electrically connected to the first power storage unit (21) and the cathode of the first diode (9, 9A).
  • the second power storage unit (22) is connected to the voltage conversion unit (3) via the first diode (9, 9A), and the charging voltage of the first power storage unit (21) is the second
  • the first diode (9, 9A) becomes conductive as the voltage becomes lower than the charging voltage of the storage unit (22)
  • the charge stored in the second storage unit (22) is supplied to the voltage conversion unit (3).
  • the first diodes (9, 9A) become conductive at the timing when the charging voltage of the first power storage unit (21) drops as the power generation output of the first power generation unit (11) drops, and the second power storage unit (22 ) is supplied to the voltage conversion section (3), the power generated by the second power generation section (12) can be efficiently used, and at least two types of power generation sections (the first power generation section (11) and Electric power can be efficiently extracted from the second power generation section (12).
  • the voltage conversion unit (3 ) receives power supply from the first power storage unit (21).
  • the second power storage unit (22) supplies power to the voltage conversion unit (3).
  • the first diode (9, 9A) becomes conductive and the second power storage unit ( 22) can be supplied to the voltage converter (3).
  • the power supply circuit (1) of the fourteenth aspect is, in the twelfth or thirteenth aspect, a power supply circuit (1) further supplied with electric power from the third power generation section (13).
  • a power supply circuit (1) is electrically connected to a third power storage unit (23) for charging power generated by a third power generation unit (13), and is electrically connected to the third power storage unit (23) at an anode, and converts voltage at a cathode. and a second diode (9B) electrically connected to the part (3).
  • electric power can be efficiently extracted from the first to third power generation units (11 to 13).
  • the capacity value of the first power storage unit (21) is equal to the power generation amount of the first power generation unit (11) per unit time. small in comparison.
  • the capacity value of the second power storage section (22) is a capacity value that can charge the entire amount of power generated per unit time of the second power generation section (12).
  • the second power generation section Since the second power storage unit (22) can be charged with the entire power generation amount of 12), the electric power stored in the second power storage unit (22) can be supplied to the voltage conversion unit (3) at a desired timing. Therefore, electric power can be efficiently extracted from the first power generation section (11) and the second power generation section (12).
  • the power generation system (100) of the sixteenth aspect comprises a first power generation section (11), a second power generation section (12) that starts power generation after the first power generation section (11) has generated power, and 12th to 15th power generation sections. and a power supply circuit (1) according to any one of the above.
  • a power supply circuit (1) is electrically connected to a first power generation section (11) and a second power generation section (12).
  • electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)).
  • the charging voltage of the second power storage unit (22) is is lower than the charging voltage of the first power storage unit (21).
  • electric power can be supplied from the second power storage section (22) to the voltage conversion section (3) after the second power generation section (12) finishes generating power.
  • the configurations according to the 12th to 15th aspects are not essential to the power supply circuit (1), and can be omitted as appropriate.
  • the configuration according to the seventeenth aspect is not essential for the power generation system (100), and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A purpose of this disclosure is to extract electric power efficiently from at least two types of power generation units. A power supply circuit 1 is supplied with electric power from a first power generation unit 11 and a second power generation unit 12, and includes: a first power storage unit 21; a second power storage unit 22; a switch SW1; and a voltage conversion unit 3. The first power storage unit 21 charges electric power generated by the first power generation unit 11. The second power storage unit 22 charges electric power generated by the second power generation unit 12. The switch SW1 is electrically connected to the second power storage unit 22. The voltage conversion unit 3 is electrically connected to the first power storage unit 21 and electrically connected to the second power storage unit 22 via the switch SW1.

Description

電源回路、及びそれを備える発電システムPower supply circuit and power generation system including the same
 本開示は、電源回路、及びそれを備える発電システムに関する。より詳細には、本開示は、環境発電を行う発電部の出力の電圧変換を行う電源回路、及びそれを備える発電システムに関する。 The present disclosure relates to a power supply circuit and a power generation system including the same. More specifically, the present disclosure relates to a power supply circuit that performs voltage conversion of the output of a power generation unit that performs energy harvesting, and a power generation system that includes the same.
 特許文献1は、吸着体を有し始点から終点に向かって移動する起動部と、振動することによって発電する片持ち梁状の発電部と、を備える発電システムを開示する。この発電システムでは、起動部が始点から終点に向かって移動するとき、吸着体が発電部を吸着する。起動部の吸着体と発電部とが吸着しながら終点に向かって移動することで、発電部は、撓み、かつ、傾く。そして、吸着体が発電部から離脱することで、吸着体は振動を開始し、吸着部の振動に応じて発電部が発電する。 Patent Document 1 discloses a power generation system that includes a starter that has an adsorbent and moves from a start point to an end point, and a cantilever-shaped power generation section that generates power by vibrating. In this power generation system, when the starter moves from the start point toward the end point, the attracting body attracts the power generation unit. The power generating unit bends and tilts as the attracting member of the starting unit and the power generating unit move toward the end point while being attracted to each other. When the adsorbent is detached from the power generation unit, the adsorbent starts to vibrate, and the power generation unit generates power according to the vibration of the adsorption unit.
国際公開2018/100859号公報International Publication No. 2018/100859
 本開示の目的は、少なくとも2種類の発電部から効率良く電力を取り出すことが可能な電源回路及び発電システムを提供することにある。 An object of the present disclosure is to provide a power supply circuit and a power generation system capable of efficiently extracting power from at least two types of power generation units.
 本開示の一態様の電源回路は、第1発電部と第2発電部とから電力を供給される電源回路であって、第1蓄電部と、第2蓄電部と、スイッチと、電圧変換部と、を備える。前記第1蓄電部は、前記第1発電部が発電する電力を充電する。前記第2蓄電部は、前記第2発電部が発電する電力を充電する。前記スイッチは、前記第2蓄電部に電気的に接続される。前記電圧変換部は、前記第1蓄電部に電気的に接続され、かつ、前記第2蓄電部に前記スイッチを介して電気的に接続される。 A power supply circuit according to one aspect of the present disclosure is a power supply circuit to which power is supplied from a first power generation unit and a second power generation unit, and includes a first power storage unit, a second power storage unit, a switch, and a voltage conversion unit. And prepare. The first power storage unit charges electric power generated by the first power generation unit. A said 2nd electrical storage part charges the electric power which a said 2nd electric power generation part generates. The switch is electrically connected to the second power storage unit. The voltage conversion unit is electrically connected to the first power storage unit and electrically connected to the second power storage unit via the switch.
 本開示の一態様の発電システムは、前記電源回路と、前記第1発電部及び前記第2発電部と、を備える。 A power generation system according to one aspect of the present disclosure includes the power supply circuit, the first power generation section, and the second power generation section.
 本開示の一態様の発電システムは、第1発電部と、前記第1発電部が発電した後に発電を開始する第2発電部と、前記第1発電部及び前記第2発電部に電気的に接続される前記電源回路と、を備える。 A power generation system according to one aspect of the present disclosure includes a first power generation unit, a second power generation unit that starts generating power after the first power generation unit generates power, and electrically connecting the first power generation unit and the second power generation unit. and the power supply circuit connected thereto.
図1は、本開示の実施形態に係る電源回路、及びそれを備える発電システムの概要を示す回路図である。FIG. 1 is a circuit diagram showing an overview of a power supply circuit and a power generation system including the same according to an embodiment of the present disclosure. 図2は、本開示の実施形態1に係る電源回路、及びそれを備える発電システムの概略的な回路図である。FIG. 2 is a schematic circuit diagram of a power supply circuit according to Embodiment 1 of the present disclosure and a power generation system including the same. 図3は、同上の発電システムの構成を示す概略的な断面図である。FIG. 3 is a schematic cross-sectional view showing the configuration of the same power generation system. 図4は、同上の発電システムの構成を示す概略的な断面図である。FIG. 4 is a schematic cross-sectional view showing the configuration of the same power generation system. 図5は、同上の電源回路、及びそれを備える発電システムの具体構成を説明する概略的な回路図である。FIG. 5 is a schematic circuit diagram for explaining a specific configuration of the power supply circuit and a power generation system including the same. 図6は、同上の電源回路が備える第1蓄電部及び第2蓄電部の充電電圧、及び、スイッチのオン/オフの状態の時間変化の一例を示すグラフである。FIG. 6 is a graph showing an example of temporal changes in the charging voltages of the first power storage unit and the second power storage unit included in the power supply circuit and the on/off state of the switch. 図7は、変形例1の電源回路及び発電システムの具体構成を説明する概略的な回路図である。FIG. 7 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 1. As shown in FIG. 図8は、変形例2の電源回路及び発電システムの具体構成を説明する概略的な回路図である。FIG. 8 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 2. As shown in FIG. 図9は、本開示の実施形態2に係る電源回路、及びそれを備える発電システムの概略的な回路図である。FIG. 9 is a schematic circuit diagram of a power supply circuit according to Embodiment 2 of the present disclosure and a power generation system including the same. 図10は、同上の電源回路が備える第1蓄電部及び第2蓄電部の充電電圧、及び、ダイオードのオン/オフの状態の時間変化の一例を示すグラフである。FIG. 10 is a graph showing an example of temporal changes in the charged voltages of the first power storage unit and the second power storage unit included in the power supply circuit and the on/off state of the diode. 図11は、変形例1の電源回路及び発電システムの具体構成を説明する概略的な回路図である。FIG. 11 is a schematic circuit diagram illustrating specific configurations of the power supply circuit and the power generation system of Modification 1. As shown in FIG.
 (実施形態)
 (1)概要
 以下の実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
(embodiment)
(1) Overview Each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. Not necessarily.
 本実施形態の電源回路1、及びそれを備える発電システム100について図1を参照して説明する。 A power supply circuit 1 of the present embodiment and a power generation system 100 including the same will be described with reference to FIG.
 本実施形態の電源回路1は、図1に示すように、第1発電部11と第2発電部12とから電力を供給される。 As shown in FIG. 1, the power supply circuit 1 of this embodiment is supplied with electric power from a first power generation section 11 and a second power generation section 12 .
 電源回路1は、第1蓄電部21と、第2蓄電部22と、スイッチSW1と、電圧変換部3と、を備える。 The power supply circuit 1 includes a first power storage unit 21, a second power storage unit 22, a switch SW1, and a voltage conversion unit 3.
 第1蓄電部21は、第1発電部11が発電する電力を充電する。 The first power storage unit 21 charges the electric power generated by the first power generation unit 11 .
 第2蓄電部22は、第2発電部12が発電する電力を充電する。 The second power storage unit 22 charges the electric power generated by the second power generation unit 12 .
 スイッチSW1は、第2蓄電部22に電気的に接続される。 The switch SW1 is electrically connected to the second power storage unit 22 .
 電圧変換部3は、第1蓄電部21に電気的に接続され、かつ、第2蓄電部22とスイッチSW1を介して電気的に接続される。 The voltage conversion unit 3 is electrically connected to the first power storage unit 21 and electrically connected to the second power storage unit 22 via the switch SW1.
 ここで、スイッチSW1は、第2蓄電部22と電圧変換部3との間を電気的に接続する導通状態と、第2蓄電部22と電圧変換部3との間を電気的に遮断する非導通状態とに切替可能な回路素子である。スイッチSW1は、例えば、制御回路等から入力される制御信号に応じて導通状態又は非導通状態に切り替わる半導体スイッチ、又は、アノードとカソードとの電圧関係に応じて導通状態又は非導通状態に切り替わるダイオードのような回路素子を含み得る。スイッチSW1が導通状態になると、第2蓄電部22がスイッチSW1を介して電圧変換部3に電気的に接続されるので、電圧変換部3は、第2蓄電部22に充電されている電圧を電圧変換して出力することができる。なお、スイッチSW1は、第1蓄電部21の電圧と第2蓄電部22の電圧との大小関係、第1蓄電部21の充電状態、及び第1発電部11の発電状態の少なくとも1つに関する条件に応じて、導通状態と非導通状態とが切り替わるように構成されることが好ましい。 Here, switch SW1 is in a conductive state for electrically connecting second power storage unit 22 and voltage conversion unit 3 and in a non-conductive state for electrically disconnecting second power storage unit 22 and voltage conversion unit 3 . It is a circuit element that can be switched between a conducting state and a conducting state. The switch SW1 is, for example, a semiconductor switch that switches between a conducting state and a non-conducting state according to a control signal input from a control circuit or the like, or a diode that switches between a conducting state and a non-conducting state according to the voltage relationship between the anode and the cathode. may include circuit elements such as When the switch SW1 is turned on, the second power storage unit 22 is electrically connected to the voltage conversion unit 3 via the switch SW1. It can be output after voltage conversion. Note that the switch SW1 is set to a condition related to at least one of the magnitude relationship between the voltage of the first power storage unit 21 and the voltage of the second power storage unit 22, the state of charge of the first power storage unit 21, and the state of power generation of the first power generation unit 11. It is preferably arranged to switch between the conducting state and the non-conducting state in response to .
 また、本実施形態の発電システム100は、上記の電源回路1と、第1発電部11及び第2発電部12と、を備える。 In addition, the power generation system 100 of this embodiment includes the power supply circuit 1 described above, and the first power generation section 11 and the second power generation section 12 .
 本実施形態の電源回路1は、少なくとも2種類の発電部10から電力を供給される電源回路であり、以下の実施形態では、少なくとも2種類の発電部10が、第1発電部11と第2発電部12とを含む場合を例に説明する。また、本実施形態では、少なくとも2種類の発電部10が発電する電力を充電する少なくとも2つの蓄電部2が、第1蓄電部21と、第2蓄電部22と、を含む場合を例に説明する。 The power supply circuit 1 of the present embodiment is a power supply circuit to which power is supplied from at least two types of power generation units 10. In the following embodiments, at least two types of power generation units 10 are a first power generation unit 11 and a second power generation unit 11. A case in which the power generation unit 12 is included will be described as an example. Further, in the present embodiment, a case where at least two power storage units 2 charged with power generated by at least two types of power generation units 10 include a first power storage unit 21 and a second power storage unit 22 will be described as an example. do.
 少なくとも2種類の発電部10の出力を1つの蓄電部に蓄える場合、それぞれの発電部10で発生する電流等が異なるから、効率良く電力を取り出せない可能性がある。例えば、2種類の発電部10で発電量が異なる場合、発電量の大きな発電部10に合わせて蓄電部の容量値を決定すると、発電量が小さい方の発電部10の出力では蓄電部に発生する充電電圧が小さくなり、効率良く電力を取り出せない可能性がある。一方、発電量の小さい発電部10に合わせて蓄電部の容量値を決定すると、発電量が大きい方の発電部10の出力を蓄電部に全て蓄えることができず、捨てられる電力が増加して、効率良く電力を取り出せない可能性がある。 When the outputs of at least two types of power generation units 10 are stored in one power storage unit, there is a possibility that electric power cannot be extracted efficiently because the current generated in each power generation unit 10 is different. For example, if the two types of power generation units 10 have different power generation amounts, if the capacity value of the power storage unit is determined according to the power generation unit 10 with the larger power generation amount, the output of the power generation unit 10 with the smaller power generation amount will cause the power storage unit to generate The charging voltage to be applied becomes small, and there is a possibility that power cannot be extracted efficiently. On the other hand, if the capacity value of the power storage unit is determined according to the power generation unit 10 with the smaller power generation amount, the power storage unit cannot store all the output of the power generation unit 10 with the larger power generation amount, and the power that is wasted increases. , there is a possibility that power cannot be extracted efficiently.
 それに対して、本実施形態では、第1発電部11及び第2発電部12が発電する電力を、それぞれ対応する第1蓄電部21及び第2蓄電部22に蓄えている。したがって、第1蓄電部21及び第2蓄電部22の容量値を、それぞれ対応する第1発電部11及び第2発電部12の発電量に応じた容量値とすることができ、それぞれの発電部10から効率良く電力を取り出すことができる。 In contrast, in the present embodiment, the power generated by the first power generation unit 11 and the second power generation unit 12 is stored in the corresponding first power storage unit 21 and second power storage unit 22, respectively. Therefore, the capacity values of the first power storage unit 21 and the second power storage unit 22 can be set according to the power generation amounts of the corresponding first power generation unit 11 and the second power generation unit 12, respectively. Power can be efficiently extracted from 10.
 ここにおいて、第1発電部11及び第2発電部12は、例えば環境発電により発電を行う。環境発電とは、エナジーハーベスト(Energy Harvesting)ともいい、環境中の光、振動、熱、電磁波等のエネルギを回収して電力に変換する発電方式である。なお、環境中の振動とは、電動モータ等の機械が発生する振動の他、ユーザがスイッチのボタン等を押すことによって発生する振動を含み得る。以下の実施形態では、発電部10が、ユーザの操作に応じて往復動作する可動部4(図3及び図4参照)の往路動作及び復路動作の少なくとも一方に応じて発電を行う2種類の発電部10として第1発電部11及び第2発電部12を備えている場合を例に説明を行う。なお、少なくとも2種類の発電部10(第1発電部11及び第2発電部12)は、発電方式が互いに異なる少なくとも2つの発電部でもよいし、発電方式が同じで発電量又は発電期間等が互いに異なる少なくとも2つの発電部でもよい。また、少なくとも2種類の発電部10は環境発電を行うものに限定されず、その他の発電方式で発電するものでもよい。 Here, the first power generation unit 11 and the second power generation unit 12 generate power by, for example, energy harvesting. Energy harvesting, also known as energy harvesting, is a power generation method that recovers energy such as light, vibration, heat, and electromagnetic waves in the environment and converts it into electric power. The vibration in the environment may include vibration generated by a machine such as an electric motor, as well as vibration generated by a user pressing a switch button or the like. In the following embodiment, the power generation unit 10 generates two types of power generation according to at least one of forward movement and return movement of the movable part 4 (see FIGS. 3 and 4) that reciprocates according to the user's operation. A case in which a first power generation unit 11 and a second power generation unit 12 are provided as the unit 10 will be described as an example. The at least two types of power generation units 10 (the first power generation unit 11 and the second power generation unit 12) may be at least two power generation units having different power generation methods, or may have the same power generation method and the same power generation amount or power generation period. At least two power generation units different from each other may be used. Moreover, the at least two types of power generation units 10 are not limited to those that perform environmental power generation, and may be those that generate power by other power generation methods.
 負荷L1としては、適宜の機器が用いられる。負荷L1は、例えば、無線通信等の通信を行う通信部であってもよいし、光源であってもよいし、発音装置であってもよいし、センサであってもよい。また、負荷L1は、センサ又はスイッチと、センサ又はスイッチの出力信号を外部に無線送信する通信部と、の組み合わせでもよい。 Appropriate equipment is used as the load L1. The load L1 may be, for example, a communication unit that performs wireless communication or the like, a light source, a sound generator, or a sensor. Moreover, the load L1 may be a combination of a sensor or a switch and a communication unit that wirelessly transmits the output signal of the sensor or the switch to the outside.
 (実施形態1)
 以下、実施形態1に係る電源回路1、及びそれを備える発電システム100について図2~図8を参照して説明する。
(Embodiment 1)
A power supply circuit 1 according to Embodiment 1 and a power generation system 100 including the same will be described below with reference to FIGS. 2 to 8. FIG.
 (2.1)概要
 実施形態1では、図2に示すように、上記のスイッチSW1が第1半導体スイッチ7を含む。
(2.1) Overview In the first embodiment, the switch SW1 includes the first semiconductor switch 7, as shown in FIG.
 第1半導体スイッチ7は、第1蓄電部21が充電された後に、第2蓄電部22と電圧変換部3とを導通する。 The first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 is charged.
 第1半導体スイッチ7は、第1蓄電部21が充電された後に、第2蓄電部22と電圧変換部3とを導通する。ここで、「第1蓄電部21が充電された後」は、第1蓄電部21が完全に充電された後であることが好ましい。なお、「第1蓄電部21が充電された後」は、第1蓄電部21が完全に充電された後であることに限定されず、第1蓄電部21の充電が開始された後でもよい。第1半導体スイッチ7が第2蓄電部22と電圧変換部3とを導通すると、第2蓄電部22に蓄えられた第2発電部12の発電電力が電圧変換部3に供給されるので、例えば第1発電部11の発電電力が低下するタイミングで第2発電部12の発電電力を利用することが可能となる。よって、少なくとも2種類の発電部10(第1発電部11及び第2発電部12)から効率良く電力を取り出すことができる。 The first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 is charged. Here, "after first power storage unit 21 is charged" is preferably after first power storage unit 21 is completely charged. Note that "after first power storage unit 21 is charged" is not limited to being after first power storage unit 21 is completely charged, and may be after charging of first power storage unit 21 is started. . When the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3, the power generated by the second power generation unit 12 and stored in the second power storage unit 22 is supplied to the voltage conversion unit 3. For example, It becomes possible to use the power generated by the second power generation unit 12 at the timing when the power generated by the first power generation unit 11 decreases. Therefore, electric power can be efficiently extracted from at least two types of power generation units 10 (the first power generation unit 11 and the second power generation unit 12).
 (2.2)詳細
 以下、本実施形態の電源回路1及び発電システム100について、図面を用いて説明する。
(2.2) Details Hereinafter, the power supply circuit 1 and the power generation system 100 of the present embodiment will be described with reference to the drawings.
 (2.2.1)発電部
 発電部10について、図1~図4を参照して説明する。
(2.2.1) Power Generation Unit The power generation unit 10 will be described with reference to FIGS. 1 to 4. FIG.
 本実施形態では、発電部10が、2種類の発電部として第1発電部11と、第2発電部12と、を含んでいる。 In this embodiment, the power generation unit 10 includes a first power generation unit 11 and a second power generation unit 12 as two types of power generation units.
 本実施形態の発電部10は、筐体53に往復移動が可能な状態で保持された可動部4の移動に伴う位置エネルギの変化を電気エネルギとして取り出す環境発電を行う。可動部4は、ユーザによる操作レバー51の操作に応じて往復動作を行い、本実施形態の発電部10は可動部4の往路動作及び復路動作のそれぞれで発電を行うように構成されている。 The power generation unit 10 of the present embodiment performs environmental power generation by extracting, as electric energy, changes in potential energy associated with movement of the movable unit 4 held in the housing 53 in a reciprocating state. The movable part 4 performs reciprocating motion according to the operation of the control lever 51 by the user, and the power generation part 10 of the present embodiment is configured to generate power in each of the outward motion and the homeward motion of the movable part 4 .
 可動部4は、一方向に沿って第1位置(上限位置)と第2位置(下限位置)との間で移動可能である。可動部4は操作レバー51が操作されていない状態では第1位置に位置し、例えばユーザによって操作レバー51が押されると第1位置から第2位置へと移動する。以下では、可動部4が移動可能な方向(図3及び図4の上下方向)を「上下方向」ともいい、図3及び図4の上方及び下方をそれぞれ「上」「下」ともいう。また、図3及び図4の左右方向を「左右方向」ともいい、図3及び図4の左方及び右方をそれぞれ「左」「右」ともいう。また、可動部4が上限位置から下限位置へ移動することを往路動作ともいい、可動部4が下限位置から上限位置へ移動することを復路動作ともいう。 The movable part 4 is movable between a first position (upper limit position) and a second position (lower limit position) along one direction. The movable portion 4 is positioned at the first position when the operating lever 51 is not operated, and moves from the first position to the second position when the operating lever 51 is pushed by the user, for example. Hereinafter, the direction in which the movable part 4 can move (vertical direction in FIGS. 3 and 4) is also referred to as the "vertical direction", and upward and downward directions in FIGS. 3 and 4 are also referred to as "up" and "down", respectively. 3 and 4 are also referred to as "left and right directions", and the left and right directions in FIGS. 3 and 4 are also referred to as "left" and "right", respectively. Further, the movement of the movable portion 4 from the upper limit position to the lower limit position is called forward movement, and the movement of the movable part 4 from the lower limit position to the upper limit position is also called return movement.
 筐体53は、第1発電部11、第2発電部12、可動部4、支持体45、操作レバー51の一部(下部)、及び復帰ばね52を収容する。本実施形態では、第1発電部11は例えば圧電体を用いて発電を行う発電部であり、第2発電部12は例えばコイル120を用いて電磁誘導により発電を行う発電部である。なお、本実施形態の発電部10は、それぞれ圧電体を用いて発電を行う2つの第1発電部11を備えており、2つの第1発電部11を区別して説明する場合は第1発電部11A,11Bと表記する。第1発電部11(11A,11B)及び第2発電部12については後述する。 The housing 53 accommodates the first power generation section 11 , the second power generation section 12 , the movable section 4 , the support 45 , a portion (lower portion) of the operation lever 51 , and the return spring 52 . In this embodiment, the first power generation section 11 is a power generation section that generates power using, for example, a piezoelectric body, and the second power generation section 12 is a power generation section that generates power by electromagnetic induction using, for example, a coil 120 . Note that the power generation unit 10 of the present embodiment includes two first power generation units 11 that generate power using piezoelectric bodies, respectively. They are denoted as 11A and 11B. The first power generation section 11 (11A, 11B) and the second power generation section 12 will be described later.
 操作レバー51は、上下方向に移動可能である。操作レバー51の上部は筐体53の外部に露出しており、ユーザが操作可能である。操作レバー51は、下向きの外力(例えばユーザが下向きに押す力)を受けて、下向きに移動する。 The operating lever 51 is movable in the vertical direction. The upper portion of the operating lever 51 is exposed outside the housing 53 and can be operated by the user. The operating lever 51 receives a downward external force (for example, a force that a user pushes downward) and moves downward.
 可動部4は、永久磁石41と、永久磁石41の左面の上側部分に設けられている第1磁性体42と、永久磁石41の左面の下側部分に設けられている第2磁性体43と、を備えている。ここでは、永久磁石41は、上側がN極であり、下側がS極である。可動部4は、上下方向において操作レバー51と対向する。操作レバー51が下向きに移動すると、可動部4は、操作レバー51に押されて下向きに移動する。 The movable part 4 includes a permanent magnet 41 , a first magnetic body 42 provided on the upper left side of the permanent magnet 41 , and a second magnetic body 43 provided on the lower left side of the permanent magnet 41 . , is equipped with Here, the permanent magnet 41 has an N pole on the upper side and an S pole on the lower side. The movable portion 4 faces the operating lever 51 in the vertical direction. When the operating lever 51 moves downward, the movable portion 4 is pushed by the operating lever 51 and moves downward.
 復帰ばね52は、可動部4の下面と筐体53の内底面(上面)との間に配置されている。操作レバー51が下向きに押されると、可動部4が下向きに移動することによって復帰ばね52が撓められる。操作レバー51に対する外力がなくなると、復帰ばね52は、弾性力によって可動部4及び操作レバー51を上向きに移動させる。 The return spring 52 is arranged between the lower surface of the movable part 4 and the inner bottom surface (upper surface) of the housing 53 . When the operating lever 51 is pushed downward, the return spring 52 is bent due to the downward movement of the movable portion 4 . When the external force applied to the operating lever 51 is removed, the return spring 52 moves the movable portion 4 and the operating lever 51 upward by elastic force.
 支持体45は、磁性材料で形成されている。支持体45は、筐体53の左側の内側面に固定されている。支持体45は、2つの第1発電部11A,11Bと、第2発電部12と、を支持する。 The support 45 is made of a magnetic material. The support 45 is fixed to the left inner surface of the housing 53 . The support 45 supports the two first power generation units 11A and 11B and the second power generation unit 12 .
 一方の第1発電部11Aは、振動体46と、発電素子110と、を備える。 One first power generation section 11A includes a vibrating body 46 and a power generation element 110 .
 振動体46は、例えばステンレス鋼等の磁性材料から、左右方向に長い矩形板状に形成されている。振動体46は、第1端461(左端)が支持体45に支持されている。振動体46は、第1端461を固定端、第2端462(右端)を自由端として、上下方向に振動可能である。振動体46の第2端462の上面には、錘463が設けられている。また、振動体46の第2端462の下面は、可動部4の上面と対向する。 The vibrating body 46 is made of a magnetic material such as stainless steel and formed into a rectangular plate shape elongated in the left-right direction. A first end 461 (left end) of the vibrating body 46 is supported by the supporting body 45 . The vibrating body 46 can vibrate vertically with the first end 461 as a fixed end and the second end 462 (right end) as a free end. A weight 463 is provided on the upper surface of the second end 462 of the vibrating body 46 . Also, the lower surface of the second end 462 of the vibrating body 46 faces the upper surface of the movable portion 4 .
 可動部4が第1位置にあるとき(図3参照)、振動体46の第2端462は、磁力により可動部4に吸着されて(ここでは接触して)いる。可動部4が第1位置から下向きに移動すると、第2端462が可動部4に引かれることで、振動体46は下向きに湾曲する。筐体53に設けられた第1ストッパ54に振動体46の下面が接触すると、振動体46のそれ以上の湾曲が規制され、可動部4が振動体46から離れる。振動体46は、可動部4から解放されると、湾曲に応じて振動する。つまり、振動体46は、可動部4の下向きの移動、すなわち操作レバー51の押し込みに応じて、振動を開始する。 When the movable part 4 is in the first position (see FIG. 3), the second end 462 of the vibrating body 46 is attracted to (here, in contact with) the movable part 4 by magnetic force. When the movable portion 4 moves downward from the first position, the second end 462 is pulled by the movable portion 4, thereby bending the vibrating body 46 downward. When the lower surface of the vibrating body 46 comes into contact with the first stopper 54 provided in the housing 53 , further bending of the vibrating body 46 is restricted, and the movable part 4 separates from the vibrating body 46 . When the vibrating body 46 is released from the movable part 4, it vibrates according to the bending. That is, the vibrating body 46 starts vibrating in response to the downward movement of the movable portion 4, that is, the depression of the operating lever 51. As shown in FIG.
 発電素子110は、振動体46に支持されている。発電素子110は、振動体46の振動エネルギを電気エネルギに変換し、電流として出力する。発電素子110から出力される電流は、交流電流である。発電素子110は、2つの圧電体111を含む。各圧電体111には、圧電体111の上面及び下面にそれぞれ配置されて、圧電体111を上下方向に挟む第1電極及び第2電極が設けられている。第1電極は、圧電体111において振動体46と対向する面に配置されている。第2電極は、圧電体111において振動体46と対向する面と反対側の面に配置されている。各圧電体111において、第1電極は振動体46と接している。2つの圧電体111の第1電極同士は、例えば配線を介して電気的に接続されている。2つの圧電体111は、振動体46の振動に応じて変形し、圧電効果により電圧を発生する。要するに、発電素子110は、振動体46の振動に応じて発電素子110に加えられた力を電圧に変換する2つの圧電体111を含む。振動体46は可動部4が第1位置から下向きに移動することによって振動を開始するので、発電素子110は、可動部4が第1位置から下向きに移動するタイミングで発電を開始し、振動体46の振動が継続する間、発電を継続する。 The power generation element 110 is supported by the vibrating body 46 . The power generation element 110 converts the vibrational energy of the vibrating body 46 into electrical energy and outputs it as a current. The current output from the power generation element 110 is alternating current. The power generation element 110 includes two piezoelectric bodies 111 . Each piezoelectric body 111 is provided with a first electrode and a second electrode that are arranged on the upper surface and the lower surface of the piezoelectric body 111, respectively, and sandwich the piezoelectric body 111 in the vertical direction. The first electrode is arranged on the surface of the piezoelectric body 111 facing the vibrating body 46 . The second electrode is arranged on the surface of the piezoelectric body 111 opposite to the surface facing the vibrating body 46 . The first electrode of each piezoelectric body 111 is in contact with the vibrating body 46 . The first electrodes of the two piezoelectric bodies 111 are electrically connected, for example, via wiring. The two piezoelectric bodies 111 deform according to the vibration of the vibrating body 46 and generate voltage by the piezoelectric effect. In short, the power generating element 110 includes two piezoelectric bodies 111 that convert the force applied to the power generating element 110 into voltage in response to the vibration of the vibrating body 46 . Since the vibrating body 46 starts vibrating when the movable part 4 moves downward from the first position, the power generation element 110 starts generating power at the timing when the movable part 4 moves downward from the first position. Power generation continues while the vibration of 46 continues.
 他方の第1発電部11Bは、上記の第1発電部11Aと同様に、振動体47と、発電素子112と、を備える。 The other first power generation section 11B includes a vibrating body 47 and a power generation element 112 in the same manner as the first power generation section 11A.
 振動体47は、例えばステンレス鋼等の磁性材料から、左右方向に長い矩形板状に形成されている。振動体47は、第1端471(左端)が支持体45に支持されている。振動体47は、第1端471を固定端、第2端472(右端)を自由端として、上下方向に振動可能である。振動体47の第2端472の下面には、錘473が設けられている。また、振動体47の第2端472の上面は、可動部4の下面と対向する。 The vibrating body 47 is made of a magnetic material such as stainless steel, and is shaped like a rectangular plate elongated in the left-right direction. A first end 471 (left end) of the vibrating body 47 is supported by the supporting body 45 . The vibrating body 47 can vibrate vertically with the first end 471 as a fixed end and the second end 472 (right end) as a free end. A weight 473 is provided on the lower surface of the second end 472 of the vibrating body 47 . Also, the upper surface of the second end 472 of the vibrating body 47 faces the lower surface of the movable portion 4 .
 可動部4が第2位置にあるとき(図4参照)、振動体47の第2端472は、磁力により可動部4に吸着されて(ここでは接触して)いる。可動部4が第2位置から上向きに移動すると、第2端472が可動部4に引かれることで、振動体47は上向きに湾曲する。筐体53に設けられた第2ストッパ55に振動体47の上面が接触すると、振動体47のそれ以上の湾曲が規制され、可動部4が振動体47から離れる。振動体47は、可動部4から解放されると、湾曲に応じて振動する。つまり、振動体47は、可動部4の上向きの移動、すなわち操作レバー51のリリースに応じて、振動を開始する。 When the movable part 4 is at the second position (see FIG. 4), the second end 472 of the vibrating body 47 is attracted to (here, in contact with) the movable part 4 by magnetic force. When the movable portion 4 moves upward from the second position, the second end 472 is pulled by the movable portion 4, thereby bending the vibrating body 47 upward. When the upper surface of the vibrating body 47 comes into contact with the second stopper 55 provided in the housing 53 , further bending of the vibrating body 47 is restricted, and the movable part 4 separates from the vibrating body 47 . When the vibrating body 47 is released from the movable part 4, it vibrates according to the bending. In other words, the vibrating body 47 starts vibrating in response to the upward movement of the movable portion 4 , that is, the release of the operating lever 51 .
 発電素子112は、振動体47に支持されている。発電素子112は、振動体47の振動エネルギを電気エネルギに変換し、電流として出力する。発電素子112から出力される電流は交流電流である。発電素子110と同様に、発電素子112は、振動体47の振動に応じて加えられた力を電圧に変換する2つの圧電体113を含む。振動体47は可動部4が第2位置から上向きに移動することによって振動を開始するので、発電素子112は、可動部4が第2位置から上向きに移動するタイミングで発電を開始し、振動体47の振動が継続する間、発電を継続する。 The power generation element 112 is supported by the vibrating body 47 . The power generation element 112 converts the vibrational energy of the vibrating body 47 into electrical energy and outputs it as a current. The current output from the power generation element 112 is alternating current. Similar to power generating element 110 , power generating element 112 includes two piezoelectric bodies 113 that convert the applied force into voltage in response to vibration of vibrating body 47 . Since the vibrating body 47 starts vibrating when the movable part 4 moves upward from the second position, the power generation element 112 starts generating power at the timing when the movable part 4 moves upward from the second position. Power generation continues while the vibration of 47 continues.
 次に、第2発電部12について説明する。 Next, the second power generation section 12 will be described.
 第2発電部12は、コア48と、コイル120と、を備えている。コア48は、第1端481(左端)が支持体45に支持されている。本実施形態では、2つの振動体46,47の中間にコア48が位置するように、コア48が支持体45に設けられている。可動部4が第1位置(図3参照)にある場合、コア48の第2端482(右端)が可動部4の第2磁性体43と対向(接触)しており、可動部4の永久磁石41の左面の上側部分(N極面)から第1磁性体42、振動体46、支持体45、コア48、及び第2磁性体43を通り、永久磁石41の左面の下側部分(S極面)に戻る磁路(第1磁路)が形成される。可動部4が第2位置(図4参照)にある場合、コア48の第2端482(右端)が可動部4の第1磁性体42と対向(接触)しており、可動部4の永久磁石41の左面の上側部分(N極面)から第1磁性体42、コア48、支持体45、振動体47、及び第2磁性体43を通り、永久磁石41の左面の下側部分(S極面)に戻る磁路(第2磁路)が形成される。コア48を通る磁束の向きは、可動部4が第1位置にある場合は右向きであり、可動部4が第2位置がある場合は左向きである。要するに、コア48を通る磁束の向きは、可動部4が第1位置にある場合と第2位置にある場合とで、互いに反対向きである。したがって、コア48は、可動部4が第1位置から下向きに移動する場合、及び、可動部4が第2位置から上向きに移動する場合の各々に応じて、その内部を通過する磁束が変化する。 The second power generation section 12 has a core 48 and a coil 120 . The core 48 has a first end 481 (left end) supported by the support 45 . In this embodiment, the core 48 is provided on the support 45 so that the core 48 is positioned between the two vibrating bodies 46 and 47 . When the movable portion 4 is at the first position (see FIG. 3), the second end 482 (right end) of the core 48 is in contact with the second magnetic body 43 of the movable portion 4, and the movable portion 4 is permanently fixed. From the upper part (N pole surface) of the left surface of the magnet 41 through the first magnetic body 42, the vibrating body 46, the support body 45, the core 48, and the second magnetic body 43, the lower part (S A magnetic path (first magnetic path) returning to the pole surface) is formed. When the movable portion 4 is in the second position (see FIG. 4), the second end 482 (right end) of the core 48 faces (contacts) the first magnetic body 42 of the movable portion 4, and the movable portion 4 is permanently fixed. From the upper part (N pole surface) of the left surface of the magnet 41 to the lower part (S A magnetic path (second magnetic path) returning to the pole surface) is formed. The direction of the magnetic flux passing through the core 48 is rightward when the movable part 4 is in the first position, and leftward when the movable part 4 is in the second position. In short, the direction of the magnetic flux passing through the core 48 is opposite to each other when the movable portion 4 is at the first position and when it is at the second position. Therefore, the magnetic flux passing through the core 48 changes depending on whether the movable portion 4 moves downward from the first position and when the movable portion 4 moves upward from the second position. .
 コイル120は、コア48に巻回されており、コア48を通過する磁束の変化に応じた電流を発生する。 The coil 120 is wound around the core 48 and generates current according to changes in magnetic flux passing through the core 48 .
 以下に、本実施形態の発電部10(第1発電部11及び第2発電部12)による発電について、説明する。 Power generation by the power generation unit 10 (the first power generation unit 11 and the second power generation unit 12) of this embodiment will be described below.
 操作レバー51が操作されていない状態では、可動部4は、復帰ばね52の弾性力により第1位置(上限位置)に位置している(図3参照)。 When the operating lever 51 is not operated, the movable portion 4 is positioned at the first position (upper limit position) by the elastic force of the return spring 52 (see FIG. 3).
 操作レバー51が外力(例えばユーザが操作レバー51を押す力)により下方へ押されると、操作レバー51に押されることで、可動部4も下方へ移動する。可動部4が下方へ移動すると、可動部4に引かれて、振動体46の第2端462側が下方へ湾曲する。可動部4がさらに下方へ移動すると、振動体46の第2端462の下面が第1ストッパ54に接触することで振動体46のそれ以上の湾曲が規制され、振動体46が可動部4から離れる。これにより、振動体46は振動を開始する。振動体46の振動に応じて圧電体111が変形を繰り返すことで、第1発電部11Aは交流の電圧を発生する。 When the operating lever 51 is pushed downward by an external force (for example, a user's force pushing the operating lever 51), the movable portion 4 is also moved downward by being pushed by the operating lever 51. When the movable portion 4 moves downward, the second end 462 side of the vibrating body 46 is bent downward by being pulled by the movable portion 4 . When the movable portion 4 moves further downward, the lower surface of the second end 462 of the vibrating body 46 contacts the first stopper 54 , thereby restricting further bending of the vibrating body 46 . Leave. This causes the vibrating body 46 to start vibrating. The piezoelectric body 111 is repeatedly deformed according to the vibration of the vibrating body 46, so that the first power generating section 11A generates an alternating voltage.
 また、可動部4が下方へ移動することによって振動体46が可動部4から離れると、第1磁路の磁気抵抗が増加する。また、振動体46が可動部4から離れた後は、可動部4が下方へ移動するにつれて、第1磁路の磁気抵抗が増加する。そして、可動部4の下方への移動によって、コア48と第2磁性体43との間の距離よりもコア48と第1磁性体42との間の距離の方が小さくなると、第1磁路の磁気抵抗よりも第2磁路の磁気抵抗の方が小さくなって、コア48の内部を通る磁束の向きが右向きから左向きへと反転する。磁束の向きが反転した後は、可動部4が下方へ移動するにつれて、第2磁路の磁気抵抗は減少しコア48の内部を通る磁束の大きさは増加する。コイル120は、電磁誘導によって、コア48の内部を通る磁束の変化に応じた電流を発生する。 Further, when the vibrating body 46 moves away from the movable part 4 due to the downward movement of the movable part 4, the magnetic resistance of the first magnetic path increases. After the vibrating body 46 is separated from the movable part 4, the magnetic resistance of the first magnetic path increases as the movable part 4 moves downward. When the distance between the core 48 and the first magnetic body 42 becomes smaller than the distance between the core 48 and the second magnetic body 43 due to the downward movement of the movable part 4, the first magnetic path The magnetic resistance of the second magnetic path becomes smaller than the magnetic resistance of the second magnetic path, and the direction of the magnetic flux passing through the inside of the core 48 is reversed from rightward to leftward. After the direction of the magnetic flux is reversed, as the movable part 4 moves downward, the magnetic resistance of the second magnetic path decreases and the magnitude of the magnetic flux passing through the core 48 increases. The coil 120 generates current according to changes in the magnetic flux passing through the core 48 by electromagnetic induction.
 上述のように、可動部4が第1位置から下向きに移動することによって圧電体111が歪み始めると、第1発電部11Aが発電を開始する。また、可動部4の下向きへの移動に応じて可動部4の第2磁性体43がコア48から離れ、コア48の内部を通る磁束の大きさが変化すると、第2発電部12が発電を開始する。本実施形態では、可動部4が第1位置から下向きに所定距離移動すると、第2磁性体43がコア48から離れるように構成されているので、第1発電部11Aが発電を開始した後に、第2発電部12が発電を開始する。なお、振動体46は、可動部4が第2位置へ到達した後(コア48の内部を通る磁束の変化が終了した後)も、振動を継続する。そのため、第2発電部12が環境発電を行う発電期間よりも、第1発電部11Aが環境発電を行う発電期間の方が、長くなる。言い換えると、第1発電部11Aの発電期間に比べて、第2発電部12の発電期間は短くなる。 As described above, when the piezoelectric body 111 begins to distort due to the downward movement of the movable portion 4 from the first position, the first power generating portion 11A starts generating power. In addition, when the second magnetic body 43 of the movable portion 4 moves away from the core 48 in accordance with the downward movement of the movable portion 4 and the magnitude of the magnetic flux passing through the core 48 changes, the second power generation portion 12 generates power. Start. In this embodiment, the second magnetic body 43 is separated from the core 48 when the movable portion 4 moves downward from the first position by a predetermined distance. The second power generation unit 12 starts generating power. Note that the vibrating body 46 continues vibrating even after the movable portion 4 reaches the second position (after the change in the magnetic flux passing through the core 48 ends). Therefore, the power generation period during which the first power generation unit 11A performs energy harvesting is longer than the power generation period during which the second power generation unit 12 performs energy harvesting. In other words, the power generation period of the second power generation section 12 is shorter than the power generation period of the first power generation section 11A.
 一方、操作レバー51が押し込まれることによって可動部4が第2位置(下限位置)に移動した状態(図4参照)で、操作レバー51への外力が無くなると、復帰ばね52の弾性力により、可動部4は上方へ移動する。可動部4が上方へ移動すると、可動部4に引かれて、振動体47の第2端472側が上方へ湾曲する。可動部4がさらに上方へ移動すると、振動体47の第2端472の上面が第2ストッパ55に接触することで振動体47のそれ以上の湾曲が規制され、振動体47が可動部4から離れる。これにより、振動体47は振動を開始する。振動体47の振動に応じて圧電体113が変形を繰り返すことで、第1発電部11Bが交流の電圧を発生する。 On the other hand, when the operating lever 51 is pushed and the movable portion 4 is moved to the second position (lower limit position) (see FIG. 4), when the external force to the operating lever 51 is removed, the elastic force of the return spring 52 causes The movable part 4 moves upward. When the movable portion 4 moves upward, the second end 472 side of the vibrating body 47 is bent upward by being pulled by the movable portion 4 . When the movable portion 4 moves further upward, the upper surface of the second end 472 of the vibrating body 47 contacts the second stopper 55 , thereby restricting further bending of the vibrating body 47 . Leave. Thereby, the vibrating body 47 starts vibrating. The piezoelectric body 113 repeatedly deforms according to the vibration of the vibrating body 47, so that the first power generating section 11B generates an alternating voltage.
 また、可動部4が上方へ移動することによって振動体47が可動部4から離れると、第2磁路の磁気抵抗が増加する。また、振動体47が可動部4から離れた後は、可動部4が上方へ移動するにつれて、第2磁路の磁気抵抗は増加する。そして、可動部4の上方への移動によって、コア48と第1磁性体42との間の距離よりもコア48と第2磁性体43との間の距離の方が小さくなると、第2磁路の磁気抵抗よりも第1磁路の磁気抵抗の方が小さくなって、コア48の内部を通る磁束の向きが左向きから右向きへと反転する。磁束の向きが反転した後は、可動部4が上方へ移動するにつれて、第1磁路の磁気抵抗は減少しコア48の内部を通る磁束の大きさは増加する。コイル120は、電磁誘導によって、コア48の内部を通る磁束の変化に応じた電流を発生させる。ここで、可動部4が上方へ移動する間にコイル120内を電流が流れる向きは、可動部4が下方へ移動する間にコイル120内を電流が流れる向きとは反対である。 Further, when the vibrating body 47 moves away from the movable part 4 due to the upward movement of the movable part 4, the magnetic resistance of the second magnetic path increases. After the vibrating body 47 is separated from the movable portion 4, the magnetic resistance of the second magnetic path increases as the movable portion 4 moves upward. When the distance between the core 48 and the second magnetic body 43 becomes smaller than the distance between the core 48 and the first magnetic body 42 due to the upward movement of the movable part 4, the second magnetic path The magnetic resistance of the first magnetic path becomes smaller than the magnetic resistance of , and the direction of the magnetic flux passing through the inside of the core 48 is reversed from leftward to rightward. After the direction of the magnetic flux is reversed, as the movable part 4 moves upward, the magnetic resistance of the first magnetic path decreases and the magnitude of the magnetic flux passing through the core 48 increases. The coil 120 uses electromagnetic induction to generate current according to changes in the magnetic flux passing through the core 48 . Here, the direction in which the current flows in the coil 120 while the movable portion 4 moves upward is opposite to the direction in which the current flows in the coil 120 while the movable portion 4 moves downward.
 上述のように、可動部4が第2位置から上向きに移動することによって圧電体113が歪み始めると、第1発電部11Bが発電を開始する。また、可動部4の上向きへの移動に応じて可動部4の第1磁性体42がコア48から離れ、コア48の内部を通る磁束の大きさが変化すると、第2発電部12が発電を開始する。本実施形態では、可動部4が第2位置から上向きに所定距離移動すると、第1磁性体42がコア48から離れるように構成されているので、第1発電部11Bが発電を開始した後に、第2発電部12が発電を開始する。なお、振動体47は、可動部4が第1位置へ到達した後(コア48の内部を通る磁束の変化が終了した後)も、振動を継続する。そのため、第2発電部12が環境発電を行う発電期間よりも、第1発電部11Bが環境発電を行う発電期間の方が、長くなる。 As described above, when the movable portion 4 moves upward from the second position and the piezoelectric body 113 begins to distort, the first power generating portion 11B starts generating power. In addition, when the first magnetic body 42 of the movable part 4 moves away from the core 48 according to the upward movement of the movable part 4 and the magnitude of the magnetic flux passing through the core 48 changes, the second power generation part 12 generates power. Start. In this embodiment, the first magnetic body 42 is separated from the core 48 when the movable portion 4 moves upward from the second position by a predetermined distance. The second power generation unit 12 starts generating power. Note that the vibrating body 47 continues vibrating even after the movable portion 4 reaches the first position (after the change in the magnetic flux passing through the core 48 ends). Therefore, the power generation period during which the first power generation unit 11B performs energy harvesting is longer than the power generation period during which the second power generation unit 12 performs energy harvesting.
 上述のように、本実施形態の発電システム100は、可動部4の移動に応じて環境発電を行う発電部10として、互いに種類が異なる第1発電部11と第2発電部12とを備えている。コイル120を用いて電磁誘導により発電する第2発電部12は、可動部4の往路動作及び復路動作のそれぞれで発電を行う。一方、第1発電部11は、可動部4の往路動作で発電を行う第1発電部11Aと、可動部4の復路動作で発電を行う第1発電部11Bと、で構成されている。 As described above, the power generation system 100 of the present embodiment includes the first power generation section 11 and the second power generation section 12 of different types as the power generation section 10 that performs energy generation according to the movement of the movable section 4. there is The second power generation section 12 that generates power by electromagnetic induction using the coil 120 generates power in each of the outward movement and the homeward movement of the movable section 4 . On the other hand, the first power generation section 11 includes a first power generation section 11A that generates power when the movable section 4 moves forward and a first power generation section 11B that generates power when the movable section 4 moves back.
 (2.2.2)電源回路
 次に、電源回路1について、図1~図5を参照して説明する。
(2.2.2) Power Supply Circuit Next, the power supply circuit 1 will be described with reference to FIGS. 1 to 5. FIG.
 本実施形態の電源回路1は、上述したように、第1発電部11が発電する電力を充電する第1蓄電部21と、第2発電部12が発電する電力を充電する第2蓄電部22と、電圧変換部3と、第1半導体スイッチ7と、を備えている。なお、本実施形態の発電システム100は、同一種類の第1発電部11を2つ(第1発電部11A,11B)備えており、2つの第1発電部11A,11Bが発電する電力を第1蓄電部21が蓄える。 As described above, the power supply circuit 1 of the present embodiment includes the first power storage unit 21 that charges the power generated by the first power generation unit 11 and the second power storage unit 22 that charges the power generated by the second power generation unit 12. , a voltage converter 3 , and a first semiconductor switch 7 . Note that the power generation system 100 of the present embodiment includes two of the same type of first power generation units 11 (first power generation units 11A and 11B), and the power generated by the two first power generation units 11A and 11B is 1 storage unit 21 stores.
 本実施形態の電源回路1は、第1蓄電部21、第2蓄電部22、電圧変換部3、及び第1半導体スイッチ7に加えて、第1整流回路81と、第2整流回路82と、を備えている。 In addition to the first power storage unit 21, the second power storage unit 22, the voltage conversion unit 3, and the first semiconductor switch 7, the power supply circuit 1 of the present embodiment includes a first rectifier circuit 81, a second rectifier circuit 82, It has
 第1整流回路81の入力端子には、第1発電部11が備える発電素子110,112の両端が接続されている。すなわち、第1整流回路81の一対の入力端子には、発電素子110が有する2つの圧電体111の第2電極がそれぞれ接続されている。同様に、第1整流回路81の一対の入力端子には、発電素子112が有する2つの圧電体111の第2電極がそれぞれ接続されている。これにより、第1整流回路81には、第1発電部11が発生した交流電流が入力される。第1整流回路81は例えばダイオードのブリッジ回路からなり、第1発電部11(第1発電部11A,11B)から入力される交流電流を全波整流して第1蓄電部21に出力する。 The input terminals of the first rectifier circuit 81 are connected to both ends of the power generation elements 110 and 112 provided in the first power generation section 11 . That is, the pair of input terminals of the first rectifier circuit 81 are connected to the second electrodes of the two piezoelectric bodies 111 of the power generation element 110, respectively. Similarly, the pair of input terminals of the first rectifier circuit 81 are connected to the second electrodes of the two piezoelectric bodies 111 of the power generation element 112 . As a result, the alternating current generated by the first power generation section 11 is input to the first rectifier circuit 81 . The first rectifier circuit 81 is composed of, for example, a diode bridge circuit, and full-wave rectifies the alternating current input from the first power generation unit 11 (first power generation units 11A and 11B) and outputs the rectified current to the first power storage unit 21 .
 第1蓄電部21は、例えば電解コンデンサのようなコンデンサである。第1蓄電部21の容量値は、第1発電部11の単位時間あたりの発電量を全て充電可能な容量値に比べて小さい容量値に設定されている。つまり、第1蓄電部21の容量値は、第1発電部11の単位時間あたり、換言すると可動部4の1回の往路動作又は復路動作での発電量に比べて小さい容量値に設定されている。したがって、第1発電部11が発生する電流が小さい場合でも、第1蓄電部21に大きな電圧を発生させることができ、第1発電部11の出力を取り出しやすくなる。 The first power storage unit 21 is, for example, a capacitor such as an electrolytic capacitor. The capacity value of the first power storage unit 21 is set to a value smaller than the capacity value with which the first power generation unit 11 can be fully charged with the amount of power generated per unit time. That is, the capacity value of the first power storage unit 21 is set to a value smaller than the amount of power generated per unit time of the first power generation unit 11, in other words, in one outward movement or one return movement of the movable part 4. there is Therefore, even when the current generated by the first power generation unit 11 is small, a large voltage can be generated in the first power storage unit 21 and the output of the first power generation unit 11 can be easily extracted.
 第2整流回路82の一対の入力端子には、第2発電部12が備えるコイル120の両端がそれぞれ接続されており、第2発電部12が発生した交流電流が第2整流回路82に入力される。第2整流回路82は例えばダイオードのブリッジ回路からなり、第2発電部12から入力される交流電流を全波整流して第2蓄電部22に出力する。 A pair of input terminals of the second rectifier circuit 82 are connected to both ends of the coil 120 included in the second power generation section 12 , and the alternating current generated by the second power generation section 12 is input to the second rectifier circuit 82 . be. The second rectifier circuit 82 is composed of, for example, a diode bridge circuit, and full-wave rectifies the alternating current input from the second power generation unit 12 and outputs the rectified current to the second power storage unit 22 .
 第2蓄電部22は、例えば電解コンデンサのようなコンデンサである。第2蓄電部22の容量値は、第2発電部12の単位時間あたりの出力(発電量)を全て充電可能な容量値に設定されている。つまり、第2蓄電部22の容量値は、可動部4の1回の往路動作又は復路動作での第2発電部12の発電量を全て充電可能な容量値に設定されている。 The second power storage unit 22 is, for example, a capacitor such as an electrolytic capacitor. The capacity value of the second power storage unit 22 is set to a capacity value that can fully charge the output (power generation amount) of the second power generation unit 12 per unit time. That is, the capacity value of the second power storage section 22 is set to a capacity value that can charge the entire power generation amount of the second power generation section 12 in one forward movement or one return movement of the movable section 4 .
 なお、上記の単位時間は、第2発電部12に比べて発電期間が長い第1発電部11が、可動部4の往路動作又は復路動作に応じて環境発電を行う時間である。したがって、第1発電部11及び第2発電部12の単位時間あたりの発電量は、可動部4が往路動作又は復路動作を1回行う間に第1発電部11及び第2発電部12が発電する発電量ともいえる。 The above unit time is the time during which the first power generation section 11, which has a longer power generation period than the second power generation section 12, performs environmental power generation according to the forward movement or return movement of the movable section 4. Therefore, the power generation amount of the first power generation unit 11 and the second power generation unit 12 per unit time is It can also be said that the amount of power generated by
 第2蓄電部22と電圧変換部3との間には、第1半導体スイッチ7が設けられている。第1半導体スイッチ7は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)のような半導体スイッチを含む。なお、第1半導体スイッチ7は、MOSFETのような半導体スイッチの集積回路を含んでもよい。第1半導体スイッチ7がオンになると、第2蓄電部22が電圧変換部3に電気的に接続され、第2蓄電部22の充電電圧が電圧変換部3に供給される。また、第1半導体スイッチ7がオフになると、第2蓄電部22と電圧変換部3との間が電気的に遮断される。 A first semiconductor switch 7 is provided between the second power storage unit 22 and the voltage conversion unit 3 . The first semiconductor switch 7 includes a semiconductor switch such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Note that the first semiconductor switch 7 may include an integrated circuit of a semiconductor switch such as a MOSFET. When the first semiconductor switch 7 is turned on, the second power storage unit 22 is electrically connected to the voltage conversion unit 3 and the charging voltage of the second power storage unit 22 is supplied to the voltage conversion unit 3 . Moreover, when the first semiconductor switch 7 is turned off, the electrical connection between the second power storage unit 22 and the voltage conversion unit 3 is cut off.
 電圧変換部3は、例えば、降圧チョッパ、昇圧チョッパ、又は昇降圧チョッパ等のDC/DCコンバータを備えている。電圧変換部3は、第1蓄電部21又は第2蓄電部22から入力される入力電圧を適宜の電圧値の直流電圧に変換して負荷L1に出力する。 The voltage conversion unit 3 includes a DC/DC converter such as a step-down chopper, a step-up chopper, or a step-up/step-down chopper. Voltage conversion unit 3 converts the input voltage input from first power storage unit 21 or second power storage unit 22 into a DC voltage having an appropriate voltage value, and outputs the DC voltage to load L1.
 ここで、コイル120を用いた電磁誘導により発電する第2発電部12の発電期間は可動部4が移動する期間であるのに対して、圧電体111,113を用いて発電する第1発電部11の発電期間は可動部4の移動に応じて振動する振動体46,47の振動が継続する期間となる。また、第2発電部12の単位時間あたりの発電量は、第1発電部11の単位時間あたりの発電量に比べて大きくなる。また、本実施形態では第1発電部11が発電を開始した後に、第2発電部12が発電を開始している。 Here, the power generation period of the second power generation section 12 that generates power by electromagnetic induction using the coil 120 is the period during which the movable section 4 moves, whereas the first power generation section that generates power using the piezoelectric bodies 111 and 113 The power generation period 11 is a period during which the vibrating bodies 46 and 47 that vibrate according to the movement of the movable portion 4 continue to vibrate. In addition, the amount of power generated per unit time by the second power generation section 12 is greater than the amount of power generated per unit time by the first power generation section 11 . Further, in the present embodiment, the second power generation section 12 starts power generation after the first power generation section 11 starts power generation.
 つまり、本実施形態では、第1発電部11の発電期間は第2発電部12の発電期間に比べて長いが、第1発電部11の単位時間あたりの発電量は第2発電部12の単位時間あたりの発電量に比べて小さくなっている。第1蓄電部21及び第2蓄電部22の容量値は、対応する第1発電部11及び第2発電部12の出力に応じた容量値に設定されており、第1蓄電部21の容量値は第2蓄電部22の容量値に比べて小さい値に設定されている。 That is, in the present embodiment, the power generation period of the first power generation section 11 is longer than the power generation period of the second power generation section 12, but the power generation amount per unit time of the first power generation section 11 is the unit of the second power generation section 12. It is smaller than the amount of power generated per hour. The capacity values of the first power storage unit 21 and the second power storage unit 22 are set according to the outputs of the corresponding first power generation unit 11 and the second power generation unit 12, and the capacity value of the first power storage unit 21 is set to a value smaller than the capacitance value of second power storage unit 22 .
 具体的には、第1蓄電部21の容量値は、第1発電部11の出力を効率良く取り出せるように、第1発電部11の発電電力を全て充電可能な容量値に比べて小さい容量値に設定されている。これにより、第1発電部11の出力が第2発電部12の出力より低い場合でも、第1蓄電部21は第1発電部11の出力によって満充電状態となり、第1蓄電部21の両端間に十分大きな電圧が発生するから、第1発電部11の出力を取り出しやすくなる。 Specifically, the capacity value of the first power storage unit 21 is set to be smaller than the capacity value that can charge all the power generated by the first power generation unit 11 so that the output of the first power generation unit 11 can be efficiently extracted. is set to As a result, even when the output of the first power generation unit 11 is lower than the output of the second power generation unit 12 , the first power storage unit 21 is fully charged by the output of the first power generation unit 11 . Since a sufficiently large voltage is generated at , it becomes easy to take out the output of the first power generation section 11 .
 第2蓄電部22の容量値は、第2発電部12の単位時間あたりの発電量を全て充電可能な容量値に設定されており、第1蓄電部21の容量値に比べて大きな値に設定されている。これにより、第2発電部12の単位時間あたりの発電量が第1発電部11の単位時間あたりの発電量に比べて大きい場合でも、第2蓄電部22に第2発電部12の単位時間あたりの発電量を全て充電することができる。そして、第2蓄電部22は第1半導体スイッチ7を介して電圧変換部3に接続されており、第1半導体スイッチ7は、第1蓄電部21が充電された後に、第2蓄電部22と電圧変換部3とを導通する。これにより、例えば第1発電部11の発電電力が低下してきたタイミングで第1半導体スイッチ7が導通することで、第1蓄電部21及び第2蓄電部22を電源として電圧変換部3が電圧変換動作を行うことができる。 The capacity value of the second power storage unit 22 is set to a value that can charge the entire power generation amount per unit time of the second power generation unit 12, and is set to a larger value than the capacity value of the first power storage unit 21. It is As a result, even when the amount of power generated by the second power generation unit 12 per unit time is greater than the amount of power generated by the first power generation unit 11 per unit time, the second power storage unit 22 can store power generated by the second power generation unit 12 per unit time. can be fully charged. Second power storage unit 22 is connected to voltage conversion unit 3 via first semiconductor switch 7, and first semiconductor switch 7 is connected to second power storage unit 22 after first power storage unit 21 is charged. It conducts with the voltage converter 3 . As a result, for example, when the power generated by the first power generation unit 11 decreases, the first semiconductor switch 7 is turned on, so that the voltage conversion unit 3 performs voltage conversion using the first power storage unit 21 and the second power storage unit 22 as power sources. Action can be performed.
 ところで、図5は、第1半導体スイッチ7と、第1半導体スイッチ7を駆動する回路の具体例を示した概略的な回路図である。 By the way, FIG. 5 is a schematic circuit diagram showing a specific example of the first semiconductor switch 7 and a circuit for driving the first semiconductor switch 7. As shown in FIG.
 第1半導体スイッチ7は、ソース同士、及び、ゲート同士がそれぞれ接続された2個のMOSFETQ1,Q2の直列回路で構成されている。MOSFETQ1のドレインは第2蓄電部22の高圧側の端子に接続されている。MOSFETQ2のドレインは、電圧変換部3の入力端子と、第1蓄電部21の低圧側の端子とに接続されている。そして、MOSFETQ1,Q2の制御端子(ゲート)は制御回路91に接続されている。なお、2個のMOSFETQ1,Q2は集積回路として実現されていてもよい。つまり、第1半導体スイッチ7は、MOSFETのような半導体スイッチの集積回路を含んでもよい。 The first semiconductor switch 7 is composed of a series circuit of two MOSFETs Q1 and Q2 whose sources are connected to each other and whose gates are connected to each other. The drain of the MOSFET Q1 is connected to the high voltage side terminal of the second power storage unit 22 . The drain of the MOSFET Q2 is connected to the input terminal of the voltage conversion section 3 and the low-voltage side terminal of the first storage section 21 . Control terminals (gates) of the MOSFETs Q1 and Q2 are connected to the control circuit 91 . Note that the two MOSFETs Q1 and Q2 may be implemented as an integrated circuit. That is, the first semiconductor switch 7 may include an integrated circuit of semiconductor switches such as MOSFETs.
 制御回路91は、第1蓄電部21から動作電圧を得て、動作を開始する。制御回路91は、例えば、第1蓄電部21の充電電圧V1と第2蓄電部22の充電電圧V2との高低を比較した結果に基づいて、MOSFETQ1,Q2のオン/オフを制御する。なお、制御回路91は、第2蓄電部22から動作電圧を得てもよく、第1蓄電部21及び第2蓄電部22の両方から動作電圧を得てもよい。換言すれば、制御回路91は、第1発電部11と第2発電部12との少なくとも一つから電圧が供給されて動作し、第1半導体スイッチ7のオン/オフを制御する。 The control circuit 91 obtains the operating voltage from the first power storage unit 21 and starts operating. The control circuit 91 controls ON/OFF of the MOSFETs Q1 and Q2, for example, based on the result of comparison between the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 . Note that the control circuit 91 may obtain the operating voltage from the second power storage unit 22 or may obtain the operating voltage from both the first power storage unit 21 and the second power storage unit 22 . In other words, the control circuit 91 is supplied with voltage from at least one of the first power generation section 11 and the second power generation section 12 to operate, and controls the on/off of the first semiconductor switch 7 .
 制御回路91は、例えば、第1発電部11が発電している発電期間では第1半導体スイッチ7をオフにしており、第1発電部11の出力で第1蓄電部21が充電されている間は第1半導体スイッチ7をオフにしている。言い換えると、制御回路91は、第1発電部11の発電が終わった後であって、第1発電部11の出力によって第1蓄電部21の充電が完了した後に、第1半導体スイッチ7をオンにして、第2蓄電部22と電圧変換部3とを導通する。これにより、第2発電部12の出力によって第1蓄電部21が充電されるのを抑制できる。また、第1半導体スイッチ7がオフであれば、第2発電部12の出力が第1蓄電部21に入力されることがないので、第2発電部12の発電期間が第1発電部11の発電期間よりも後である必要はなく、第1発電部11と第2発電部12の発電の順番は適宜変更可能である。 For example, the control circuit 91 turns off the first semiconductor switch 7 during the power generation period when the first power generation unit 11 is generating power, and while the first power storage unit 21 is being charged with the output of the first power generation unit 11, turns off the first semiconductor switch 7 . In other words, the control circuit 91 turns on the first semiconductor switch 7 after the power generation of the first power generation unit 11 is finished and after the charging of the first power storage unit 21 by the output of the first power generation unit 11 is completed. , the second power storage unit 22 and the voltage conversion unit 3 are electrically connected. Accordingly, it is possible to suppress charging of the first power storage unit 21 by the output of the second power generation unit 12 . Further, when the first semiconductor switch 7 is off, the output of the second power generation unit 12 is not input to the first power storage unit 21, so the power generation period of the second power generation unit 12 is the same as that of the first power generation unit 11. The order of power generation by the first power generation unit 11 and the second power generation unit 12 can be changed as appropriate.
 さらに言えば、制御回路91は、第1蓄電部21の充電電圧が電圧変換部3の動作電圧以上であり、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2よりも低いときに、第1半導体スイッチ7をオンにして、第2蓄電部22と電圧変換部3とを導通させる。制御回路91は、例えば、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2以上である間はMOSFETQ1,Q2を共にオフにしており、電圧変換部3は、第1蓄電部21からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。また、制御回路91は、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2より低くなると、MOSFETQ1,Q2を共にオンにしており、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。 Further, the control circuit 91 ensures that the charging voltage of the first power storage unit 21 is equal to or higher than the operating voltage of the voltage conversion unit 3, and that the charging voltage V1 of the first power storage unit 21 is higher than the charging voltage V2 of the second power storage unit 22. When the voltage is low, the first semiconductor switch 7 is turned on to electrically connect the second power storage unit 22 and the voltage conversion unit 3 . For example, while the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22, the control circuit 91 turns off both the MOSFETs Q1 and Q2. The input voltage from the unit 21 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1. Further, when the charging voltage V1 of the first power storage unit 21 becomes lower than the charging voltage V2 of the second power storage unit 22, the control circuit 91 turns on both the MOSFETs Q1 and Q2, and the voltage conversion unit 3 turns on the first power storage unit 21 and the second power storage unit 22 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1.
 図6は、操作レバー51の押し込み時における、第1蓄電部21の充電電圧V1、及び、第2蓄電部22の充電電圧V2の電圧波形と、MOSFETQ1,Q2のオン/オフの状態を示すグラフの一例である。時点t1において操作レバー51が押されると、第1発電部11が発電を開始し、第1発電部11の発電電力で第1蓄電部21が充電され、第1蓄電部21の充電電圧V1が増加する。その後、時点t2において第2発電部12が発電を開始すると、第2発電部12の発電電力で第2蓄電部22が充電されて、第2蓄電部22の充電電圧V2が増加する。制御回路91は、例えば第1蓄電部21の充電電圧V1から動作電圧を得てMOSFETQ1,Q2のオン/オフを制御する。第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2以上である期間(時点t1から時点t3まで)は、制御回路91はMOSFETQ1,Q2をオフに制御しており、電圧変換部3は、第1蓄電部21からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。その後、時点t3において第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2よりも低くなると、制御回路91はMOSFETQ1,Q2をオンに制御しており、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。 FIG. 6 is a graph showing the voltage waveforms of the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 and the ON/OFF states of the MOSFETs Q1 and Q2 when the operation lever 51 is pushed. is an example. When the operation lever 51 is pushed at time t1, the first power generation unit 11 starts generating power, the power generated by the first power generation unit 11 charges the first power storage unit 21, and the charged voltage V1 of the first power storage unit 21 rises to To increase. After that, when second power generation unit 12 starts generating power at time t2, second power storage unit 22 is charged with power generated by second power generation unit 12, and charging voltage V2 of second power storage unit 22 increases. The control circuit 91 obtains an operating voltage from the charging voltage V1 of the first power storage unit 21, for example, and controls the on/off of the MOSFETs Q1 and Q2. During the period in which the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22 (from time t1 to time t3), the control circuit 91 controls the MOSFETs Q1 and Q2 to be off, and voltage conversion is performed. Unit 3 converts the input voltage from first power storage unit 21 into a DC voltage having a predetermined voltage value, and supplies the DC voltage to load L1. After that, when the charging voltage V1 of the first power storage unit 21 becomes lower than the charging voltage V2 of the second power storage unit 22 at time t3, the control circuit 91 turns on the MOSFETs Q1 and Q2, and the voltage conversion unit 3 The input voltage from the first power storage unit 21 and the second power storage unit 22 is converted into a DC voltage having a predetermined voltage value and supplied to the load L1.
 本実施形態では、第1蓄電部21の容量値が、第1発電部11の単位時間あたりの発電量に比べて小さい値に設定されているので、第1発電部11の単位時間あたりの発電量が第2発電部12に比べて小さい場合でも、第1蓄電部21の充電電圧を大きくでき、第1発電部11の出力を取り出しやすくなる。また、第2蓄電部22の容量値は第2発電部12の単位時間あたりの発電量の全てを充電可能な容量値であり、第1半導体スイッチ7(MOSFETQ1,Q2)は、第2発電部12の発電が終わった後にオンになる。これにより、第2発電部12の発電が終わった後に、第2蓄電部22に全量が蓄えられた第2発電部12の発電電力が電圧変換部3に供給されるので、第2発電部12の発電量を最適なタイミングで活用でき、第2発電部12からの発電電力の取り出し効率を高めることができる。 In the present embodiment, the capacity value of the first power storage unit 21 is set to a value smaller than the power generation amount of the first power generation unit 11 per unit time, so the power generation amount of the first power generation unit 11 per unit time is Even if the amount is smaller than that of the second power generation unit 12 , the charging voltage of the first power storage unit 21 can be increased, making it easier to take out the output of the first power generation unit 11 . Further, the capacity value of the second power storage unit 22 is a capacity value that can charge the entire amount of power generated per unit time of the second power generation unit 12, and the first semiconductor switch 7 (MOSFETs Q1, Q2) is the second power generation unit It turns on after 12 power generation is over. As a result, after the power generation of the second power generation unit 12 is finished, the power generated by the second power generation unit 12, which is completely stored in the second power storage unit 22, is supplied to the voltage conversion unit 3, so that the second power generation unit 12 can be utilized at the optimum timing, and the extraction efficiency of the generated power from the second power generation section 12 can be enhanced.
 また、本実施形態では、第1半導体スイッチ7は、第1蓄電部21の蓄電が完了した後に、第2蓄電部22と電圧変換部3とを導通しているので、第2発電部12の発電電力によって、第1蓄電部21が充電されるのを抑制できる。また,第1半導体スイッチ7が非導通であれば、第2発電部12の発電電力によって第1蓄電部21が充電されないので、第2発電部12の発電期間が第1発電部11の発電期間の後である必要はなく、第1発電部11及び第2発電部12が発電する順番は適宜変更が可能である。 Further, in the present embodiment, the first semiconductor switch 7 electrically connects the second power storage unit 22 and the voltage conversion unit 3 after the first power storage unit 21 completes charging. It is possible to suppress charging of the first power storage unit 21 by the generated power. Further, if the first semiconductor switch 7 is non-conducting, the first power storage unit 21 is not charged by the power generated by the second power generation unit 12, so the power generation period of the second power generation unit 12 is equal to the power generation period of the first power generation unit 11. , and the order in which the first power generation unit 11 and the second power generation unit 12 generate power can be changed as appropriate.
 (2.3)実施形態1の変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(2.3) Modification of Embodiment 1 The above embodiment is just one of various embodiments of the present disclosure. The above-described embodiment can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved.
 以下、上記の実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 Modifications of the first embodiment are listed below. Modifications described below can be applied in combination as appropriate.
 (2.3.1)変形例1
 図7は、変形例1の電源回路1を備えた発電システム100の概略的な回路図である。
(2.3.1) Modification 1
FIG. 7 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 1. As shown in FIG.
 変形例1の電源回路1は、制御回路91に代えて遅延回路92を備える点で上記実施形態と相違する。なお、遅延回路92以外の構成は上記の実施形態と共通するので、同一の構成要素には同一の符号を付してその説明を省略する。 The power supply circuit 1 of Modification 1 differs from the above embodiment in that it includes a delay circuit 92 instead of the control circuit 91 . Since the configuration other than the delay circuit 92 is the same as that of the above-described embodiment, the same components are denoted by the same reference numerals, and the description thereof will be omitted.
 遅延回路92は、第1蓄電部21と第2蓄電部22との少なくとも1つと電気的に接続されている。遅延回路92は、第1蓄電部21と第2蓄電部22との少なくとも1つの発電出力を遅延させて第1半導体スイッチ7の制御端子に出力することによって、第1半導体スイッチ7をオンにする時間(タイミング)を遅延させる。言い換えると、遅延回路92は、第1蓄電部21と第2蓄電部22との少なくとも1つが発電した時点から、所定の遅延時間が経過した時点で第1半導体スイッチ7をオンにする。 The delay circuit 92 is electrically connected to at least one of the first power storage unit 21 and the second power storage unit 22 . Delay circuit 92 delays the power output of at least one of first power storage unit 21 and second power storage unit 22 and outputs the power output to the control terminal of first semiconductor switch 7 to turn on first semiconductor switch 7 . Delay time (timing). In other words, the delay circuit 92 turns on the first semiconductor switch 7 when a predetermined delay time has passed since at least one of the first power storage unit 21 and the second power storage unit 22 generated power.
 本実施形態では、遅延回路92は、第2発電部12による環境発電に応じて発生する第2蓄電部22の充電電圧V2を遅延した電圧を、第1半導体スイッチ7の制御端子、すなわちMOSFETQ1,Q2の制御端子(ゲート)に出力する。 In the present embodiment, the delay circuit 92 delays the charging voltage V2 of the second power storage unit 22 generated in response to the energy harvesting by the second power generation unit 12 to the control terminals of the first semiconductor switch 7, that is, the MOSFETs Q1 and Q1. Output to the control terminal (gate) of Q2.
 これにより、第2発電部12が発電を開始してから遅延回路92による遅延時間が経過したタイミングでMOSFETQ1,Q2がオンになり、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を電圧変換して負荷L1に供給する。 As a result, the MOSFETs Q1 and Q2 are turned on at the timing when the delay time by the delay circuit 92 has elapsed after the second power generation unit 12 starts power generation, and the voltage conversion unit 3 operates the first power storage unit 21 and the second power storage unit 22 is converted into a voltage and supplied to the load L1.
 ここで、遅延回路92に入力電圧が入力されてから、入力電圧に応じた出力電圧を出力するまでの遅延時間は、第2発電部12が発電を開始してから第1発電部11の発電が終了するまでの経過時間と略同じ時間に設定されている。したがって、第1発電部11の発電が終了したタイミングで、第2蓄電部22の充電電圧が電圧変換部3に供給されることになる。また、遅延回路92の遅延時間は、第2発電部12の発電期間よりも長い時間に設定されているのが好ましく、第2発電部12の発電が終了した後に第1半導体スイッチ7をオンにすることができる。 Here, the delay time from when the input voltage is input to the delay circuit 92 to when the output voltage corresponding to the input voltage is output is is set to approximately the same time as the elapsed time until the end of Therefore, the charging voltage of the second power storage unit 22 is supplied to the voltage conversion unit 3 at the timing when the power generation of the first power generation unit 11 ends. Moreover, the delay time of the delay circuit 92 is preferably set to a time longer than the power generation period of the second power generation section 12, and the first semiconductor switch 7 is turned on after the power generation of the second power generation section 12 is completed. can do.
 このように、変形例1では遅延回路92により第1半導体スイッチ7をオン又はオフに切り替えるタイミングを設定しているので、制御回路91を用いて第1半導体スイッチ7をオン又はオフに切り替える場合に比べて、第1半導体スイッチ7の駆動回路の構成を簡単にすることができる。 As described above, in Modification 1, the delay circuit 92 sets the timing for switching the first semiconductor switch 7 on or off. In comparison, the configuration of the drive circuit for the first semiconductor switch 7 can be simplified.
 (2.3.2)変形例2
 図8は、変形例2の電源回路1を備えた発電システム100の概略的な回路図である。
(2.3.2) Modification 2
FIG. 8 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 2. As shown in FIG.
 変形例2の電源回路1は、第3発電部13と、第3蓄電部23と、第3整流回路83と、を備える点で上記実施形態と相違する。また、変形例2の電源回路1は、第1半導体スイッチ7Aに加えて、第2半導体スイッチ7Bを備える点で上記実施形態と相違する。 The power supply circuit 1 of Modification 2 differs from the above-described embodiment in that it includes a third power generation unit 13, a third power storage unit 23, and a third rectifier circuit 83. Further, the power supply circuit 1 of Modification 2 differs from the above embodiment in that it includes a second semiconductor switch 7B in addition to the first semiconductor switch 7A.
 第3発電部13は、コイルを用いて電磁誘導により発電を行う。つまり、第3発電部13は、第2発電部12の発電方式と共通するが、発電量が第2発電部12と異なる発電部である。 The third power generation section 13 uses a coil to generate power through electromagnetic induction. In other words, the third power generation unit 13 is a power generation unit that has a power generation method common to that of the second power generation unit 12 but differs from the second power generation unit 12 in the power generation amount.
 第3蓄電部23は、第2半導体スイッチ7Bに電気的に接続され、第2半導体スイッチ7Bを介して電圧変換部3に電気的に接続される。第3蓄電部23は、第3発電部13に対応して設けられ、第3発電部13が発電する電力を充電する。第3蓄電部23は、例えば電解コンデンサのようなコンデンサである。第3蓄電部23の容量値は、第3発電部13の単位時間あたりの発電出力(発電量)を全て充電可能な容量値に設定されている。つまり、第3蓄電部23の容量値は、可動部4の1回の往路動作又は復路動作での第3発電部13の発電量を全て充電可能な容量値に設定されている。 The third power storage unit 23 is electrically connected to the second semiconductor switch 7B, and electrically connected to the voltage conversion unit 3 via the second semiconductor switch 7B. The third power storage unit 23 is provided corresponding to the third power generation unit 13 and charges power generated by the third power generation unit 13 . The third power storage unit 23 is, for example, a capacitor such as an electrolytic capacitor. The capacity value of the third power storage unit 23 is set to a capacity value that can fully charge the power output (power generation amount) of the third power generation unit 13 per unit time. In other words, the capacity value of the third power storage unit 23 is set to a capacity value that can charge the entire power generation amount of the third power generation unit 13 in one forward movement or one return movement of the movable part 4 .
 第3整流回路83は、第3発電部13の発電出力を全波整流して第3蓄電部23に出力する。つまり、第3蓄電部23は第3発電部13の出力によって充電される。 The third rectifier circuit 83 full-wave rectifies the power output of the third power generation unit 13 and outputs it to the third power storage unit 23 . That is, the third power storage unit 23 is charged by the output of the third power generation unit 13 .
 第2半導体スイッチ7Bは、第3蓄電部23と電圧変換部3との間に接続されている。第2半導体スイッチ7Bは、第1蓄電部21が充電された後に、第3蓄電部23と電圧変換部3とを導通する。第2半導体スイッチ7Bは、例えばMOSFETのような半導体スイッチを含む。第2半導体スイッチ7Bのオン/オフは制御回路91によって制御される。 The second semiconductor switch 7B is connected between the third power storage unit 23 and the voltage conversion unit 3. Second semiconductor switch 7B conducts third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged. The second semiconductor switch 7B includes a semiconductor switch such as a MOSFET, for example. A control circuit 91 controls on/off of the second semiconductor switch 7B.
 制御回路91は、第1蓄電部21の充電電圧V1と、第2蓄電部22の充電電圧V2との高低を比較し、その比較結果に基づいて第1半導体スイッチ7Aのオン/オフを個別に制御する。また、制御回路91は、第1蓄電部21の充電電圧V1と、第3蓄電部23の充電電圧V3との高低を比較し、その比較結果に基づいて第2半導体スイッチ7Bのオン/オフを個別に制御する。 Control circuit 91 compares the charging voltage V1 of first power storage unit 21 and the charging voltage V2 of second power storage unit 22, and individually turns on/off first semiconductor switch 7A based on the comparison result. Control. In addition, control circuit 91 compares the charging voltage V1 of first power storage unit 21 and the charging voltage V3 of third power storage unit 23, and turns on/off second semiconductor switch 7B based on the comparison result. Individually controlled.
 具体的には、充電電圧V1が充電電圧V2以上であり、充電電圧V1が充電電圧V3以上であれば、制御回路91は第1半導体スイッチ7A及び第2半導体スイッチ7Bをオフにしており、電圧変換部3は、第1蓄電部21からの入力電圧を電圧変換して負荷L1に供給する。一方、充電電圧V1が充電電圧V2よりも低くなると、制御回路91は第1半導体スイッチ7Aをオンにしており、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を電圧変換して負荷L1に供給する。また、充電電圧V1が充電電圧V3よりも低くなると、制御回路91は第2半導体スイッチ7Bをオンにしており、電圧変換部3は、第1蓄電部21及び第3蓄電部23からの入力電圧を電圧変換して負荷L1に供給する。また、充電電圧V1が充電電圧V2,V3の両方よりも低くなると、制御回路91は第1半導体スイッチ7A及び第2半導体スイッチ7Bをオンにしており、電圧変換部3は、第1蓄電部21、第2蓄電部22、及び第3蓄電部23からの入力電圧を電圧変換して負荷L1に供給する。 Specifically, when the charging voltage V1 is equal to or higher than the charging voltage V2 and the charging voltage V1 is equal to or higher than the charging voltage V3, the control circuit 91 turns off the first semiconductor switch 7A and the second semiconductor switch 7B, and the voltage Conversion unit 3 converts the input voltage from first power storage unit 21 and supplies the converted voltage to load L1. On the other hand, when the charging voltage V1 becomes lower than the charging voltage V2, the control circuit 91 turns on the first semiconductor switch 7A, and the voltage conversion unit 3 changes the input voltage from the first power storage unit 21 and the second power storage unit 22. is converted into voltage and supplied to the load L1. Further, when the charging voltage V1 becomes lower than the charging voltage V3, the control circuit 91 turns on the second semiconductor switch 7B, and the voltage conversion unit 3 changes the input voltage from the first power storage unit 21 and the third power storage unit 23. is converted into voltage and supplied to the load L1. Further, when the charging voltage V1 becomes lower than both the charging voltages V2 and V3, the control circuit 91 turns on the first semiconductor switch 7A and the second semiconductor switch 7B, and the voltage conversion unit 3 turns on the first power storage unit 21 , the second power storage unit 22, and the third power storage unit 23 are converted into voltages and supplied to the load L1.
 ここで、制御回路91は、第1蓄電部21の充電を完了した後に、第2半導体スイッチ7Bをオンにして、第3蓄電部23と電圧変換部3とを導通するのが好ましく、第3発電部13の出力によって第1蓄電部21が充電されるのを抑制できる。また、第2半導体スイッチ7Bがオフであれば、第3発電部13の出力が第1蓄電部21に入力されることがないので、第3発電部13の発電期間が第1発電部11の発電期間よりも後である必要はなく、第1発電部11と第3発電部13の発電の順番は適宜変更可能である。 Here, after the charging of first power storage unit 21 is completed, control circuit 91 preferably turns on second semiconductor switch 7B to electrically connect third power storage unit 23 and voltage conversion unit 3. It is possible to suppress charging of the first power storage unit 21 by the output of the power generation unit 13 . Further, when the second semiconductor switch 7B is off, the output of the third power generation unit 13 is not input to the first power storage unit 21, so the power generation period of the third power generation unit 13 is the same as that of the first power generation unit 11. It does not have to be after the power generation period, and the order of power generation by the first power generation unit 11 and the third power generation unit 13 can be changed as appropriate.
 また、制御回路91は、第1蓄電部21の充電電圧V1が電圧変換部3の動作電圧以上であり、第1蓄電部21の充電電圧V1が第3蓄電部23の充電電圧V3よりも低いときに、第2半導体スイッチ7Bをオンにして、第3蓄電部23と電圧変換部3とを導通させるのが好ましい。これにより、第1蓄電部21の充電電圧V1が第3蓄電部23の充電電圧V3よりも低下したタイミングで、第3蓄電部23から電圧変換部3に電力を供給できる。 In addition, control circuit 91 controls that charging voltage V1 of first power storage unit 21 is equal to or higher than the operating voltage of voltage conversion unit 3, and charging voltage V1 of first power storage unit 21 is lower than charging voltage V3 of third power storage unit 23. Sometimes, it is preferable to turn on the second semiconductor switch 7</b>B to electrically connect the third power storage unit 23 and the voltage conversion unit 3 . Accordingly, power can be supplied from the third power storage unit 23 to the voltage conversion unit 3 at the timing when the charging voltage V1 of the first power storage unit 21 becomes lower than the charging voltage V3 of the third power storage unit 23 .
 上記実施形態及び変形例1では、互いに種類が異なる発電部10の数が2つであったが、変形例2では互いに種類が異なる発電部10の数が3つである。つまり、変形例2の電源回路1は、さらに第3発電部13から電力が供給される電源回路であって、第2半導体スイッチ7Bと、電圧変換部3と、第3蓄電部23とを更に備える。 In the above embodiment and modification 1, the number of power generation units 10 of different types is two, but in modification 2, the number of power generation units 10 of different types is three. In other words, the power supply circuit 1 of Modification 2 is a power supply circuit to which electric power is further supplied from the third power generation section 13, and further includes the second semiconductor switch 7B, the voltage conversion section 3, and the third power storage section 23. Prepare.
 第2半導体スイッチ7Bは電圧変換部3に電気的に接続される。第3蓄電部23は、第2半導体スイッチ7Bに電気的に接続され、第2半導体スイッチ7Bを介して電圧変換部3に電気的に接続される。第3蓄電部23は、第3発電部13が発電する電力を充電する。第2半導体スイッチ7Bは第1蓄電部21が充電された後に第3蓄電部23と電圧変換部3とを導通する。第3蓄電部23は第3発電部13に対応して設けられているので、第3蓄電部23の容量値を、対応する第3発電部13の発電量に応じた容量値とすることができ、発電部10から効率良く電力を取り出すことができる。 The second semiconductor switch 7B is electrically connected to the voltage conversion section 3. Third power storage unit 23 is electrically connected to second semiconductor switch 7B, and is electrically connected to voltage conversion unit 3 via second semiconductor switch 7B. The third power storage unit 23 charges the electric power generated by the third power generation unit 13 . Second semiconductor switch 7B conducts third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged. Since the third power storage unit 23 is provided corresponding to the third power generation unit 13, the capacity value of the third power storage unit 23 can be set to the capacity value according to the power generation amount of the corresponding third power generation unit 13. Thus, power can be efficiently extracted from the power generation unit 10 .
 そして、第2半導体スイッチ7Bは、第1蓄電部21が充電された後に、第3蓄電部23と電圧変換部3とを導通するので、例えば第1発電部11が発電する電力が低下するタイミングで第3発電部13が発電する電力を利用することが可能となる。よって、第1~第3発電部11~13から効率良く電力を取り出すことができる。発電期間が第1発電部11よりも短い第2発電部12及び第3発電部13が発電する電力をそれぞれ蓄える第2蓄電部22及び第3蓄電部23が、個別の第1半導体スイッチ7A及び第2半導体スイッチ7Bを介して電圧変換部3に接続されている。したがって、第2蓄電部22及び第3蓄電部23の充電電圧を電圧変換部3に供給するタイミングを個別の第1半導体スイッチ7A及び第2半導体スイッチ7Bにより設定でき、例えば第1発電部11の発電期間が終了するタイミングで第1半導体スイッチ7A及び第2半導体スイッチ7Bをオンにして第2蓄電部22及び第3蓄電部23から電圧変換部3に電圧を印加することができる。 Second semiconductor switch 7B connects third power storage unit 23 and voltage conversion unit 3 after first power storage unit 21 is charged. , it is possible to use the power generated by the third power generation unit 13 . Therefore, electric power can be efficiently extracted from the first to third power generation units 11 to 13 . The second power storage unit 22 and the third power storage unit 23, which respectively store the power generated by the second power generation unit 12 and the third power generation unit 13 whose power generation period is shorter than that of the first power generation unit 11, are separated from the first semiconductor switch 7A and It is connected to the voltage converter 3 via the second semiconductor switch 7B. Therefore, the timing of supplying the charging voltages of the second power storage unit 22 and the third power storage unit 23 to the voltage conversion unit 3 can be set by the individual first semiconductor switch 7A and the second semiconductor switch 7B. When the power generation period ends, the first semiconductor switch 7A and the second semiconductor switch 7B are turned on to apply voltage from the second power storage unit 22 and the third power storage unit 23 to the voltage conversion unit 3 .
 (2.3.3)その他の変形例
 上記実施形態及び変形例1、2では、互いに種類が異なる発電部10の数が2つ又は3つであるが、互いに種類が異なる発電部10の数は2つ以上であればよく、2つ以上の発電部10にそれぞれ対応する2つ以上の蓄電部2を備えていればよい。つまり、電源回路1は、2種類以上の発電部10の発電電力で充電される2つ以上の蓄電部2を備えていればよく、2つ以上の蓄電部2のうち第1蓄電部21以外の蓄電部2がスイッチ(第1半導体スイッチ7A、第2半導体スイッチ7B等)を介して電圧変換部3に接続されていればよい。
(2.3.3) Other Modifications In the above embodiment and Modifications 1 and 2, the number of power generation units 10 of different types is two or three, but the number of power generation units 10 of different types may be two or more, and two or more power storage units 2 corresponding to two or more power generation units 10 may be provided. In other words, the power supply circuit 1 only needs to include two or more power storage units 2 that are charged with power generated by two or more types of power generation units 10, and the two or more power storage units 2 other than the first power storage unit 21 is connected to the voltage converter 3 via switches (first semiconductor switch 7A, second semiconductor switch 7B, etc.).
 (実施形態2)
 (3.1)概要
 実施形態2の電源回路1、及びそれを備える発電システム100について図9を参照して説明する。
(Embodiment 2)
(3.1) Outline The power supply circuit 1 of Embodiment 2 and the power generation system 100 including the same will be described with reference to FIG. 9 .
 本実施形態の電源回路1は、図9に示すように、第1発電部11と第2発電部12とから電力を供給される電源回路1であり、第1蓄電部21と、第2蓄電部22と、電圧変換部3と、第1ダイオード9と、を備える。 As shown in FIG. 9, the power supply circuit 1 of the present embodiment is the power supply circuit 1 to which power is supplied from the first power generation unit 11 and the second power generation unit 12. The first power storage unit 21 and the second power storage unit A section 22 , a voltage conversion section 3 , and a first diode 9 are provided.
 つまり、実施形態2ではスイッチSW1が、第1ダイオード9を含んでいる。言い換えると、スイッチSW1が第1ダイオード9にて実現されている。 That is, the switch SW1 includes the first diode 9 in the second embodiment. In other words, the switch SW1 is realized by the first diode 9. FIG.
 第1蓄電部21は、第1発電部11の発電電力によって充電される。 The first power storage unit 21 is charged with power generated by the first power generation unit 11 .
 第2蓄電部22は、第2発電部12の発電電力によって充電される。 The second power storage unit 22 is charged with power generated by the second power generation unit 12 .
 第1ダイオード9は、アノードで、第2蓄電部22に電気的に接続される。つまり、第2蓄電部22は、第1ダイオード9のアノードに電気的に接続されている。 The first diode 9 is electrically connected to the second power storage unit 22 at its anode. That is, the second power storage unit 22 is electrically connected to the anode of the first diode 9 .
 電圧変換部3は、第1蓄電部21に電気的に接続され、かつ、第1ダイオード9のカソードに電気的に接続される。つまり、電圧変換部3は、第1蓄電部21と、第1ダイオード9のカソードとに電気的に接続される。 The voltage converter 3 is electrically connected to the first power storage unit 21 and electrically connected to the cathode of the first diode 9 . That is, voltage conversion unit 3 is electrically connected to first power storage unit 21 and the cathode of first diode 9 .
 また、本実施形態の発電システム100は、第1発電部11と、第1発電部11が発電した後に発電を開始する第2発電部12と、第1発電部11及び第2発電部12に電気的に接続される上記の電源回路1と、を備える。 In addition, the power generation system 100 of the present embodiment includes the first power generation unit 11, the second power generation unit 12 that starts power generation after the first power generation unit 11 generates power, and the first power generation unit 11 and the second power generation unit 12. and the power supply circuit 1 electrically connected thereto.
 第2蓄電部22は第1ダイオード9を介して電圧変換部3に接続されており、第1蓄電部21の充電電圧が第2蓄電部22の充電電圧よりも低くなって第1ダイオード9が導通すると、第2蓄電部22に蓄えられた電荷が電圧変換部3に供給される。したがって、第1発電部11の発電出力の低下に伴って第1蓄電部21の充電電圧が低下したタイミングで第1ダイオード9が導通し、第2蓄電部22に蓄えられた電力が電圧変換部3に供給されるから、第2発電部12が発電する電力を効率良く利用できる。よって、本実施形態の電源回路1によれば、少なくとも2種類の発電部10から効率良く電力を取り出すことができる。 The second power storage unit 22 is connected to the voltage conversion unit 3 via the first diode 9. When the charging voltage of the first power storage unit 21 becomes lower than the charging voltage of the second power storage unit 22, the first diode 9 When conductive, the charge stored in the second power storage unit 22 is supplied to the voltage conversion unit 3 . Therefore, the first diode 9 becomes conductive at the timing when the charging voltage of the first power storage unit 21 drops as the power generation output of the first power generation unit 11 drops, and the power stored in the second power storage unit 22 is transferred to the voltage converter. 3, the power generated by the second power generation section 12 can be used efficiently. Therefore, according to the power supply circuit 1 of the present embodiment, power can be efficiently extracted from at least two types of power generation units 10 .
 (3.2)詳細
 以下、本実施形態の電源回路1及び発電システム100について、図面を用いて説明する。
(3.2) Details Hereinafter, the power supply circuit 1 and the power generation system 100 of the present embodiment will be described with reference to the drawings.
 (3.2.1)発電部
 発電部10は、実施形態1で説明した発電部10と共通の構成を有しているので、その説明は省略する。
(3.2.1) Power Generation Unit The power generation unit 10 has a configuration common to that of the power generation unit 10 described in the first embodiment, so description thereof will be omitted.
 (3.2.2)電源回路
 次に、電源回路1について、図9~図10を参照して説明する。
(3.2.2) Power Supply Circuit Next, the power supply circuit 1 will be described with reference to FIGS. 9 to 10. FIG.
 本実施形態の電源回路1は、上述したように、第1発電部11が発電する電力を充電する第1蓄電部21と、第2発電部12が発電する電力を充電する第2蓄電部22と、電圧変換部3と、第1ダイオード9と、を備えている。なお、本実施形態の発電システム100は、同一種類の第1発電部11を2つ(第1発電部11A,11B)備えており、2つの第1発電部11A,11Bが発電する電力を第1蓄電部21が充電する。 As described above, the power supply circuit 1 of the present embodiment includes the first power storage unit 21 that charges the power generated by the first power generation unit 11 and the second power storage unit 22 that charges the power generated by the second power generation unit 12. , a voltage conversion unit 3 , and a first diode 9 . Note that the power generation system 100 of the present embodiment includes two of the same type of first power generation units 11 (first power generation units 11A and 11B), and the power generated by the two first power generation units 11A and 11B is 1 power storage unit 21 is charged.
 本実施形態の電源回路1は、第1蓄電部21、第2蓄電部22、電圧変換部3、及び第1ダイオード9に加えて、第1整流回路81と、第2整流回路82と、を備えている。なお、第1蓄電部21、第2蓄電部22、電圧変換部3、第1整流回路81、及び第2整流回路82の構成は実施形態1と同様であるので、共通の構成については説明を省略する。 The power supply circuit 1 of the present embodiment includes a first rectifier circuit 81 and a second rectifier circuit 82 in addition to the first power storage unit 21, the second power storage unit 22, the voltage conversion unit 3, and the first diode 9. I have it. Note that the configurations of the first power storage unit 21, the second power storage unit 22, the voltage conversion unit 3, the first rectifier circuit 81, and the second rectifier circuit 82 are the same as those of the first embodiment, so the common configuration will not be described. omitted.
 第2蓄電部22と電圧変換部3との間には、第1ダイオード9が接続されている。第1ダイオード9のアノードは第2蓄電部22の高圧側の端子に接続され、第1ダイオード9のカソードは電圧変換部3の入力端子に接続されている。つまり、第1ダイオード9は、第2蓄電部22から電圧変換部3に電流が流れる向きに接続されている。したがって、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2よりも低くなり、充電電圧V2と充電電圧V1の差が第1ダイオード9の順方向電圧以上になると、第1ダイオード9がオンになり、第2蓄電部22から電圧変換部3に電流が流れる。一方、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2以上である場合には、第1ダイオード9はオフになり、第2蓄電部22と電圧変換部3との間が電気的に遮断される。つまり、本実施形態では、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2以上であるときは、電圧変換部3は第1蓄電部21から電力の供給を受ける。第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2よりも低いときは、第2蓄電部22は電圧変換部3に電力を供給するのである。 A first diode 9 is connected between the second power storage unit 22 and the voltage conversion unit 3 . The anode of the first diode 9 is connected to the high-voltage side terminal of the second power storage unit 22 , and the cathode of the first diode 9 is connected to the input terminal of the voltage conversion unit 3 . That is, the first diode 9 is connected in the direction in which the current flows from the second power storage unit 22 to the voltage conversion unit 3 . Therefore, when the charging voltage V1 of the first power storage unit 21 becomes lower than the charging voltage V2 of the second power storage unit 22, and the difference between the charging voltage V2 and the charging voltage V1 becomes equal to or greater than the forward voltage of the first diode 9, the first power storage unit 21 Diode 9 is turned on, and current flows from second power storage unit 22 to voltage conversion unit 3 . On the other hand, when the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22, the first diode 9 is turned off, and the voltage between the second power storage unit 22 and the voltage conversion unit 3 is reduced. is electrically cut off. That is, in the present embodiment, when the charging voltage V1 of the first power storage unit 21 is equal to or higher than the charging voltage V2 of the second power storage unit 22, the voltage conversion unit 3 receives power supply from the first power storage unit 21. When the charging voltage V1 of the first power storage unit 21 is lower than the charging voltage V2 of the second power storage unit 22, the second power storage unit 22 supplies power to the voltage conversion unit 3.
 ここで、第1蓄電部21の充電電圧V1が第2蓄電部22の充電電圧V2よりも低くなって、第1ダイオード9が導通すると、第2蓄電部22に蓄えられた電力が電圧変換部3に供給される。つまり、第1発電部11の発電出力が低下し、それに伴って第1蓄電部21の充電電圧V1が低下したタイミングで、第2蓄電部22に蓄えられた電力が電圧変換部3に供給され、第1蓄電部21及び第2蓄電部22を電源として電圧変換部3が電圧変換動作を行うことができる。 Here, when the charging voltage V1 of the first power storage unit 21 becomes lower than the charging voltage V2 of the second power storage unit 22 and the first diode 9 becomes conductive, the electric power stored in the second power storage unit 22 is transferred to the voltage conversion unit. 3. That is, the power stored in the second power storage unit 22 is supplied to the voltage conversion unit 3 at the timing when the power output of the first power generation unit 11 decreases and the charging voltage V1 of the first power storage unit 21 accordingly decreases. , the first power storage unit 21 and the second power storage unit 22 as power sources, the voltage conversion unit 3 can perform the voltage conversion operation.
 図10は、操作レバー51の押し込み時における、第1蓄電部21の充電電圧V1、及び、第2蓄電部22の充電電圧V2の電圧波形と、第1ダイオード9のオン/オフの状態を示すグラフの一例である。 FIG. 10 shows the voltage waveforms of the charging voltage V1 of the first power storage unit 21 and the charging voltage V2 of the second power storage unit 22 and the ON/OFF state of the first diode 9 when the operation lever 51 is pushed. It is an example of a graph.
 時点t11において操作レバー51が押されると、第1発電部11が発電を開始し、第1発電部11が発電した電力を第1蓄電部21が充電し、第1蓄電部21の充電電圧V1が増加する。ここで、時点t11では充電電圧V1が充電電圧V2より高いので、第1ダイオード9は非導通(オフ)であり、電圧変換部3は、第1蓄電部21からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。 When the operation lever 51 is pushed at time t11, the first power generation unit 11 starts generating power, the power generated by the first power generation unit 11 is charged into the first power storage unit 21, and the charging voltage V1 of the first power storage unit 21 is reached. increases. Here, since the charging voltage V1 is higher than the charging voltage V2 at time t11, the first diode 9 is non-conducting (OFF), and the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 to a predetermined voltage value. is converted into a DC voltage and supplied to the load L1.
 その後、時点t12において第2発電部12が発電を開始すると、第2発電部12が発電した電力を第2蓄電部22が充電して、第2蓄電部22の充電電圧V2が増加する。なお、時点t11から時点t12までの期間は充電電圧V1が充電電圧V2より高いので、第1ダイオード9は非導通(オフ)であり、電圧変換部3は、第1蓄電部21からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。 After that, when the second power generation unit 12 starts generating power at time t12, the second power storage unit 22 is charged with the power generated by the second power generation unit 12, and the charging voltage V2 of the second power storage unit 22 increases. Since the charging voltage V1 is higher than the charging voltage V2 during the period from time t11 to time t12, the first diode 9 is non-conducting (OFF), and the voltage conversion unit 3 receives the input voltage from the first power storage unit 21. is converted into a DC voltage of a predetermined voltage value and supplied to the load L1.
 その後、第1発電部11の発電出力が低下し、負荷L1によって電力が消費されると、充電電圧V1は徐々に低下し、時点t13で第1ダイオード9がオンになる。ここで、第2発電部12が発電を開始してから終了するまでの発電期間では、第2蓄電部22の充電電圧V2が第1蓄電部21の充電電圧V1よりも低くなっており、本実施形態では時点t11から時点t13までの期間では充電電圧V2が充電電圧V1よりも低くなっている。したがって、時点t11から時点t13までの期間では第1ダイオード9はオフであり、電圧変換部3は、第1蓄電部21からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。一方、時点t13で第1ダイオード9がオンになると、時点t13以後は、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を所定の電圧値の直流電圧に変換して負荷L1に供給する。 After that, when the power generation output of the first power generation unit 11 decreases and power is consumed by the load L1, the charging voltage V1 gradually decreases, and the first diode 9 turns on at time t13. Here, in the power generation period from when the second power generation unit 12 starts to ends power generation, the charging voltage V2 of the second power storage unit 22 is lower than the charging voltage V1 of the first power storage unit 21. In the embodiment, the charging voltage V2 is lower than the charging voltage V1 during the period from time t11 to time t13. Therefore, in the period from time t11 to time t13, the first diode 9 is off, and the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 into a DC voltage of a predetermined voltage value and supplies it to the load L1. supply. On the other hand, when the first diode 9 is turned on at the time t13, after the time t13, the voltage conversion unit 3 converts the input voltage from the first power storage unit 21 and the second power storage unit 22 into a DC voltage having a predetermined voltage value. and supply it to the load L1.
 本実施形態では、第1蓄電部21の容量値が、第1発電部11の単位時間あたりの発電量に比べて小さい値に設定されているので、第1発電部11の単位時間あたりの発電量が第2発電部12に比べて小さい場合でも、第1蓄電部21の充電電圧を大きくでき、第1発電部11の発電出力を取り出しやすくなる。また、第2蓄電部22の容量値は第2発電部12の単位時間あたりの発電量の全てを充電可能な容量値であり、充電電圧V1が充電電圧V2よりも低くなった後のタイミングで第1ダイオード9がオンになる。本実施形態では、第2発電部12の発電(環境発電)が終わった後に、第2蓄電部22に全量が蓄えられた第2発電部12が発電した電力が電圧変換部3に供給されるので、第2発電部12の発電量を最適なタイミングで活用でき、第2発電部12が発電した電力の取り出し効率を高めることができる。また、第1ダイオード9によって第2蓄電部22と電圧変換部3との間が電気的に導通又は遮断されるので、第2蓄電部22と電圧変換部3との間に半導体スイッチが接続されている場合のように、半導体スイッチの制御回路を備える必要がないという利点もある。 In the present embodiment, the capacity value of the first power storage unit 21 is set to a value smaller than the power generation amount of the first power generation unit 11 per unit time, so the power generation amount of the first power generation unit 11 per unit time is Even if the amount is smaller than that of the second power generation unit 12 , the charging voltage of the first power storage unit 21 can be increased, making it easier to take out the power output of the first power generation unit 11 . Further, the capacity value of the second power storage unit 22 is a capacity value that can charge the entire amount of power generated per unit time of the second power generation unit 12, and at the timing after the charging voltage V1 becomes lower than the charging voltage V2 The first diode 9 is turned on. In the present embodiment, the power generated by the second power generation unit 12, the entire amount of which is stored in the second power storage unit 22, is supplied to the voltage conversion unit 3 after the power generation (environmental power generation) of the second power generation unit 12 is completed. Therefore, the power generation amount of the second power generation section 12 can be utilized at the optimum timing, and the extraction efficiency of the power generated by the second power generation section 12 can be improved. In addition, since the first diode 9 electrically connects or disconnects the second power storage unit 22 and the voltage conversion unit 3 , a semiconductor switch is connected between the second power storage unit 22 and the voltage conversion unit 3 . There is also the advantage that there is no need to provide a control circuit for the semiconductor switch, unlike the case where the semiconductor switch is provided.
 (3.3)実施形態2の変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(3.3) Modification of Embodiment 2 The above embodiment is just one of various embodiments of the present disclosure. The above-described embodiment can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved.
 以下、実施形態2の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 Modifications of Embodiment 2 are listed below. Modifications described below can be applied in combination as appropriate.
 (3.3.1)変形例1
 図11は、変形例1の電源回路1を備えた発電システム100の概略的な回路図である。
(3.3.1) Modification 1
FIG. 11 is a schematic circuit diagram of a power generation system 100 including the power supply circuit 1 of Modification 1. As shown in FIG.
 変形例1の電源回路1は、さらに第3発電部13から電力を供給され、第3蓄電部23と、第2ダイオード9Bを更に備える点で上記実施形態2と相違する。また、変形例1の電源回路1は、第3整流回路83を更に備えている。なお、第3蓄電部23、第3整流回路83、及び第2ダイオード9B以外の構成は上記実施形態2の電源回路1と共通するので、共通する構成要素には同一の符号を付して、その説明は省略する。 The power supply circuit 1 of Modification 1 differs from Embodiment 2 in that power is further supplied from the third power generation section 13, and further includes a third power storage section 23 and a second diode 9B. Moreover, the power supply circuit 1 of Modification 1 further includes a third rectifier circuit 83 . Since configurations other than the third power storage unit 23, the third rectifier circuit 83, and the second diode 9B are common to the power supply circuit 1 of the second embodiment, common components are denoted by the same reference numerals. The explanation is omitted.
 第3発電部13は、コイルを用いて電磁誘導により発電を行う。つまり、第3発電部13は、第2発電部12の発電方式と共通するが、発電量及び発電期間の少なくとも一方が第2発電部12と異なる発電部である。 The third power generation section 13 uses a coil to generate power through electromagnetic induction. In other words, the third power generation unit 13 is a power generation unit that has a power generation method common to that of the second power generation unit 12 but differs from the second power generation unit 12 in at least one of the power generation amount and the power generation period.
 第3蓄電部23は、第3発電部13に対応して設けられ、第3発電部13が発電する電力を充電する。つまり、変形例1の電源回路1は、環境発電を行う発電期間が第1発電部11よりも短い第3発電部13が発電する電力を充電する第3蓄電部23を更に含んでいる。 The third power storage unit 23 is provided corresponding to the third power generation unit 13 and charges the electric power generated by the third power generation unit 13 . That is, the power supply circuit 1 of Modification 1 further includes the third power storage unit 23 that charges the power generated by the third power generation unit 13 whose power generation period for energy harvesting is shorter than that of the first power generation unit 11 .
 第3蓄電部23は、例えば電解コンデンサのようなコンデンサである。第3蓄電部23の容量値は、第3発電部13の単位時間あたりの出力(発電量)を全て充電可能な容量値に設定されている。つまり、第3蓄電部23の容量値は、可動部4の1回の往路動作又は復路動作での第3発電部13の発電量を全て充電可能な容量値に設定されている。 The third power storage unit 23 is, for example, a capacitor such as an electrolytic capacitor. The capacity value of the third power storage unit 23 is set to a capacity value that can fully charge the output (power generation amount) of the third power generation unit 13 per unit time. In other words, the capacity value of the third power storage unit 23 is set to a capacity value that can charge the entire power generation amount of the third power generation unit 13 in one forward movement or one return movement of the movable part 4 .
 第3整流回路83は、第3発電部13の出力を全波整流して第3蓄電部23に出力する。つまり、第3蓄電部23は第3発電部13の出力によって充電される。 The third rectifier circuit 83 full-wave rectifies the output of the third power generation section 13 and outputs it to the third power storage section 23 . That is, the third power storage unit 23 is charged by the output of the third power generation unit 13 .
 第2ダイオード9Bは、第3蓄電部23と電圧変換部3との間に接続されている。言い換えると、第3蓄電部23は、第2ダイオード9Bを介して電圧変換部3に接続されている。第2ダイオード9Bは、アノードで第3蓄電部23に電気的に接続され、カソードで電圧変換部3に電気的に接続されており、第3蓄電部23から電圧変換部3に電流が流れる向きに接続されている。なお、第2蓄電部22は、第1ダイオード9Aを介して電圧変換部3に接続されている。 The second diode 9B is connected between the third power storage unit 23 and the voltage conversion unit 3. In other words, the third power storage unit 23 is connected to the voltage conversion unit 3 via the second diode 9B. The second diode 9B is electrically connected to the third power storage unit 23 at its anode and electrically connected to the voltage conversion unit 3 at its cathode. It is connected to the. Second power storage unit 22 is connected to voltage conversion unit 3 via first diode 9A.
 ここで、充電電圧V1が充電電圧V2以上であり、かつ、充電電圧V1が充電電圧V3以上であれば、第1ダイオード9A及び第2ダイオード9Bは共にオフになり、電圧変換部3は、第1蓄電部21からの入力電圧を電圧変換して負荷L1に供給する。一方、充電電圧V1が充電電圧V2よりも低くなって、第1ダイオード9Aが導通すると、電圧変換部3は、第1蓄電部21及び第2蓄電部22からの入力電圧を電圧変換して負荷L1に供給する。また、充電電圧V1が充電電圧V3よりも低くなって、第2ダイオード9Bが導通すると、電圧変換部3は、第1蓄電部21及び第3蓄電部23からの入力電圧を電圧変換して負荷L1に供給する。また、充電電圧V1が充電電圧V2よりも低く、かつ、充電電圧V1が充電電圧V3よりも低くなって、第1ダイオード9A及び第2ダイオード9Bが導通すると、電圧変換部3は、第1蓄電部21、第2蓄電部22、及び第3蓄電部23からの入力電圧を電圧変換して負荷L1に供給する。このように、第1発電部11の発電出力が低下したタイミングで、第1ダイオード9A及び第2ダイオード9Bが導通することによって、第2蓄電部22及び第3蓄電部23にそれぞれ蓄えられた電力が電圧変換部3に供給される。 Here, if the charging voltage V1 is equal to or higher than the charging voltage V2 and the charging voltage V1 is equal to or higher than the charging voltage V3, both the first diode 9A and the second diode 9B are turned off, and the voltage conversion section 3 1 voltage conversion is performed on the input voltage from the power storage unit 21 and the converted voltage is supplied to the load L1. On the other hand, when the charging voltage V1 becomes lower than the charging voltage V2 and the first diode 9A conducts, the voltage conversion unit 3 converts the input voltages from the first power storage unit 21 and the second power storage unit 22 to the load. supply to L1. In addition, when the charging voltage V1 becomes lower than the charging voltage V3 and the second diode 9B becomes conductive, the voltage conversion unit 3 converts the input voltages from the first power storage unit 21 and the third power storage unit 23 to the load. supply to L1. Further, when the charging voltage V1 is lower than the charging voltage V2 and the charging voltage V1 is lower than the charging voltage V3, and the first diode 9A and the second diode 9B become conductive, the voltage conversion unit 3 converts the first power storage The input voltages from the unit 21, the second power storage unit 22, and the third power storage unit 23 are voltage-converted and supplied to the load L1. In this way, when the power output of the first power generation unit 11 decreases, the first diode 9A and the second diode 9B become conductive, so that the electric power stored in the second power storage unit 22 and the third power storage unit 23, respectively. is supplied to the voltage converter 3 .
 (3.3.2)その他の変形例
 上記実施形態2及び変形例1では、互いに種類が異なる発電部10の数が2つ又は3つであるが、互いに種類が異なる発電部10の数は2つ以上であればよく、2つ以上の発電部10にそれぞれ対応する2つ以上の蓄電部2を備えていればよい。つまり、電源回路1は、2種類以上の発電部10の発電電力で充電される2つ以上の蓄電部2を備えていればよく、2つ以上の蓄電部2のうち第1蓄電部21以外の蓄電部2がダイオード(第1ダイオード9A、第2ダイオード9B等)を介して電圧変換部3に接続されていればよい。
(3.3.2) Other Modifications In Embodiment 2 and Modification 1, the number of power generation units 10 of different types is two or three, but the number of power generation units 10 of different types is The number may be two or more, and two or more power storage units 2 corresponding to two or more power generation units 10 may be provided. In other words, the power supply circuit 1 only needs to include two or more power storage units 2 that are charged with power generated by two or more types of power generation units 10, and the two or more power storage units 2 other than the first power storage unit 21 is connected to the voltage converter 3 via diodes (first diode 9A, second diode 9B, etc.).
 (まとめ)
 以上説明したように、第1の態様の電源回路(1)は、第1発電部(11)と第2発電部(12)とから電力を供給される電源回路(1)であって、第1蓄電部(21)と、第2蓄電部(22)と、スイッチ(SW1)と、電圧変換部(3)と、を備える。第1蓄電部(21)は、第1発電部(11)が発電する電力を充電する。第2蓄電部(22)は、第2発電部(12)が発電する電力を充電する。スイッチ(SW1)は、第2蓄電部(22)に電気的に接続される。電圧変換部(3)は、第1蓄電部(21)に電気的に接続され、かつ、第2蓄電部(22)にスイッチ(SW1)を介して電気的に接続される。
(summary)
As described above, the power supply circuit (1) of the first aspect is a power supply circuit (1) to which electric power is supplied from the first power generation section (11) and the second power generation section (12). It includes a first power storage unit (21), a second power storage unit (22), a switch (SW1), and a voltage conversion unit (3). The first power storage unit (21) charges the electric power generated by the first power generation unit (11). The second power storage unit (22) charges the electric power generated by the second power generation unit (12). The switch (SW1) is electrically connected to the second power storage unit (22). A voltage conversion unit (3) is electrically connected to a first power storage unit (21) and electrically connected to a second power storage unit (22) via a switch (SW1).
 この態様によれば、第1蓄電部(21)及び第2蓄電部(22)の発電電力を、それぞれ対応する第1蓄電部(21)及び第2蓄電部(22)に蓄えているので、第1蓄電部(21)及び第2蓄電部(22)の容量値をそれぞれ対応する第1発電部(11)及び第2発電部(12)の発電量に応じて設定でき、第1発電部(11)及び第2発電部(12)から効率良く電力を取り出すことができる。 According to this aspect, since the power generated by the first power storage unit (21) and the second power storage unit (22) are stored in the corresponding first power storage unit (21) and the second power storage unit (22), The capacity values of the first power storage unit (21) and the second power storage unit (22) can be set according to the power generation amounts of the corresponding first power generation unit (11) and the second power generation unit (12), respectively. Electric power can be efficiently extracted from (11) and the second power generation section (12).
 第2の態様の電源回路(1)では、第1の態様において、スイッチ(SW1)は、第1半導体スイッチ(7,7A)を含む。第1半導体スイッチ(7,7A)は、第1蓄電部(21)が充電された後に、第2蓄電部(22)と電圧変換部(3)とを導通する。 In the power supply circuit (1) of the second aspect, in the first aspect, the switch (SW1) includes a first semiconductor switch (7, 7A). The first semiconductor switch (7, 7A) electrically connects the second power storage unit (22) and the voltage conversion unit (3) after the first power storage unit (21) is charged.
 この態様によれば、第1半導体スイッチ(7,7A)は、第1蓄電部(21)が充電された後に、第2蓄電部(22)と電圧変換部(3)とを導通するので、例えば第1発電部(11)が発電する電力が低下するタイミングで第2発電部(12)が発電する電力を利用することが可能となる。よって、少なくとも2種類の発電部(第1発電部(11)及び第2発電部(12))から効率良く電力を取り出すことができる。また、スイッチ(SW1)に第1半導体スイッチ(7,7A)を用いることで、スイッチ(SW1)での電力損失を低減することができる。 According to this aspect, the first semiconductor switch (7, 7A) conducts the second power storage unit (22) and the voltage conversion unit (3) after the first power storage unit (21) is charged. For example, it is possible to use the power generated by the second power generation section (12) at the timing when the power generated by the first power generation section (11) decreases. Therefore, electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)). Further, by using the first semiconductor switch (7, 7A) for the switch (SW1), power loss in the switch (SW1) can be reduced.
 第3の態様の電源回路(1)は、第2の態様において、制御回路(91)を、更に備える。制御回路(91)は、第1半導体スイッチ(7,7A)のオン/オフを制御する。制御回路(91)は、第1発電部(11)と第2発電部(12)との少なくとも一つから電力が供給される。 The power supply circuit (1) of the third aspect further comprises a control circuit (91) in the second aspect. A control circuit (91) controls on/off of the first semiconductor switches (7, 7A). The control circuit (91) is supplied with power from at least one of the first power generation section (11) and the second power generation section (12).
 この態様によれば、制御回路(91)の制御シーケンスを変更することによって、第1半導体スイッチ(7,7A)のオン/オフのタイミングを変更することができる。 According to this aspect, the on/off timing of the first semiconductor switch (7, 7A) can be changed by changing the control sequence of the control circuit (91).
 第4の態様の電源回路(1)は、第2の態様において、遅延回路(92)を、更に備える。遅延回路(92)は、第1発電部(11)と第2発電部(12)との少なくとも1つと電気的に接続される。遅延回路(92)は、第1半導体スイッチ(7,7A)をオンにする時間を遅延させる。 The power supply circuit (1) of the fourth aspect further comprises a delay circuit (92) in the second aspect. The delay circuit (92) is electrically connected to at least one of the first power generation section (11) and the second power generation section (12). A delay circuit (92) delays the time to turn on the first semiconductor switch (7, 7A).
 この態様によれば、第1半導体スイッチ(7,7A)のオン/オフを制御する回路を簡単な回路で構成できる。 According to this aspect, the circuit for controlling the on/off of the first semiconductor switch (7, 7A) can be configured with a simple circuit.
 第5の態様の電源回路(1)では、第2~4のいずれかの態様において、第1蓄電部(21)の容量値は、第1発電部(11)の単位時間あたりの発電量に比べて小さい。第2蓄電部(22)の容量値は、第2発電部(12)の単位時間あたりの発電量の全てを充電可能な容量値である。第1半導体スイッチ(7,7A)は、第2発電部(12)の発電が終わった後にオンになる。 In the power supply circuit (1) of the fifth aspect, in any one of the second to fourth aspects, the capacity value of the first power storage unit (21) is equal to the power generation amount of the first power generation unit (11) per unit time. small in comparison. The capacity value of the second power storage section (22) is a capacity value that can charge the entire amount of power generated per unit time of the second power generation section (12). The first semiconductor switch (7, 7A) is turned on after the second power generation section (12) finishes generating power.
 この態様によれば、第2発電部(12)の発電量の全てを第2蓄電部(22)に充電できるので、第2蓄電部(22)に蓄えられた電力を所望のタイミングで電圧変換部(3)に供給できる。したがって、第1発電部(11)及び第2発電部(12)から効率良く電力を取り出すことができる。 According to this aspect, the second power storage unit (22) can be charged with the entire amount of power generated by the second power generation unit (12). It can be supplied to part (3). Therefore, electric power can be efficiently extracted from the first power generation section (11) and the second power generation section (12).
 第6の態様の電源回路(1)は、さらに第3発電部(13)から電力が供給される第2~5のいずれかの態様の電源回路(1)である。電源回路(1)は、第2半導体スイッチ(7B)と、第3蓄電部(23)と、をさらに備える。第2半導体スイッチ(7B)は、電圧変換部(3)に電気的に接続される。第3蓄電部(23)は、第2半導体スイッチ(7B)に電気的に接続され、第2半導体スイッチ(7B)を介して電圧変換部(3)に電気的に接続され、第3発電部(13)が発電する電力によって充電される。第2半導体スイッチ(7B)は、第1蓄電部(21)が充電された後に、第3蓄電部(23)と電圧変換部(3)とを導通する。 The power supply circuit (1) of the sixth aspect is the power supply circuit (1) of any one of the second to fifth aspects, to which electric power is further supplied from the third power generation section (13). The power supply circuit (1) further includes a second semiconductor switch (7B) and a third power storage unit (23). The second semiconductor switch (7B) is electrically connected to the voltage converter (3). The third power storage unit (23) is electrically connected to the second semiconductor switch (7B), is electrically connected to the voltage conversion unit (3) via the second semiconductor switch (7B), and is electrically connected to the third power generation unit. (13) is charged by the power generated. A second semiconductor switch (7B) electrically connects a third power storage unit (23) and a voltage conversion unit (3) after the first power storage unit (21) is charged.
 この態様によれば、第1~第3発電部(11,12,13)から効率良く電力を取り出すことができる。 According to this aspect, electric power can be efficiently extracted from the first to third power generation units (11, 12, 13).
 第7の態様の電源回路(1)では、第2~6のいずれかの態様において、第1半導体スイッチ(7,7A)は、第1蓄電部(21)の充電を完了した後に、第2蓄電部(22)と電圧変換部(3)とを導通する。 In the power supply circuit (1) of the seventh aspect, in any one of the second to sixth aspects, the first semiconductor switch (7, 7A) switches the second Conduction is established between the storage unit (22) and the voltage conversion unit (3).
 この態様によれば、第2蓄電部(22)の発電電力で第1蓄電部(21)が充電される可能性を低減することができる。 According to this aspect, it is possible to reduce the possibility that the power generated by the second power storage unit (22) will charge the first power storage unit (21).
 第8の態様の電源回路(1)では、第6の態様において、第2半導体スイッチ(7B)は、第1蓄電部(21)の充電を完了した後に、第3蓄電部(23)と電圧変換部(3)とを導通する。 In the power supply circuit (1) of the eighth aspect, in the sixth aspect, the second semiconductor switch (7B) is connected to the third power storage unit (23) after charging of the first power storage unit (21) is completed. It conducts with the conversion part (3).
 この態様によれば、第3蓄電部(23)の発電電力で第1蓄電部(21)が充電される可能性を低減することができる。 According to this aspect, it is possible to reduce the possibility that the power generated by the third power storage unit (23) will charge the first power storage unit (21).
 第9の態様の電源回路(1)では、第2~8のいずれかの態様において、第1半導体スイッチ(7,7A)は、第1蓄電部(21)の充電電圧が電圧変換部(3)の動作電圧以上であり、第1蓄電部(21)の充電電圧が第2蓄電部(22)の充電電圧よりも低いときに、第2蓄電部(22)と電圧変換部(3)とを導通する。 In the power supply circuit (1) of the ninth aspect, in any one of the second to eighth aspects, the first semiconductor switch (7, 7A) changes the charging voltage of the first storage unit (21) to the voltage conversion unit (3). ) and the charging voltage of the first power storage unit (21) is lower than the charging voltage of the second power storage unit (22), the second power storage unit (22) and the voltage conversion unit (3) to conduct.
 この態様によれば、第1蓄電部(21)の充電電圧が低下したタイミングで、第2発電部(12)の発電電力を電圧変換部(3)に供給することができる。 According to this aspect, the power generated by the second power generation section (12) can be supplied to the voltage conversion section (3) at the timing when the charging voltage of the first power storage section (21) drops.
 第10の態様の電源回路(1)では、第6の態様において、第2半導体スイッチ(7B)は、第1蓄電部(21)の充電電圧が電圧変換部(3)の動作電圧以上であり、第1蓄電部(21)の充電電圧が第3蓄電部(23)の充電電圧よりも低いときに、第3蓄電部(23)と電圧変換部(3)とを導通する。 In the power supply circuit (1) of the tenth aspect, in the sixth aspect, the second semiconductor switch (7B) is configured such that the charging voltage of the first power storage unit (21) is equal to or higher than the operating voltage of the voltage conversion unit (3). , when the charging voltage of the first power storage unit (21) is lower than the charging voltage of the third power storage unit (23), the third power storage unit (23) and the voltage conversion unit (3) are electrically connected.
 この態様によれば、第1蓄電部(21)の充電電圧が低下したタイミングで、第3発電部(13)の発電電力を電圧変換部(3)に供給することができる。 According to this aspect, the power generated by the third power generation section (13) can be supplied to the voltage conversion section (3) at the timing when the charging voltage of the first power storage section (21) drops.
 第11の態様の発電システム(100)は、第1~10のいずれかの態様の電源回路(1)と、第1発電部(11)及び第2発電部(12)と、を備える。 The power generation system (100) of the eleventh aspect comprises the power supply circuit (1) of any one of the first to tenth aspects, a first power generation section (11) and a second power generation section (12).
 この態様によれば、少なくとも2種類の発電部(第1発電部(11)及び第2発電部(12))から効率良く電力を取り出すことができる。 According to this aspect, electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)).
 第2~第10の態様に係る構成については、電源回路(1)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to tenth aspects are not essential to the power supply circuit (1), and can be omitted as appropriate.
 第12の態様の電源回路(1)では、第1の態様において、スイッチ(SW1)は第1ダイオード(9,9A)を含む。第2蓄電部(22)は、第1ダイオード(9,9A)のアノードに電気的に接続される。電圧変換部(3)は、第1蓄電部(21)と、第1ダイオード(9,9A)のカソードとに電気的に接続される。 In the power supply circuit (1) of the twelfth aspect, in the first aspect, the switch (SW1) includes the first diode (9, 9A). The second power storage unit (22) is electrically connected to the anode of the first diode (9, 9A). The voltage converter (3) is electrically connected to the first power storage unit (21) and the cathode of the first diode (9, 9A).
 この態様によれば、第2蓄電部(22)は第1ダイオード(9,9A)を介して電圧変換部(3)に接続されており、第1蓄電部(21)の充電電圧が第2蓄電部(22)の充電電圧よりも低くなって第1ダイオード(9,9A)が導通すると、第2蓄電部(22)に蓄えられた電荷が電圧変換部(3)に供給される。したがって、第1発電部(11)の発電出力の低下に伴って第1蓄電部(21)の充電電圧が低下したタイミングで第1ダイオード(9,9A)が導通し、第2蓄電部(22)に蓄えられた電力が電圧変換部(3)に供給されるから、第2発電部(12)の発電電力を効率良く利用でき、少なくとも2種類の発電部(第1発電部(11)及び第2発電部(12))から効率良く電力を取り出すことができる。 According to this aspect, the second power storage unit (22) is connected to the voltage conversion unit (3) via the first diode (9, 9A), and the charging voltage of the first power storage unit (21) is the second When the first diode (9, 9A) becomes conductive as the voltage becomes lower than the charging voltage of the storage unit (22), the charge stored in the second storage unit (22) is supplied to the voltage conversion unit (3). Therefore, the first diodes (9, 9A) become conductive at the timing when the charging voltage of the first power storage unit (21) drops as the power generation output of the first power generation unit (11) drops, and the second power storage unit (22 ) is supplied to the voltage conversion section (3), the power generated by the second power generation section (12) can be efficiently used, and at least two types of power generation sections (the first power generation section (11) and Electric power can be efficiently extracted from the second power generation section (12).
 第13の態様の電源回路(1)では、第12の態様において、第1蓄電部(21)の充電電圧が第2蓄電部(22)の充電電圧以上であるときは、電圧変換部(3)は第1蓄電部(21)から電力の供給を受ける。第1蓄電部(21)の充電電圧が第2蓄電部(22)の充電電圧よりも低いときは、第2蓄電部(22)は電圧変換部(3)に電力を供給する。 In the power supply circuit (1) of the thirteenth aspect, in the twelfth aspect, when the charging voltage of the first power storage unit (21) is equal to or higher than the charging voltage of the second power storage unit (22), the voltage conversion unit (3 ) receives power supply from the first power storage unit (21). When the charging voltage of the first power storage unit (21) is lower than the charging voltage of the second power storage unit (22), the second power storage unit (22) supplies power to the voltage conversion unit (3).
 この態様によれば、第1蓄電部(21)の充電電圧が第2蓄電部(22)の充電電圧よりも低くなると、第1ダイオード(9,9A)が導通して、第2蓄電部(22)に蓄えられた電力を電圧変換部(3)に供給することができる。 According to this aspect, when the charging voltage of the first power storage unit (21) becomes lower than the charging voltage of the second power storage unit (22), the first diode (9, 9A) becomes conductive and the second power storage unit ( 22) can be supplied to the voltage converter (3).
 第14の態様の電源回路(1)では、第12又は13の態様において、さらに第3発電部(13)から電力が供給される電源回路(1)である。電源回路(1)は、第3発電部(13)が発電する電力を充電する第3蓄電部(23)と、アノードで第3蓄電部(23)に電気的に接続され、カソードで電圧変換部(3)に電気的に接続される第2ダイオード(9B)と、をさらに備える。 The power supply circuit (1) of the fourteenth aspect is, in the twelfth or thirteenth aspect, a power supply circuit (1) further supplied with electric power from the third power generation section (13). A power supply circuit (1) is electrically connected to a third power storage unit (23) for charging power generated by a third power generation unit (13), and is electrically connected to the third power storage unit (23) at an anode, and converts voltage at a cathode. and a second diode (9B) electrically connected to the part (3).
 この態様によれば、第1~第3発電部(11~13)から効率良く電力を取り出すことができる。 According to this aspect, electric power can be efficiently extracted from the first to third power generation units (11 to 13).
 第15の態様の電源回路(1)では、第12~14のいずれかの態様において、第1蓄電部(21)の容量値は、第1発電部(11)の単位時間あたりの発電量に比べて小さい。第2蓄電部(22)の容量値は、第2発電部(12)の単位時間あたりの発電量の全てを充電可能な容量値である。 In the power supply circuit (1) of the fifteenth aspect, in any one of the twelfth to fourteenth aspects, the capacity value of the first power storage unit (21) is equal to the power generation amount of the first power generation unit (11) per unit time. small in comparison. The capacity value of the second power storage section (22) is a capacity value that can charge the entire amount of power generated per unit time of the second power generation section (12).
 この態様によれば、発電期間が第1発電部(11)よりも短い第2発電部(12)の発電量が第1発電部(11)の発電量より大きい場合でも、第2発電部(12)の発電量の全てを第2蓄電部(22)に充電できるので、第2蓄電部(22)に蓄えられた電力を所望のタイミングで電圧変換部(3)に供給できる。したがって、第1発電部(11)及び第2発電部(12)から効率良く電力を取り出すことができる。 According to this aspect, even if the power generation amount of the second power generation section (12) whose power generation period is shorter than that of the first power generation section (11) is larger than that of the first power generation section (11), the second power generation section ( Since the second power storage unit (22) can be charged with the entire power generation amount of 12), the electric power stored in the second power storage unit (22) can be supplied to the voltage conversion unit (3) at a desired timing. Therefore, electric power can be efficiently extracted from the first power generation section (11) and the second power generation section (12).
 第16の態様の発電システム(100)は、第1発電部(11)と、第1発電部(11)が発電した後に発電を開始する第2発電部(12)と、第12~第15のいずれかの態様の電源回路(1)と、を備える。電源回路(1)は、第1発電部(11)及び第2発電部(12)に電気的に接続される。 The power generation system (100) of the sixteenth aspect comprises a first power generation section (11), a second power generation section (12) that starts power generation after the first power generation section (11) has generated power, and 12th to 15th power generation sections. and a power supply circuit (1) according to any one of the above. A power supply circuit (1) is electrically connected to a first power generation section (11) and a second power generation section (12).
 この態様によれば、少なくとも2種類の発電部(第1発電部(11)及び第2発電部(12))から効率良く電力を取り出すことができる。 According to this aspect, electric power can be efficiently extracted from at least two types of power generation units (the first power generation unit (11) and the second power generation unit (12)).
 第17の態様の発電システム(100)では、第16の態様において、第2発電部(12)が発電を開始してから終了するまでの発電期間では、第2蓄電部(22)の充電電圧が、第1蓄電部(21)の充電電圧よりも低い。 In the power generation system (100) of the seventeenth aspect, in the sixteenth aspect, the charging voltage of the second power storage unit (22) is is lower than the charging voltage of the first power storage unit (21).
 この態様によれば、第2発電部(12)の発電が終了した後に、第2蓄電部(22)から電圧変換部(3)に電力を供給することができる。 According to this aspect, electric power can be supplied from the second power storage section (22) to the voltage conversion section (3) after the second power generation section (12) finishes generating power.
 第12~第15の態様に係る構成については、電源回路(1)に必須の構成ではなく、適宜省略可能である。第17の態様に係る構成については、発電システム(100)に必須の構成ではなく、適宜省略可能である。 The configurations according to the 12th to 15th aspects are not essential to the power supply circuit (1), and can be omitted as appropriate. The configuration according to the seventeenth aspect is not essential for the power generation system (100), and can be omitted as appropriate.
 1 電源回路
 3 電圧変換部
 7,7A 第1半導体スイッチ
 7B 第2半導体スイッチ
 9,9A 第1ダイオード
 9B 第2ダイオード
 11 第1発電部
 12 第2発電部
 13 第3発電部
 21 第1蓄電部
 22 第2蓄電部
 23 第3蓄電部
 91 制御回路
 92 遅延回路
 100 発電システム
 L1 負荷
 SW1 スイッチ
 Q1,Q2 MOSFET(第1半導体スイッチ)
Reference Signs List 1 power supply circuit 3 voltage conversion unit 7, 7A first semiconductor switch 7B second semiconductor switch 9, 9A first diode 9B second diode 11 first power generation unit 12 second power generation unit 13 third power generation unit 21 first power storage unit 22 Second power storage unit 23 Third power storage unit 91 Control circuit 92 Delay circuit 100 Power generation system L1 Load SW1 Switches Q1, Q2 MOSFETs (first semiconductor switches)

Claims (17)

  1.  第1発電部と第2発電部とから電力を供給される電源回路であって、
     前記第1発電部が発電する電力を充電する第1蓄電部と、
     前記第2発電部が発電する電力を充電する第2蓄電部と、
     前記第2蓄電部に電気的に接続されるスイッチと、
     前記第1蓄電部に電気的に接続され、かつ、前記第2蓄電部に前記スイッチを介して電気的に接続される電圧変換部と、
    を備える、
     電源回路。
    A power supply circuit to which electric power is supplied from the first power generation unit and the second power generation unit,
    a first power storage unit that charges the electric power generated by the first power generation unit;
    a second power storage unit that charges the electric power generated by the second power generation unit;
    a switch electrically connected to the second power storage unit;
    a voltage conversion unit electrically connected to the first power storage unit and electrically connected to the second power storage unit via the switch;
    comprising
    power circuit.
  2.  前記スイッチは、第1半導体スイッチを含み、
     前記第1半導体スイッチは、前記第1蓄電部が充電された後に、前記第2蓄電部と前記電圧変換部とを導通する、
     請求項1に記載の電源回路。
    the switch includes a first semiconductor switch;
    The first semiconductor switch electrically connects the second power storage unit and the voltage conversion unit after the first power storage unit is charged.
    The power supply circuit according to claim 1.
  3.  前記第1半導体スイッチのオン/オフを制御する制御回路を、更に備え、
     前記制御回路は、前記第1発電部と前記第2発電部との少なくとも一つから電力が供給される、
     請求項2に記載の電源回路。
    further comprising a control circuit for controlling on/off of the first semiconductor switch,
    The control circuit is supplied with electric power from at least one of the first power generation unit and the second power generation unit.
    3. The power supply circuit according to claim 2.
  4.  前記第1発電部と前記第2発電部との少なくとも1つと電気的に接続され、
     前記第1半導体スイッチをオンにする時間を遅延させる遅延回路を、更に備える、
     請求項2に記載の電源回路。
    electrically connected to at least one of the first power generation unit and the second power generation unit;
    further comprising a delay circuit that delays the time to turn on the first semiconductor switch,
    3. The power supply circuit according to claim 2.
  5.  前記第1蓄電部の容量値は、前記第1発電部の単位時間あたりの発電量に比べて小さく、
     前記第2蓄電部の容量値は、前記第2発電部の単位時間あたりの発電量の全てを充電可能な容量値であり、
     前記第1半導体スイッチは、前記第2発電部の発電が終わった後にオンになる、
     請求項2~4のいずれか1項に記載の電源回路。
    the capacity value of the first power storage unit is smaller than the power generation amount per unit time of the first power generation unit,
    the capacity value of the second power storage unit is a capacity value capable of charging the entire power generation amount per unit time of the second power generation unit;
    The first semiconductor switch is turned on after power generation by the second power generation unit is finished.
    The power supply circuit according to any one of claims 2-4.
  6.  さらに第3発電部から電力が供給される請求項2~5のいずれか1項に記載の電源回路であって、
     前記電圧変換部に電気的に接続される第2半導体スイッチと、
     前記第2半導体スイッチに電気的に接続され、前記第2半導体スイッチを介して前記電圧変換部に電気的に接続され、前記第3発電部が発電する電力を充電する第3蓄電部と、
    をさらに備え、
     前記第2半導体スイッチは、前記第1蓄電部が充電された後に、前記第3蓄電部と前記電圧変換部とを導通する、
     請求項2~5のいずれか1項に記載の電源回路。
    Further, the power supply circuit according to any one of claims 2 to 5, wherein electric power is supplied from the third power generation unit,
    a second semiconductor switch electrically connected to the voltage conversion unit;
    a third power storage unit electrically connected to the second semiconductor switch, electrically connected to the voltage conversion unit via the second semiconductor switch, and charged with electric power generated by the third power generation unit;
    further comprising
    The second semiconductor switch electrically connects the third power storage unit and the voltage conversion unit after the first power storage unit is charged.
    The power supply circuit according to any one of claims 2-5.
  7.  前記第1半導体スイッチは、前記第1蓄電部の充電を完了した後に、前記第2蓄電部と前記電圧変換部とを導通する、
     請求項2~6のいずれか1項に記載の電源回路。
    The first semiconductor switch electrically connects the second power storage unit and the voltage conversion unit after charging of the first power storage unit is completed.
    The power supply circuit according to any one of claims 2-6.
  8.  前記第2半導体スイッチは、前記第1蓄電部の充電を完了した後に、前記第3蓄電部と前記電圧変換部とを導通する、
     請求項6に記載の電源回路。
    The second semiconductor switch electrically connects the third power storage unit and the voltage conversion unit after charging of the first power storage unit is completed.
    7. The power supply circuit according to claim 6.
  9.  前記第1半導体スイッチは、前記第1蓄電部の充電電圧が前記電圧変換部の動作電圧以上であり、前記第1蓄電部の充電電圧が前記第2蓄電部の充電電圧よりも低いときに、前記第2蓄電部と前記電圧変換部とを導通する、
     請求項2~8のいずれか1項に記載の電源回路。
    When the charged voltage of the first power storage unit is equal to or higher than the operating voltage of the voltage conversion unit and the charged voltage of the first power storage unit is lower than the charged voltage of the second power storage unit, the first semiconductor switch connecting the second power storage unit and the voltage conversion unit;
    The power supply circuit according to any one of claims 2-8.
  10.  前記第2半導体スイッチは、前記第1蓄電部の充電電圧が前記電圧変換部の動作電圧以上であり、前記第1蓄電部の充電電圧が前記第3蓄電部の充電電圧よりも低いときに、前記第3蓄電部と前記電圧変換部とを導通する、
     請求項6に記載の電源回路。
    When the charged voltage of the first power storage unit is equal to or higher than the operating voltage of the voltage conversion unit and the charged voltage of the first power storage unit is lower than the charged voltage of the third power storage unit, the second semiconductor switch connecting the third power storage unit and the voltage conversion unit;
    7. The power supply circuit according to claim 6.
  11.  請求項1~10のいずれか1項に記載の電源回路と、
     前記第1発電部及び前記第2発電部と、を備える、
     発電システム。
    A power supply circuit according to any one of claims 1 to 10;
    The first power generation unit and the second power generation unit,
    power generation system.
  12.  前記スイッチは、第1ダイオードを含み、
     前記第2蓄電部は、前記第1ダイオードのアノードに電気的に接続され、
     前記電圧変換部は、前記第1蓄電部と、前記第1ダイオードのカソードとに電気的に接続される、
    を備える、
     請求項1に記載の電源回路。
    the switch includes a first diode;
    the second power storage unit is electrically connected to an anode of the first diode;
    The voltage conversion unit is electrically connected to the first power storage unit and the cathode of the first diode,
    comprising
    The power supply circuit according to claim 1.
  13.  前記第1蓄電部の充電電圧が前記第2蓄電部の充電電圧以上であるときは、前記電圧変換部は前記第1蓄電部から電力の供給を受け、
     前記第1蓄電部の充電電圧が前記第2蓄電部の充電電圧よりも低いときは、前記第2蓄電部は前記電圧変換部に電力を供給する、
     請求項12に記載の電源回路。
    when the charging voltage of the first power storage unit is equal to or higher than the charging voltage of the second power storage unit, the voltage conversion unit receives power supply from the first power storage unit;
    when the charging voltage of the first power storage unit is lower than the charging voltage of the second power storage unit, the second power storage unit supplies electric power to the voltage conversion unit;
    13. The power supply circuit according to claim 12.
  14.  さらに第3発電部から電力が供給される請求項12又は13に記載の電源回路であって、
     前記第3発電部が発電する電力を充電する第3蓄電部と、
     アノードで前記第3蓄電部に電気的に接続され、カソードで前記電圧変換部に電気的に接続される第2ダイオードと、
    をさらに備える、
     請求項12又は13に記載の電源回路。
    14. The power supply circuit according to claim 12 or 13, wherein power is further supplied from the third power generation unit,
    a third power storage unit that charges the electric power generated by the third power generation unit;
    a second diode electrically connected to the third power storage unit at an anode and electrically connected to the voltage conversion unit at a cathode;
    further comprising
    14. The power supply circuit according to claim 12 or 13.
  15.  前記第1蓄電部の容量値は、前記第1発電部の単位時間あたりの発電量に比べて小さく、
     前記第2蓄電部の容量値は、前記第2発電部の単位時間あたりの発電量の全てを充電可能な容量値である、
     請求項12~14のいずれか1項に記載の電源回路。
    the capacity value of the first power storage unit is smaller than the power generation amount per unit time of the first power generation unit,
    The capacity value of the second power storage unit is a capacity value that can charge the entire power generation amount per unit time of the second power generation unit.
    The power supply circuit according to any one of claims 12-14.
  16.  第1発電部と、
     前記第1発電部が発電した後に発電を開始する第2発電部と、
     前記第1発電部及び前記第2発電部に電気的に接続される請求項12~15のいずれか1項に記載の電源回路と、を備える、
     発電システム。
    a first power generation unit;
    a second power generation unit that starts generating power after the first power generation unit generates power;
    and a power supply circuit according to any one of claims 12 to 15 electrically connected to the first power generation unit and the second power generation unit,
    power generation system.
  17.  前記第2発電部が発電を開始してから終了するまでの発電期間では、前記第2蓄電部の充電電圧が、前記第1蓄電部の充電電圧よりも低い、
     請求項16に記載の発電システム。
    In a power generation period from when the second power generation unit starts to ends power generation, the charging voltage of the second power storage unit is lower than the charging voltage of the first power storage unit.
    The power generation system according to claim 16.
PCT/JP2021/044252 2021-01-25 2021-12-02 Power supply circuit, and power generation system including same WO2022158134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022577016A JPWO2022158134A1 (en) 2021-01-25 2021-12-02

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021009810 2021-01-25
JP2021-009810 2021-01-25
JP2021-009811 2021-01-25
JP2021009811 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022158134A1 true WO2022158134A1 (en) 2022-07-28

Family

ID=82549700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044252 WO2022158134A1 (en) 2021-01-25 2021-12-02 Power supply circuit, and power generation system including same

Country Status (2)

Country Link
JP (1) JPWO2022158134A1 (en)
WO (1) WO2022158134A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145849A (en) * 2010-01-14 2011-07-28 Sharp Corp Electric equipment
JP2012178949A (en) * 2011-02-28 2012-09-13 Toyota Industries Corp Charging apparatus
JP2019197546A (en) * 2018-05-10 2019-11-14 ソーラーエッジ テクノロジーズ リミテッド Systems and methods to increase the reliability and the service life time of photovoltaic (pv) modules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145849A (en) * 2010-01-14 2011-07-28 Sharp Corp Electric equipment
JP2012178949A (en) * 2011-02-28 2012-09-13 Toyota Industries Corp Charging apparatus
JP2019197546A (en) * 2018-05-10 2019-11-14 ソーラーエッジ テクノロジーズ リミテッド Systems and methods to increase the reliability and the service life time of photovoltaic (pv) modules

Also Published As

Publication number Publication date
JPWO2022158134A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6383048B1 (en) Tactile feedback system, electronic device, and method for adjusting vibration intensity
JP4811537B1 (en) Power generator
US9608548B2 (en) Power generating device and electronic component
JP2018030107A (en) Haptic feedback system, electronic equipment and method for generating haptic feedback
KR20170049490A (en) Power charging device with charge saturation disconnector through electromagnetic force release
CN102804556A (en) Motor for a personal skin care appliance
JP5633383B2 (en) Power generation device, secondary battery and electronic device
CN105849925A (en) Piezoelectric power generation module and remote controller
JP2011507478A (en) Power converter with variable capacitor
JP2013081276A (en) Power generating device, secondary battery, and electronic device
US20140062389A1 (en) Power generator, secondary cell, electronic apparatus, and transporter
WO2022158134A1 (en) Power supply circuit, and power generation system including same
CN108336882B (en) Beam type micro-driver based on electromagnetic self-excited vibration principle
US8093967B1 (en) MEMS high speed switching converter
WO2020075371A1 (en) Power supply circuit, start-up circuit, power generating device, and electronic apparatus
WO2023157672A1 (en) Power generation device
JP2022113515A (en) Power circuit and power generating system
KR20160085412A (en) Electromagnetic contactor
JP2013081277A (en) Power generating device, method for controlling power generating device, electronic device, and transportation means
JP2018121509A (en) Vibration energy collection apparatus
JP2006253039A (en) Micro machine switch and its drive method
CN102754176B (en) For the device of electromagnetic switchgear
JP2019201489A (en) Power generation device and input device
WO2018042902A1 (en) Power generation device
JP5880594B2 (en) Driving element and driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921236

Country of ref document: EP

Kind code of ref document: A1