WO2021256850A1 - System for converting operation mode of grid-connected inverter - Google Patents

System for converting operation mode of grid-connected inverter Download PDF

Info

Publication number
WO2021256850A1
WO2021256850A1 PCT/KR2021/007543 KR2021007543W WO2021256850A1 WO 2021256850 A1 WO2021256850 A1 WO 2021256850A1 KR 2021007543 W KR2021007543 W KR 2021007543W WO 2021256850 A1 WO2021256850 A1 WO 2021256850A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
real
imaginary
voltage
value
Prior art date
Application number
PCT/KR2021/007543
Other languages
French (fr)
Korean (ko)
Inventor
권민호
이종필
오창열
김기룡
제갈준혁
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2021256850A1 publication Critical patent/WO2021256850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin

Definitions

  • the present invention relates to a power converter control related technology, and more particularly, to a system for switching an operation mode for seamless voltage control in a grid-connected inverter having a significant load.
  • the microgrid which is a form of a small power grid fused with solar power, wind power, energy storage, etc., is classified into an AC microgrid that is connected based on AC power and a DC microgrid that is linked based on DC power.
  • DC microgrid consists of a structure in which several power conversion devices are tied to one bus (DC-bus). Since these devices are separated from each other, a distributed control method that autonomously participates in power control is essential.
  • an energy storage system (ESS) and a grid-connected inverter play a pivotal role in controlling and managing power in the grid.
  • the grid-connected inverter is located between the upper grid and the microgrid, and when the microgrid operates in grid-connected mode, it controls the incoming and outgoing power from the upper grid or operates as a basic voltage source of the microgrid.
  • the grid-connected inverter requires a voltage control operation for the AC-side load.
  • the load voltage may fluctuate greatly depending on the output power and load conditions.
  • a PPL-based mode conversion method has been proposed as a mode conversion method of a conventional grid-connected inverter. This is a method to select and control the controller to be activated or deactivated according to the operation mode by summing the outputs of the current controller and the voltage controller.
  • mode conversion without a transient state is possible, but until the grid-connected inverter recognizes independent operation. There is a problem in that the voltage fluctuation is severe in the time period.
  • an indirect current control technique has been proposed as a mode switching technique of a conventional grid-connected inverter.
  • This is a technique that performs voltage control in both the grid-connected mode and the independent operation mode. By performing voltage control even during the independent operation of the grid-connected inverter, the voltage fluctuation is small and mode conversion without a transient state is possible. There is this.
  • the indirect current control method is a control algorithm limited to an inverter having an LCL filter, and there is a limitation in that it cannot be applied to a system using an LC filter.
  • the LCL filter indirectly controls the grid-side current, not the inverter-side current, the higher the order of the current controller, the higher the controller design difficulty, which makes it difficult to design a wide controller bandwidth. There is a limitation that it is not suitable.
  • FIG. 2 is a schematic circuit diagram of a general grid-connected three-phase inverter having a significant load
  • FIG. 3 is a control block diagram showing a schematic configuration of an operation mode switching system of a conventional grid-connected inverter.
  • the operation mode conversion system of the grid-connected inverter of FIG. 3 calculates the amount of change in the load voltage according to the grid current before and after the circuit breaker is opened when the breaker of the grid-connected inverter is opened, and based on the amount of change, a plurality of By operating at least one of the external voltage controller loops to control the voltage of the critical load, it is possible to supply a stable voltage to the critical load even in the independent operation mode.
  • the capacitor voltage (Vc) value is at the same node as the grid voltage (Vg), so they are measured to be the same as each other, and accordingly, the Vc, q values It has a value as much as ⁇ V. Therefore, the Vg,q value also has a finite value as much as ⁇ V, and this value not only greatly changes the frequency ( ⁇ ) of the output voltage through the controller of the PLL but also saturates the controller.
  • PLL Phase Locked Loop
  • the system of FIG. 3 can be limitedly applied only in the balanced state of the three-phase load, and there is a problem of causing the unbalance of the three-phase line voltage in the unbalanced state of the load.
  • the present invention has been devised to solve the above-mentioned conventional problems, and the operation mode conversion system of a grid-connected inverter capable of controlling the output voltage so as not to saturate the PLL controller by diverging the frequency of the output voltage even when switching independent operation is intended to provide
  • Another object of the present invention is to provide an operation mode switching system of a grid-connected inverter capable of supplying a balanced voltage to a load even when the load is in an unbalanced state.
  • the operation mode conversion system of the grid-connected inverter is a grid-connected inverter operation mode conversion system having a capacitor (Cf) and an inductor (Li) for converting the output voltage of the inverter into a sine wave
  • it includes an output current calculation unit, a voltage control unit, a frequency control unit, an inductor current calculation unit, and an output voltage calculation unit.
  • the output current calculation unit calculates the real axis and imaginary axis output current target values (Iod*, Ioq*) of the grid-connected inverter according to the power command values (P*, Q*), and the voltage control unit uses the voltage command value of the capacitance to calculate the real axis
  • the current compensation value ( ⁇ Id) is calculated
  • the frequency control unit calculates the imaginary contraction current compensation value ( ⁇ Iq) using the frequency command value of the system
  • the inductor current calculation unit calculates the output current target value, the voltage of the capacitor, the real axis current compensation value
  • the real axis and imaginary axis current command values (Iid*,Iiq*) of the inductor are calculated using the imaginary axis current compensation value
  • the output voltage calculator uses the inductor current setpoint and the measured current of the inductor to calculate the output voltage setpoint (Via) of the inverter. *, Vib*, Vic*) are calculated.
  • control loop for the grid-connected mode and the control loop for the independent operation mode are integrated into one, and the saturation and activation of the compensator of each loop can be switched autonomously and seamlessly according to the system state.
  • the output voltage calculation unit converts the real and imaginary axis current command values of the inductor into current command values for three phases, respectively, and the output voltage command value using the converted 3-phase inductor current command value and the inductor current measurement value. It may include a resonance type (PR) control unit to calculate. According to this configuration, it is possible to supply a balanced voltage to the load even when the load is in an unbalanced state by using three PR controllers for controlling the instantaneous value of each current of the three phases.
  • PR resonance type
  • the frequency control unit including an imaginary axis upper compensation unit for calculating the imaginary axis upper current compensation value using the frequency error calculated by adding a preset frequency tolerance to the error between the frequency command value and the frequency measurement value of the system It includes a loop and an imaginary axis lower control loop including an imaginary axis lower compensation unit that calculates an imaginary axis lower current compensation value using the frequency error calculated by subtracting a preset frequency tolerance from the error between the frequency command value and the frequency measurement value of the system can do.
  • the imaginary axis current compensation value ⁇ Iq may be the sum of the output value of the imaginary axis upper control loop and the output value of the imaginary axis lower control loop.
  • the imaginary axis upper control loop further includes an imaginary axis upper limiter for limiting the output upper limit of the imaginary axis upper compensator
  • the imaginary axis lower control loop further includes an imaginary axis lower limiter for limiting the output lower limit of the imaginary axis lower compensator can do.
  • the voltage controller includes a real-axis upper compensation unit that calculates a real-axis upper current compensation value using the voltage error calculated by adding a preset voltage tolerance to the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage.
  • real-axis upper control loop, and the real-axis lower part that calculates the real-axis lower current compensation value using the voltage error calculated by subtracting the preset voltage tolerance from the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage
  • It may include a real-axis lower control loop including a compensation unit.
  • the real-axis current compensation value ⁇ Id may be the sum of the output value of the upper control loop and the output value of the lower control loop.
  • the upper real axis control loop further includes a real axis upper limiter for limiting the output upper limit of the real axis upper compensation unit
  • the real axis lower control loop further includes a real axis lower limiter for limiting the output lower limit of the real axis lower compensation unit can do.
  • control loop for the grid-connected mode and the control loop for the independent operation mode are integrated into one, and the switching of saturation and activation of the compensator of each loop can be performed autonomously and seamlessly according to the system state.
  • Vc,q imaginary contraction capacitor voltage
  • FIG. 1 is a conceptual diagram showing a schematic configuration of a DC microgrid.
  • Figure 2 is a schematic circuit diagram of a general grid-connected three-phase inverter having a significant load.
  • FIG. 3 is a control block diagram showing a schematic configuration of an operation mode switching system of a conventional grid-connected inverter.
  • FIG. 4 is a diagram illustrating a phase angle calculation process in a PLL technique.
  • FIG. 5 is a control block diagram showing a schematic configuration of an operation mode switching system of a grid-connected inverter according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating in more detail the voltage control unit and the frequency control unit of FIG. 5 .
  • FIG. 5 is a control block diagram illustrating a schematic configuration of an operation mode conversion system of a grid-connected inverter according to an embodiment of the present invention.
  • the operation mode conversion system of the grid-connected inverter is an operation mode conversion system of the grid-connected inverter having a capacitor (Cf) and an inductor (Li) for converting the output voltage of the inverter into a sine wave, and an output current calculation unit 110 , a voltage controller 120 , a frequency controller 130 , an inductor current calculator 140 , and an output voltage calculator 150 .
  • the voltage control unit 120 again includes a real axis upper control loop 122 and a real axis lower control loop 124 , and the frequency control unit 130 includes an imaginary axis upper control loop 132 and an imaginary axis lower control loop ( 134).
  • the output current calculation unit 110 calculates the real axis and imaginary axis output current target values (Iod*, Ioq*) of the grid-connected inverter according to the power command values (P*, Q*).
  • the voltage controller 120 calculates a real-axis current compensation value ⁇ Id by using the voltage command value of the capacitance.
  • 6 is a diagram illustrating in more detail the voltage control unit and the frequency control unit of FIG. 5 .
  • the real axis upper control loop 122 includes a real axis upper compensation unit 122-1 and a real axis upper limiting unit 122-2
  • the real axis lower control loop 124 includes a real axis lower compensation unit 124 . -1) and a real-axis lower limiter 124-2
  • the real-axis current compensation value ⁇ Id is the sum of the output value of the upper control loop and the output value of the lower control loop.
  • Real-axis upper compensation unit 122-1 calculates a real-axis upper current compensation value using the voltage error calculated by adding a preset voltage tolerance to the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage,
  • the real-axis upper limiter 122-2 limits the upper limit of the output of the real-axis upper compensation part 122-1.
  • the real axis lower compensation unit 124-1 calculates a real axis lower current compensation value using the voltage error calculated by subtracting a preset voltage tolerance from the error between the real axis command value of the capacitor voltage and the real axis measurement value of the capacitor voltage, and , the real-axis lower limiter 124-2 limits the output lower limit of the real-axis lower control loop 124 of the real-axis lower compensator 124-1.
  • the frequency control unit 130 calculates the imaginary contraction current compensation value ⁇ Iq using the frequency command value of the system.
  • the imaginary axis upper control loop 132 includes an imaginary axis upper compensator 132-1 and an imaginary upper limiter 132-2
  • the imaginary lower control loop 134 includes an imaginary lower axis compensation unit. It includes a part 134-1 and an imaginary-axis lower limiter 134-2
  • the imaginary-axis current compensation value ⁇ Id is the sum of the output value of the upper control loop and the output value of the lower control loop.
  • the imaginary axis upper compensation unit 132-1 calculates the imaginary axis upper current compensation value using the frequency error calculated by adding a preset frequency tolerance to the error between the frequency command value and the frequency measurement value of the system, and the imaginary axis upper limiter Reference numeral 132-2 limits the upper limit of the output of the imaginary contraction upper compensator 132-1.
  • the lower imaginary axis compensator 134-1 calculates the imaginary axis upper current compensation value using the frequency error calculated by subtracting the preset frequency tolerance from the error between the frequency command value and the frequency measurement value of the system, and the imaginary axis lower limiter Reference numeral 134-2 may further include an imaginary contraction lower limiting unit that limits the lower limit of the output of the imaginary contraction lower compensating unit 134-1.
  • ⁇ among the inputs of the frequency control unit 130 is a value within a preset allowable range, 0 is a system frequency of 60Hz, may be replaced with the frequency value of each measured system.
  • the output frequency of the system may diverge.
  • is maintained near the system frequency of 60Hz by controlling ⁇ to 0, the capacitor voltage becomes zero even when the system goes to independent operation, and the system frequency follows 60Hz well.
  • the inductor current calculating unit 140 calculates real-axis and imaginary-axis current command values Iid*, Iiq* of the inductor by using the output current target value, the voltage of the capacitor, the real-axis current compensation value, and the imaginary-axis current compensation value.
  • the output voltage calculator 150 calculates the output voltage command values Via*, Vib*, Vic* of the inverter using the inductor current command value and the inductor current measurement value.
  • the output voltage calculator 150 includes a coordinate converter 152 that converts the real and imaginary axis current command values of the inductor into current command values for three phases, respectively, and the converted three-phase inductor current command value and the measured current of the inductor.
  • PR resonance type
  • the output voltage can be stably maintained even when the load is unbalanced by controlling the currents of each phase and simultaneously controlling the positive, negative, and zero sequences.
  • the present invention integrates the control loop for the grid-connected mode and the control loop for the independent operation mode into one, and by using the limiter and anti-windup technique, the saturation and activation of the compensator of each loop is autonomous according to the system state. and designed to be seamless.
  • the present invention is composed of three PR controllers for controlling the instantaneous value of each current in three phases and a voltage/frequency controller operating only in case of a system failure.
  • a frequency controller is introduced instead of a voltage (Vc,q) controller on the imaginary side.
  • a resonance type (PR) controller for controlling the instantaneous current of each phase is introduced.
  • the output frequency may diverge or saturate the PLL controller to become uncontrollable, whereas by introducing a frequency controller in the present invention, the Vc,q value can be maintained at zero.
  • the balanced voltage is can be supplied to the load.
  • PR resonance type

Abstract

A system for converting an operation mode of a grid-connected inverter is a system for converting an operation mode of a grid-connected inverter, the system having an inductor (Li) and a capacitor (Cf) for converting an output voltage of an inverter into a sinusoid, and the system comprising: an output current calculation unit; a voltage control unit; a wavelength control unit; an inductor current calculation unit; and an output voltage calculation unit. The output current calculation unit calculates a real axis and an imaginary axis output current target value (lod*, loq*) of a grid-connected inverter according to power setpoints (P*, Q*), the voltage control unit calculates a real axis current compensation value (ΔId) by using a voltage setpoint of capacitance, the wavelength control unit calculates an imaginary axis current compensation value (ΔIq) by using a wavelength setpoint of a grid, the inductor current calculation unit calculates a real axis and an imaginary axis current setpoint (Iid*, Iiq*) of an inductor by using the output current target values, the voltage of a capacitor, the real axis current compensation value, and the imaginary axis current compensation value, and the output voltage calculation unit calculates output voltage setpoints (Via*, Vib*, Vic*) of the inverter by using a current measurement value of the inductor and the inductor current setpoints.

Description

계통연계형 인버터의 동작모드 전환 시스템Grid-connected inverter operation mode conversion system
본 발명은 전력변환장치 제어 관련 기술에 관한 것으로서, 더욱 상세하게는 중요부하를 갖는 계통연계형 인버터에서 끊김없는 전압 제어를 위해 동작모드를 전환하는 시스템에 관한 것이다.The present invention relates to a power converter control related technology, and more particularly, to a system for switching an operation mode for seamless voltage control in a grid-connected inverter having a significant load.
태양광과 풍력 등과 같이 신재생 에너지 사용의 확대를 위하여 지능형 전력망(smart grid)이 대두됨에 따라, 신재생 에너지를 기반으로 하는 분산발전 시스템에 대한 연구가 활발히 진행되고 있다. 이때, 태양광, 풍력, 에너지저장장치 등으로 융복합된 소규모 전력망 형태인 마이크로그리드(microgrid)는 교류전원을 기준으로 연계되는 AC 마이크로그리드와, 직류전원을 기준으로 연계되는 DC 마이크로그리드로 분류될 수 있다. As smart grids are emerging to expand the use of renewable energy such as solar and wind power, research on distributed power generation systems based on renewable energy is being actively conducted. At this time, the microgrid, which is a form of a small power grid fused with solar power, wind power, energy storage, etc., is classified into an AC microgrid that is connected based on AC power and a DC microgrid that is linked based on DC power. can
최근에는, 태양광, 배터리, LED 등 직류기반 기기들의 기술이 발전함에 따라 직류배전을 기반으로 하는 DC 마이크로그리드에 대한 관심이 증가하고 있다. 이와 관련하여, 도 1을 함께 참조하여 설명하기로 한다.Recently, as technologies of DC-based devices such as solar power, batteries, and LEDs develop, interest in DC microgrids based on DC distribution is increasing. In this regard, it will be described with reference to FIG. 1 .
도 1은 DC 마이크로그리드의 개략적인 구성이 도시된 개념도이다. DC 마이크로그리드는 여러 개의 전력변환 장치가 하나의 버스(DC-bus)에 묶여 있는 구조로 구성되어 있다. 이 장치들은 서로 이격되어 있기 때문에 자율적으로 전력 제어에 참여하는 분산제어 방식이 필수적이다. 여기서, 에너지저장장치(Energy Storage System, ESS)와 계통연계형 인버터(Grid-connected Inverter)는 그리드 내 전력을 제어하고 관리하는데 있어서 중추적인 역할을 수행한다.1 is a conceptual diagram showing a schematic configuration of a DC microgrid. DC microgrid consists of a structure in which several power conversion devices are tied to one bus (DC-bus). Since these devices are separated from each other, a distributed control method that autonomously participates in power control is essential. Here, an energy storage system (ESS) and a grid-connected inverter play a pivotal role in controlling and managing power in the grid.
특히, DC 마이크로그리드에서 계통연계형 인버터는 상위 계통과 마이크로그리드 사이에 위치하여 마이크로그리드가 계통연계 모드로 동작하면 상위 계통으로부터의 유출입 전력을 제어하거나 마이크로그리드의 기조전압원으로써 동작한다. In particular, in the DC microgrid, the grid-connected inverter is located between the upper grid and the microgrid, and when the microgrid operates in grid-connected mode, it controls the incoming and outgoing power from the upper grid or operates as a basic voltage source of the microgrid.
또한, 상위 계통 고장 시 마이크로그리드가 독립운전 모드로 전환되면, 계통연계형 인버터는 교류측 부하를 위한 전압 제어 동작이 요구된다. 즉, 안정적인 전원공급이 필요한 중요부하(Critical Load)가 연결되어 있는 계통연계형 인버터 시스템에서 계통이상으로 전력공급이 중단되는 단독운전 상황이 발생하면, 부하전압은 출력 전력과 부하 조건에 따라 크게 변동될 수 있다. In addition, if the microgrid is switched to the independent operation mode when the upper system fails, the grid-connected inverter requires a voltage control operation for the AC-side load. In other words, in a grid-connected inverter system to which a critical load that requires stable power supply is connected, when an independent operation situation occurs in which the power supply is interrupted due to a grid error, the load voltage may fluctuate greatly depending on the output power and load conditions. can
이러한 경우, 계통이 재투입될 경우 계통과 인버터의 출력 전압 크기 및 위상 차이로 인해 전력변환 시스템과 중요부하 등에 큰 손상을 입힐 수 있기 때문에, 계통연계형 인버터가 단독운전을 감지하면 인버터는 계통과 연결을 분리하고 중요부하 전압을 제어해야 하며, 이때 전력변환기와 중요부하에 안정적인 전압을 공급할 수 있도록 하는 모드 전환기법이 필수적이다.In this case, when the grid is restarted, the power conversion system and important loads can be greatly damaged due to the difference in phase and output voltage between the grid and the inverter. It is necessary to disconnect the connection and control the voltage of the critical load. At this time, a mode switching technique that can supply a stable voltage to the power converter and the critical load is essential.
종래의 계통연계형 인버터의 모드 전환 기법으로 PPL 기반의 모드전환 기법이 제시된 바 있다. 이는, 전류제어기와 전압제어기의 출력을 합산하여 동작 모드에 따라 활성 또는 비활성될 제어기를 선택하여 제어하는 방법이나, 과도상태가 없는 모드전환은 가능하나 계통연계형 인버터가 단독운전을 인지하기 전까지의 시구간에서 전압 변동이 심하다는 문제점이 있다.A PPL-based mode conversion method has been proposed as a mode conversion method of a conventional grid-connected inverter. This is a method to select and control the controller to be activated or deactivated according to the operation mode by summing the outputs of the current controller and the voltage controller. However, mode conversion without a transient state is possible, but until the grid-connected inverter recognizes independent operation. There is a problem in that the voltage fluctuation is severe in the time period.
또한, 종래의 계통연계형 인버터의 모드 전환 기법으로 간접전류제어 기법이 제시된 바 있다. 이는, 계통연계 모드와 독립운전 모드의 양쪽 모드에서 전압 제어를 수행하는 기법으로, 계통연계형 인버터의 단독운전 시에도 전압제어를 실시함으로써 전압변동이 작으며 과도상태가 없는 모드전환이 가능하다는 장점이 있다. In addition, an indirect current control technique has been proposed as a mode switching technique of a conventional grid-connected inverter. This is a technique that performs voltage control in both the grid-connected mode and the independent operation mode. By performing voltage control even during the independent operation of the grid-connected inverter, the voltage fluctuation is small and mode conversion without a transient state is possible. There is this.
하지만, 간접전류 제어기법은 LCL 필터를 갖는 인버터에 한정된 제어 알고리즘으로, LC필터를 사용하는 시스템에서는 적용할 수 없다는 한계가 있다. 또한, LCL 필터의 인버터측 전류가 아닌 계통측 전류를 간접적으로 제어하기 때문에, 전류제어기의 차수가 높아 제어기 설계 난이도가 높아져 제어기의 대역폭을 넓게 설계하기 어렵다는 문제점이 있으며, 빠른 응답속도를 요구하는 시스템에는 적합하지 않다는 한계가 있다. However, the indirect current control method is a control algorithm limited to an inverter having an LCL filter, and there is a limitation in that it cannot be applied to a system using an LC filter. In addition, since the LCL filter indirectly controls the grid-side current, not the inverter-side current, the higher the order of the current controller, the higher the controller design difficulty, which makes it difficult to design a wide controller bandwidth. There is a limitation that it is not suitable.
따라서, 다양한 종류의 필터에 적용이 가능하면서도 중요부하에 대한 안정적인 전압 제어를 수행할 수 있는 계통연계형 인버터 동작 방법이 제안될 필요가 있다.Therefore, there is a need to propose a grid-connected inverter operating method that can be applied to various types of filters and can perform stable voltage control for important loads.
이에 따라, 자율적인 판단으로 동작모드를 변경하여 통신 의존도가 낮아져 분산제어기반을 장점을 유지하며, 급작스러운 정전시에도 끊김없이 연속적으로 동작모드를 전환할 수 있어 중요부하에 안정적인 전원을 공급하기 위한 방안들이 시도되고 있다.Accordingly, by changing the operation mode by autonomous judgment, the communication dependence is lowered, maintaining the advantage of the distributed control base. Methods are being tried.
도 2는 중요부하를 갖는 일반적인 계통연계형 3상 인버터의 개략적인 회로도이고, 도 3은 종래 계통연계형 인버터의 동작 모드 전환 시스템의 개략적인 구성이 도시된 제어 블록도이다. 2 is a schematic circuit diagram of a general grid-connected three-phase inverter having a significant load, and FIG. 3 is a control block diagram showing a schematic configuration of an operation mode switching system of a conventional grid-connected inverter.
도 3의 계통연계형 인버터의 동작 모드 전환 시스템은 계통연계형 인버터의 차단기가 개방되는 경우, 차단기가 개방되기 이전과 이후의 계통 전류에 따른 부하 전압의 변화량을 산출하고, 변화량에 기초하여 복수의 외부 전압제어기 루프 중 적어도 하나의 외부 전압제어기 루프를 동작시켜 중요 부하의 전압제어를 수행함으로써, 단독운전 모드 시에도 중요부하에 안정적인 전압을 공급할 수 있다.The operation mode conversion system of the grid-connected inverter of FIG. 3 calculates the amount of change in the load voltage according to the grid current before and after the circuit breaker is opened when the breaker of the grid-connected inverter is opened, and based on the amount of change, a plurality of By operating at least one of the external voltage controller loops to control the voltage of the critical load, it is possible to supply a stable voltage to the critical load even in the independent operation mode.
하지만, 도 3의 시스템에 의하면 인버터가 독립운전으로 전환되었을 때, 커패시터 전압(Vc)값은 계통전압(Vg)과 같은 노드에 있기 때문에, 서로 동일한 값으로 계측되며, 이에 따라, Vc,q값이 ΔV만큼의 값을 가지게 된다. 따라서 Vg,q값 또한 ΔV만큼의 유한한 값을 가지게 되는데, 이 값은 PLL의 제어기를 거처 출력 전압의 주파수(ω)를 크게 변화시킬 뿐만 아니라 제어기를 포화시키는 문제가 있다.However, according to the system of FIG. 3, when the inverter is switched to independent operation, the capacitor voltage (Vc) value is at the same node as the grid voltage (Vg), so they are measured to be the same as each other, and accordingly, the Vc, q values It has a value as much as ΔV. Therefore, the Vg,q value also has a finite value as much as ΔV, and this value not only greatly changes the frequency (ω) of the output voltage through the controller of the PLL but also saturates the controller.
도 4는 PLL 기법에서의 위상각 산출 과정을 도시한 도면이다. 계통연계형 인버터에서 계통의 주파수 또는 위상을 추종하고 동기좌표변환에 필요한 위상각(θ)을 만들기 위해 꼭 필요한 기술로서, 일반적으로 PLL(Phase Locked loop)이라는 기법이 널리 사용된다. 4 is a diagram illustrating a phase angle calculation process in a PLL technique. In a grid-connected inverter, a technique called PLL (Phase Locked Loop) is widely used as an essential technology to follow the frequency or phase of the grid and create a phase angle (θ) required for synchronous coordinate conversion.
또한, 도 3의 시스템은 3상 부하의 평형상태에서만 국한되어 적용될 수 있으며, 부하의 불평평 상태에서는 3상 선간 전압의 불평형을 야기하는 문제가 있다.In addition, the system of FIG. 3 can be limitedly applied only in the balanced state of the three-phase load, and there is a problem of causing the unbalance of the three-phase line voltage in the unbalanced state of the load.
본 발명은 상술한 종래의 문제점을 해결하기 위해 안출된 것으로서, 독립운전 전환시에도 출력 전압의 주파수가 발산하여 PLL 제어기를 포화시키지 않도록 출력 전압을 제어할 수 있는 계통연계형 인버터의 동작 모드 전환 시스템을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the above-mentioned conventional problems, and the operation mode conversion system of a grid-connected inverter capable of controlling the output voltage so as not to saturate the PLL controller by diverging the frequency of the output voltage even when switching independent operation is intended to provide
또한, 부하가 불평형 상태라도 평형의 전압을 부하에 공급할 수 있는 계통연계형 인버터의 동작 모드 전환 시스템을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an operation mode switching system of a grid-connected inverter capable of supplying a balanced voltage to a load even when the load is in an unbalanced state.
상기 목적을 달성하기 위해 본 발명에 따른 계통연계형 인버터의 동작 모드 전환 시스템은 인버터의 출력전압을 정현파로 변환하기 위한 커패시터(Cf) 및 인턱터(Li)를 구비한 계통연계 인버터의 동작모드 전환 시스템으로서, 출력전류 산출부, 전압 제어부, 주파수 제어부, 인덕터전류 산출부, 및 출력전압 산출부를 포함한다.In order to achieve the above object, the operation mode conversion system of the grid-connected inverter according to the present invention is a grid-connected inverter operation mode conversion system having a capacitor (Cf) and an inductor (Li) for converting the output voltage of the inverter into a sine wave As such, it includes an output current calculation unit, a voltage control unit, a frequency control unit, an inductor current calculation unit, and an output voltage calculation unit.
출력전류 산출부는 전력 지령치(P*,Q*)에 따라 계통연계 인버터의 실수축 및 허수축 출력전류 목표치(Iod*,Ioq*)를 산출하고, 전압 제어부는 커패시턴스의 전압 지령치를 이용하여 실수축 전류 보상값(ΔId)을 산출하고, 주파수 제어부는 계통의 주파수 지령치를 이용하여 허수축 전류 보상값(ΔIq)을 산출하고, 인덕터전류 산출부는 출력전류 목표치, 커패시터의 전압, 실수축 전류 보상값, 허수축 전류 보상값을 이용하여 인덕터의 실수축 및 허수축 전류 지령치(Iid*,Iiq*)를 산출하며, 출력전압 산출부는 인덕터 전류 지령치와 인덕터의 전류 측정치를 이용하여 인버터의 출력전압 지령치(Via*, Vib*, Vic*)를 산출한다.The output current calculation unit calculates the real axis and imaginary axis output current target values (Iod*, Ioq*) of the grid-connected inverter according to the power command values (P*, Q*), and the voltage control unit uses the voltage command value of the capacitance to calculate the real axis The current compensation value (ΔId) is calculated, the frequency control unit calculates the imaginary contraction current compensation value (ΔIq) using the frequency command value of the system, and the inductor current calculation unit calculates the output current target value, the voltage of the capacitor, the real axis current compensation value, The real axis and imaginary axis current command values (Iid*,Iiq*) of the inductor are calculated using the imaginary axis current compensation value, and the output voltage calculator uses the inductor current setpoint and the measured current of the inductor to calculate the output voltage setpoint (Via) of the inverter. *, Vib*, Vic*) are calculated.
이와 같은 구성에 의하면, 계통연계 모드를 위한 제어루프와 독립운전 모드를 위한 제어루프를 하나로 통합하고, 각 루프의 보상기의 포화와 활성화의 전환이 계통 상태에 따라 자율적이며 끊김없이 이루어질 수 있게 된다. According to such a configuration, the control loop for the grid-connected mode and the control loop for the independent operation mode are integrated into one, and the saturation and activation of the compensator of each loop can be switched autonomously and seamlessly according to the system state.
따라서, 급작스러운 정전시에도 끊김없이 독립적으로 마이크로그리드를 운영할 수 있으며 상위 제어기와의 통신 의존도가 낮아 통신 설비 비용의 부담을 줄일 수 있게 된다.Therefore, it is possible to independently operate the microgrid without interruption even in case of a sudden power outage, and it is possible to reduce the burden of communication equipment cost due to low communication dependence with the upper controller.
이때, 출력전압 산출부는 인덕터의 실수축 및 허수축 전류 지령치를 3상에 대한 전류 지령치로 각각 변환하는 좌표 변환부, 및 변환된 3상의 인덕터 전류 지령치와 인덕터의 전류 측정치를 이용하여 출력전압 지령치를 산출하는 공진형(PR) 제어부를 포함할 수 있다. 이와 같은 구성에 의하면, 3상의 각 전류의 순시값을 제어하기 위한 3개의 PR 제어기를 이용하여 부하가 불평형 상태에 있더라도 평형의 전압을 부하에 공급할 수 있게 된다.At this time, the output voltage calculation unit converts the real and imaginary axis current command values of the inductor into current command values for three phases, respectively, and the output voltage command value using the converted 3-phase inductor current command value and the inductor current measurement value. It may include a resonance type (PR) control unit to calculate. According to this configuration, it is possible to supply a balanced voltage to the load even when the load is in an unbalanced state by using three PR controllers for controlling the instantaneous value of each current of the three phases.
또한, 주파수 제어부는, 계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 더하여 산출된 주파수 오차를 이용하여 허수축 상부 전류 보상값을 산출하는 허수축 상부 보상부를 포함하는 허수축 상부 제어 루프, 및 계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 빼서 산출된 주파수 오차를 이용하여 허수축 하부 전류 보상값을 산출하는 허수축 하부 보상부를 포함하는 허수축 하부 제어 루프를 포함할 수 있다. 이때, 허수축 전류 보상값(ΔIq)은 허수축 상부 제어 루프의 출력값과 허수축 하부 제어 루프의 출력값의 합일 수 있다.In addition, the frequency control unit, the imaginary axis upper control including an imaginary axis upper compensation unit for calculating the imaginary axis upper current compensation value using the frequency error calculated by adding a preset frequency tolerance to the error between the frequency command value and the frequency measurement value of the system It includes a loop and an imaginary axis lower control loop including an imaginary axis lower compensation unit that calculates an imaginary axis lower current compensation value using the frequency error calculated by subtracting a preset frequency tolerance from the error between the frequency command value and the frequency measurement value of the system can do. In this case, the imaginary axis current compensation value ΔIq may be the sum of the output value of the imaginary axis upper control loop and the output value of the imaginary axis lower control loop.
이와 같은 구성에 의하면, 허수축 커패시터 전압(Vc,q)을 0으로 유지시켜 계통의 출력 주파수를 발산시키거나 PLL 제어기를 포화시켜, 계통이 제어 불능상태가 되는 것을 방지할 수 있게 된다.According to this configuration, it is possible to prevent the system from becoming out of control by maintaining the imaginary contraction capacitor voltage (Vc,q) at 0 to diverge the output frequency of the system or saturating the PLL controller.
또한, 허수축 상부 제어 루프는 허수축 상부 보상부의 출력 상한을 제한하는 허수축 상부 제한부를 더 포함하고, 허수축 하부 제어 루프는 허수축 하부 보상부의 출력 하한을 제한하는 허수축 하부 제한부를 더 포함할 수 있다.In addition, the imaginary axis upper control loop further includes an imaginary axis upper limiter for limiting the output upper limit of the imaginary axis upper compensator, and the imaginary axis lower control loop further includes an imaginary axis lower limiter for limiting the output lower limit of the imaginary axis lower compensator can do.
또한, 전압 제어부는 커패시터 전압의 실수축 지령치와 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 더하여 산출된 전압 오차를 이용하여 실수축 상부 전류 보상값을 산출하는 실수축 상부 보상부 포함하는 실수축 상부 제어 루프, 및 커패시터 전압의 실수축 지령치와 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 빼서 산출된 전압 오차를 이용하여 실수축 하부 전류 보상값을 산출하는 실수축 하부 보상부를 포함하는 실수축 하부 제어 루프를 포함할 수 있다. 이때, 실수축 전류 보상값(ΔId)은 상부 제어 루프의 출력값과 하부 제어 루프의 출력값의 합일 수 있다.In addition, the voltage controller includes a real-axis upper compensation unit that calculates a real-axis upper current compensation value using the voltage error calculated by adding a preset voltage tolerance to the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage. real-axis upper control loop, and the real-axis lower part that calculates the real-axis lower current compensation value using the voltage error calculated by subtracting the preset voltage tolerance from the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage It may include a real-axis lower control loop including a compensation unit. In this case, the real-axis current compensation value ΔId may be the sum of the output value of the upper control loop and the output value of the lower control loop.
또한, 상부 실수축 제어 루프는 실수축 상부 보상부의 출력 상한을 제한하는 실수축 상부 제한부를 더 포함하고, 실수축 하부 제어 루프는 실수축 하부 보상부의 출력 하한을 제한하는 실수축 하부 제한부를 더 포함할 수 있다.In addition, the upper real axis control loop further includes a real axis upper limiter for limiting the output upper limit of the real axis upper compensation unit, and the real axis lower control loop further includes a real axis lower limiter for limiting the output lower limit of the real axis lower compensation unit can do.
본 발명에 의하면, 계통연계 모드를 위한 제어루프와 독립운전 모드를 위한 제어루프를 하나로 통합하고, 각 루프의 보상기의 포화와 활성화의 전환이 계통 상태에 따라 자율적이며 끊김없이 이루어질 수 있게 된다. According to the present invention, the control loop for the grid-connected mode and the control loop for the independent operation mode are integrated into one, and the switching of saturation and activation of the compensator of each loop can be performed autonomously and seamlessly according to the system state.
따라서, 급작스러운 정전시에도 끊김없이 독립적으로 마이크로그리드를 운영할 수 있으며 상위 제어기와의 통신 의존도가 낮아 통신 설비 비용의 부담을 줄일 수 있게 된다.Therefore, it is possible to independently operate the microgrid without interruption even in case of a sudden power outage, and it is possible to reduce the burden of communication equipment cost due to low communication dependence with the upper controller.
또한, 3상의 각 전류의 순시값을 제어하기 위한 3개의 PR 제어기를 이용하여 부하가 불평형 상태에 있더라도 평형의 전압을 부하에 공급할 수 있게 된다.In addition, by using three PR controllers for controlling the instantaneous value of each current of the three phases, it is possible to supply a balanced voltage to the load even if the load is in an unbalanced state.
또한, 허수축 커패시터 전압(Vc,q)을 0으로 유지시켜 계통의 출력 주파수를 발산시키거나 PLL 제어기를 포화시켜, 계통이 제어 불능상태가 되는 것을 방지할 수 있게 된다.In addition, it is possible to prevent the system from becoming out of control by maintaining the imaginary contraction capacitor voltage (Vc,q) at 0 to diverge the output frequency of the system or saturating the PLL controller.
도 1은 DC 마이크로그리드의 개략적인 구성이 도시된 개념도.1 is a conceptual diagram showing a schematic configuration of a DC microgrid.
도 2는 중요부하를 갖는 일반적인 계통연계형 3상 인버터의 개략적인 회로도.Figure 2 is a schematic circuit diagram of a general grid-connected three-phase inverter having a significant load.
도 3은 종래 계통연계형 인버터의 동작 모드 전환 시스템의 개략적인 구성이 도시된 제어 블록도.3 is a control block diagram showing a schematic configuration of an operation mode switching system of a conventional grid-connected inverter.
도 4는 PLL 기법에서의 위상각 산출 과정을 도시한 도면.4 is a diagram illustrating a phase angle calculation process in a PLL technique.
도 5는 본 발명의 일 실시예에 따른 계통연계형 인버터의 동작 모드 전환 시스템의 개략적인 구성이 도시된 제어 블록도.5 is a control block diagram showing a schematic configuration of an operation mode switching system of a grid-connected inverter according to an embodiment of the present invention.
도 6은 도 5의 전압 제어부와 주파수 제어부를 보다 상세히 도시한 도면.6 is a diagram illustrating in more detail the voltage control unit and the frequency control unit of FIG. 5 .
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 5는 본 발명의 일 실시예에 따른 계통연계형 인버터의 동작 모드 전환 시스템의 개략적인 구성이 도시된 제어 블록도이다. 5 is a control block diagram illustrating a schematic configuration of an operation mode conversion system of a grid-connected inverter according to an embodiment of the present invention.
도 5에서, 계통연계형 인버터의 동작 모드 전환 시스템은 인버터의 출력전압을 정현파로 변환하기 위한 커패시터(Cf) 및 인턱터(Li)를 구비한 계통연계 인버터의 동작모드 전환 시스템으로서, 출력전류 산출부(110), 전압 제어부(120), 주파수 제어부(130), 인덕터전류 산출부(140), 및 출력전압 산출부(150)를 포함한다.In FIG. 5, the operation mode conversion system of the grid-connected inverter is an operation mode conversion system of the grid-connected inverter having a capacitor (Cf) and an inductor (Li) for converting the output voltage of the inverter into a sine wave, and an output current calculation unit 110 , a voltage controller 120 , a frequency controller 130 , an inductor current calculator 140 , and an output voltage calculator 150 .
전압 제어부(120)는 다시, 실수축 상부 제어 루프(122)와 실수축 하부 제어 루프(124)를 포함하며, 주파수 제어부(130)는 허수축 상부 제어 루프(132)와 허수축 하부 제어 루프(134)를 포함한다.The voltage control unit 120 again includes a real axis upper control loop 122 and a real axis lower control loop 124 , and the frequency control unit 130 includes an imaginary axis upper control loop 132 and an imaginary axis lower control loop ( 134).
출력전류 산출부(110)는 전력 지령치(P*,Q*)에 따라 계통연계 인버터의 실수축 및 허수축 출력전류 목표치(Iod*,Ioq*)를 산출한다.The output current calculation unit 110 calculates the real axis and imaginary axis output current target values (Iod*, Ioq*) of the grid-connected inverter according to the power command values (P*, Q*).
전압 제어부(120)는 커패시턴스의 전압 지령치를 이용하여 실수축 전류 보상값(ΔId)을 산출한다. 도 6은 도 5의 전압 제어부와 주파수 제어부를 보다 상세히 도시한 도면이다.The voltage controller 120 calculates a real-axis current compensation value ΔId by using the voltage command value of the capacitance. 6 is a diagram illustrating in more detail the voltage control unit and the frequency control unit of FIG. 5 .
실수축 상부 제어 루프(122)는 실수축 상부 보상부(122-1)와 실수축 상부 제한부(122-2)를 포함하고, 실수축 하부 제어 루프(124)는 실수축 하부 보상부(124-1)와 실수축 하부 제한부(124-2)를 포함하며, 실수축 전류 보상값(ΔId)은 상부 제어 루프의 출력값과 하부 제어 루프의 출력값의 합이다.The real axis upper control loop 122 includes a real axis upper compensation unit 122-1 and a real axis upper limiting unit 122-2, and the real axis lower control loop 124 includes a real axis lower compensation unit 124 . -1) and a real-axis lower limiter 124-2, and the real-axis current compensation value ΔId is the sum of the output value of the upper control loop and the output value of the lower control loop.
실수축 상부 보상부(122-1) 커패시터 전압의 실수축 지령치와 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 더하여 산출된 전압 오차를 이용하여 실수축 상부 전류 보상값을 산출하고, 실수축 상부 제한부(122-2)는 실수축 상부 보상부(122-1)의 출력 상한을 제한한다.Real-axis upper compensation unit 122-1 calculates a real-axis upper current compensation value using the voltage error calculated by adding a preset voltage tolerance to the error between the real-axis command value of the capacitor voltage and the real-axis measurement value of the capacitor voltage, The real-axis upper limiter 122-2 limits the upper limit of the output of the real-axis upper compensation part 122-1.
실수축 하부 보상부(124-1)는 커패시터 전압의 실수축 지령치와 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 빼서 산출된 전압 오차를 이용하여 실수축 하부 전류 보상값을 산출하고, 실수축 하부 제한부(124-2)는 실수축 하부 제어 루프(124)는 실수축 하부 보상부(124-1)의 출력 하한을 제한한다. The real axis lower compensation unit 124-1 calculates a real axis lower current compensation value using the voltage error calculated by subtracting a preset voltage tolerance from the error between the real axis command value of the capacitor voltage and the real axis measurement value of the capacitor voltage, and , the real-axis lower limiter 124-2 limits the output lower limit of the real-axis lower control loop 124 of the real-axis lower compensator 124-1.
주파수 제어부(130)는 계통의 주파수 지령치를 이용하여 허수축 전류 보상값(ΔIq)을 산출한다. 이를 위해, 허수축 상부 제어 루프(132)는 허수축 상부 보상부(132-1)와 허수축 상부 제한부(132-2)를 포함하고, 허수축 하부 제어 루프(134)는 허수축 하부 보상부(134-1)와 허수축 하부 제한부(134-2)를 포함하며, 허수축 전류 보상값(ΔId)은 상부 제어 루프의 출력값과 하부 제어 루프의 출력값의 합이다.The frequency control unit 130 calculates the imaginary contraction current compensation value ΔIq using the frequency command value of the system. To this end, the imaginary axis upper control loop 132 includes an imaginary axis upper compensator 132-1 and an imaginary upper limiter 132-2, and the imaginary lower control loop 134 includes an imaginary lower axis compensation unit. It includes a part 134-1 and an imaginary-axis lower limiter 134-2, and the imaginary-axis current compensation value ΔId is the sum of the output value of the upper control loop and the output value of the lower control loop.
허수축 상부 보상부(132-1)는 계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 더하여 산출된 주파수 오차를 이용하여 허수축 상부 전류 보상값을 산출하고, 허수축 상부 제한부(132-2)는 허수축 상부 보상부(132-1)의 출력 상한을 제한한다.The imaginary axis upper compensation unit 132-1 calculates the imaginary axis upper current compensation value using the frequency error calculated by adding a preset frequency tolerance to the error between the frequency command value and the frequency measurement value of the system, and the imaginary axis upper limiter Reference numeral 132-2 limits the upper limit of the output of the imaginary contraction upper compensator 132-1.
허수축 하부 보상부(134-1)는 계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 빼서 산출된 주파수 오차를 이용하여 허수축 상부 전류 보상값을 산출하고, 허수축 하부 제한부(134-2)는 허수축 하부 보상부(134-1)의 출력 하한을 제한하는 허수축 하부 제한부를 더 포함할 수 있다.The lower imaginary axis compensator 134-1 calculates the imaginary axis upper current compensation value using the frequency error calculated by subtracting the preset frequency tolerance from the error between the frequency command value and the frequency measurement value of the system, and the imaginary axis lower limiter Reference numeral 134-2 may further include an imaginary contraction lower limiting unit that limits the lower limit of the output of the imaginary contraction lower compensating unit 134-1.
이와 같은 구성에 의하면, 허수축 커패시터 전압(Vc,q)을 0으로 유지시켜 계통의 출력 주파수를 발산시키거나 PLL 제어기를 포화시켜, 계통이 제어 불능상태가 되는 것을 방지할 수 있게 된다.According to this configuration, it is possible to prevent the system from becoming out of control by maintaining the imaginary contraction capacitor voltage (Vc,q) at 0 to diverge the output frequency of the system or saturating the PLL controller.
종래, 허수축 커패시터 전압(Vc,q)이 0이 아닌 경우, 위상을 조정하는 블록 PLL이 동작하지 않는 문제점을 해결하기 위한 구성으로서, 도 6에서,
Figure PCTKR2021007543-appb-img-000001
은 계통의 위상을 추종하는 인자로서, 0이 되어야 이상적이다. 도 6에서, 주파수 제어부(130)의 입력 중 Δω는 미리 설정된 허용범위의 값이고, 0는 계통 주파수인 60Hz로,
Figure PCTKR2021007543-appb-img-000002
은 각각 측정된 계통의 주파수값으로 대체될 수도 있다.
Conventionally, when the imaginary contraction capacitor voltage (Vc, q) is not 0, as a configuration for solving the problem that the block PLL for adjusting the phase does not operate, in FIG. 6 ,
Figure PCTKR2021007543-appb-img-000001
is a factor that tracks the phase of the system, and should ideally be 0. In FIG. 6 , Δω among the inputs of the frequency control unit 130 is a value within a preset allowable range, 0 is a system frequency of 60Hz,
Figure PCTKR2021007543-appb-img-000002
may be replaced with the frequency value of each measured system.
Figure PCTKR2021007543-appb-img-000003
이 커지거나 작아지는 경우 계통의 출력 주파수가 발산할 수 있다. 따라서,
Figure PCTKR2021007543-appb-img-000004
을 0으로 제어함으로써 ω를 계통 주파수인 60Hz 근처에서 유지하는 경우, 계통이 독립운전으로 넘어가는 경우에도 커패시터 전압은 영으로 되고 계통의 주파수도 60Hz를 잘 추종하게 된다.
Figure PCTKR2021007543-appb-img-000003
When this increases or decreases, the output frequency of the system may diverge. thus,
Figure PCTKR2021007543-appb-img-000004
If ω is maintained near the system frequency of 60Hz by controlling ω to 0, the capacitor voltage becomes zero even when the system goes to independent operation, and the system frequency follows 60Hz well.
인덕터전류 산출부(140)는 출력전류 목표치, 커패시터의 전압, 실수축 전류 보상값, 허수축 전류 보상값을 이용하여 인덕터의 실수축 및 허수축 전류 지령치(Iid*,Iiq*)를 산출한다.The inductor current calculating unit 140 calculates real-axis and imaginary-axis current command values Iid*, Iiq* of the inductor by using the output current target value, the voltage of the capacitor, the real-axis current compensation value, and the imaginary-axis current compensation value.
출력전압 산출부(150)는 인덕터 전류 지령치와 인덕터의 전류 측정치를 이용하여 인버터의 출력전압 지령치(Via*, Vib*, Vic*)를 산출한다. 이때, 출력전압 산출부(150)는 인덕터의 실수축 및 허수축 전류 지령치를 3상에 대한 전류 지령치로 각각 변환하는 좌표 변환부(152), 및 변환된 3상의 인덕터 전류 지령치와 인덕터의 전류 측정치를 이용하여 출력전압 지령치를 산출하는 공진형(PR) 제어부(154)를 포함할 수 있다. The output voltage calculator 150 calculates the output voltage command values Via*, Vib*, Vic* of the inverter using the inductor current command value and the inductor current measurement value. At this time, the output voltage calculator 150 includes a coordinate converter 152 that converts the real and imaginary axis current command values of the inductor into current command values for three phases, respectively, and the converted three-phase inductor current command value and the measured current of the inductor. may include a resonance type (PR) control unit 154 that calculates an output voltage command value by using .
이와 같은 구성에 의하면, 각상의 전류를 각각 제어하여, 양·음·제로 시퀀스를 동시 제어함으로써, 부하 불평형시에도 출력 전압 안정적으로 유지할 수 있게 된다. 특히, 공진형 제어기를 이용하여 교류를 효과적으로 제어할 수 있게 된다.According to such a configuration, the output voltage can be stably maintained even when the load is unbalanced by controlling the currents of each phase and simultaneously controlling the positive, negative, and zero sequences. In particular, it is possible to effectively control alternating current by using a resonant controller.
정리하면, 본 발명은 계통연계 모드를 위한 제어루프와 독립운전 모드를 위한 제어루프를 하나로 통합하고, 리미터와 안티와인드업 기법을 이용하여 각 루프의 보상기의 포화와 활성화의 전환이 계통 상태에 따라 자율적이며 끊김없이 이루어질 수 있도록 고안되었다. In summary, the present invention integrates the control loop for the grid-connected mode and the control loop for the independent operation mode into one, and by using the limiter and anti-windup technique, the saturation and activation of the compensator of each loop is autonomous according to the system state. and designed to be seamless.
따라서, 급작스러운 정전시에도 끊김 없이 독립적으로 마이크로그리드를 운영할 수 있으며, 상위 제어기와의 통신 의존도가 낮아 통신 설비 비용의 부담을 줄일 수 있는 장점을 갖는다. Therefore, it is possible to independently operate the microgrid without interruption even in the event of a sudden power outage, and has the advantage of reducing the burden of communication equipment costs due to low communication dependence with the upper controller.
본 발명은 3상의 각 전류의 순시값을 제어하기 위한 3개의 PR 제어기와 계통 고장시에만 동작하는 전압/주파수 제어기로 구성된다. 허수측에 전압(Vc,q) 제어기 대신 주파수 제어기를 도입한다. 또한, 동기좌표 기반 PI 제어기를 삭제하는 대신 각상의 순시전류를 제어하기 위한 공진형(PR)제어기를 도입한다.The present invention is composed of three PR controllers for controlling the instantaneous value of each current in three phases and a voltage/frequency controller operating only in case of a system failure. A frequency controller is introduced instead of a voltage (Vc,q) controller on the imaginary side. In addition, instead of deleting the synchronous coordinate-based PI controller, a resonance type (PR) controller for controlling the instantaneous current of each phase is introduced.
종래에는, Vc,q의 일정 유한한 값으로 인해 출력 주파수가 발산하거나 PLL 제어기를 포화시켜 제어 불능상태가 될 수 있는 반면, 본 발명에서 주파수 제어기를 도입함으로써 Vc,q 값을 0으로 유지시킬 수 있게 된다.Conventionally, due to a certain finite value of Vc,q, the output frequency may diverge or saturate the PLL controller to become uncontrollable, whereas by introducing a frequency controller in the present invention, the Vc,q value can be maintained at zero. there will be
또한, 동기좌표 기반 PI 제어기를 채용하는 경우 3상 부하의 평행상태에서만 사용할 수 있는 것과는 달리, 각상의 순시전류를 제어하기 위한 공진형(PR) 제어기를 도입함으로써, 부하가 불평형 상태라도 평형의 전압을 부하에 공급할 수 있게 된다.In addition, unlike when a synchronous coordinate-based PI controller is employed, which can be used only in the parallel state of a three-phase load, by introducing a resonance type (PR) controller for controlling the instantaneous current of each phase, the balanced voltage is can be supplied to the load.
본 발명이 비록 일부 바람직한 실시예에 의해 설명되었지만, 본 발명의 범위는 이에 의해 제한되어서는 아니 되고, 특허청구범위에 의해 뒷받침되는 상기 실시예의 변형이나 개량에도 미쳐야할 것이다.Although the present invention has been described with reference to some preferred embodiments, the scope of the present invention should not be limited thereto, but should also extend to modifications or improvements of the above embodiments supported by the claims.

Claims (6)

  1. 인버터의 출력전압을 정현파로 변환하기 위한 커패시터(Cf) 및 인턱터(Li)를 구비한 계통연계 인버터의 동작모드 전환 시스템으로서,An operation mode conversion system of a grid-connected inverter having a capacitor (Cf) and an inductor (Li) for converting the output voltage of the inverter into a sine wave,
    전력 지령치(P*,Q*)에 따라 상기 계통연계 인버터의 실수축 및 허수축 출력전류 목표치(Iod*,Ioq*)를 산출하는 출력전류 산출부;an output current calculation unit for calculating real and imaginary axis output current target values (Iod*, Ioq*) of the grid-connected inverter according to the power command values (P*, Q*);
    상기 커패시터의 전압 지령치를 이용하여 실수축 전류 보상값(ΔId)을 산출하는 전압 제어부;a voltage controller for calculating a real-axis current compensation value ΔId using the voltage command value of the capacitor;
    계통의 주파수 지령치를 이용하여 허수축 전류 보상값(ΔIq)을 산출하는 주파수 제어부;a frequency control unit for calculating an imaginary contraction current compensation value (ΔIq) by using the frequency command value of the system;
    상기 출력전류 목표치, 상기 커패시터의 전압, 상기 실수축 전류 보상값, 및 상기 허수축 전류 보상값을 이용하여 상기 인덕터의 실수축 및 허수축 전류 지령치(Iid*,Iiq*)를 산출하는 인덕터 전류 산출부; 및Inductor current calculation for calculating real-axis and imaginary-axis current command values (Iid*,Iiq*) of the inductor using the target output current, the voltage of the capacitor, the real-axis current compensation value, and the imaginary-axis current compensation value wealth; and
    상기 인덕터의 전류 지령치와 상기 인덕터의 전류 측정치를 이용하여 상기 인버터의 출력전압 지령치를 산출하는 출력전압 산출부를 포함하는 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.and an output voltage calculator for calculating an output voltage command value of the inverter using the current command value of the inductor and the current measurement value of the inductor.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 출력전압 산출부는 상기 인덕터의 실수축 및 허수축 전류 지령치를 3상에 대한 전류 지령치로 각각 변환하는 좌표 변환부; 및The output voltage calculator includes: a coordinate converter for converting real and imaginary current command values of the inductor into current command values for three phases, respectively; and
    상기 3상의 인덕터의 전류 지령치와 상기 3상의 인덕터의 전류 측정치를 이용하여 상기 출력전압 지령치를 산출하는 공진형(PR) 제어부를 포함하는 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.and a resonance type (PR) control unit for calculating the output voltage command value using the current command value of the three-phase inductor and the current measurement value of the three-phase inductor.
  3. 청구항 2에 있어서, 상기 주파수 제어부는 The method according to claim 2, wherein the frequency control unit
    계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 더하여 산출된 주파수 오차를 이용하여 허수축 상부 전류 보상값을 산출하는 허수축 상부 보상부를 포함하는 허수축 상부 제어 루프; 및 an imaginary axis upper control loop including an imaginary axis upper compensator for calculating an imaginary upper current compensation value using a frequency error calculated by adding a preset frequency tolerance to an error between a frequency command value and a frequency measurement value of the system; and
    계통의 주파수 지령치와 주파수 측정치 사이의 오차에 미리 설정된 주파수 허용치를 빼서 산출된 주파수 오차를 이용하여 허수축 하부 전류 보상값을 산출하는 허수축 하부 보상부를 포함하는 허수축 하부 제어 루프를 포함하며,An imaginary axis lower control loop including an imaginary axis lower compensator for calculating an imaginary axis lower current compensation value using the frequency error calculated by subtracting a preset frequency tolerance from the error between the frequency command value and the frequency measurement value of the system,
    상기 허수축 전류 보상값(ΔIq)은 상기 허수축 상부 제어 루프의 출력값과 상기 허수축 하부 제어 루프의 출력값의 합인 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.The imaginary-axis current compensation value (ΔIq) is the sum of the output value of the imaginary-axis upper control loop and the imaginary-axis lower control loop.
  4. 청구항 3에 있어서, 4. The method according to claim 3,
    상기 허수축 상부 제어 루프는 상기 허수축 상부 보상부의 출력 상한을 제한하는 허수축 상부 제한부를 더 포함하고,The imaginary axis upper control loop further includes an imaginary axis upper limiter for limiting the upper limit of the output of the imaginary axis upper compensation unit,
    상기 허수축 하부 제어 루프는 상기 허수축 하부 보상부의 출력 하한을 제한하는 허수축 하부 제한부를 더 포함하는 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.The imaginary axis lower control loop is an operation mode conversion system of the grid-connected inverter, characterized in that it further comprises an imaginary axis lower limiter for limiting the output lower limit of the lower imaginary axis compensation unit.
  5. 청구항 4에 있어서, 상기 전압 제어부는 The method according to claim 4, wherein the voltage control unit
    상기 커패시터 전압의 실수축 지령치와 상기 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 더하여 산출된 전압 오차를 이용하여 실수축 상부 전류 보상값을 산출하는 실수축 상부 보상부를 포함하는 실수축 상부 제어 루프; 및 A real axis including a real axis upper compensator for calculating a real axis upper current compensation value using a voltage error calculated by adding a preset voltage tolerance to an error between the real axis command value of the capacitor voltage and the real axis measurement value of the capacitor voltage upper control loop; and
    상기 커패시터 전압의 실수축 지령치와 상기 커패시터 전압의 실수축 측정치 사이의 오차에 미리 설정된 전압 허용치를 빼서 산출된 전압 오차를 이용하여 실수축 하부 전류 보상값을 산출하는 실수축 하부 보상부를 포함하는 실수축 하부 제어 루프를 포함하며,A real axis including a real axis lower compensator for calculating a real axis lower current compensation value using a voltage error calculated by subtracting a preset voltage tolerance value from an error between the real axis command value of the capacitor voltage and the real axis measurement value of the capacitor voltage a lower control loop;
    상기 실수축 전류 보상값(ΔId)은 상기 상부 제어 루프의 출력값과 상기 하부 제어 루프의 출력값의 합인 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.The real-axis current compensation value (ΔId) is the operation mode conversion system of the grid-connected inverter, characterized in that the sum of the output value of the upper control loop and the output value of the lower control loop.
  6. 청구항 5에 있어서, 6. The method of claim 5,
    상기 실수축 상부 제어 루프는 상기 실수축 상부 보상부의 출력 상한을 제한하는 실수축 상부 제한부를 더 포함하며,The real-axis upper control loop further includes a real-axis upper limiter for limiting the upper limit of the output of the real-axis upper compensation unit,
    상기 실수축 하부 제어 루프는 상기 실수축 하부 보상부의 출력 하한을 제한하는 실수축 하부 제한부를 더 포함하는 것을 특징으로 하는 계통연계 인버터의 동작모드 전환 시스템.The real axis lower control loop is an operation mode conversion system of the grid-connected inverter, characterized in that it further comprises a real axis lower limiter for limiting the output lower limit of the real axis lower compensation unit.
PCT/KR2021/007543 2020-06-16 2021-06-16 System for converting operation mode of grid-connected inverter WO2021256850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200072989A KR20210155582A (en) 2020-06-16 2020-06-16 System for switching the operation mode of grid-connected inverter
KR10-2020-0072989 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021256850A1 true WO2021256850A1 (en) 2021-12-23

Family

ID=79175712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007543 WO2021256850A1 (en) 2020-06-16 2021-06-16 System for converting operation mode of grid-connected inverter

Country Status (2)

Country Link
KR (1) KR20210155582A (en)
WO (1) WO2021256850A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178393B1 (en) * 2010-12-30 2012-08-30 서울과학기술대학교 산학협력단 Utility interactive inverter of three phase-indirect current control type and control method
US9698700B2 (en) * 2015-03-11 2017-07-04 DRS Consolidated Controls, Inc. Predictive current control in bidirectional power converter
KR101793416B1 (en) * 2016-03-18 2017-11-03 주식회사 동아일렉콤 Apparatus, System and Method for Control of Voltage Source Invertor
KR20190099558A (en) * 2018-02-19 2019-08-28 서울과학기술대학교 산학협력단 Method for switching operation mode of grid connected inverter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178393B1 (en) * 2010-12-30 2012-08-30 서울과학기술대학교 산학협력단 Utility interactive inverter of three phase-indirect current control type and control method
US9698700B2 (en) * 2015-03-11 2017-07-04 DRS Consolidated Controls, Inc. Predictive current control in bidirectional power converter
KR101793416B1 (en) * 2016-03-18 2017-11-03 주식회사 동아일렉콤 Apparatus, System and Method for Control of Voltage Source Invertor
KR20190099558A (en) * 2018-02-19 2019-08-28 서울과학기술대학교 산학협력단 Method for switching operation mode of grid connected inverter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, SEONG-YEOL; KANG, SU-HAN; JEONG, HO-YOUNG; SEWAN CHOI: "A Seamless Mode Transfer Method of Droop Control based Grid-connected Parallel Inverters", POWER ELECTRONICS SOCIETY 2019 SPRING CONFERENCE 2019 JULY 02 , 2 July 2019 (2019-07-02), Korea, pages 26 - 28, XP009533131 *

Also Published As

Publication number Publication date
KR20210155582A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
CN107482634B (en) A kind of more microgrid flexible interconnection systems and its control method
Chandorkar et al. Novel architectures and control for distributed UPS systems
CN107425525B (en) Regulate and control method between more feed-in type alternating current-direct current microgrid flexible interconnection systems and its microgrid
CN101278472B (en) Systems of parallel operating power electronic converters
CN110690731A (en) Power electronic transformer applicable to hybrid micro-grid and coordination control and mode switching method thereof
CN113964836B (en) Direct-current flexible loop closing control device for power grid and control method thereof
WO2017030228A1 (en) Multi-frequency control system and method by multiple btb converter-based microgrids
WO2017018584A1 (en) Multi-frequency control system and method for microgrid
CN112366714A (en) Power distribution network loop closing and power adjusting device and method for adjusting differential pressure angular difference
CN108551173B (en) Series-parallel compensator and control method and device thereof
D'silva et al. Microgrid control strategies for seamless transition between grid-connected and islanded modes
CN114430196A (en) High-reliability power supply topology circuit and control method thereof
WO2021256850A1 (en) System for converting operation mode of grid-connected inverter
KR101951184B1 (en) Apparauts and method for controlling parallel operation of ups
CN110247418A (en) Alternating current-direct current mixing power distribution network and Control experiment method based on flexible multimode switch
Ghiasi et al. A control scheme based on virtual impedance and droop control to share power in an island microgrid
CN111224401B (en) Electric energy quality adjusting system based on back-to-back modular multilevel converter
CN108521126B (en) Hybrid compensator and control method and device thereof
KR20040057673A (en) N+1 Module Type UPS Having Self-Support Control Structure
CN112600219A (en) Dynamic reactive power standby optimization method for alternating current-direct current power grid
Awal et al. Modular medium voltage AC to low voltage DC converter for extreme fast charging applications
WO2021172702A1 (en) Fault detection and system protection method of stand-alone microgrid on basis of power conversion system
CN211127141U (en) Hybrid compensator
CN113765128A (en) High-voltage direct-hanging energy storage converter
Xu et al. Consensus based distributed angle droop control for islands resynchronization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825782

Country of ref document: EP

Kind code of ref document: A1