WO2021106081A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2021106081A1
WO2021106081A1 PCT/JP2019/046190 JP2019046190W WO2021106081A1 WO 2021106081 A1 WO2021106081 A1 WO 2021106081A1 JP 2019046190 W JP2019046190 W JP 2019046190W WO 2021106081 A1 WO2021106081 A1 WO 2021106081A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
transformer
power conversion
winding
conversion device
Prior art date
Application number
PCT/JP2019/046190
Other languages
French (fr)
Japanese (ja)
Inventor
村上 哲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021560807A priority Critical patent/JP7130151B2/en
Priority to PCT/JP2019/046190 priority patent/WO2021106081A1/en
Publication of WO2021106081A1 publication Critical patent/WO2021106081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Definitions

  • This application relates to a power conversion device.
  • a conventional power converter includes an LC filter having a filter reactor inserted in series with a DC bus and a two-series filter capacitor connected between the DC buses, and provides a mutual connection point between the two series filter capacitors. Earth.
  • the noise canceling circuit uses the ripple voltage or ripple current generated between the smoothing capacitor provided between the LC filter and the power conversion circuit and the ground to make the ripple current almost equal to the ripple current flowing through the filter reactor.
  • a current of opposite phase is generated and injected into the DC power supply side terminal of the filter reactor (see, for example, Patent Document 1).
  • the conventional power conversion device is equipped with an LC filter and a noise canceling circuit, so that the circuit configuration becomes large.
  • the common mode noise current leaks to the power cable, causing a problem that common mode noise is generated.
  • the present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a power conversion device capable of suppressing common mode noise and promoting miniaturization of a device configuration.
  • the power conversion device disclosed in the present application includes a DC bus connected to a power cable, a power conversion circuit using the DC bus as an input / output line, and a common mode noise current flowing through the power cable via the DC bus. It is equipped with a noise canceling circuit that suppresses the noise.
  • a noise canceling circuit a first reactor inserted in series with the DC bus, a primary winding and a secondary winding are inversely coupled, and each first end is connected to each other at a winding connection point.
  • the transformer, the second reactor connected between the first end of the first reactor and the second end of the primary winding, the second end of the first reactor and the second end of the secondary winding.
  • a third reactor connected to the transformer and first and second coupling capacitors through which only an AC component is passed are provided, and the winding connection point of the transformer is grounded via the first coupling capacitor. At the same time, it is connected to the shielded wire of the power cable via the second coupling capacitor.
  • the power conversion device disclosed in the present application it is possible to suppress common mode noise and promote miniaturization of the device configuration.
  • FIG. 1 It is a figure which shows the schematic structure of the power conversion apparatus according to Embodiment 1. It is a circuit diagram explaining the operation of the noise canceling circuit by Embodiment 1.
  • FIG. It is a waveform diagram of each part explaining the operation of the noise canceling circuit by Embodiment 1.
  • FIG. 1 It is a waveform diagram of each part explaining the operation of the noise canceling circuit by Embodiment 1.
  • FIG. It is a figure explaining the effect of the noise canceling circuit by Embodiment 1.
  • FIG. It is a figure which shows the schematic structure of the power conversion apparatus by another example of Embodiment 1. It is a figure which shows the schematic structure of the power conversion apparatus according to Embodiment 2.
  • FIG. 1 is a diagram showing a schematic configuration of a power conversion device according to a first embodiment.
  • the power conversion device 100 is connected to the DC voltage source 2 in the power supply circuit 1 via the power supply cable 10.
  • the power cable 10 is composed of a cable wire 11P on the positive electrode side and a shielded wire 12A of the cable wire 11P, and a cable wire 11N on the negative electrode side and a shielded wire 12B of the cable wire 11N.
  • a stray capacitance 13a is formed between the cable wire 11P on the positive electrode side and the shielded wire 12A, and a stray capacitance 13b is formed between the cable wire 11N on the negative electrode side and the shielded wire 12B.
  • the shielded wires 12A and 12B are not grounded. Further, the shielded wires 12A and 12B may be configured by a common shielded wire.
  • the power conversion device 100 includes positive and negative DC bus 21P and 21N connected to the power cable 10, a power conversion circuit 20 having DC bus 21P and 21N as input / output lines, and a noise canceling circuit 30.
  • the DC bus 21P is connected to the cable line 11P
  • the DC bus 21N is connected to the cable line 11N.
  • the power conversion circuit 20 converts the DC power from the DC voltage source 2 into DC power or AC power and outputs the power to a load (not shown).
  • the noise canceling circuit 30 suppresses common mode noise generated due to the switching operation in the power conversion circuit 20.
  • the positive electrode side circuit 30A and the negative electrode side circuit 30B are configured in the same manner, and the noise current in the common mode flowing through the power cable 10 via the positive and negative DC bus 21P and 21N is suppressed.
  • the positive electrode side circuit 30A of the noise canceling circuit 30 passes only the first reactor 31a, the transformer 32a, the second and third reactors 33a1 and 33a2 inserted in series with the DC bus 21P, and the first and first AC components. 2 Coupling capacitors 34a and 35a are provided.
  • the primary winding 32aP and the secondary winding 32aS are inversely coupled, and the primary winding 32aP and the secondary winding 32aS are connected to each other at the winding connection point 36a.
  • the winding ratio of the primary winding 32aP and the secondary winding 32aS is 1: 1.
  • the second reactor 33a1 is connected between the first end of the first reactor 31a on the power conversion circuit 20 side and the primary winding 32aP, and between the second end of the first reactor 31a and the secondary winding 32aS.
  • the third reactor 33a2 is connected to the third reactor 33a2. In this case, elements having the same configuration are used for the second reactor 33a1 and the third reactor 33a2.
  • the winding connection point 36a is grounded via the first coupling capacitor 34a and is connected to the shielded wire 12A of the cable wire 11P via the second coupling capacitor 35a.
  • the negative electrode side circuit 30B of the noise canceling circuit 30 passes only the first reactor 31b, the transformer 32b, the second and third reactors 33b1 and 33b2 inserted in series with the DC bus 21N, and the first and first AC components. 2 Coupling capacitors 34b and 35b are provided.
  • the primary winding 32bP and the secondary winding 32bS are inversely coupled, and the primary winding 32bP and the secondary winding 32bS are connected to each other at the winding connection point 36b.
  • the winding ratio of the primary winding 32bP and the secondary winding 32bS is 1: 1.
  • the second reactor 33b1 is connected between the first end of the first reactor 31b on the power conversion circuit 20 side and the primary winding 32bP, and between the second end of the first reactor 31b and the secondary winding 32bS.
  • the third reactor 33b2 is connected to the third reactor 33b2. In this case, the second reactor 33b1 and the third reactor 33b2 use elements having the same configuration.
  • the winding connection point 36b is grounded via the first coupling capacitor 34b and is connected to the shielded wire 12B of the cable wire 11N via the second coupling capacitor 35b.
  • the first reactors 31a and 31b inserted in series with the positive and negative DC bus 21P and 21N may be configured by using a common mode choke coil.
  • FIG. 2 is a circuit diagram illustrating the operation of the noise canceling circuit 30 (positive electrode side circuit 30A).
  • the noise canceling circuit 30 has the same circuit configuration on the positive electrode side and the negative electrode side, and operates in the same manner.
  • the description will be made using the positive electrode side circuit 30A, and the description of the negative electrode side circuit 30B will be omitted as appropriate.
  • the first and second coupling capacitors 34a and 35a remove the DC component and allow only the AC component to pass through. Further, the first coupling capacitor 34a is used to prevent a short circuit, and the second coupling capacitor 34a is used to prevent an electric shock.
  • the shielded wire 12A of the cable wire 11P is not directly grounded, but is grounded via the first coupling capacitor 34a and the second coupling capacitor 35a.
  • Point A in the noise canceling circuit 30 indicates a connection point between the first reactor 31a and the second reactor 33a1, and point B indicates a connection point between the first reactor 31a and the third reactor 33a2.
  • Point C1 indicates the connection point between the second reactor 33a1 and the primary winding 32aP of the transformer 32a, and point C2 indicates the connection point between the third reactor 33a2 and the secondary winding 32aS of the transformer 32a.
  • the point D indicates a point where the winding connection point 36a, the first coupling capacitor 34a, and the second coupling capacitor 35a are connected.
  • the current Iin indicates the current input to the noise canceling circuit 30, and the current IL indicates the current flowing from the point A to the point B in the noise canceling circuit 30, that is, the current flowing through the first reactor 31a.
  • the current IP indicates the current flowing from the point A to the point D in the noise canceling circuit 30, and the current IS indicates the current flowing from the point B to the point D in the noise canceling circuit 30.
  • the current Iout indicates the current that cannot be completely removed by the noise canceling circuit 30 and is output from the point B to the cable line 11P via the DC bus 21P.
  • the currents Iin, IL, IP, and IS are common mode noise currents.
  • the current IP and the current IS are currents of the same phase and both flow from the point D to the ground via the first coupling capacitor 34a. As shown in FIG. 2, since the DC bus 21P has a stray capacitance 50 with the ground, the current IP and the current IS return from the ground to the adjacent DC bus 21P via the stray capacitance 50. Therefore, common mode noise does not leak to the external environment.
  • FIG. 3 is a waveform diagram of each part for explaining the operation of the noise canceling circuit 30.
  • the impedance of the second reactor 33a1 and the impedance of the third reactor 33a2 are equal, and the impedance of the first reactor 31a is twice the impedance of the second and third reactors 33a1 and 33a2. That is, the impedance ratio of the first reactor 31a, the second reactor 33a1 and the third reactor 33a2 is 2: 1: 1.
  • the current IL, the current IP, and the current IS are currents having the same phase and amplitude. Therefore, the voltage between AC1 and V-AC1, the voltage between B and C2, V-BC2, and the voltage between C1-D, V-C1D, are equal to each other.
  • V-C2D which is the voltage between C2-D
  • V-BD which is the voltage between BD
  • V-AB which is the voltage between AB
  • the noise canceling circuit 30 sets V-BD, which is a common mode voltage output to the cable line 11P, to 0 voltage, that is, between the second end of the first reactor 31a and the winding connection point 36a. It operates so that the voltage difference becomes 0 voltage. As shown in FIG. 3, when the noise canceling circuit 30 ideally operates and the V-BD reaches 0 voltage, all the noise currents Iin input to the noise canceling circuit 30 are canceled and the current Iout is not output.
  • FIG. 4 is a waveform diagram of each part for explaining the operation of the noise canceling circuit 30.
  • the impedance ratios of the first reactor 31a, the second reactor 33a1 and the third reactor 33a2 deviate from the ideal state, for example, 1.6: 1: 1.
  • the current IL ⁇ the current IS ( current IP)
  • (V-AC1) (V-BC2) ⁇ (V-C1D). Since V-C2D and V-C1D have opposite phases and the same voltage, V-BC2 and V-C2D have opposite phases and different voltages, and V-BD does not have 0 voltage. Also, V-AD and V-AB do not match.
  • the noise canceling circuit 30 outputs the common mode voltage V-BD ( ⁇ 0) to the cable line 11P, and outputs the current Iout ( ⁇ 0). Then, as shown in FIG. 2, the current Iout output from the point B in the noise canceling circuit 30 has a DC bus 21P, a cable wire 11P, a stray capacitance 13a, a shielded wire 12A, a second coupling capacitor 35a, and a transformer 32a. Circulates through the secondary winding 32aS and the third reactor 33a2.
  • the circulating current (current Iout) is passed through the DC bus 21P, the cable wire 11P, the floating capacitance 13a, the shielded wire 12A, the second coupling capacitor 35a, the secondary winding 32aS of the transformer 32a, and the third reactor 33a2.
  • the current path 40 through which the current flows is formed, and the current Iout becomes a circulating current circulating in the current path 40. Therefore, the current Iout becomes a normal mode current having different properties from the common mode noise current, and as a result, the common mode noise current is completely removed by the noise canceling circuit 30 and is not output.
  • the positive electrode side circuit 30A of the noise canceling circuit 30 has been described above, but the negative electrode side circuit 30B also operates in the same manner and the same result can be obtained.
  • the power conversion device 100 is configured as described above, common mode noise can be suppressed without using an LC filter in the noise canceling circuit 30, and miniaturization of the device configuration can be promoted.
  • the first reactors 31a and 31b inserted into the DC bus 21P and 21N need to be smaller than the reactor in the LC filter, and the common mode noise can be suppressed only by the small noise canceling circuit 30. Become.
  • FIG. 5 is a diagram for explaining the effect of the noise canceling circuit 30, and shows the voltage amplitude response characteristic with respect to the frequency.
  • the input voltage Vin of the noise canceling circuit 30 corresponds to V-AD
  • the output voltage Vout corresponds to V-BD.
  • the characteristic line 60 showing the voltage amplitude response the noise canceling circuit 30 can reduce the common mode voltage widely from the low frequency band to the high frequency band.
  • the comparative characteristic line 61 showing the voltage amplitude response almost no effect is seen in the low frequency band.
  • the noise canceling circuit 30 cannot completely remove the noise current and outputs the current Iout to the cable lines 11P and 11N, the current Iout floats between the cable line 11P and the shielded wire 12A. It circulates in the current path 40 formed through the capacitance 13a. Therefore, the current Iout output from the noise canceling circuit 30 becomes a current changed from the common mode to the normal mode, and the effect of suppressing the common mode noise is remarkably improved.
  • the noise canceling circuit 30 even if the noise canceling circuit 30 does not operate ideally and the current Iout is output, common mode noise due to the current Iout does not occur. Therefore, the power conversion device 100 including the noise canceling circuit 30. Increases design freedom.
  • the power conversion device 100 is connected to the DC voltage source 2 in the power supply circuit 1 via the power supply cable 10, but as shown in FIG. 6, it is connected to the DC load 4 in the load circuit 3. It may be connected via the power cable 10. Also in this case, the noise canceling circuit 30 operates in the same manner as in the above embodiment, and the power conversion device 100 obtains the same effect.
  • FIG. 7 is a diagram showing a schematic configuration of the power conversion device according to the second embodiment.
  • the noise canceling circuit 30C omits the second actuators 33a1, 33b1 and the third inductance 33a2, 33b2 shown in the first embodiment, and omits the transformers 32a, 32b.
  • Other configurations are the same as those in the first embodiment.
  • the noise canceling circuit 30C operates in the same manner as in the first embodiment, and the same effect can be obtained. Further, since the second reactors 33a1 and 33b1 and the third reactors 33a2 and 33b2 can be omitted, the miniaturization of the power conversion device 100 can be further promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

This power converter (100) is provided with a power converter circuit (20) and a noise cancelling circuit (30). The noise cancelling circuit (30) is provided with: a first reactor (31a) which is serially inserted in a direct-current bus bar (21P); a transformer (32a) which has two reverse-coupled windings connected to each other at a winding connection point (36a); second and third reactors (33a1, 33a2) which are respectively connected at portions between first and second ends of the first reactor (31a) and the respective windings of the transformer (32a); and first and second coupling capacitors (34a, 35a) which allow only an alternating-current component to pass therethrough. Further, the winding connection point (36a) of the transformer (32a) is grounded via the first coupling capacitor (34a), and at the same time, is connected to a shielded wire (12A) of a power supply cable (10) via the second coupling capacitor (35a).

Description

電力変換装置Power converter
 本願は、電力変換装置に関するものである。 This application relates to a power conversion device.
 電力変換装置では、スイッチング素子のオンオフ動作などに起因してコモンモードノイズが発生するため、従来からノイズキャンセル回路を備えることが提案されている。
 従来の電力変換装置は、直流母線に直列に挿入されたフィルタリアクトルと、直流母線間に接続された2直列のフィルタコンデンサとを有するLCフィルタを備え、2直列のフィルタコンデンサの相互の接続点をアースする。また、ノイズキャンセル回路により、LCフィルタと電力変換回路との間に設けられた平滑コンデンサとアースとの間に発生するリプル電圧またはリプル電流を用いてフィルタリアクトルに流れるリプル電流と大きさのほぼ等しい逆位相の電流を発生し、フィルタリアクトルの直流電源側端子に注入する(例えば、特許文献1参照)。
Since common mode noise is generated in the power conversion device due to the on / off operation of the switching element, it has been conventionally proposed to include a noise canceling circuit.
A conventional power converter includes an LC filter having a filter reactor inserted in series with a DC bus and a two-series filter capacitor connected between the DC buses, and provides a mutual connection point between the two series filter capacitors. Earth. In addition, the noise canceling circuit uses the ripple voltage or ripple current generated between the smoothing capacitor provided between the LC filter and the power conversion circuit and the ground to make the ripple current almost equal to the ripple current flowing through the filter reactor. A current of opposite phase is generated and injected into the DC power supply side terminal of the filter reactor (see, for example, Patent Document 1).
特開平5-219758号公報(段落[0017]~[0021]、図6)Japanese Unexamined Patent Publication No. 5-219758 (paragraphs [0017] to [0021], FIG. 6)
 従来の電力変換装置では、LCフィルタを備え、さらにノイズキャンセル回路を備えているため、回路構成が大型化する。また、LCフィルタのフィルタリアクトル自身も小型化が難しい。さらに、リプル電流が理想的にキャンセルされずに残存すると、電源ケーブルにコモンモードノイズ電流が漏れ出し、コモンモードノイズが生じるという問題点があった。 The conventional power conversion device is equipped with an LC filter and a noise canceling circuit, so that the circuit configuration becomes large. In addition, it is difficult to miniaturize the filter reactor itself of the LC filter. Further, if the ripple current remains without being canceled ideally, the common mode noise current leaks to the power cable, causing a problem that common mode noise is generated.
 本願は、上記のような課題を解決するための技術を開示するものであり、コモンモードノイズを抑制し、かつ装置構成の小型化を促進できる電力変換装置を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a power conversion device capable of suppressing common mode noise and promoting miniaturization of a device configuration.
 本願に開示される電力変換装置は、電源ケーブルに接続される直流母線と、前記直流母線を入出力線とする電力変換回路と、前記直流母線を介して前記電源ケーブルに流れるコモンモードのノイズ電流を抑制するノイズキャンセル回路とを備える。前記ノイズキャンセル回路は、前記直流母線に直列に挿入された第1リアクトルと、一次巻線と二次巻線とが逆結合され、かつ各第1端が巻線接続点にて互いに接続されたトランスと、前記第1リアクトルの第1端と前記一次巻線の第2端との間に接続された第2リアクトルと、前記第1リアクトルの第2端と前記二次巻線の第2端との間に接続された第3リアクトルと、交流成分のみを通す第1、第2カップリングコンデンサとを備え、前記トランスの前記巻線接続点が、前記第1カップリングコンデンサを介して接地されると共に、前記第2カップリングコンデンサを介して前記電源ケーブルのシールド線に接続される。 The power conversion device disclosed in the present application includes a DC bus connected to a power cable, a power conversion circuit using the DC bus as an input / output line, and a common mode noise current flowing through the power cable via the DC bus. It is equipped with a noise canceling circuit that suppresses the noise. In the noise canceling circuit, a first reactor inserted in series with the DC bus, a primary winding and a secondary winding are inversely coupled, and each first end is connected to each other at a winding connection point. The transformer, the second reactor connected between the first end of the first reactor and the second end of the primary winding, the second end of the first reactor and the second end of the secondary winding. A third reactor connected to the transformer and first and second coupling capacitors through which only an AC component is passed are provided, and the winding connection point of the transformer is grounded via the first coupling capacitor. At the same time, it is connected to the shielded wire of the power cable via the second coupling capacitor.
 本願に開示される電力変換装置によれば、コモンモードノイズを抑制し、かつ装置構成の小型化を促進できる。 According to the power conversion device disclosed in the present application, it is possible to suppress common mode noise and promote miniaturization of the device configuration.
実施の形態1による電力変換装置の概略構成を示す図である。It is a figure which shows the schematic structure of the power conversion apparatus according to Embodiment 1. 実施の形態1によるノイズキャンセル回路の動作を説明する回路図である。It is a circuit diagram explaining the operation of the noise canceling circuit by Embodiment 1. FIG. 実施の形態1によるノイズキャンセル回路の動作を説明する各部の波形図である。It is a waveform diagram of each part explaining the operation of the noise canceling circuit by Embodiment 1. FIG. 実施の形態1によるノイズキャンセル回路の動作を説明する各部の波形図である。It is a waveform diagram of each part explaining the operation of the noise canceling circuit by Embodiment 1. FIG. 実施の形態1によるノイズキャンセル回路の効果を説明する図である。It is a figure explaining the effect of the noise canceling circuit by Embodiment 1. FIG. 実施の形態1の別例による電力変換装置の概略構成を示す図である。It is a figure which shows the schematic structure of the power conversion apparatus by another example of Embodiment 1. 実施の形態2による電力変換装置の概略構成を示す図である。It is a figure which shows the schematic structure of the power conversion apparatus according to Embodiment 2.
実施の形態1.
 図1は実施の形態1による電力変換装置の概略構成を示す図である。
 図に示すように、電力変換装置100は、電源回路1内の直流電圧源2と電源ケーブル10を介して接続される。
 電源ケーブル10は、正極側のケーブル線11Pと該ケーブル線11Pのシールド線12A、および負極側のケーブル線11Nと該ケーブル線11Nのシールド線12Bで構成される。正極側のケーブル線11Pとシールド線12Aとの間には浮遊容量13aが形成され、負極側のケーブル線11Nとシールド線12Bとの間には浮遊容量13bが形成される。
 なお、シールド線12A、12Bは接地されない。
 また、シールド線12A、12Bは共通のシールド線で構成しても良い。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of a power conversion device according to a first embodiment.
As shown in the figure, the power conversion device 100 is connected to the DC voltage source 2 in the power supply circuit 1 via the power supply cable 10.
The power cable 10 is composed of a cable wire 11P on the positive electrode side and a shielded wire 12A of the cable wire 11P, and a cable wire 11N on the negative electrode side and a shielded wire 12B of the cable wire 11N. A stray capacitance 13a is formed between the cable wire 11P on the positive electrode side and the shielded wire 12A, and a stray capacitance 13b is formed between the cable wire 11N on the negative electrode side and the shielded wire 12B.
The shielded wires 12A and 12B are not grounded.
Further, the shielded wires 12A and 12B may be configured by a common shielded wire.
 電力変換装置100は、電源ケーブル10に接続される正負の直流母線21P、21Nと、直流母線21P、21Nを入出力線とする電力変換回路20と、ノイズキャンセル回路30とを備える。
 直流母線21Pはケーブル線11Pに接続され、直流母線21Nはケーブル線11Nに接続される。電力変換回路20は、直流電圧源2からの直流電力を、直流電力あるいは交流電力に電力変換して、負荷(図示省略)に出力する。ノイズキャンセル回路30は、電力変換回路20内のスイッチング動作に起因して発生するコモンモードノイズを抑制する。
The power conversion device 100 includes positive and negative DC bus 21P and 21N connected to the power cable 10, a power conversion circuit 20 having DC bus 21P and 21N as input / output lines, and a noise canceling circuit 30.
The DC bus 21P is connected to the cable line 11P, and the DC bus 21N is connected to the cable line 11N. The power conversion circuit 20 converts the DC power from the DC voltage source 2 into DC power or AC power and outputs the power to a load (not shown). The noise canceling circuit 30 suppresses common mode noise generated due to the switching operation in the power conversion circuit 20.
 ノイズキャンセル回路30は、正極側回路30Aと負極側回路30Bとが同様に構成されて、正負の各直流母線21P、21Nを介して電源ケーブル10に流れるコモンモードのノイズ電流を抑制する。
 ノイズキャンセル回路30の正極側回路30Aは、直流母線21Pに直列に挿入された第1リアクトル31aと、トランス32aと、第2、第3リアクトル33a1、33a2と、交流成分のみを通す第1、第2カップリングコンデンサ34a、35aとを備える。
In the noise canceling circuit 30, the positive electrode side circuit 30A and the negative electrode side circuit 30B are configured in the same manner, and the noise current in the common mode flowing through the power cable 10 via the positive and negative DC bus 21P and 21N is suppressed.
The positive electrode side circuit 30A of the noise canceling circuit 30 passes only the first reactor 31a, the transformer 32a, the second and third reactors 33a1 and 33a2 inserted in series with the DC bus 21P, and the first and first AC components. 2 Coupling capacitors 34a and 35a are provided.
 トランス32aは、一次巻線32aPと二次巻線32aSとが逆結合され、一次巻線32aPと二次巻線32aSとは巻線接続点36aにて互いに接続される。この場合、一次巻線32aPと二次巻線32aSとの巻線比は1:1である。
 また、第1リアクトル31aの電力変換回路20側の第1端と一次巻線32aPとの間に第2リアクトル33a1が接続され、第1リアクトル31aの第2端と二次巻線32aSとの間に第3リアクトル33a2が接続される。この場合、第2リアクトル33a1と第3リアクトル33a2とは、同構成の素子が用いられる。
 巻線接続点36aは、第1カップリングコンデンサ34aを介して接地されると共に、第2カップリングコンデンサ35aを介してケーブル線11Pのシールド線12Aに接続される。
In the transformer 32a, the primary winding 32aP and the secondary winding 32aS are inversely coupled, and the primary winding 32aP and the secondary winding 32aS are connected to each other at the winding connection point 36a. In this case, the winding ratio of the primary winding 32aP and the secondary winding 32aS is 1: 1.
Further, the second reactor 33a1 is connected between the first end of the first reactor 31a on the power conversion circuit 20 side and the primary winding 32aP, and between the second end of the first reactor 31a and the secondary winding 32aS. The third reactor 33a2 is connected to the third reactor 33a2. In this case, elements having the same configuration are used for the second reactor 33a1 and the third reactor 33a2.
The winding connection point 36a is grounded via the first coupling capacitor 34a and is connected to the shielded wire 12A of the cable wire 11P via the second coupling capacitor 35a.
 ノイズキャンセル回路30の負極側回路30Bは、直流母線21Nに直列に挿入された第1リアクトル31bと、トランス32bと、第2、第3リアクトル33b1、33b2と、交流成分のみを通す第1、第2カップリングコンデンサ34b、35bとを備える。
 トランス32bは、一次巻線32bPと二次巻線32bSとが逆結合され、一次巻線32bPと二次巻線32bSとは巻線接続点36bにて互いに接続される。この場合、一次巻線32bPと二次巻線32bSとの巻線比は1:1である。
The negative electrode side circuit 30B of the noise canceling circuit 30 passes only the first reactor 31b, the transformer 32b, the second and third reactors 33b1 and 33b2 inserted in series with the DC bus 21N, and the first and first AC components. 2 Coupling capacitors 34b and 35b are provided.
In the transformer 32b, the primary winding 32bP and the secondary winding 32bS are inversely coupled, and the primary winding 32bP and the secondary winding 32bS are connected to each other at the winding connection point 36b. In this case, the winding ratio of the primary winding 32bP and the secondary winding 32bS is 1: 1.
 また、第1リアクトル31bの電力変換回路20側の第1端と一次巻線32bPとの間に第2リアクトル33b1が接続され、第1リアクトル31bの第2端と二次巻線32bSとの間に第3リアクトル33b2が接続される。この場合、第2リアクトル33b1と第3リアクトル33b2とは、同構成の素子が用いられる。
 巻線接続点36bは、第1カップリングコンデンサ34bを介して接地されると共に、第2カップリングコンデンサ35bを介してケーブル線11Nのシールド線12Bに接続される。
Further, the second reactor 33b1 is connected between the first end of the first reactor 31b on the power conversion circuit 20 side and the primary winding 32bP, and between the second end of the first reactor 31b and the secondary winding 32bS. The third reactor 33b2 is connected to the third reactor 33b2. In this case, the second reactor 33b1 and the third reactor 33b2 use elements having the same configuration.
The winding connection point 36b is grounded via the first coupling capacitor 34b and is connected to the shielded wire 12B of the cable wire 11N via the second coupling capacitor 35b.
 なお、正負の直流母線21P、21Nに直列に挿入される第1リアクトル31a、31bは、コモンモードチョークコイルを用いて構成しても良い。 The first reactors 31a and 31b inserted in series with the positive and negative DC bus 21P and 21N may be configured by using a common mode choke coil.
 図2は、ノイズキャンセル回路30(正極側回路30A)の動作を説明する回路図である。ノイズキャンセル回路30は、上述したように、正極側と負極側とで同様の回路構成を有し、同様に動作する。以下、正極側回路30Aを用いて説明し、負極側回路30Bについては適宜、説明を省略する。
 第1、第2カップリングコンデンサ34a、35aは、直流成分を除去して交流成分のみを通す。さらに、第1カップリングコンデンサ34aは短絡防止に用いられ、第2カップリングコンデンサ34aは感電防止に用いられる。
 ケーブル線11Pのシールド線12Aは、直接接地されず、第1カップリングコンデンサ34aおよび第2カップリングコンデンサ35aを介して接地される。
FIG. 2 is a circuit diagram illustrating the operation of the noise canceling circuit 30 (positive electrode side circuit 30A). As described above, the noise canceling circuit 30 has the same circuit configuration on the positive electrode side and the negative electrode side, and operates in the same manner. Hereinafter, the description will be made using the positive electrode side circuit 30A, and the description of the negative electrode side circuit 30B will be omitted as appropriate.
The first and second coupling capacitors 34a and 35a remove the DC component and allow only the AC component to pass through. Further, the first coupling capacitor 34a is used to prevent a short circuit, and the second coupling capacitor 34a is used to prevent an electric shock.
The shielded wire 12A of the cable wire 11P is not directly grounded, but is grounded via the first coupling capacitor 34a and the second coupling capacitor 35a.
 ノイズキャンセル回路30内の点Aは、第1リアクトル31aと第2リアクトル33a1との接続点を示し、点Bは、第1リアクトル31aと第3リアクトル33a2との接続点を示す。点C1は、第2リアクトル33a1とトランス32aの一次巻線32aPとの接続点を示し、点C2は、第3リアクトル33a2とトランス32aの二次巻線32aSとの接続点を示す。また、点Dは、巻線接続点36aと第1カップリングコンデンサ34aと第2カップリングコンデンサ35aとが接続される点を示す。 Point A in the noise canceling circuit 30 indicates a connection point between the first reactor 31a and the second reactor 33a1, and point B indicates a connection point between the first reactor 31a and the third reactor 33a2. Point C1 indicates the connection point between the second reactor 33a1 and the primary winding 32aP of the transformer 32a, and point C2 indicates the connection point between the third reactor 33a2 and the secondary winding 32aS of the transformer 32a. Further, the point D indicates a point where the winding connection point 36a, the first coupling capacitor 34a, and the second coupling capacitor 35a are connected.
 電流Iinは、ノイズキャンセル回路30に入力される電流を示し、電流ILは、ノイズキャンセル回路30内の点Aから点Bに流れる電流、即ち、第1リアクトル31aを流れる電流を示す。電流IPはノイズキャンセル回路30内の点Aから点Dに流れる電流、電流ISはノイズキャンセル回路30内の点Bから点Dに流れる電流を示す。電流Ioutは、ノイズキャンセル回路30でノイズ電流を除去しきれず、点Bから直流母線21Pを介してケーブル線11Pに出力される電流を示す。
 なお、電流Iin、IL、IP、ISは、コモンモードのノイズ電流である。
The current Iin indicates the current input to the noise canceling circuit 30, and the current IL indicates the current flowing from the point A to the point B in the noise canceling circuit 30, that is, the current flowing through the first reactor 31a. The current IP indicates the current flowing from the point A to the point D in the noise canceling circuit 30, and the current IS indicates the current flowing from the point B to the point D in the noise canceling circuit 30. The current Iout indicates the current that cannot be completely removed by the noise canceling circuit 30 and is output from the point B to the cable line 11P via the DC bus 21P.
The currents Iin, IL, IP, and IS are common mode noise currents.
 電流IPおよび電流ISは、同位相の電流で、いずれも点Dから第1カップリングコンデンサ34aを介して大地に流れる。図2に示すように、直流母線21Pは大地との間に浮遊容量50を有しているため、電流IPおよび電流ISは、大地から浮遊容量を50を介して近接した直流母線21Pに戻ることになり、コモンモードノイズが外部環境に流出しない。 The current IP and the current IS are currents of the same phase and both flow from the point D to the ground via the first coupling capacitor 34a. As shown in FIG. 2, since the DC bus 21P has a stray capacitance 50 with the ground, the current IP and the current IS return from the ground to the adjacent DC bus 21P via the stray capacitance 50. Therefore, common mode noise does not leak to the external environment.
 図3は、ノイズキャンセル回路30の動作を説明する各部の波形図である。
 この場合、第2リアクトル33a1のインピーダンスと、第3リアクトル33a2のインピーダンスとが等しく、第1リアクトル31aのインピーダンスは、第2、第3リアクトル33a1、33a2の各インピーダンスの倍になっている。即ち、第1リアクトル31a、第2リアクトル33a1および第3リアクトル33a2のインピーダンス比が、2:1:1である。
 このとき、電流ILと電流IPと電流ISとは、位相および振幅が等しい電流となる。このため、A-C1間電圧であるV-AC1と、B-C2間電圧であるV-BC2と、C1-D間電圧であるV-C1Dとは等しくなる。
FIG. 3 is a waveform diagram of each part for explaining the operation of the noise canceling circuit 30.
In this case, the impedance of the second reactor 33a1 and the impedance of the third reactor 33a2 are equal, and the impedance of the first reactor 31a is twice the impedance of the second and third reactors 33a1 and 33a2. That is, the impedance ratio of the first reactor 31a, the second reactor 33a1 and the third reactor 33a2 is 2: 1: 1.
At this time, the current IL, the current IP, and the current IS are currents having the same phase and amplitude. Therefore, the voltage between AC1 and V-AC1, the voltage between B and C2, V-BC2, and the voltage between C1-D, V-C1D, are equal to each other.
 トランス32aの一次巻線32aPと二次巻線32aSとは逆結合されて巻線比は1:1であるため、一次巻線32aPと二次巻線32aSとには、互いに逆位相で同じ大きさの電圧が生じる。このため、C2-D間電圧であるV-C2Dは、V-C1Dと逆位相で同じ大きさの電圧となる。
 そして、V-BC2とV-C2Dとについても、逆位相で同じ大きさの電圧となり、B-D間電圧であるV-BDは0電圧となる。これにより、電流Ioutは流れない。
 また、A-D間電圧であるV-ADと、A-B間電圧であるV-ABとは等しくなる。
Since the primary winding 32aP and the secondary winding 32aS of the transformer 32a are inversely coupled and the winding ratio is 1: 1, the primary winding 32aP and the secondary winding 32aS have the same size in opposite phases. A voltage is generated. Therefore, V-C2D, which is the voltage between C2-D, has the same magnitude as V-C1D in the opposite phase.
As for V-BC2 and V-C2D, the voltages have the same magnitude in opposite phases, and V-BD, which is the voltage between BD, becomes 0 voltage. As a result, the current Iout does not flow.
Further, V-AD, which is the voltage between A and D, and V-AB, which is the voltage between AB, are equal to each other.
 このように、ノイズキャンセル回路30は、ケーブル線11Pへ出力されるコモンモード電圧であるV-BDを0電圧に、即ち、第1リアクトル31aの第2端と巻線接続点36aとの間の電圧差を0電圧にするように動作する。図3に示すように、理想的にノイズキャンセル回路30が動作してV-BDが0電圧になると、ノイズキャンセル回路30に入力されたノイズ電流Iinは全てキャンセルされ、電流Ioutは出力されない。 In this way, the noise canceling circuit 30 sets V-BD, which is a common mode voltage output to the cable line 11P, to 0 voltage, that is, between the second end of the first reactor 31a and the winding connection point 36a. It operates so that the voltage difference becomes 0 voltage. As shown in FIG. 3, when the noise canceling circuit 30 ideally operates and the V-BD reaches 0 voltage, all the noise currents Iin input to the noise canceling circuit 30 are canceled and the current Iout is not output.
 次に、ノイズキャンセル回路30が、入力されたノイズ電流Iinを除去しきれず、電流Ioutが出力される場合を説明する。図4は、ノイズキャンセル回路30の動作を説明する各部の波形図である。
 この場合、第1リアクトル31a、第2リアクトル33a1および第3リアクトル33a2のインピーダンス比が、理想状態からずれて、例えば1.6:1:1であるとする。
 このとき、電流IL≠電流IS(=電流IP)となり、(V-AC1)=(V-BC2)≠(V-C1D)となる。そして、V-C2DとV-C1Dとは逆位相で同じ大きさの電圧であるため、V-BC2とV-C2Dとは逆位相で異なる電圧となり、V-BDは0電圧とならない。また、V-ADとV-ABとは一致しない。
Next, the case where the noise canceling circuit 30 cannot completely remove the input noise current Iin and the current Iout is output will be described. FIG. 4 is a waveform diagram of each part for explaining the operation of the noise canceling circuit 30.
In this case, it is assumed that the impedance ratios of the first reactor 31a, the second reactor 33a1 and the third reactor 33a2 deviate from the ideal state, for example, 1.6: 1: 1.
At this time, the current IL ≠ the current IS (= current IP), and (V-AC1) = (V-BC2) ≠ (V-C1D). Since V-C2D and V-C1D have opposite phases and the same voltage, V-BC2 and V-C2D have opposite phases and different voltages, and V-BD does not have 0 voltage. Also, V-AD and V-AB do not match.
 このように、ノイズキャンセル回路30は、コモンモード電圧であるV-BD(≠0)をケーブル線11Pへ出力し、電流Iout(≠0)を出力する。
 そして、ノイズキャンセル回路30内の点Bから出力された電流Ioutは、図2に示すように、直流母線21P、ケーブル線11P、浮遊容量13a、シールド線12A、第2カップリングコンデンサ35a、トランス32aの二次巻線32aS、および第3リアクトル33a2を介して循環する。
In this way, the noise canceling circuit 30 outputs the common mode voltage V-BD (≠ 0) to the cable line 11P, and outputs the current Iout (≠ 0).
Then, as shown in FIG. 2, the current Iout output from the point B in the noise canceling circuit 30 has a DC bus 21P, a cable wire 11P, a stray capacitance 13a, a shielded wire 12A, a second coupling capacitor 35a, and a transformer 32a. Circulates through the secondary winding 32aS and the third reactor 33a2.
 このように、直流母線21P、ケーブル線11P、浮遊容量13a、シールド線12A、第2カップリングコンデンサ35a、トランス32aの二次巻線32aS、および第3リアクトル33a2を介して循環電流(電流Iout)が流れる電流経路40が形成され、電流Ioutは電流経路40内を循環する循環電流となる。このため、電流Ioutはコモンモードのノイズ電流と性質の異なるノーマルモードの電流となり、結果的に、コモンモードのノイズ電流はノイズキャンセル回路30により全て除去されて出力されない。 In this way, the circulating current (current Iout) is passed through the DC bus 21P, the cable wire 11P, the floating capacitance 13a, the shielded wire 12A, the second coupling capacitor 35a, the secondary winding 32aS of the transformer 32a, and the third reactor 33a2. The current path 40 through which the current flows is formed, and the current Iout becomes a circulating current circulating in the current path 40. Therefore, the current Iout becomes a normal mode current having different properties from the common mode noise current, and as a result, the common mode noise current is completely removed by the noise canceling circuit 30 and is not output.
 以上、ノイズキャンセル回路30の正極側回路30Aについて説明したが、負極側回路30Bについても、同様に動作して同様の結果が得られる。 The positive electrode side circuit 30A of the noise canceling circuit 30 has been described above, but the negative electrode side circuit 30B also operates in the same manner and the same result can be obtained.
 この実施の形態による電力変換装置100は以上のように構成されるため、ノイズキャンセル回路30にLCフィルタを用いる事無く、コモンモードノイズを抑制することができ、装置構成の小型化を促進できる。特に、直流母線21P、21Nに挿入される第1リアクトル31a、31bは、LCフィルタ内のリアクトルに比べて小さいもので十分であり、小型のノイズキャンセル回路30のみでコモンモードノイズの抑制が可能になる。 Since the power conversion device 100 according to this embodiment is configured as described above, common mode noise can be suppressed without using an LC filter in the noise canceling circuit 30, and miniaturization of the device configuration can be promoted. In particular, the first reactors 31a and 31b inserted into the DC bus 21P and 21N need to be smaller than the reactor in the LC filter, and the common mode noise can be suppressed only by the small noise canceling circuit 30. Become.
 図5は、ノイズキャンセル回路30の効果を説明する図であり、周波数に対する電圧振幅応答特性を示す。なお、ノイズキャンセル回路30の入力電圧VinはV-ADに相当し、出力電圧VoutはV-BDに相当する。電圧振幅応答を示す特性線60が示すように、ノイズキャンセル回路30では、低周波数帯域から高周波数帯域まで、広くコモンモード電圧を低減できる。
 これに対し、従来から広く用いられるLCフィルタを用いた比較例では、電圧振幅応答を示す比較特性線61が示すように、低周波数帯域において、ほぼ効果が見られない。
FIG. 5 is a diagram for explaining the effect of the noise canceling circuit 30, and shows the voltage amplitude response characteristic with respect to the frequency. The input voltage Vin of the noise canceling circuit 30 corresponds to V-AD, and the output voltage Vout corresponds to V-BD. As shown by the characteristic line 60 showing the voltage amplitude response, the noise canceling circuit 30 can reduce the common mode voltage widely from the low frequency band to the high frequency band.
On the other hand, in the comparative example using the LC filter widely used conventionally, as shown by the comparative characteristic line 61 showing the voltage amplitude response, almost no effect is seen in the low frequency band.
 さらに、この実施の形態では、ノイズキャンセル回路30がノイズ電流を除去しきれずにケーブル線11P、11Nへ電流Ioutを出力しても、電流Ioutは、ケーブル線11Pとシールド線12Aとの間の浮遊容量13aを介して形成される電流経路40を循環する。このため、ノイズキャンセル回路30から出力される電流Ioutは、コモンモードからノーマルモードに変化した電流となり、コモンモードノイズの抑制効果は格段と向上する。 Further, in this embodiment, even if the noise canceling circuit 30 cannot completely remove the noise current and outputs the current Iout to the cable lines 11P and 11N, the current Iout floats between the cable line 11P and the shielded wire 12A. It circulates in the current path 40 formed through the capacitance 13a. Therefore, the current Iout output from the noise canceling circuit 30 becomes a current changed from the common mode to the normal mode, and the effect of suppressing the common mode noise is remarkably improved.
 また、この実施の形態では、ノイズキャンセル回路30が理想的に動作せずに電流Ioutが出力されても、電流Ioutによるコモンモードノイズが生じないため、ノイズキャンセル回路30を含む電力変換装置100の設計上の自由度が向上する。 Further, in this embodiment, even if the noise canceling circuit 30 does not operate ideally and the current Iout is output, common mode noise due to the current Iout does not occur. Therefore, the power conversion device 100 including the noise canceling circuit 30. Increases design freedom.
 なお、上記実施の形態では、電力変換装置100は、電源回路1内の直流電圧源2と電源ケーブル10を介して接続したが、図6に示すように、負荷回路3内の直流負荷4と電源ケーブル10を介して接続しても良い。
 この場合も、ノイズキャンセル回路30は上記実施の形態と同様に動作し、電力変換装置100は同様の効果を得る。
In the above embodiment, the power conversion device 100 is connected to the DC voltage source 2 in the power supply circuit 1 via the power supply cable 10, but as shown in FIG. 6, it is connected to the DC load 4 in the load circuit 3. It may be connected via the power cable 10.
Also in this case, the noise canceling circuit 30 operates in the same manner as in the above embodiment, and the power conversion device 100 obtains the same effect.
実施の形態2.
 図7は、実施の形態2による電力変換装置の概略構成を示す図である。
 図7に示すように、この実施の形態2では、ノイズキャンセル回路30Cは、上記実施の形態1で示した第2リアクトル33a1、33b1および第3リアクトル33a2、33b2を省略して、トランス32a、32bの漏れインダクタンスを用いる。
 即ち、実施の形態1で示した第2リアクトル33a1および第3リアクトル33a2は、トランス32aの漏れインダクタンスで構成され、第2リアクトル33b1および第3リアクトル33b2は、トランス32bの漏れインダクタンスで構成される。その他の構成は上記実施の形態1と同様である。
Embodiment 2.
FIG. 7 is a diagram showing a schematic configuration of the power conversion device according to the second embodiment.
As shown in FIG. 7, in the second embodiment, the noise canceling circuit 30C omits the second actuators 33a1, 33b1 and the third inductance 33a2, 33b2 shown in the first embodiment, and omits the transformers 32a, 32b. Use the leakage inductance of.
That is, the second reactor 33a1 and the third reactor 33a2 shown in the first embodiment are composed of the leakage inductance of the transformer 32a, and the second reactor 33b1 and the third reactor 33b2 are composed of the leakage inductance of the transformer 32b. Other configurations are the same as those in the first embodiment.
 この実施の形態によるノイズキャンセル回路30Cは、上記実施の形態1と同様に動作し、同様の効果が得られる。また、第2リアクトル33a1、33b1および第3リアクトル33a2、33b2を省略できるため、電力変換装置100の小型化がさらに促進できる。 The noise canceling circuit 30C according to this embodiment operates in the same manner as in the first embodiment, and the same effect can be obtained. Further, since the second reactors 33a1 and 33b1 and the third reactors 33a2 and 33b2 can be omitted, the miniaturization of the power conversion device 100 can be further promoted.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 10 電源ケーブル、11P,11N ケーブル線、12A,12B シールド線、13a,13b 浮遊容量、20 電力変換回路、21P,21N 直流母線、30,30C ノイズキャンセル回路、31a,31b 第1リアクトル、32a,32b トランス、32aP,32bP 一次巻線、32aS,32bS 二次巻線、33a1,33b1 第2リアクトル、33a2,33b2 第3リアクトル、34a,34b 第1カップリングコンデンサ、35a,35b 第2カップリングコンデンサ、36a,36b 巻線接続点、40 電流経路、100 電力変換装置。 10 Power cable, 11P, 11N cable line, 12A, 12B shielded wire, 13a, 13b stray capacitance, 20 power conversion circuit, 21P, 21N DC bus, 30,30C noise canceling circuit, 31a, 31b first reactor, 32a, 32b Transformer, 32aP, 32bP primary winding, 32aS, 32bS secondary winding, 33a1, 33b1 second reactor, 33a2, 33b2 third reactor, 34a, 34b first coupling capacitor, 35a, 35b second coupling capacitor, 36a , 36b Winding connection point, 40 current path, 100 power converter.

Claims (8)

  1. 電源ケーブルに接続される直流母線と、
    前記直流母線を入出力線とする電力変換回路と、
    前記直流母線を介して前記電源ケーブルに流れるコモンモードのノイズ電流を抑制するノイズキャンセル回路とを備え、
    前記ノイズキャンセル回路は、
     前記直流母線に直列に挿入された第1リアクトルと、
     一次巻線と二次巻線とが逆結合され、かつ各第1端が巻線接続点にて互いに接続されたトランスと、
     前記第1リアクトルの第1端と前記一次巻線の第2端との間に接続された第2リアクトルと、
     前記第1リアクトルの第2端と前記二次巻線の第2端との間に接続された第3リアクトルと、
     交流成分のみを通す第1、第2カップリングコンデンサとを備え、
     前記トランスの前記巻線接続点が、前記第1カップリングコンデンサを介して接地されると共に、前記第2カップリングコンデンサを介して前記電源ケーブルのシールド線に接続される、
    電力変換装置。
    The DC bus connected to the power cable and
    A power conversion circuit using the DC bus as an input / output line and
    A noise canceling circuit that suppresses a common mode noise current flowing through the power cable via the DC bus is provided.
    The noise canceling circuit
    The first reactor inserted in series with the DC bus and
    A transformer in which the primary winding and the secondary winding are inversely coupled and their first ends are connected to each other at the winding connection point.
    A second reactor connected between the first end of the first reactor and the second end of the primary winding,
    A third reactor connected between the second end of the first reactor and the second end of the secondary winding,
    Equipped with first and second coupling capacitors that allow only AC components to pass through,
    The winding connection point of the transformer is grounded via the first coupling capacitor and connected to the shielded wire of the power cable via the second coupling capacitor.
    Power converter.
  2. 前記直流母線、前記電源ケーブル、前記電源ケーブルと前記シールド線との間の浮遊容量、前記シールド線、前記第2カップリングコンデンサ、前記トランスの前記二次巻線、および前記第3リアクトルを介して循環電流が流れる電流経路が形成される、
    請求項1に記載の電力変換装置。
    Via the DC bus, the power cable, the stray capacitance between the power cable and the shielded wire, the shielded wire, the second coupling capacitor, the secondary winding of the transformer, and the third reactor. A current path through which circulating current flows is formed,
    The power conversion device according to claim 1.
  3. 前記ノイズキャンセル回路は、前記トランスの前記一次巻線および前記第1カップリングコンデンサを介して大地に流れるノイズ電流と、前記トランスの前記二次巻線および前記第1カップリングコンデンサを介して大地に流れるノイズ電流とを同位相にして、前記第1リアクトルの前記第2端と前記巻線接続点との間の電圧差を0電圧にするように動作する、
    請求項1または請求項2に記載の電力変換装置。
    The noise canceling circuit connects the noise current flowing to the ground through the primary winding of the transformer and the first coupling capacitor, and the noise current flowing to the ground via the secondary winding of the transformer and the first coupling capacitor. It operates so that the flowing noise current is in phase with each other and the voltage difference between the second end of the first reactor and the winding connection point is set to 0 voltage.
    The power conversion device according to claim 1 or 2.
  4. 前記第1リアクトルはコモンモードチョークコイルで構成される、
    請求項1から請求項3のいずれか1項に記載の電力変換装置。
    The first reactor is composed of a common mode choke coil.
    The power conversion device according to any one of claims 1 to 3.
  5. 前記トランスの前記一次巻線と前記二次巻線との巻線比を1:1とした、
    請求項1から請求項4のいずれか1項に記載の電力変換装置。
    The winding ratio of the primary winding to the secondary winding of the transformer was set to 1: 1.
    The power conversion device according to any one of claims 1 to 4.
  6. 前記第2リアクトルのインピーダンスと、前記第3リアクトルのインピーダンスとが等しい、
    請求項5に記載の電力変換装置。
    The impedance of the second reactor is equal to the impedance of the third reactor.
    The power conversion device according to claim 5.
  7. 前記第1リアクトル、前記第2リアクトルおよび前記第3リアクトルのインピーダンス比が、2:1:1である、
    請求項6に記載の電力変換装置。
    The impedance ratio of the first reactor, the second reactor and the third reactor is 2: 1: 1.
    The power conversion device according to claim 6.
  8. 前記第2リアクトルおよび前記第3リアクトルは、前記トランスの漏れインダクタンスで構成される、
    請求項1から請求項7のいずれか1項に記載の電力変換装置。
    The second reactor and the third reactor are composed of the leakage inductance of the transformer.
    The power conversion device according to any one of claims 1 to 7.
PCT/JP2019/046190 2019-11-26 2019-11-26 Power converter WO2021106081A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560807A JP7130151B2 (en) 2019-11-26 2019-11-26 power converter
PCT/JP2019/046190 WO2021106081A1 (en) 2019-11-26 2019-11-26 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046190 WO2021106081A1 (en) 2019-11-26 2019-11-26 Power converter

Publications (1)

Publication Number Publication Date
WO2021106081A1 true WO2021106081A1 (en) 2021-06-03

Family

ID=76129241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046190 WO2021106081A1 (en) 2019-11-26 2019-11-26 Power converter

Country Status (2)

Country Link
JP (1) JP7130151B2 (en)
WO (1) WO2021106081A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219758A (en) * 1992-02-03 1993-08-27 Fuji Electric Co Ltd Noise preventing device for power inverter
JP2004336937A (en) * 2003-05-09 2004-11-25 Fuji Electric Systems Co Ltd High-frequency noise suppressing device of uninterruptible power supply apparatus
JP2011109856A (en) * 2009-11-19 2011-06-02 Calsonic Kansei Corp Common mode noise reducing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219758B2 (en) 2008-11-27 2013-06-26 文化シヤッター株式会社 Switchgear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219758A (en) * 1992-02-03 1993-08-27 Fuji Electric Co Ltd Noise preventing device for power inverter
JP2004336937A (en) * 2003-05-09 2004-11-25 Fuji Electric Systems Co Ltd High-frequency noise suppressing device of uninterruptible power supply apparatus
JP2011109856A (en) * 2009-11-19 2011-06-02 Calsonic Kansei Corp Common mode noise reducing apparatus

Also Published As

Publication number Publication date
JPWO2021106081A1 (en) 2021-06-03
JP7130151B2 (en) 2022-09-02

Similar Documents

Publication Publication Date Title
US8228019B2 (en) Output filter and motor drive system including the same
TWI454028B (en) System interconnection converter
US7449867B2 (en) Multi-phase buck converter with a plurality of coupled inductors
US11418106B2 (en) Apparatus for conversion between AC power and DC power
US9887641B2 (en) Power converter
US20080084717A1 (en) Multi-phase buck converter with a plurality of coupled inductors
CN110875688B (en) Voltage converter for reducing common mode noise and method thereof
JP5634102B2 (en) Grid interconnection inverter
WO2016027374A1 (en) Power conversion device
JP2006136058A (en) Noise filter
EP0398723A2 (en) Switching power supply apparatus and isolating method thereof
JP5051227B2 (en) Common mode filter, output filter, and power converter for power converter
US11777412B2 (en) Switching power supply apparatus for reducing common mode noise due to line-to-ground capacitances
WO2021106081A1 (en) Power converter
JPH0787753A (en) Suppression circuit of circulating current of ac power-supply apparatus
JP6045664B1 (en) Power converter
JPH09233854A (en) Pwm inverter apparatus
JP3427885B2 (en) Switching power supply
WO2019102937A1 (en) Noise filter circuit and power supply circuit
US11114932B1 (en) Method and apparatus for reduction of ripple current
JP6828839B2 (en) Switching power supply
JP5565149B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953887

Country of ref document: EP

Kind code of ref document: A1