WO2021091190A1 - Charging apparatus using ess apparatus - Google Patents

Charging apparatus using ess apparatus Download PDF

Info

Publication number
WO2021091190A1
WO2021091190A1 PCT/KR2020/015199 KR2020015199W WO2021091190A1 WO 2021091190 A1 WO2021091190 A1 WO 2021091190A1 KR 2020015199 W KR2020015199 W KR 2020015199W WO 2021091190 A1 WO2021091190 A1 WO 2021091190A1
Authority
WO
WIPO (PCT)
Prior art keywords
ess
converter
voltage
module
target battery
Prior art date
Application number
PCT/KR2020/015199
Other languages
French (fr)
Korean (ko)
Inventor
백주원
김명호
김호성
류명효
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2021091190A1 publication Critical patent/WO2021091190A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • H02M3/33553Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to a charging device for a battery such as an electric vehicle, and to a charging device using an ESS device capable of reducing the device capacity of a converter required for the charging device and increasing the charging system efficiency.
  • the battery capacity is gradually increasing, and the battery charging voltage is also increasing in order to cope with the increase in battery capacity. Accordingly, the charger output voltage is also increasing to 1000V.
  • the capacity of the charger is also being increased in high voltage and high-capacity, and recently, large-capacity chargers of around 100-400kW are being developed.
  • the charging current capacity For rapid charging of the battery, the charging current capacity must be increased in proportion, and the charger capacity increases in proportion to the product of the output voltage of the charger and the charging current. Therefore, since the capacity and size of a fast large-capacity charger are directly linked to the rapid charging time and the battery capacity, the capacity of the charger is increasing in proportion to the battery size and charging time with the existing technology.
  • the present application aims to provide a charging device using an ESS device capable of reducing the device capacity of a converter required for the charging device and increasing the charging system efficiency while reducing the burden on the receiving capacity by utilizing the ESS device.
  • a charging device using an ESS (Energy Storage System) device includes an ESS device for storing electric energy; And a DC-DC converter in which a primary module is connected in parallel with the ESS device, and a secondary module is connected in series between the ESS device and a target battery, wherein the DC-DC converter comprises one end of the primary module. And one end of the secondary module are connected to each other, both ends of the primary module are connected in parallel with the ESS device, and the other end of the secondary module may be connected in series with the target battery.
  • ESS Electronicgy Storage System
  • the ESS voltage of the ESS device is lower than the discharge end voltage of the target battery, and the DC-DC converter may apply an output positive voltage to the target battery and an output negative voltage to the ESS device.
  • a charging device using an ESS (Energy Storage System) device includes an ESS device for storing electrical energy; And a DC-DC converter in which a primary module is connected in series between the ESS device and a target battery, and a secondary module is connected in parallel with the target battery, wherein the DC-DC converter comprises one end of the primary module and One end of the secondary module is connected to each other, the other end of the primary module is connected in series with the ESS device, and both ends of the secondary module may be connected in parallel with the target battery.
  • ESS Electronicgy Storage System
  • the ESS voltage of the ESS device is higher than the maximum charging voltage of the target battery, and the DC-DC converter may apply an output positive voltage to the ESS device and the output negative voltage to the target battery.
  • the DC-DC converter may be an insulated converter having an insulating structure.
  • a charging device using an ESS (Energy Storage System) device includes an ESS (Energy Storage System) device for storing electrical energy; A first DC-DC converter in which one end of the primary-side module and one end of the secondary-side module are connected to each other, and the ESS device is connected in parallel to the primary-side module; And a second DC-DC converter in which one end of the primary module and one end of the secondary module are connected to each other, and the target battery is connected in parallel to the secondary module, wherein the secondary module of the first DC-DC converter The other end of and the other end of the primary module of the second DC-DC converter may be connected in series with each other.
  • the first DC-DC converter when the voltage of the ESS device is lower than the voltage of the target battery, the first DC-DC converter operates, the second DC-DC converter bypasses, and the voltage of the ESS device is If the voltage is higher than the voltage, the second DC-DC converter may operate, and the first DC-DC converter may bypass.
  • the burden on receiving capacity can be reduced.
  • the sum voltage of the ESS voltage and the converter voltage of the DC-DC converter is applied to the target battery through a DC-DC converter connected in series to the ESS device. I can. Accordingly, it is possible to simultaneously reduce the device capacity required for the DC-DC converter and minimize the conversion loss occurring in the energy conversion process.
  • FIG. 1 is a block diagram showing a charging device using an ESS device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a charging device using an ESS device according to an embodiment of the present invention.
  • FIG. 3 is an equivalent circuit of a charging device using an ESS device according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a charging device using an ESS device according to another embodiment of the present invention.
  • FIG. 5 is a block diagram showing a charging device using an ESS device according to another embodiment of the present invention.
  • FIG. 6 is a block diagram showing a charging device using a conventional ESS device.
  • a charging device for an electric vehicle it can be configured in a manner in which direct current rectified from the input AC voltage is linked to a charger, and depending on the embodiment, in order to prevent the lack of receiving capacity, a separate ESS (Energy Storage System) It may further include equipment and a converter for linking it.
  • ESS Electronicgy Storage System
  • an electric vehicle charging device may be composed of an insulated converter circuit according to the IEC (International Electronical Commission) standard, and a constant current for voltage fluctuations from the discharge final voltage of the electric vehicle battery to the maximum charging voltage. Control or constant voltage control can be performed. That is, initially, the charging current is supplied through constant constant current control, and then, constant voltage control may be performed after the battery of the electric vehicle reaches a constant charging voltage.
  • the isolated converter may be composed of various circuits, and a soft switching method may be used to improve efficiency.
  • the DC-DC converter 12 In the case of the conventional electric vehicle charging device 10, as shown in FIG. 6, after receiving an input from the ESS device 11 to generate an output, it may be directly connected to the target battery 1 in parallel.
  • the DC-DC converter 12 since the DC-DC converter 12 has a structure in which the ESS device 11 and the target battery 1 are connected in parallel on the input side and the output side, respectively, the DC-DC converter 12 is a device equal to the charging capacity of the entire system. It must be configured to have a capacity.
  • the charging capacity and the device capacity required for the DC-DC converter 12 are gradually increasing, and accordingly, problems such as economical efficiency and efficiency of the facility have arisen.
  • the charging device it is possible to implement a structure in which the DC-DC converter bears only a part of the output capacity. That is, it is possible to reduce the device capacity required for the DC-DC converter, and at the same time, it is possible to increase the system efficiency by minimizing the conversion loss during power conversion in the DC-DC converter.
  • a charging device according to an embodiment of the present invention will be described with reference to FIG. 1.
  • FIG. 1 is a block diagram showing a charging device using an ESS device according to an embodiment of the present invention.
  • a charging device 100 using an ESS device may include an ESS device 110 and a DC-DC converter 120.
  • FIG. 1 corresponds to a case where the ESS voltage of the ESS device 110 is lower than the lowest voltage of the target battery 1, that is, the discharge stop voltage.
  • the ESS device 110 can store electrical energy, and the electrical energy stored in the ESS device 110 is supplied to the target battery 1 through the DC-DC converter 120 to charge the target battery 1.
  • the ESS device 110 may receive and store power from the grid power connected to the charging device 100, and depending on the embodiment, power from energy modules that produce renewable energy such as solar, wind, and hydropower It is also possible to receive and store.
  • the target battery 1 may be a battery of an electric vehicle, and various types of batteries may be applicable.
  • the DC-DC converter 120 may convert a DC voltage or current output from the ESS device 110 into a DC voltage or current for charging the target battery 1.
  • the DC-DC converter 120 may include a primary side module 121, a transformer module 122, and a secondary side module 123.
  • the primary-side module 121 may convert the input ESS voltage V ess of the ESS device 110 into a first AC voltage. That is, in order to convert the received ESS voltage (V ess ) into an output voltage corresponding to the target battery 1, the primary module 121 first converts the DC ESS voltage V ess to the first AC voltage of AC. Can be converted.
  • the primary-side module 121 may include a plurality of switches and capacitors, and may convert a DC ESS voltage V ess into a first AC voltage by switching operations of the switches. The operation of each of the switches may be controlled by a control unit (not shown), and the converted first AC voltage may be applied to the transforming module 122 afterwards.
  • the primary-side module 121 may be implemented as an insulated converter having an insulation structure, and is implemented in the form of various types of insulated converters such as the structure of the full-bridge converter shown in FIG. 2 and the half-bridge converter. It is possible.
  • the transformation module 122 may receive a first AC voltage from the primary-side module 121 and may transform the first AC voltage into a second AC voltage according to a set winding ratio.
  • the secondary module 123 may rectify the second AC voltage received from the transformer module 122 to generate a DC output voltage.
  • the secondary module 123 may include a plurality of switches and capacitors, and may convert the second AC voltage into a DC output voltage by switching operations of the switches. Here, the operation of each of the switches may be controlled by a control unit (not shown), and the converted output voltage may be applied to the target battery 1.
  • the secondary module 123 may be implemented in various types of insulated converter structures such as a full-bridge converter and a half-bridge converter.
  • the primary-side module 121 is connected in parallel with the ESS device 110, and the secondary-side module 123 May be implemented to be connected in series between the ESS device 110 and the target battery 1. That is, one end (n1) of the primary-side module 121 and one end (n4) of the secondary-side module 123 are connected to each other by a connection lead (A), so that the secondary-side module 123 is connected to the ESS device 110 It can be implemented to be connected in series between the and the target battery (1). Through this, both ends (n1, n2) of the primary-side module 121 may be connected in parallel with the ESS device 110, and the other end (n3) of the secondary-side module 123 may be connected in series with the target battery (1).
  • the DC-DC converter 120 can bear only part of the charging capacity. Accordingly, the device capacity required for the DC-DC converter 120 can be significantly reduced.
  • FIG. 3 is an equivalent circuit of a charging device using an ESS device according to an embodiment of the present invention.
  • the ESS voltage (V ess ) is lower than the discharge end voltage, which is the minimum voltage of the target battery 1, the difference voltage (V ess -V bat ) is always less than 0.
  • the DC-DC converter 120 applies a positive output voltage to the target battery 1, and the output negative voltage of the DC-DC converter 120 is applied to the ESS device 110. So, an equivalent circuit can be implemented.
  • the total output power supplied to the target battery 1 is the product of the ESS voltage (V ess ) and the charging current (i ch ) of the ESS device 110 and the DC-DC converter 120. It is the sum of the product of the converter voltage (V dc ) and the charging current (i ch ). Therefore, in the total output power supplied to the target battery 1, the converter output power that the DC-DC converter 120 is responsible for becomes a part of the whole, and the lower the converter voltage (V dc ) of the DC-DC converter 120 becomes. The converter output power becomes smaller.
  • This feature can act as a very big advantage in terms of efficiency. That is, the DC-DC converter 120 generally causes conversion loss, but since the DC-DC converter 120 only takes charge of a part of the total output capacity, the ratio of the loss to the total power of the system decreases in proportion.
  • the instantaneous efficiency of the entire system can be expressed as follows.
  • ⁇ system is the instantaneous efficiency of the entire system
  • V bat is the battery voltage of the target battery 1
  • V dc is the converter voltage output from the DC-DC converter 120
  • V ess is the ESS voltage of the ESS device 10
  • i ch is the charging current
  • ⁇ dc corresponds to the instantaneous efficiency of the DC-DC converter 120. Accordingly, referring to Equation 1, it can be seen that only a part of the amount of power and loss of the DC-DC converter 120 is reflected in the instantaneous efficiency of the entire system.
  • the battery voltage (V bat ) of the target battery 1 when the battery voltage (V bat ) of the target battery 1 is charged from the discharge end voltage to the maximum charging voltage, the ESS voltage (V ess ) of the ESS device 110 and the battery voltage of the target battery 1 are initially charged.
  • the difference in (V bat ) is very small and gradually increases.
  • the more increase the battery voltage (V bat) of the target battery 1 is a direct current-direct current converter ( 120) converter output power gradually increases.
  • the average value of the converter voltage V dc corresponds to half of the difference voltage between the ESS voltage and the battery voltage after charging. That is, since the voltage applied to the DC-DC converter 120 is smaller when compared with the average voltage, the amount of output power and the loss ratio of the DC-DC converter 120 in the system instantaneous efficiency are reduced, and the system efficiency is reduced. You can see that it is rising.
  • the loss of the DC-DC converter 120 is reduced as a whole. It can occupy a very small proportion of the system efficiency.
  • FIG. 4 is a block diagram showing a charging device 200 using an ESS device according to another embodiment of the present invention, when the ESS voltage V ess of the ESS device 110 is higher than the maximum charging voltage of the target battery 1 Corresponds to.
  • the difference voltage (V--V bat ) between the ESS voltage (V ess ) and the battery voltage (V bat ) is always greater than 0, the output negative voltage of the DC-DC converter 130 is used as the target battery (1).
  • the positive output voltage may be applied to the ESS device 110.
  • the primary module is connected in series between the ESS device 110 and the target battery 1, and the secondary module is connected in parallel with the target battery 1.
  • the other end n1 of the primary module may be connected in series with the ESS device 110, and both ends n3 and n4 of the secondary module may be connected in parallel with the target battery 1.
  • the configuration of the charging device 200 using the ESS device according to another embodiment of the present invention is partially changed compared to the charging device 100 using the ESS device of FIG. 1, but the basic operation principle is the structure of FIG. same.
  • the charging device 300 it is possible to implement the charging device 300 as shown in FIG. 5. That is, in the case of the charging device 100 of FIG. 1, the rated voltage of the ESS device 110 must be set below the discharge end voltage of the battery voltage (V bat ). V dc ) can make up a significant portion of the total voltage. Accordingly, in another embodiment of the present invention, the rated voltage of the ESS device 110 and the rated voltage of the target battery 1 are the same, and a plurality of insulated DC-DC converters 120 and 130 are connected to the input terminal and the output terminal. It can be implemented in a structure that is placed at the same time.
  • the first DC-DC converter 120 and the second DC-DC converter 130 have one end of the primary-side module and one end of the secondary-side module connected to each other.
  • the other end of the secondary module of the 1 DC-DC converter 120 and the other end of the primary module of the second DC-DC converter 130 may be connected in series with each other.
  • the ESS device 110 may be connected in parallel to the primary module of the first DC-DC converter 120, and the target battery 1 may be connected in parallel to the secondary module of the second DC-DC converter 130.
  • the first DC-DC converter 120 when the ESS voltage (V ess ) of the ESS device 110 is lower than the battery voltage (V bat ) of the target battery 1, the first DC-DC converter 120 operates, and the second DC-DC The converter 130 may be controlled to bypass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present application relates to a charging apparatus using an energy storage system (ESS) apparatus. The charging apparatus using an ESS apparatus, according to an embodiment of the present invention, comprises: the ESS apparatus for storing electric energy; and a direct current-direct current converter having a primary-side module connected in parallel with the ESS apparatus and a secondary-side module connected in series between the ESS apparatus and a target battery. Here, in the direct current-direct current converter, one end of the primary-side module and one end of the secondary-side module are connected to each other, both ends of the primary-side module are connected in parallel with the ESS apparatus, and the other end of the secondary-side module is connected in series with the target battery.

Description

ESS 장치를 이용한 충전장치Charging device using ESS device
본 출원은 전기차 등의 배터리에 대한 충전장치에 관한 것으로, 충전장치에 요구되는 컨버터의 장치용량을 감소시키고 충전 시스템 효율을 높일 수 있는 ESS 장치를 이용한 충전장치에 관한 것이다. The present application relates to a charging device for a battery such as an electric vehicle, and to a charging device using an ESS device capable of reducing the device capacity of a converter required for the charging device and increasing the charging system efficiency.
최근 환경오염으로 인한 친환경 및 에너지 부족으로 인한 에너지 자원의 절약이 강조되고 있다. 이에 따라 자동차 산업에서도 경쟁력 향상을 위해 친환경적이고, 고에너지 효율 자동차인 전기자동차를 개발하고 있다. 최근 배터리 등의 성능개선과 비용절감에 힘입어 전기자동차가 일반적인 용도의 차량으로서 현실화되어 가고 있다. Recently, eco-friendliness due to environmental pollution and saving of energy resources due to lack of energy have been emphasized. Accordingly, the automobile industry is also developing an eco-friendly, high-energy-efficient electric vehicle to improve competitiveness. In recent years, thanks to performance improvement and cost reduction of batteries, etc., electric vehicles are becoming a reality as a vehicle for general use.
다만, 전기자동차의 상용화를 위하여 배터리 용량은 점차 증대되고 있으며, 배터리 용량 증대에 대응하기 위해 배터리 충전전압도 고압화되고 있다. 그에 따라, 충전기 출력전압 역시 1000V까지 높아지고 있다. 또한 배터리의 급속 충전 요구에 대응하기 위해 충전기의 용량 역시 고압 대용량화가 이뤄지고 있으며, 최근 100-400kW 내외의 대용량 충전기까지 개발이 되고 있다.However, in order to commercialize electric vehicles, the battery capacity is gradually increasing, and the battery charging voltage is also increasing in order to cope with the increase in battery capacity. Accordingly, the charger output voltage is also increasing to 1000V. In addition, in order to respond to the demand for rapid charging of the battery, the capacity of the charger is also being increased in high voltage and high-capacity, and recently, large-capacity chargers of around 100-400kW are being developed.
배터리의 급속 충전을 위해서는 충전 전류 용량을 비례해서 키워나갈 수 밖에 없으며 충전기의 출력전압과 충전전류의 곱에 비례하여 충전기 용량이 증대하게 된다. 따라서, 급속 대용량 충전기의 용량과 사이즈가 급속 충전시간과 배터리 용량에 직접적으로 연계되어 있으므로 현존 기술로는 충전기의 용량이 배터리 사이즈와 충전시간에 비례해서 증가하고 있다.For rapid charging of the battery, the charging current capacity must be increased in proportion, and the charger capacity increases in proportion to the product of the output voltage of the charger and the charging current. Therefore, since the capacity and size of a fast large-capacity charger are directly linked to the rapid charging time and the battery capacity, the capacity of the charger is increasing in proportion to the battery size and charging time with the existing technology.
이와 같이, 대용량 충전기는 장치의 사이즈 증가와 비용증가가 이뤄지므로 일반 수요자에게까지 널리 보급이 되기 위해서는 상당한 시간이 소요될 것으로 예상되며, 대용량 급속 충전기를 도심과 공동주택 같은 지역에 보급하기에는 공간의 부족과 수전용량을 확대해야 하는 어려움이 있다.As described above, large-capacity chargers are expected to take a considerable amount of time to be widely distributed to general consumers as the size of the device increases and cost increases, and space is insufficient to supply large-capacity rapid chargers to areas such as urban centers and apartment houses. There is a difficulty in expanding the receiving capacity.
본 출원은 ESS 장치를 활용하여 수전용량에 대한 부담을 경감시키는 동시에, 충전장치에 요구되는 컨버터의 장치용량을 감소시키고 충전 시스템 효율을 높일 수 있는 ESS 장치를 이용한 충전장치를 제공하고자 한다. The present application aims to provide a charging device using an ESS device capable of reducing the device capacity of a converter required for the charging device and increasing the charging system efficiency while reducing the burden on the receiving capacity by utilizing the ESS device.
본 발명의 일 실시예에 의한 ESS(Energy Storage System) 장치를 이용한 충전장치는, 전기 에너지를 저장하는 ESS장치; 및 일차측 모듈이 상기 ESS 장치와 병렬 연결되고, 이차측 모듈이 상기 ESS 장치와 대상 배터리 사이에 직렬연결되는 직류-직류 컨버터를 포함하는 것으로, 상기 직류-직류 컨버터는, 상기 일차측 모듈의 일단과 상기 이차측 모듈의 일단이 서로 연결되고, 상기 일차측 모듈의 양단은 상기 ESS 장치와 병렬연결되며, 상기 이차측 모듈의 타단은 상기 대상 배터리와 직렬연결될 수 있다. A charging device using an ESS (Energy Storage System) device according to an embodiment of the present invention includes an ESS device for storing electric energy; And a DC-DC converter in which a primary module is connected in parallel with the ESS device, and a secondary module is connected in series between the ESS device and a target battery, wherein the DC-DC converter comprises one end of the primary module. And one end of the secondary module are connected to each other, both ends of the primary module are connected in parallel with the ESS device, and the other end of the secondary module may be connected in series with the target battery.
여기서, 상기 ESS 장치의 ESS 전압은 상기 대상 배터리의 방전종지전압보다 낮으며, 상기 직류-직류 컨버터는 출력 양전압을 상기 대상 배터리에 인가하고, 출력 음전압을 상기 ESS 장치에 인가할 수 있다. Here, the ESS voltage of the ESS device is lower than the discharge end voltage of the target battery, and the DC-DC converter may apply an output positive voltage to the target battery and an output negative voltage to the ESS device.
본 발명의 다른 실시예에 의한 ESS(Energy Storage System) 장치를 이용한 충전장치는, 전기 에너지를 저장하는 ESS 장치; 및 일차측 모듈이 상기 ESS 장치와 대상 배터리 사이에 직렬 연결되고, 이차측 모듈이 상기 대상 배터리와 병렬연결되는 직류-직류 컨버터를 포함하는 것으로, 상기 직류-직류 컨버터는 상기 일차측 모듈의 일단과 상기 이차측 모듈의 일단이 서로 연결되고, 상기 일차측 모듈의 타단은 상기 ESS 장치와 직렬연결되며, 상기 이차측 모듈의 양단은 상기 대상 배터리와 병렬연결될 수 있다. A charging device using an ESS (Energy Storage System) device according to another embodiment of the present invention includes an ESS device for storing electrical energy; And a DC-DC converter in which a primary module is connected in series between the ESS device and a target battery, and a secondary module is connected in parallel with the target battery, wherein the DC-DC converter comprises one end of the primary module and One end of the secondary module is connected to each other, the other end of the primary module is connected in series with the ESS device, and both ends of the secondary module may be connected in parallel with the target battery.
여기서, 상기 ESS 장치의 ESS 전압은 상기 대상 배터리의 최대 충전전압보다 높으며, 상기 직류-직류 컨버터는 출력 양전압을 상기 ESS 장치에 인가하고, 상기 출력 음전압을 상기 대상 배터리에 인가할 수 있다.Here, the ESS voltage of the ESS device is higher than the maximum charging voltage of the target battery, and the DC-DC converter may apply an output positive voltage to the ESS device and the output negative voltage to the target battery.
여기서 상기 직류-직류 컨버터는 절연구조를 가지는 절연형 컨버터일 수 있다. Here, the DC-DC converter may be an insulated converter having an insulating structure.
본 발명의 또다른 실시예에 의한 ESS(Energy Storage System) 장치를 이용한 충전장치는, 전기 에너지를 저장하는 ESS(Energy Storage System) 장치; 일차측 모듈의 일단과 이차측 모듈의 일단이 서로 연결되며, 일차측 모듈에 상기 ESS 장치가 병렬연결되는 제1 직류-직류 컨버터; 및 일차측 모듈의 일단과 이차측 모듈의 일단이 서로 연결되며, 상기 이차측 모듈에 상기 대상 배터리가 병렬연결되는 제2 직류-직류 컨버터를 포함하며, 상기 제1 직류-직류 컨버터의 이차측모듈의 타단과 제2 직류-직류 컨버터의 일차측 모듈의 타단이 서로 직렬연결되는 것일 수 있다. A charging device using an ESS (Energy Storage System) device according to another embodiment of the present invention includes an ESS (Energy Storage System) device for storing electrical energy; A first DC-DC converter in which one end of the primary-side module and one end of the secondary-side module are connected to each other, and the ESS device is connected in parallel to the primary-side module; And a second DC-DC converter in which one end of the primary module and one end of the secondary module are connected to each other, and the target battery is connected in parallel to the secondary module, wherein the secondary module of the first DC-DC converter The other end of and the other end of the primary module of the second DC-DC converter may be connected in series with each other.
여기서, 상기 ESS 장치의 전압이 상기 대상 배터리의 전압 보다 낮으면, 상기 제1 직류-직류 컨버터가 동작하고, 상기 제2 직류-직류 컨버터는 바이패스하며, 상기 ESS 장치의 전압이 상기 대상 배터리의 전압 보다 높으면, 상기 제2 직류-직류 컨버터는 동작하고, 상기 제1 직류-직류 컨버터가 바이패스할 수 있다. Here, when the voltage of the ESS device is lower than the voltage of the target battery, the first DC-DC converter operates, the second DC-DC converter bypasses, and the voltage of the ESS device is If the voltage is higher than the voltage, the second DC-DC converter may operate, and the first DC-DC converter may bypass.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것이 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.In addition, the solution to the above-described problem does not enumerate all the features of the present invention. Various features of the present invention and advantages and effects thereof may be understood in more detail with reference to the following specific embodiments.
본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치에 의하면, ESS 장치를 활용하므로, 수전용량에 대한 부담을 경감시킬 수 있다. According to the charging device using the ESS device according to an embodiment of the present invention, since the ESS device is used, the burden on receiving capacity can be reduced.
본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치에 의하면, ESS 장치에 직렬연결되는 직류-직류 컨버터를 통하여, 대상 배터리에 ESS 전압과 직류-직류 컨버터의 컨버터 전압의 합전압이 인가되도록 할 수 있다. 따라서, 직류-직류 컨버터에 요구되는 장치용량을 감소 및 에너지 변환과정에서 발생하는 변환손실을 최소화를 동시에 구현할 수 있다. According to the charging device using the ESS device according to an embodiment of the present invention, the sum voltage of the ESS voltage and the converter voltage of the DC-DC converter is applied to the target battery through a DC-DC converter connected in series to the ESS device. I can. Accordingly, it is possible to simultaneously reduce the device capacity required for the DC-DC converter and minimize the conversion loss occurring in the energy conversion process.
다만, 본 발명의 실시예들에 따른 ESS 장치를 이용한 충전장치가 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the effects that can be achieved by the charging device using the ESS device according to the embodiments of the present invention are not limited to those mentioned above, and other effects not mentioned are the technical fields to which the present invention belongs from the following description. It will be able to be clearly understood by those of ordinary skill.
도1은 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치를 나타내는 블록도이다. 1 is a block diagram showing a charging device using an ESS device according to an embodiment of the present invention.
도2는 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치를 나타내는 회로도이다. 2 is a circuit diagram showing a charging device using an ESS device according to an embodiment of the present invention.
도3은 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치의 등가회로이다. 3 is an equivalent circuit of a charging device using an ESS device according to an embodiment of the present invention.
도4는 본 발명의 다른 실시예에 의한 ESS 장치를 이용한 충전장치를 나타내는 블록도이다. 4 is a block diagram showing a charging device using an ESS device according to another embodiment of the present invention.
도5는 본 발명의 또 다른 실시예에 의한 ESS 장치를 이용한 충전장치를 나타내는 블록도이다. 5 is a block diagram showing a charging device using an ESS device according to another embodiment of the present invention.
도6은 종래의 ESS 장치를 이용한 충전장치를 나타내는 블록도이다. 6 is a block diagram showing a charging device using a conventional ESS device.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. However, in describing a preferred embodiment of the present invention in detail, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 "~부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. In addition, throughout the specification, when a part is said to be'connected' with another part, it is not only'directly connected', but also'indirectly connected' with another element in the middle. Includes. In addition, "including" a certain component means that other components may be further included rather than excluding other components unless otherwise stated. In addition, terms such as "~ unit" and "module" described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software, or as a combination of hardware and software.
전기차 등을 위한 충전장치의 경우, 입력 교류전압에서 정류한 직류를 충전기에 연계하는 방식으로 구성할 수 있으며, 실시예에 따라서는 수전용량 부족 등을 방지하기 위하여, 별도의 ESS(Energy Storage System) 설비와, 이를 연계하기 위한 컨버터 등을 더 포함할 수 있다.In the case of a charging device for an electric vehicle, etc., it can be configured in a manner in which direct current rectified from the input AC voltage is linked to a charger, and depending on the embodiment, in order to prevent the lack of receiving capacity, a separate ESS (Energy Storage System) It may further include equipment and a converter for linking it.
일반적으로, 전기차 충전장치는 IEC(International Electronical Commission)의 규격에 따라, 절연된 컨버터 회로로 구성될 수 있으며, 전기차 배터리의 방전종지전압(discharge final voltage)에서 최대 충전전압까지의 전압 변동에 대해 정전류 제어 또는 정전압 제어를 수행할 수 있다. 즉, 초기에는 일정한 정전류 제어를 통해 충전 전류를 공급하고, 이후 전기차의 배터리 등이 일정한 충전전압에 도달하고 나서는 정전압 제어를 수행하 수 있다. 여기서, 절연형 컨버터는 다양한 회로로 구성될 수 있으며 효율 개선을 위해 소프트 스위칭 방식을 활용하는 것도 가능하다. In general, an electric vehicle charging device may be composed of an insulated converter circuit according to the IEC (International Electronical Commission) standard, and a constant current for voltage fluctuations from the discharge final voltage of the electric vehicle battery to the maximum charging voltage. Control or constant voltage control can be performed. That is, initially, the charging current is supplied through constant constant current control, and then, constant voltage control may be performed after the battery of the electric vehicle reaches a constant charging voltage. Here, the isolated converter may be composed of various circuits, and a soft switching method may be used to improve efficiency.
종래의 전기차 충전장치(10)의 경우, 도6에 도시한 바와 같이, ESS 장치(11)의 입력을 받아 출력을 발생시킨 후, 이를 대상 배터리(1)에 병렬로 직접 연결할 수 있다. 여기서, 직류-직류 컨버터(12)는 입력측과 출력측에 각각 ESS 장치(11)와 대상 배터리(1)가 병렬로 연결되는 구조이므로, 직류-직류 컨버터(12)는 전체 시스템의 충전용량과 동일한 장치용량을 가지도록 구성되어야 한다. 다만, 최근 전기차 배터리에 대한 급속 충전 등이 요구되면서, 충전용량 및 직류-직류 컨버터(12)에 요구되는 장치용량 점차 증가하고 있으며, 그에 따라 설비의 경제성 및 효율성 등의 문제가 발생하고 있다. In the case of the conventional electric vehicle charging device 10, as shown in FIG. 6, after receiving an input from the ESS device 11 to generate an output, it may be directly connected to the target battery 1 in parallel. Here, since the DC-DC converter 12 has a structure in which the ESS device 11 and the target battery 1 are connected in parallel on the input side and the output side, respectively, the DC-DC converter 12 is a device equal to the charging capacity of the entire system. It must be configured to have a capacity. However, as a recent demand for rapid charging of an electric vehicle battery, the charging capacity and the device capacity required for the DC-DC converter 12 are gradually increasing, and accordingly, problems such as economical efficiency and efficiency of the facility have arisen.
한편, 본 발명의 일 실시예에 의한 충전장치에 의하면, 직류-직류 컨버터가 출력용량의 일부만 부담하는 구조로 구현하는 것이 가능하다. 즉, 직류-직류 컨버터에 요구되는 장치용량을 감소시킬 수 있으며, 동시에 직류-직류 컨버터에서의 전력변환시 변환손실을 최소화하여 시스템 효율을 높이는 것이 가능하다. 이하, 도1을 참조하여 본 발명의일 실시예에 의한 충전장치를 설명한다. On the other hand, according to the charging device according to an embodiment of the present invention, it is possible to implement a structure in which the DC-DC converter bears only a part of the output capacity. That is, it is possible to reduce the device capacity required for the DC-DC converter, and at the same time, it is possible to increase the system efficiency by minimizing the conversion loss during power conversion in the DC-DC converter. Hereinafter, a charging device according to an embodiment of the present invention will be described with reference to FIG. 1.
도1은 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치를 나타내는 블록도이다. 1 is a block diagram showing a charging device using an ESS device according to an embodiment of the present invention.
도1을 참조하면, 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치(100)는, ESS 장치(110) 및 직류-직류 컨버터(120)를 포함할 수 있다. 여기서, 도1은 ESS 장치(110)의 ESS 전압은 대상 배터리(1)의 최저전압 즉, 방전종지전압보다 낮은 경우에 해당한다. Referring to FIG. 1, a charging device 100 using an ESS device according to an embodiment of the present invention may include an ESS device 110 and a DC-DC converter 120. Here, FIG. 1 corresponds to a case where the ESS voltage of the ESS device 110 is lower than the lowest voltage of the target battery 1, that is, the discharge stop voltage.
ESS 장치(110)는 전기 에너지를 저장할 수 있으며, ESS 장치(110)에 저장된 전기에너지는 직류-직류 컨버터(120)를 통하여 대상 배터리(1)로 공급되어, 대상 배터리(1)를 충전시킬 수 있다. 여기서, ESS 장치(110)는 충전장치(100)와 연계된 계통전원으로부터 전력을 공급받아 저장할 수 있으며, 실시예에 따라서는 태양광, 풍력, 수력 등 신재생 에너지를 생산하는 에너지 모듈들로부터 전력을 공급받아 저장하는 것도 가능하다. 대상 배터리(1)는 전기차의 배터리일 수 있으며, 이외에도 다양한 종류의 배터리들이 해당할 수 있다. The ESS device 110 can store electrical energy, and the electrical energy stored in the ESS device 110 is supplied to the target battery 1 through the DC-DC converter 120 to charge the target battery 1. have. Here, the ESS device 110 may receive and store power from the grid power connected to the charging device 100, and depending on the embodiment, power from energy modules that produce renewable energy such as solar, wind, and hydropower It is also possible to receive and store. The target battery 1 may be a battery of an electric vehicle, and various types of batteries may be applicable.
직류-직류 컨버터(120)는 ESS 장치(110)에서 출력되는 직류의 전압 또는 전류를 대상 배터리(1) 충전을 위한 직류의 전압 또는 전류로 변환시킬 수 있다. 구체적으로, 도2에 도시한 바와 같이, 직류-직류 컨버터(120)는 일차측 모듈(121), 변압모듈(122) 및 이차측모듈(123)을 포함할 수 있다. The DC-DC converter 120 may convert a DC voltage or current output from the ESS device 110 into a DC voltage or current for charging the target battery 1. Specifically, as shown in FIG. 2, the DC-DC converter 120 may include a primary side module 121, a transformer module 122, and a secondary side module 123.
일차측 모듈(121)은 입력받은 ESS 장치(110)의 ESS 전압(Vess)를 제1 교류 전압으로 변환할 수 있다. 즉, 입력받은 ESS 전압(Vess)을 대상 배터리(1)에 대응하는 출력전압으로 변환하기 위하여, 일차측 모듈(121)은 먼저 직류의 ESS 전압(Vess)을 교류의 제1 교류 전압으로 변환할 수 있다. 여기서, 일차측 모듈(121)은 복수의 스위치와 커패시터를 포함할 수 있으며, 스위치들의 스위칭 동작에 의하여 직류의 ESS 전압(Vess)을 제1 교류전압으로 변환할 수 있다. 각각의 스위치들은 제어부(미도시)에 의하여 동작이 제어될 수 있으며, 변환된 제1 교류 전압은 이후 변압모듈(122)로 인가될 수 있다. 여기서, 일차측 모듈(121)은 절연구조를 가지는 절연형 컨버터로 구현될 수 있으며, 도2에 도시한 풀-브릿지 컨버터의 구조를 비롯하여, 하프-브릿지 컨버터 등 다양한 종류의 절연형 컨버터 형태로 구현가능하다. The primary-side module 121 may convert the input ESS voltage V ess of the ESS device 110 into a first AC voltage. That is, in order to convert the received ESS voltage (V ess ) into an output voltage corresponding to the target battery 1, the primary module 121 first converts the DC ESS voltage V ess to the first AC voltage of AC. Can be converted. Here, the primary-side module 121 may include a plurality of switches and capacitors, and may convert a DC ESS voltage V ess into a first AC voltage by switching operations of the switches. The operation of each of the switches may be controlled by a control unit (not shown), and the converted first AC voltage may be applied to the transforming module 122 afterwards. Here, the primary-side module 121 may be implemented as an insulated converter having an insulation structure, and is implemented in the form of various types of insulated converters such as the structure of the full-bridge converter shown in FIG. 2 and the half-bridge converter. It is possible.
변압모듈(122)은 일차측 모듈(121)로부터 제1 교류전압을 입력받을 수 있으며, 설정권선비에 따라 제1 교류전압을 제2 교류전압으로 변압할 수 있다. The transformation module 122 may receive a first AC voltage from the primary-side module 121 and may transform the first AC voltage into a second AC voltage according to a set winding ratio.
이차측 모듈(123)은 변압모듈(122)로부터 수신한 제2 교류 전압을 정류하여 직류의 출력전압을 생성할 수 있다. 이차측 모듈(123)은 복수의 스위치와 커패시터를 포함할 수 있으며, 스위치들의 스위칭 동작에 의하여 제2 교류 전압을 직류의 출력전압으로 변환할 수 있다. 여기서, 각각의 스위치들은 제어부(미도시)에 의하여 동작이 제어될 수 있으며, 변환된 출력전압은 대상배터리(1)에 인가될 수 있다. 이차측 모듈(123)은 풀-브릿지 컨버터, 하프-브리지 컨버터 등 다양한 종류의 절연형 컨버터 구조로 구현될 수 있다.The secondary module 123 may rectify the second AC voltage received from the transformer module 122 to generate a DC output voltage. The secondary module 123 may include a plurality of switches and capacitors, and may convert the second AC voltage into a DC output voltage by switching operations of the switches. Here, the operation of each of the switches may be controlled by a control unit (not shown), and the converted output voltage may be applied to the target battery 1. The secondary module 123 may be implemented in various types of insulated converter structures such as a full-bridge converter and a half-bridge converter.
여기서, 본 발명의 일 실시예에 의한 직류-직류 컨버터(120)는, 도1에 도시한 바와 같이, 일차측 모듈(121)은 ESS 장치(110)와 병렬연결되고, 이차측 모듈(123)은 ESS 장치(110)와 대상 배터리(1) 사이에 직렬연결되도록 구현될 수 있다. 즉, 일차측 모듈(121)의 일단(n1)과 이차측 모듈(123)의 일단(n4)이 연결도선(A)에 의하여 서로 연결되도록 하여, 이차측 모듈(123)이 ESS 장치(110)와 대상 배터리(1) 사이에 직렬연결되도록 구현할 수 있다. 이를 통하여, 일차측 모듈(121)의 양단(n1, n2)은 ESS 장치(110)와 병렬연결되고, 이차측 모듈(123)의 타단(n3)은 대상 배터리(1)와 직렬연결될 수 있다. Here, in the DC-DC converter 120 according to an embodiment of the present invention, as shown in FIG. 1, the primary-side module 121 is connected in parallel with the ESS device 110, and the secondary-side module 123 May be implemented to be connected in series between the ESS device 110 and the target battery 1. That is, one end (n1) of the primary-side module 121 and one end (n4) of the secondary-side module 123 are connected to each other by a connection lead (A), so that the secondary-side module 123 is connected to the ESS device 110 It can be implemented to be connected in series between the and the target battery (1). Through this, both ends (n1, n2) of the primary-side module 121 may be connected in parallel with the ESS device 110, and the other end (n3) of the secondary-side module 123 may be connected in series with the target battery (1).
이러한 구조에 의하여, ESS 장치(110)의 ESS전압(Vess)과 배터리 전압(Vbat)의 차전압(Vess-Vbat)만이 직류-직류 컨버터(120)에 인가되므로, 직류-직류 컨버터(120)는 충전용량의 일부만을 부담하는 것이 가능하다. 따라서, 직류-직류 컨버터(120)에 요구되는 장치용량이 대폭 줄어들 수 있다. With this structure, since only the difference voltage (V ess -V bat ) between the ESS voltage (V ess ) of the ESS device 110 and the battery voltage (V bat ) is applied to the DC-DC converter 120, the DC-DC converter 120 can bear only part of the charging capacity. Accordingly, the device capacity required for the DC-DC converter 120 can be significantly reduced.
한편, 도3은 본 발명의 일 실시예에 의한 ESS 장치를 이용한 충전장치의 등가회로이다. 여기서, ESS 전압(Vess)은 대상 배터리(1)의 최소 전압인 방전종지전압보다 낮으므로, 차전압(Vess-Vbat)은 항상 0보다 작은 경우에 해당한다. 따라서, 도3에 도시한 바와 같이, 직류-직류 컨버터(120)는 출력 양전압을 대상 배터리(1)에 인가하고, 직류-직류 컨버터(120)의 출력 음전압은 ESS 장치(110) 에 인가하도록, 등가회로가 구현될 수 있다.Meanwhile, FIG. 3 is an equivalent circuit of a charging device using an ESS device according to an embodiment of the present invention. Here, since the ESS voltage (V ess ) is lower than the discharge end voltage, which is the minimum voltage of the target battery 1, the difference voltage (V ess -V bat ) is always less than 0. Accordingly, as shown in FIG. 3, the DC-DC converter 120 applies a positive output voltage to the target battery 1, and the output negative voltage of the DC-DC converter 120 is applied to the ESS device 110. So, an equivalent circuit can be implemented.
도3을 참조하면, 대상 배터리(1)로 공급되는 전체 출력전력은, ESS장치(110)의 ESS전압(Vess)과 충전전류(ich)의 곱과, 직류-직류 컨버터(120)의 컨버터 전압(Vdc)과 충전전류(ich)의 곱을 합한 값이 된다. 그러므로 대상 배터리(1)로 공급되는 전체 출력전력에서 직류-직류 컨버터(120)가 담당하는 컨버터 출력전력은 전체의 일부가 되며, 직류-직류 컨버터(120)의 컨버터 전압(Vdc)이 낮아질수록 컨버터 출력전력은 더 작아지게 된다.3, the total output power supplied to the target battery 1 is the product of the ESS voltage (V ess ) and the charging current (i ch ) of the ESS device 110 and the DC-DC converter 120. It is the sum of the product of the converter voltage (V dc ) and the charging current (i ch ). Therefore, in the total output power supplied to the target battery 1, the converter output power that the DC-DC converter 120 is responsible for becomes a part of the whole, and the lower the converter voltage (V dc ) of the DC-DC converter 120 becomes. The converter output power becomes smaller.
이러한 특징은 효율 관점에서 매우 큰 장점으로 작용할 수 있다. 즉, 직류-직류 컨버터(120)에서는 일반적으로 변환손실이 발생하게 되지만, 직류-직류 컨버터(120)는 전체 출력용량의 일부만을 담당하므로, 비례해서 시스템 전체 전력 대비 손실 비율이 작아지게 된다. This feature can act as a very big advantage in terms of efficiency. That is, the DC-DC converter 120 generally causes conversion loss, but since the DC-DC converter 120 only takes charge of a part of the total output capacity, the ratio of the loss to the total power of the system decreases in proportion.
전체 시스템의 순시 효율은 다음과 같이 표현될 수 있다. The instantaneous efficiency of the entire system can be expressed as follows.
Figure PCTKR2020015199-appb-M000001
Figure PCTKR2020015199-appb-M000001
여기서, ηsystem은 전체 시스템의 순시효율, Vbat는 대상 배터리(1)의 배터리 전압, Vdc는 직류-직류 컨버터(120)가 출력하는 컨버터 전압, Vess는 ESS 장치(10)의 ESS 전압, ich는 충전전류, ηdc는 직류-직류 컨버터(120)의 순시효율에 해당한다. 따라서, 수학식 1을 참조하면, 전체 시스템의 순시효율에서 직류-직류 컨버터(120)의 전력량과 손실이 일부만 반영됨을 확인할 수 있다. Here, η system is the instantaneous efficiency of the entire system, V bat is the battery voltage of the target battery 1, V dc is the converter voltage output from the DC-DC converter 120, and V ess is the ESS voltage of the ESS device 10 , i ch is the charging current, and η dc corresponds to the instantaneous efficiency of the DC-DC converter 120. Accordingly, referring to Equation 1, it can be seen that only a part of the amount of power and loss of the DC-DC converter 120 is reflected in the instantaneous efficiency of the entire system.
또한, 대상 배터리(1)의 배터리 전압(Vbat)이 방전종지전압에서 최대 충전 전압으로 충전될 때, 초기에는 ESS 장치(110)의 ESS 전압(Vess)과 대상 배터리(1)의 배터리 전압(Vbat)의 차는 매우 작다가 점차 커지게 된다. 즉, ESS 전압(Vess)과 배터리 전압(Vbat)의 차전압이 직류-직류 컨버터(120)에 인가되므로, 대상 배터리(1)의 배터리 전압(Vbat)이 상승할수록 직류-직류 컨버터(120)의 컨버터 출력전력은 점차 커지게 된다. In addition, when the battery voltage (V bat ) of the target battery 1 is charged from the discharge end voltage to the maximum charging voltage, the ESS voltage (V ess ) of the ESS device 110 and the battery voltage of the target battery 1 are initially charged. The difference in (V bat ) is very small and gradually increases. In other words, the difference voltage of the ESS voltage (V ess) and battery voltage (V bat) DC - As applied to a DC converter 120, the more increase the battery voltage (V bat) of the target battery 1 is a direct current-direct current converter ( 120) converter output power gradually increases.
다만, 차전압은 초기에 매우 작다가 점차 커지게 되는 것이므로, 컨버터 전압(Vdc)의 평균값은 충전 후 ESS 전압과 배터리 전압 사이의 차전압의 절반에 해당한다. 즉, 직류-직류 컨버터(120)에 인가되는 전압은, 평균전압을 기준으로 비교하면 더욱 작아지는 것이므로, 시스템 순시효율에서 직류-직류 컨버터(120)의 출력전력량과 손실비중이 작아져 시스템 효율이 상승함을 알 수 있다. However, since the difference voltage is initially very small and gradually increases , the average value of the converter voltage V dc corresponds to half of the difference voltage between the ESS voltage and the battery voltage after charging. That is, since the voltage applied to the DC-DC converter 120 is smaller when compared with the average voltage, the amount of output power and the loss ratio of the DC-DC converter 120 in the system instantaneous efficiency are reduced, and the system efficiency is reduced. You can see that it is rising.
따라서, 전체 시스템 충전 효율이 직류-직류 컨버터의 효율과 일치하는 기존 방식의 충전장치와 달리, 본 발명의 일 실시예에 의한 충전장치(100)에 의하면 직류-직류 컨버터(120)의 손실이 전체 시스템 효율에서 매우 작은 비중을 차지할 수 있다. Therefore, unlike the conventional charging device in which the overall system charging efficiency is consistent with the efficiency of the DC-DC converter, according to the charging device 100 according to an embodiment of the present invention, the loss of the DC-DC converter 120 is reduced as a whole. It can occupy a very small proportion of the system efficiency.
도4는 본 발명의 다른 실시예에 의한 ESS 장치를 이용한 충전장치(200)를 나타내는 블록도로, ESS 장치(110)의 ESS 전압(Vess)이 대상 배터리(1)의 최대 충전전압 보다 높은 경우에 해당한다. 이 경우, ESS 전압(Vess)과 배터리 전압(Vbat)의 차전압(V--Vbat)이 항상 0보다 크기 때문에, 직류-직류 컨버터(130)의 출력 음전압을 대상 배터리(1)에 인가하고, 출력 양전압을 ESS 장치(110)에 인가할 수 있다. 4 is a block diagram showing a charging device 200 using an ESS device according to another embodiment of the present invention, when the ESS voltage V ess of the ESS device 110 is higher than the maximum charging voltage of the target battery 1 Corresponds to. In this case, since the difference voltage (V--V bat ) between the ESS voltage (V ess ) and the battery voltage (V bat ) is always greater than 0, the output negative voltage of the DC-DC converter 130 is used as the target battery (1). And the positive output voltage may be applied to the ESS device 110.
따라서, 도1의 ESS 장치를 이용한 충전장치(100)와 달리, 일차측 모듈이 ESS 장치(110)와 대상 배터리(1) 사이에 직렬연결되고, 이차측 모듈은 대상 배터리(1)와 병렬연결될 수 있다. 즉, 일차측 모듈의 일단(n2)과 이차측 모듈의 일단(n3)을 연결도선(A)으로 연결하여, 일차측 모듈이 ESS 장치(110)와 대상 배터리(1) 사이에 직렬연결되도록 구현할 수 있다. 또한, 일차측 모듈의 타단(n1)은 ESS 장치(110)와 직렬연결하고, 이차측 모듈의 양단(n3, n4)은 대상 배터리(1)와 병렬연결할 수 있다. Therefore, unlike the charging device 100 using the ESS device of FIG. 1, the primary module is connected in series between the ESS device 110 and the target battery 1, and the secondary module is connected in parallel with the target battery 1. I can. That is, by connecting one end (n2) of the primary-side module and one end (n3) of the secondary-side module with a connecting wire (A), the primary-side module is implemented to be connected in series between the ESS device 110 and the target battery 1. I can. In addition, the other end n1 of the primary module may be connected in series with the ESS device 110, and both ends n3 and n4 of the secondary module may be connected in parallel with the target battery 1.
여기서, 본 발명의 다른 실시예에 의한 ESS 장치를 이용한 충전장치(200)는 도1의 ESS 장치를 이용한 충전장치(100)와 비교할 때 구성은 일부 달라졌으나, 기본 동작원리는 도1의 구조와 동일하다. Here, the configuration of the charging device 200 using the ESS device according to another embodiment of the present invention is partially changed compared to the charging device 100 using the ESS device of FIG. 1, but the basic operation principle is the structure of FIG. same.
추가적으로, 본 발명의 또다른 실시예에 의하면, 도5에 도시한 바와 같이 충전장치(300)를 구현하는 것도 가능하다. 즉, 도1의 충전장치(100)의 경우, 배터리 전압(Vbat)의 방전종지전압 이하로 ESS 장치(110)의 정격전압이 설정되어야 하므로 직류-직류 컨버터(120)에 인가되는 컨버터 전압(Vdc)이 전체 전압에서 상당한 비중을 차지할 수 있다. 이에 따라, 본 발명의 다른 실시예에서는 ESS 장치(110)의 정격전압과 대상 배터리(1)의 정격전압을 동일하게 두고, 복수의 절연형 직류-직류 컨버터(120, 130)를 입력단과 출력단에 동시에 두는 구조로 구현할 수 있다. Additionally, according to another embodiment of the present invention, it is possible to implement the charging device 300 as shown in FIG. 5. That is, in the case of the charging device 100 of FIG. 1, the rated voltage of the ESS device 110 must be set below the discharge end voltage of the battery voltage (V bat ). V dc ) can make up a significant portion of the total voltage. Accordingly, in another embodiment of the present invention, the rated voltage of the ESS device 110 and the rated voltage of the target battery 1 are the same, and a plurality of insulated DC- DC converters 120 and 130 are connected to the input terminal and the output terminal. It can be implemented in a structure that is placed at the same time.
구체적으로, 도5에 도시한 바와 같이, 제1 직류-직류 컨버터(120) 및 제2 직류-직류 컨버터(130)는 각각 일차측 모듈의 일단과 이차측 모듈의 일단이 서로 연결되는 것으로, 제1 직류-직류 컨버터(120)의 이차측모듈의 타단과 제2 직류-직류 컨버터(130)의 일차측 모듈의 타단은 서로 직렬연결되도록 구현할 수 있다. 또한, 제1 직류-직류 컨버터(120)의 일차측 모듈에는 ESS 장치(110)가 병렬연결되고, 제2 직류-직류 컨버터(130)의 이차측 모듈에는 대상 배터리(1)가 병렬연결될 수 있다.Specifically, as shown in Fig. 5, the first DC-DC converter 120 and the second DC-DC converter 130 have one end of the primary-side module and one end of the secondary-side module connected to each other. The other end of the secondary module of the 1 DC-DC converter 120 and the other end of the primary module of the second DC-DC converter 130 may be connected in series with each other. In addition, the ESS device 110 may be connected in parallel to the primary module of the first DC-DC converter 120, and the target battery 1 may be connected in parallel to the secondary module of the second DC-DC converter 130. .
이렇게 구성하면, ESS 장치(110)의 ESS 전압(Vess)이 대상배터리(1)의 배터리 전압(Vbat)보다 낮으면 제1 직류-직류 컨버터(120)가 동작하고, 제2 직류-직류 컨버터(130)는 바이패스(bypass)하도록 제어할 수 있다.In this configuration, when the ESS voltage (V ess ) of the ESS device 110 is lower than the battery voltage (V bat ) of the target battery 1, the first DC-DC converter 120 operates, and the second DC-DC The converter 130 may be controlled to bypass.
반대로, ESS 장치(110)의 전압(Vess)가 대상 배터리 전압(Vbat) 보다 높은 경우에는 제1 직류-직류 컨버터(120)가 바이패스되고, 제2 직류-직류 컨버터(130)가 동작되도록 하여, 시스템 효율과 장치용량을 보다 최적화할 수 있다.Conversely, when the voltage (V ess ) of the ESS device 110 is higher than the target battery voltage (V bat ), the first DC-DC converter 120 is bypassed, and the second DC-DC converter 130 is operated. So that the system efficiency and device capacity can be further optimized.
본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명에 따른 구성요소를 치환, 변형 및 변경할 수 있다는 것이 명백할 것이다.The present invention is not limited by the above-described embodiments and the accompanying drawings. It will be apparent to those of ordinary skill in the art to which the present invention pertains, that components according to the present invention can be substituted, modified, and changed within the scope of the technical spirit of the present invention.

Claims (7)

  1. ESS(Energy Storage System) 장치를 이용한 충전장치에 있어서, In a charging device using an ESS (Energy Storage System) device,
    전기 에너지를 저장하는 ESS 장치; 및ESS device for storing electrical energy; And
    일차측 모듈이 상기 ESS 장치와 병렬 연결되고, 이차측 모듈이 상기 ESS 장치와 대상 배터리 사이에 직렬연결되는 직류-직류 컨버터를 포함하는 것으로, A primary-side module is connected in parallel with the ESS device, and a secondary-side module includes a DC-DC converter connected in series between the ESS device and a target battery,
    상기 직류-직류 컨버터는The DC-DC converter is
    상기 일차측 모듈의 일단과 상기 이차측 모듈의 일단이 서로 연결되고, 상기 일차측 모듈의 양단은 상기 ESS 장치와 병렬연결되며, 상기 이차측 모듈의 타단은 상기 대상 배터리와 직렬연결되는 충전장치.One end of the primary module and one end of the secondary module are connected to each other, both ends of the primary module are connected in parallel with the ESS device, and the other end of the secondary module is connected in series with the target battery.
  2. 제1항에 있어서, The method of claim 1,
    상기 ESS 장치의 ESS 전압은 상기 대상 배터리의 방전종지전압보다 낮으며, The ESS voltage of the ESS device is lower than the discharge end voltage of the target battery,
    상기 직류-직류 컨버터는The DC-DC converter is
    출력 양전압을 상기 대상 배터리에 인가하고, 출력 음전압을 상기 ESS 장치에 인가하는 것을 특징으로 하는 충전장치. A charging device comprising: applying a positive output voltage to the target battery and applying a negative output voltage to the ESS device.
  3. ESS(Energy Storage System) 장치를 이용한 충전장치에 있어서, In a charging device using an ESS (Energy Storage System) device,
    전기 에너지를 저장하는 ESS 장치; 및ESS device for storing electrical energy; And
    일차측 모듈이 상기 ESS 장치와 대상 배터리 사이에 직렬 연결되고, 이차측 모듈이 상기 대상 배터리와 병렬연결되는 직류-직류 컨버터를 포함하는 것으로, A primary-side module is connected in series between the ESS device and a target battery, and a secondary-side module includes a DC-DC converter connected in parallel with the target battery,
    상기 직류-직류 컨버터는The DC-DC converter is
    상기 일차측 모듈의 일단과 상기 이차측 모듈의 일단이 서로 연결되고, 상기 일차측 모듈의 타단은 상기 ESS 장치와 직렬연결되며, 상기 이차측 모듈의 양단은 상기 대상 배터리와 병렬연결되는 것을 특징으로 하는 충전장치. One end of the primary module and one end of the secondary module are connected to each other, the other end of the primary module is connected in series with the ESS device, and both ends of the secondary module are connected in parallel with the target battery. Charging device.
  4. 제3항에 있어서, The method of claim 3,
    상기 ESS 장치의 ESS 전압은 상기 대상 배터리의 최대 충전전압보다 높으며, The ESS voltage of the ESS device is higher than the maximum charging voltage of the target battery,
    상기 직류-직류 컨버터는The DC-DC converter is
    출력 양전압을 상기 ESS 장치에 인가하고, 상기 출력 음전압을 상기 대상 배터리에 인가하는 것을 특징으로 하는 충전장치. A charging device comprising: applying a positive output voltage to the ESS device and applying the negative output voltage to the target battery.
  5. 제1항에 있어서, 상기 직류-직류 컨버터는The method of claim 1, wherein the DC-DC converter
    절연구조를 가지는 절연형 컨버터인 것을 특징으로 하는 충전장치. Charging device, characterized in that the insulated converter having an insulating structure.
  6. ESS(Energy Storage System) 장치를 이용한 충전장치에 있어서, In a charging device using an ESS (Energy Storage System) device,
    전기 에너지를 저장하는 ESS 장치;ESS device for storing electrical energy;
    일차측 모듈의 일단과 이차측 모듈의 일단이 서로 연결되며, 일차측 모듈에 상기 ESS 장치가 병렬연결되는 제1 직류-직류 컨버터; 및A first DC-DC converter in which one end of the primary-side module and one end of the secondary-side module are connected to each other, and the ESS device is connected in parallel to the primary-side module; And
    일차측 모듈의 일단과 이차측 모듈의 일단이 서로 연결되며, 상기 이차측 모듈에 상기 대상 배터리가 병렬연결되는 제2 직류-직류 컨버터를 포함하며, And a second DC-DC converter in which one end of the primary module and one end of the secondary module are connected to each other, and the target battery is connected in parallel to the secondary module,
    상기 제1 직류-직류 컨버터의 이차측모듈의 타단과 제2 직류-직류 컨버터의 일차측 모듈의 타단이 서로 직렬연결되는 충전장치. A charging device in which the other end of the secondary module of the first DC-DC converter and the other end of the primary module of the second DC-DC converter are connected in series with each other.
  7. 제6항에 있어서, The method of claim 6,
    상기 ESS 장치의 전압이 상기 대상 배터리의 전압 보다 낮으면, 상기 제1 직류-직류 컨버터가 동작하고, 상기 제2 직류-직류 컨버터는 바이패스하며, When the voltage of the ESS device is lower than the voltage of the target battery, the first DC-DC converter operates, and the second DC-DC converter bypasses,
    상기 ESS 장치의 전압이 상기 대상 배터리의 전압 보다 높으면, 상기 제2 직류-직류 컨버터는 동작하고, 상기 제1 직류-직류 컨버터가 바이패스하는 것을 특징으로 하는 충전장치. When the voltage of the ESS device is higher than the voltage of the target battery, the second DC-DC converter operates, and the first DC-DC converter bypasses.
PCT/KR2020/015199 2019-11-05 2020-11-03 Charging apparatus using ess apparatus WO2021091190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190140146A KR20210054247A (en) 2019-11-05 2019-11-05 Appratus for charging batteries by using Energy Storage System
KR10-2019-0140146 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021091190A1 true WO2021091190A1 (en) 2021-05-14

Family

ID=75848487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015199 WO2021091190A1 (en) 2019-11-05 2020-11-03 Charging apparatus using ess apparatus

Country Status (2)

Country Link
KR (1) KR20210054247A (en)
WO (1) WO2021091190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236119A1 (en) * 2022-06-08 2023-12-14 北京小米移动软件有限公司 Circuit module and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077526A (en) * 2008-12-29 2010-07-08 한국전기연구원 Dc-dc convert for the photovoltaic system
KR20120067068A (en) * 2010-12-15 2012-06-25 재단법인 포항산업과학연구원 Bettary quick charging device
JP2012516126A (en) * 2009-01-20 2012-07-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Series circuit of on-off controllers for transferring energy in battery systems
KR20130127056A (en) * 2012-05-14 2013-11-22 현대모비스 주식회사 Cell balancing method for battery pack
CN105811460B (en) * 2016-05-04 2019-10-25 中车株洲电力机车研究所有限公司 A kind of power module high frequency test system for electronic power transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077526A (en) * 2008-12-29 2010-07-08 한국전기연구원 Dc-dc convert for the photovoltaic system
JP2012516126A (en) * 2009-01-20 2012-07-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Series circuit of on-off controllers for transferring energy in battery systems
KR20120067068A (en) * 2010-12-15 2012-06-25 재단법인 포항산업과학연구원 Bettary quick charging device
KR20130127056A (en) * 2012-05-14 2013-11-22 현대모비스 주식회사 Cell balancing method for battery pack
CN105811460B (en) * 2016-05-04 2019-10-25 中车株洲电力机车研究所有限公司 A kind of power module high frequency test system for electronic power transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236119A1 (en) * 2022-06-08 2023-12-14 北京小米移动软件有限公司 Circuit module and electronic device

Also Published As

Publication number Publication date
KR20210054247A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
CN211089487U (en) High-voltage direct-current remote power supply system of 5G base station
CN208386212U (en) A kind of uninterruptible power supply
WO2020091168A1 (en) Power converter
US11876459B2 (en) Power conversion system applied to solid state transformer and charging system having the same
WO2021091190A1 (en) Charging apparatus using ess apparatus
CN110138217B (en) Three-port DC-DC converter and control method thereof
CN105652116B (en) Back-to-back test circuit based on DC/DC converter
CN113547945B (en) Battery charging device and method with voltage equalizing function based on immittance network
CN112671016B (en) Mobile energy storage system based on modularization
WO2015156597A1 (en) Power converter for eliminating ripples
WO2014171719A1 (en) Alternating current linked power converting apparatus
CN116826694A (en) Multi-port data center power supply system and power supply method
WO2023093057A1 (en) Charging module and charging system
CN110829841A (en) Multiport converter and control system of multiport converter
WO2022114575A1 (en) Dc-to-dc converter for charging/discharging battery
CN217514980U (en) Charging system suitable for electric vehicle
WO2022206461A1 (en) Power supply system, and output voltage control method for direct-current combiner box
CN214590630U (en) Electric energy transmission device and power generation system
CN210007410U (en) Charging station system based on solid-state transformer
CN111711208A (en) Wind-solar-accessible multi-port-output mobile energy storage device and charging and discharging method
WO2024034761A1 (en) Hybrid electric vehicle charging system
WO2022203473A1 (en) Dc-dc converter, power conversion device, and solar power generation system
CN220553834U (en) Direct current charging station
CN215042206U (en) Energy storage package, vehicle charging equipment and charging station
CN213990170U (en) Mobile energy storage system based on modularization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886131

Country of ref document: EP

Kind code of ref document: A1