WO2021049091A1 - Electric power conversion device and railway vehicle electric system - Google Patents

Electric power conversion device and railway vehicle electric system Download PDF

Info

Publication number
WO2021049091A1
WO2021049091A1 PCT/JP2020/017352 JP2020017352W WO2021049091A1 WO 2021049091 A1 WO2021049091 A1 WO 2021049091A1 JP 2020017352 W JP2020017352 W JP 2020017352W WO 2021049091 A1 WO2021049091 A1 WO 2021049091A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
conversion device
impedance
power semiconductor
power conversion
Prior art date
Application number
PCT/JP2020/017352
Other languages
French (fr)
Japanese (ja)
Inventor
徹 増田
早川 誠一
高柳 雄治
Original Assignee
株式会社日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーデバイス filed Critical 株式会社日立パワーデバイス
Publication of WO2021049091A1 publication Critical patent/WO2021049091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Definitions

  • the present invention relates to a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, and more particularly to a configuration of a gate wiring circuit connecting a gate drive circuit and a gate of a power semiconductor chip mounted on the module.
  • Power converters are used for power control and motor control of industrial equipment, electric railroad vehicles, hybrid vehicles, electric vehicles, etc., and electric parts such as power semiconductor modules and capacitors, and wiring and electric parts that connect them. It is composed of a radiator that dissipates heat generated by power loss, and supplies power to loads such as motors and system wiring.
  • the power converter is required to output a predetermined output current to the load circuit, and the value of the output current differs depending on its application and customer specifications. Therefore, depending on the output current, the rated current of a single power semiconductor module may be insufficient, and a method of satisfying the required output current by connecting a plurality of power semiconductor modules in parallel is adopted.
  • a gate resistor with a relatively large resistance value is connected to the gate of each power semiconductor module.
  • parasitic oscillation is suppressed by a damping resistor provided on the output side of the gate drive circuit.
  • the current (gate current) value for driving the gate of the power semiconductor module to be driven by the gate drive circuit becomes small.
  • the turn-on time and the turn-off time become long at the same time, and there is a side effect that the loss at the time of switching, that is, the turn-on loss and the turn-off loss both increase.
  • Patent Document 2 on the premise that the parasitic oscillation generated at the time of switching occurs at either the turn-on or turn-off timing, the loss during the switching operation in which the parasitic oscillation does not occur does not increase.
  • the diode element is introduced so that the gate resistance looks different depending on the direction of the gate current.
  • FIG. 1 of Patent Document 2 includes a plurality of semiconductor switching elements (T1a, T1b) and a plurality of balance resistance portions (Ra, Rb) connected in parallel to each other, and the balance resistance portion includes, for example, a resistor R3a and a diode D2a.
  • the balance resistor portion Ra is configured by the parallel circuit with the above. With this configuration, the resistance value can be switched between different values when turning on and when turning off.
  • an object of the present invention is a power conversion device capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation in a power conversion device configured by connecting a plurality of power semiconductor modules in parallel with each other.
  • the purpose is to provide an electric system for railway vehicles to be installed.
  • the present invention is connected between a plurality of power semiconductor modules, a gate drive circuit for driving and controlling the plurality of power semiconductor modules, and the plurality of power semiconductor modules and the gate drive circuit.
  • a power conversion device including an arm circuit composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to the gate drive circuit, wherein the gate wiring circuit is the plurality of power semiconductor modules. It has a plurality of impedance circuits corresponding to each of the above, and the impedance value of the impedance circuit changes depending on the frequency of the voltage applied to the impedance circuit. It is characterized in that the impedance value increases at the frequency.
  • the present invention is connected between a plurality of power semiconductor modules, a gate drive circuit for driving and controlling the plurality of power semiconductor modules, and the plurality of power semiconductor modules and the gate drive circuit, and is connected to the gate drive circuit.
  • a power conversion device provided with an arm circuit composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to each other, and each of the plurality of power semiconductor modules is a power semiconductor module together with a power semiconductor transistor.
  • It has an impedance circuit built in the power semiconductor transistor and connected in series between the gate terminal of the power semiconductor transistor and the gate drive circuit, and the impedance value of the impedance circuit depends on the frequency of the voltage applied to the impedance circuit. It is characterized in that the impedance value is small in the low frequency range and the impedance value is large in the high frequency range.
  • the present invention includes a pantograph, a breaker connected to the pantograph, a reactor connected to the breaker, a power conversion device connected to the reactor, and an electric motor connected to the power conversion device.
  • the power conversion device is the power conversion device according to any one of the above.
  • a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, a power conversion device capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation and a power conversion device thereof are mounted.
  • a railroad vehicle electrical system can be realized.
  • FIG. It is a figure which shows the arm circuit of the power conversion apparatus of Example 1.
  • FIG. It is a figure which shows the transient response waveform of the voltage Vgs when the parasitic oscillation does not occur in a gate voltage. It is a figure which shows the distribution of the amplitude for each frequency of the gate voltage waveform when the parasitic oscillation does not occur in the gate voltage. It is a figure which shows the transient response waveform of the voltage Vgs when the parasitic oscillation is superimposed on the gate voltage. It is a figure which shows the distribution of the amplitude for each frequency of the gate voltage waveform when the parasitic oscillation is superimposed on the gate voltage. It is a figure which shows the impedance circuit of the power conversion apparatus of Example 1.
  • the power conversion device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4C.
  • this embodiment first, an example in which parasitic oscillation occurs in a power conversion device using power semiconductor modules connected in parallel will be shown, and the behavior of the gate voltage waveform in that case will be described.
  • the gate voltage (Vgs) indicates the voltage between the gate drive terminal and the source sense drive terminal, which are the output terminals of the gate drive circuit, or the voltage between the gate terminal and the source sense terminal of the power semiconductor module.
  • the terminal name will be specified below.
  • FIGS. 2A and 2B show an example in which parasitic oscillation does not occur in the gate voltage during switching in a power conversion device including power semiconductor modules connected in parallel.
  • FIG. 2A is a transient response waveform of the voltage Vgs between the gate terminal and the source sense terminal during the turn-on operation.
  • Vgs changes from the off-voltage VGSM to the on-voltage VGSP.
  • the rate of change of the voltage waveform is gradual, and in the time range shown in the figure, it operates within the gate voltage ratings on both the positive and negative sides (within the upper and lower limits of the gate voltage rating).
  • the FFT analysis result (FFT: Fast Fourier Transform) of this waveform is shown in FIG. 2B.
  • the horizontal axis is the logarithmic display of frequencies, and the vertical axis is the value of the voltage amplitude analyzed for each frequency.
  • the amplitude has a large distribution corresponding to the transient response of Vgs.
  • the amplitude level is smaller than that in the low frequency range, and as long as Vgs operates normally without parasitic oscillation, the frequency distribution that responds to the transient waveform is mainly in the low frequency range. It can be said that it occurs.
  • FIGS. 3A and 3B show a case where parasitic oscillation is superimposed on a turn-on waveform of the same Vgs.
  • parasitic oscillation occurs at the timing when Vgs approaches VGSP, which is the on-voltage.
  • the vibration amplitude of the oscillation is large, and the waveform is such that it exceeds the maximum rating of the gate on both the positive side and the negative side.
  • the gate portion of the power semiconductor chip mounted on the power semiconductor module may be damaged and destroyed.
  • FIG. 3B it is clear that the amplitude value of the gate voltage waveform for each frequency increases in the high frequency range due to the influence of the generated vibration (gate voltage parasitic oscillation vibration). ..
  • the parasitic oscillation vibration shown in FIG. 3A vibrates at a specific frequency. This is because when this waveform is viewed as an amplitude distribution for each frequency, the amplitude increases at the high frequency centered on the specific frequency.
  • the parasitic oscillation will not occur and the gate voltage will be used within the rated range. can do.
  • FIG. 1 is a diagram showing an arm circuit 90 constituting the power conversion device of this embodiment.
  • the arm circuit 90 is composed of a gate drive circuit 1, a plurality of power semiconductor modules 10a to 10n, and a plurality of impedance circuits 20a to 20n constituting a gate wiring circuit.
  • the impedance circuits 20a to 20n are circuits that connect the gate drive terminal and the source sense drive terminal of the gate drive circuit 1 and the gate terminal and the source sense terminal of each of the power semiconductor modules 10a to 10n.
  • One end of the impedance circuits 20a to 20n corresponding to each of the power semiconductor modules 10a to 10n is collectively connected to the gate drive terminal nGDg and the source sense drive terminal nGDss of the gate drive circuit 1, and other than each of the impedance circuits 20a to 20n.
  • the ends are connected to the gate terminals and source sense terminals of the corresponding power semiconductor modules 10a to 10n, respectively.
  • the gate drive circuit 1 receives a control circuit signal from the control circuit of the power converter at the terminal nCNT, and controls the drive of the power semiconductor modules 10a to 10n via the gate drive terminal nGDg and the source sense drive terminal nGDss.
  • the number of power semiconductor modules 10a to 10n is two or more, and the drain terminal is connected to each other at the terminal nD and the source terminal is connected to each other at the terminal nS.
  • the gate terminal and the source sense terminal are connected to an impedance circuit constituting a gate wiring circuit described later.
  • the number of parallel connections of the power semiconductor module is two or more natural numbers n, and the upper limit thereof is not limited.
  • the gate wiring circuit is composed of wiring that electrically connects to a plurality of impedance circuits 20a to 20n.
  • the gate drive terminal nGDg and the source sense drive terminal nGDss are used as inputs of the gate wiring circuit, and the gate drive terminal nGDg and the source sense drive terminal nGDss are branched in parallel to the impedance circuits 20a to 20n corresponding to each of the power semiconductor modules 10a to 10n. ..
  • the impedance circuits 20a to 20n are connected to the gate terminals and source sense terminals of the power semiconductor modules 10a to 10n at the output terminals nPMga to nPMgn and terminals nPMssa to nPMssn.
  • the length of the electrical connection wiring of the gate wiring circuit is such that the electrical length generated from the gate drive terminal nGDg and the source sense drive terminal nGDss to each of the gate terminals and source sense terminals of the power semiconductor modules 10a to 10n is uniform. It is preferable that it is designed and implemented so as to be.
  • the time delay error of the voltage waveform and the current waveform that the gate drive circuit 1 drives toward the power semiconductor modules 10a to 10n (the gate drive waveform between the power semiconductor modules). Needless to say, the delay error) is acceptable within a range that does not affect the operation of the power semiconductor modules 10a to 10n.
  • the impedance circuits 20a to 20n suppress the parasitic oscillation generated due to the resonance between the gates of the power semiconductor modules 10a to 10n connected in parallel with each other, and the switching operation of the power semiconductor modules 10a to 10n, that is, the turn-on operation. It is used to shorten the time required for turn-off operation and reduce switching loss.
  • the impedance circuit 20a of FIG. An example of the structure is shown in the impedance circuit 20a of FIG.
  • the resistor R1a and the inductor L1a are connected in series to the parallel circuit of the resistor R1a in the gate wiring path, and the source sense wiring path is arranged with electrical wiring.
  • the resistor R1a in parallel with L1a is short-circuited with low impedance at low frequencies, and looks like the value of the resistor R1a at high frequencies. ..
  • the values of the resistors R1a to R1n and the resistors R2a to R2n in FIG. 1 are shown below as R1 and R2, respectively.
  • FIGS. 4A to 4C show the characteristics calculated for the impedance between the terminals of the impedance circuits 20a and 20b taken out from FIG.
  • FIG. 4A is a circuit in which only the impedance circuits 20a and 20b are taken out from FIG. 1 and their effects are examined.
  • FIG. 4B shows the frequency dependence of the impedance value from the gate drive terminal nGDg and the source sense drive terminal nGDss to the terminal nPMga and the terminal nPMssa. Specifically, since the terminal nGDss and the terminal nPMssa are connected by electrical wiring, the impedance value from the gate drive terminal nGDg to the terminal nPMga is shown.
  • the short-circuit effect of the inductor L1 is effective at low frequencies, and the impedance of the resistance value R2 is generated.
  • the impedance circuits 20a and 20b always have a configuration in which the impedance value of the high frequency frequency is higher than the impedance value of the low frequency frequency.
  • the frequency dependence of the impedance shown in FIG. 4C indicates the impedance value generated between the two terminals of the terminal nPMga and the terminal nPMssa and the two terminals of the terminal nPMgb and the terminal nPMssb. Specifically, since the terminal nPMssa and the terminal nPMssb are connected by electrical wiring, the impedance value from the terminal nPMga to the terminal nPMgb is shown. That is, the path is a series circuit of the impedance circuit 20a and the impedance circuit 20b. This path corresponds to the connection path between the gate terminals of the power semiconductor modules 10a and 10b (shown in FIG. 1) connected in parallel.
  • the impedance becomes a value of 2. (R1 + R2) at the high frequency, and the resistance can be increased by 2.R1 compared to the value of 2.R2 at the low frequency. Due to the dependence of this impedance on the frequency domain (low and high frequencies), the problem to be solved by the present invention, "while suppressing the parasitic oscillation generated due to the resonance between the gates of the power semiconductor modules connected in parallel”. , Speeding up the switching operation of the power semiconductor module ”is made possible.
  • resistors R1 + R2 are generated as the impedance of the gate path between the gate drive terminal nGDg and the source sense drive terminal nGDss and the terminal nPMga and the terminal nPMssa terminal regardless of the low frequency range and the high frequency range. ..
  • a resistor 2 (R1 + R2) is generated between the two terminals of the terminal nPMga and the terminal nPMgssa and the two terminals of the terminal nPMgb and the terminal nPMgssb.
  • the inductor L1 L1a, L1b
  • impedance having a high resistance value is generated.
  • the turn-on time and turn-off time of the switching operation become long, and the switching loss increases.
  • the power conversion device of this embodiment includes a plurality of power semiconductor modules 10a to 10n, a gate drive circuit 1 for driving and controlling a plurality of power semiconductor modules 10a to 10n, and a plurality of power semiconductor modules 10a to 10a.
  • An arm circuit 90 is provided which is connected between 10n and the gate drive circuit 1 and is composed of a gate wiring circuit for connecting a plurality of power semiconductor modules 10a to 10n in parallel to the gate drive circuit 1.
  • one end of the first resistor (resistor R1a) and one end of the inductor L1a are connected to each other, and the other end of the first resistor (resistor R1a) and the other end of the inductor L1a are connected to each other. It is configured to have a connected parallel circuit and a second resistor (resistor R2a) connected in series to the parallel circuit.
  • the resistance value of the first resistor needs to be larger than the resistance value of the second resistor (resistor R2a) (R1> R2).
  • the resistance value of R2 can be set low by using the impedance circuit of the present invention, but at twice the low R2 (R1 + R2), the impedance in the high frequency range is low and practical. Not the target. Therefore, it is necessary to qualitatively set R1> R2.
  • the resistance value of the first resistor is set to 3 times or more (for example, 3 times to 4 times) the resistance value of the second resistor (resistor R2a). It is more preferable to set it to about twice).
  • FIG. 1 is a diagram showing an arm circuit 90 constituting a power conversion device.
  • the arm circuit 90 of this embodiment includes a gate drive circuit 1, a plurality of power semiconductor modules 11a to 11n, and a gate wiring circuit.
  • the gate wiring circuit is a circuit that connects the gate drive terminal nGDg of the gate drive circuit 1, the source sense drive terminal nGDss, and the gate terminals and source sense terminals of the power semiconductor modules 11a to 11n.
  • the gate wiring circuit is composed of wiring for electrical connection.
  • the power semiconductor modules 11a to 11n of this embodiment are characterized in their internal configuration, and the impedance circuits 21a to 21n are arranged in the gate wiring path inside the module. That is, each of the impedance circuits 21a to 21n is configured to be built in each of the power semiconductor modules 11a to 11n.
  • the configurations of the impedance circuits 21a to 21n are the same as those of the impedance circuits 20a to 20n shown in the first embodiment (FIG. 1), and the description of the connection configuration and the change in the impedance value depending on the frequency domain will be omitted.
  • the plurality of power semiconductor modules 11a to 11n, the gate drive circuit 1 for driving and controlling the plurality of power semiconductor modules 11a to 11n, and the plurality of power semiconductor modules 11a to 11a to It is provided with an arm circuit 90 which is connected between 11n and the gate drive circuit 1 and is composed of a gate wiring circuit which connects a plurality of power semiconductor modules 11a to 11n in parallel to the gate drive circuit 1 and has a plurality of powers.
  • Each of the semiconductor modules 11a to 11n has impedance circuits 21a to 21n which are built in the power semiconductor modules 11a to 11n together with the power semiconductor transistor and are connected in series between the gate terminal of the power semiconductor transistor and the gate drive circuit 1.
  • the impedance values of the impedance circuits 21a to 21n change depending on the frequency of the voltage applied to the impedance circuits, so that the impedance value is small in the low frequency range and large in the high frequency range. It is configured in.
  • the following advantages occur by arranging the impedance circuits 21a to 21n inside the power semiconductor modules 11a to 11n, respectively.
  • FIG. 6 is an example in which a railroad vehicle electric system including a three-phase power conversion device is configured by using the arm circuit 90 shown in the first or second embodiment.
  • the railroad vehicle electric system of this embodiment is composed of a pantograph 100, a circuit breaker 200, a reactor 300, a power conversion device 400, and an electric motor 500 as a load.
  • the power conversion device 400 includes a capacitor 4 and a control circuit 3.
  • the capacitor 4 holds a main voltage Vcc
  • the control circuit 3 generates a control signal of a gate drive circuit
  • each of the six arm circuits 90a to 90f Inputs are made to the gate drive circuits 1a to 1f, respectively.
  • the arm circuits 90a and 90b form a first phase inverter leg, similarly, the arm circuits 90c and 90d form a second phase inverter leg, and the arm circuits 90e and 90f form a third phase inverter leg.
  • the output line of each inverter leg is connected to the motor 500.
  • the arm circuits 90a to 90f are composed of gate drive circuits 1a to 1f and parallel connection circuits (parallel module circuits) 2a to 2f of power semiconductor modules, respectively.
  • the advantage of this example is (1) By using an arm circuit including a parallel configuration of power semiconductor modules using the impedance circuit of the present invention, it is possible to configure a three-phase power conversion device with low switching loss while suppressing gate parasitic oscillation between modules. it can.
  • the parallel connection of the power semiconductor module can be easily designed so as to meet the specification value of the output current output to the electric motor 500, the availability of the power semiconductor module used for the railway vehicle electric system is improved, and the design manpower is reduced. Can be made to.
  • the current specifications can be set without providing an excessive margin by connecting small power semiconductor modules in parallel.
  • the power converter can be configured with the minimum number of parallel power semiconductor modules required, and the switching loss can be set low, so that the volume of the radiator included in the power converter can also be reduced. Therefore, the power conversion device can be miniaturized, and the railroad vehicle electric system can be miniaturized.
  • FIG. 7 is a gate wiring circuit configured by using the impedance circuits 22a and 22b.
  • the impedance circuits 22a and 22b of this embodiment use a magnetic core for the inductor L1 (L1a, L1b).
  • Inductors L1a and L1b in FIG. 7 are indicated by symbols with cores.
  • the advantages newly obtained by the impedance circuit of this embodiment by using the magnetic core are (1) By confining the magnetic flux generated by the current flowing through the inductor by the magnetic core in the core, the coil wiring length required to satisfy the predetermined inductance value of the inductor L1 (L1a, L1b) can be shortened. ..
  • the component volume of the inductor L1 (L1a, L1b) can be reduced, and the impedance circuit 22 (22a, 22b) can be miniaturized as compared with the impedance circuits 20 and 21 of the first and second embodiments. ..
  • the frequency dependence of the impedance of the impedance circuit described in the first embodiment that is, the impedance values R2 (low frequency) to R1 + R2 (high frequency) or 2 ⁇ R2 (low) shown in FIGS. 4B and 4C.
  • the rate of change in impedance from (regional frequency) to 2 (R1 + R2) (high frequency) becomes steep. As a result, the discrimination between the low frequency and the high frequency is improved.
  • the inductor L1 (L1a, L1b) is configured by winding the coil wiring around the magnetic core. It is desirable that this magnetic core has high impedance magnetic permeability at high frequencies. The effect of this embodiment described above can be further enhanced.
  • FIG. 8A is a gate wiring circuit configured by using the impedance circuit 23ab.
  • the impedance circuit 23ab of this embodiment the inductor L1a and the inductor L1b are arranged in parallel on the resistor R1a and the resistor R1b, respectively, and a common magnetic core is used for the inductor L1a and the inductor L1b.
  • the basic effect of using the magnetic core is as described in Example 4.
  • the component volumes of the inductor L1a and the inductor L1b can be further reduced, and the impedance circuit 23ab can be significantly miniaturized as compared with the impedance circuits 20 and 21 of the first and second embodiments. ..
  • FIG. 8B is a diagram showing a specific form in which a magnetic core is shared between adjacent impedance circuits. As shown in FIG. 8B, the advantage of the above (1) can be obtained by sharing one magnetic core 30 between L1a and L1b and mounting the magnetic core 30 in consideration of the winding direction of the coil wiring.
  • the power conversion device of the present embodiment includes a plurality of impedance circuits, and in two impedance circuits arranged adjacent to each other, one magnetic core constituting each inductor L1a and L1b is used. It is configured to be shared by two magnetic cores.
  • FIG. 9 is a diagram showing a gate wiring circuit and a source sense wiring circuit configured by using the impedance circuits 24a and 24b.
  • the impedance circuit 24a is a gate wiring circuit configured by connecting the resistor R2a in series to a parallel circuit of the resistor R1a and the inductor L1a, and a source sense configured by connecting the resistor R4a in series to the parallel circuit of the resistor R3a and the inductor L2a. It has both a wiring circuit.
  • the impedance circuit 24b is also configured in the same manner as the impedance circuit 24a.
  • the advantage obtained by using a frequency-dependent impedance circuit for the source sense wiring circuit in addition to the gate wiring circuit is (1) Resonance generated between the gates of modules connected in parallel grows to parasitic oscillation. The resulting resonance voltage and resonance current pass not only through the wiring between the gate terminals between the modules but also through the gate-source capacitance of the module (for example, in the case of a MOSFET) and the source terminal and the source sense terminal.
  • the effect of suppressing parasitic oscillation can be further enhanced by arranging the frequency-dependent impedance circuit of the present invention also in the source sense wiring which is the passage of resonance.
  • the circuit constants (R1, L1, R2 and R3, L2, R4) of the gate wiring circuit and the source sense wiring circuit do not necessarily have to be equal to each other.
  • a source that is connected between the plurality of power semiconductor modules and the gate drive circuit 1 and connects the plurality of power semiconductor modules to the gate drive circuit 1 in parallel with each other.
  • a sense wiring circuit is provided, and impedance circuits (24a, 24b) are arranged in both a gate wiring circuit and a source sense wiring circuit, respectively.
  • a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, a power capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation. It is possible to realize a conversion device and a railway vehicle electric system equipped with the conversion device.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • the values of the resistor and the inductor in the impedance circuit are feasible values, the values, the realization method, and the mounting method are not particularly limited.
  • the J-FET type (junction type field effect transistor) unipolar device is used as opposed to the MOSFET type (MOS type field effect transistor) in which the power semiconductor chip of the power semiconductor module is used in this embodiment.
  • MOSFET type MOS type field effect transistor
  • the device is replaced with one of the bipolar devices such as the IGBT type (insulated gate bipolar transistor), and the drain is replaced with the collector and the source is replaced with the emitter among the functions of the terminals, the present invention The effect does not change.
  • the "source sense wiring circuit (source sense wiring path)" of each embodiment is replaced with the "emitter sense wiring circuit (emitter sense wiring path)".
  • the form of the power semiconductor module of the arm circuit is not limited to the 1in1 configuration, and even when the upper and lower arms are configured by using the power semiconductor having the 2in1 configuration.
  • the effect of the present invention can be obtained.
  • Example 3 an example in which the power conversion device of the present invention is applied to a railway vehicle electric system has been described, but it can be applied to a PCS (Power Conditioning System) for photovoltaic power generation, a power conversion device for an electric vehicle, or the like. Needless to say, it is also applicable.
  • PCS Power Conditioning System
  • 1,1a to 1f Gate drive circuit, 2,2a to 2f: Parallel connection circuit of power semiconductor module, 3: Control circuit, 4: Capacitor, 10,10a to 10n, 11,11a to 11n: Power semiconductor module, 20a ⁇ 20n, 21a ⁇ 21n, 22a, 22b, 22ab, 23ab, 24a, 24b: Impedance circuit, 30: Magnetic core, 90, 90a ⁇ 90f: Arm circuit, 100: Pantograph, 200: Breaker, 300: Reactor, 400 : Power converter, 500: Electric circuit, L1, L1a to L1n: Inductor, R1, R1a to R1n, R2, R3, R4: Resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

Provided is an electric power conversion device that is obtained by parallel connection of a plurality of power semiconductor modules and that can reduce switching loss while suppressing parasitic oscillation generated during switching operation. This electric power conversion device is provided with: a plurality of power semiconductor modules; a gate driving circuit for driving the plurality of power semiconductor modules; and an arm circuit configured from a gate wiring circuit that is connected between the gate driving circuit and the plurality of power semiconductor modules and that is for parallel connection of the plurality of power semiconductor modules with respect to the gate driving circuit. The electric power conversion device is characterized in that the gate wiring circuit has a plurality of impedance circuits respectively corresponding to the plurality of power semiconductor modules, the impedance value of each of the impedance circuits is changed in conjunction with the frequency of a voltage applied to the impedance circuit, the impedance value becomes small at low frequencies, and the impedance value becomes great at high frequencies.

Description

電力変換装置、鉄道車両電気システムPower converter, rail vehicle electrical system
 本発明は、複数のパワー半導体モジュールを互いに並列接続して構成する電力変換装置に係り、特に、ゲート駆動回路とモジュールに搭載したパワー半導体チップのゲート間を接続するゲート配線回路の構成に関する。 The present invention relates to a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, and more particularly to a configuration of a gate wiring circuit connecting a gate drive circuit and a gate of a power semiconductor chip mounted on the module.
 産業機器や電気鉄道車両、ハイブリッド自動車や電気自動車などの電力制御やモータ制御には電力変換装置が用いられており、パワー半導体モジュールやコンデンサなどの電気部品と、それらを接続する配線、電気部品の電力損失により生じる発熱を放熱する放熱器によって構成され、モータや系統配線などの負荷へ電力を与える。 Power converters are used for power control and motor control of industrial equipment, electric railroad vehicles, hybrid vehicles, electric vehicles, etc., and electric parts such as power semiconductor modules and capacitors, and wiring and electric parts that connect them. It is composed of a radiator that dissipates heat generated by power loss, and supplies power to loads such as motors and system wiring.
 電力変換装置には、負荷回路に所定の出力電流を出力することが求められ、その応用や顧客仕様によって出力電流の値は異なる。そのため、出力電流によっては単一のパワー半導体モジュールの定格電流では不足する場合が発生し、複数のパワー半導体モジュールを並列接続することで所要出力電流を満足する方法が採られる。 The power converter is required to output a predetermined output current to the load circuit, and the value of the output current differs depending on its application and customer specifications. Therefore, depending on the output current, the rated current of a single power semiconductor module may be insufficient, and a method of satisfying the required output current by connecting a plurality of power semiconductor modules in parallel is adopted.
 しかしながら、複数のパワー半導体モジュールを並列接続し、単一のゲート駆動回路を用いて駆動する場合には、スイッチング時のターンオンやターンオフのタイミングにおいて、電圧もしくは電流の寄生振動が発生し、その減衰が不十分である場合は振幅の大きな発振まで成長する。この場合、パワー半導体モジュールにおいて最も電圧定格が小さいゲート電圧に寄生発振が重畳し、その定格電圧を超過する動作が発生する。その結果、パワー半導体モジュールに搭載された半導体素子のゲート部位が損傷し、モジュールの破壊に至る可能性がある。 However, when multiple power semiconductor modules are connected in parallel and driven using a single gate drive circuit, parasitic vibration of voltage or current occurs at the turn-on or turn-off timing during switching, and its attenuation is reduced. If it is insufficient, it grows to oscillation with a large amplitude. In this case, parasitic oscillation is superimposed on the gate voltage having the smallest voltage rating in the power semiconductor module, and an operation exceeding the rated voltage occurs. As a result, the gate portion of the semiconductor element mounted on the power semiconductor module may be damaged, leading to the destruction of the module.
 この問題を回避するため、各パワー半導体モジュールのゲートに比較的抵抗値の大きなゲート抵抗を接続することが行われている。例えば、特許文献1では、ゲート駆動回路の出力側に設けられたダンピング抵抗によって寄生発振が抑制される。しかし、上記のように比較的抵抗値の大きなゲート抵抗を接続すると、ゲート駆動回路が駆動すべきパワー半導体モジュールのゲートを駆動する電流(ゲート電流)値が小さくなってしまう。その結果、ターンオン時間とターンオフ時間が同時に長くなり、スイッチング時の損失、すなわちターンオン損失とターンオフ損失が共に大きくなる副作用がある。 In order to avoid this problem, a gate resistor with a relatively large resistance value is connected to the gate of each power semiconductor module. For example, in Patent Document 1, parasitic oscillation is suppressed by a damping resistor provided on the output side of the gate drive circuit. However, if a gate resistor having a relatively large resistance value is connected as described above, the current (gate current) value for driving the gate of the power semiconductor module to be driven by the gate drive circuit becomes small. As a result, the turn-on time and the turn-off time become long at the same time, and there is a side effect that the loss at the time of switching, that is, the turn-on loss and the turn-off loss both increase.
 上記の問題を解決する一例として、特許文献2では、スイッチング時に発生する寄生発振がターンオンもしくはターンオフのいずれかのタイミングで発生することを前提として、寄生発振が発生しないスイッチング動作時の損失が増大しないように、ゲート抵抗がゲート電流の方向によって異なって見えるようにダイオード素子を導入している。 As an example of solving the above problem, in Patent Document 2, on the premise that the parasitic oscillation generated at the time of switching occurs at either the turn-on or turn-off timing, the loss during the switching operation in which the parasitic oscillation does not occur does not increase. As described above, the diode element is introduced so that the gate resistance looks different depending on the direction of the gate current.
 特許文献2の図1には、互いに並列接続された複数の半導体スイッチング素子(T1a,T1b)と複数のバランス抵抗部(Ra,Rb)とを含み、バランス抵抗部は、例えば抵抗R3aとダイオードD2aとの並列回路によってバランス抵抗部Raを構成する例が示されている。この構成によって、ターンオンする場合とターンオフする場合とでその抵抗値が異なる値に切り替えられるように構成されている。 FIG. 1 of Patent Document 2 includes a plurality of semiconductor switching elements (T1a, T1b) and a plurality of balance resistance portions (Ra, Rb) connected in parallel to each other, and the balance resistance portion includes, for example, a resistor R3a and a diode D2a. An example in which the balance resistor portion Ra is configured by the parallel circuit with the above is shown. With this configuration, the resistance value can be switched between different values when turning on and when turning off.
特開2003-88098号公報Japanese Unexamined Patent Publication No. 2003-88098 国際公開第2017/026367号International Publication No. 2017/0236367
 しかしながら、上記特許文献2で示された手段では、ターンオンとターンオフのうち寄生発振が生じるスイッチング動作では、そのスイッチング時間が長くなり、スイッチング損失の増大を避けることができない。 However, with the means shown in Patent Document 2 above, in the switching operation in which parasitic oscillation occurs between turn-on and turn-off, the switching time becomes long and an increase in switching loss cannot be avoided.
 近年、パワー半導体モジュール用の素子としてSiCやGaNなどの新素子の開発が著しく、寄生発振が発生するスイッチング動作(ターンオン、ターンオフ、もしくはリカバリ動作)は一様ではなく、より根本的な解決が必要である。 In recent years, the development of new devices such as SiC and GaN as elements for power semiconductor modules has been remarkable, and the switching operation (turn-on, turn-off, or recovery operation) in which parasitic oscillation occurs is not uniform, and a more fundamental solution is required. Is.
 そのため、ターンオンとターンオフの両方のスイッチング動作においてスイッチング時間を短縮しながら、寄生発振を抑制する手段が望まれる。 Therefore, a means for suppressing parasitic oscillation while shortening the switching time in both turn-on and turn-off switching operations is desired.
 そこで、本発明の目的は、複数のパワー半導体モジュールを互いに並列接続して構成する電力変換装置において、スイッチング動作時に発生する寄生発振を抑制しつつ、スイッチング損失を低減可能な電力変換装置とそれを搭載する鉄道車両電気システムを提供することにある。 Therefore, an object of the present invention is a power conversion device capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation in a power conversion device configured by connecting a plurality of power semiconductor modules in parallel with each other. The purpose is to provide an electric system for railway vehicles to be installed.
 上記課題を解決するために、本発明は、複数のパワー半導体モジュールと、前記複数のパワー半導体モジュールを駆動制御するゲート駆動回路と、前記複数のパワー半導体モジュールと前記ゲート駆動回路の間に接続され、前記ゲート駆動回路に対して前記複数のパワー半導体モジュールを互いに並列接続させるゲート配線回路により構成されるアーム回路を備えた電力変換装置であって、前記ゲート配線回路は、前記複数のパワー半導体モジュールの各々に対応する複数のインピーダンス回路を有し、前記インピーダンス回路のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなることを特徴とする。 In order to solve the above problems, the present invention is connected between a plurality of power semiconductor modules, a gate drive circuit for driving and controlling the plurality of power semiconductor modules, and the plurality of power semiconductor modules and the gate drive circuit. A power conversion device including an arm circuit composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to the gate drive circuit, wherein the gate wiring circuit is the plurality of power semiconductor modules. It has a plurality of impedance circuits corresponding to each of the above, and the impedance value of the impedance circuit changes depending on the frequency of the voltage applied to the impedance circuit. It is characterized in that the impedance value increases at the frequency.
 また、本発明は、複数のパワー半導体モジュールと、前記複数のパワー半導体モジュールを駆動制御するゲート駆動回路と、前記複数のパワー半導体モジュールと前記ゲート駆動回路の間に接続され、前記ゲート駆動回路に対して前記複数のパワー半導体モジュールを互いに並列接続させるゲート配線回路により構成されるアーム回路を備えた電力変換装置であって、前記複数のパワー半導体モジュールの各々は、パワー半導体トランジスタと共に当該パワー半導体モジュールに内蔵され、前記パワー半導体トランジスタのゲート端子と前記ゲート駆動回路の間に直列に接続されるインピーダンス回路を有し、前記インピーダンス回路のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなることを特徴とする。 Further, the present invention is connected between a plurality of power semiconductor modules, a gate drive circuit for driving and controlling the plurality of power semiconductor modules, and the plurality of power semiconductor modules and the gate drive circuit, and is connected to the gate drive circuit. On the other hand, it is a power conversion device provided with an arm circuit composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to each other, and each of the plurality of power semiconductor modules is a power semiconductor module together with a power semiconductor transistor. It has an impedance circuit built in the power semiconductor transistor and connected in series between the gate terminal of the power semiconductor transistor and the gate drive circuit, and the impedance value of the impedance circuit depends on the frequency of the voltage applied to the impedance circuit. It is characterized in that the impedance value is small in the low frequency range and the impedance value is large in the high frequency range.
 また、本発明は、パンタグラフと、前記パンタグラフに接続された遮断器と、前記遮断器に接続されたリアクトルと、前記リアクトルに接続された電力変換装置と、前記電力変換装置に接続された電動機と、を備え、前記電力変換装置は、上記のいずれかに記載の電力変換装置であることを特徴とする。 Further, the present invention includes a pantograph, a breaker connected to the pantograph, a reactor connected to the breaker, a power conversion device connected to the reactor, and an electric motor connected to the power conversion device. , The power conversion device is the power conversion device according to any one of the above.
 本発明によれば、複数のパワー半導体モジュールを互いに並列接続して構成する電力変換装置において、スイッチング動作時に発生する寄生発振を抑制しつつ、スイッチング損失を低減可能な電力変換装置とそれを搭載する鉄道車両電気システムを実現することができる。 According to the present invention, in a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, a power conversion device capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation and a power conversion device thereof are mounted. A railroad vehicle electrical system can be realized.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
実施例1の電力変換装置のアーム回路を示す図である。It is a figure which shows the arm circuit of the power conversion apparatus of Example 1. FIG. ゲート電圧に寄生発振が発生しない場合の電圧Vgsの過渡応答波形を示す図である。It is a figure which shows the transient response waveform of the voltage Vgs when the parasitic oscillation does not occur in a gate voltage. ゲート電圧に寄生発振が発生しない場合のゲート電圧波形の周波数毎の振幅の分布を示す図である。It is a figure which shows the distribution of the amplitude for each frequency of the gate voltage waveform when the parasitic oscillation does not occur in the gate voltage. ゲート電圧に寄生発振が重畳した場合の電圧Vgsの過渡応答波形を示す図である。It is a figure which shows the transient response waveform of the voltage Vgs when the parasitic oscillation is superimposed on the gate voltage. ゲート電圧に寄生発振が重畳した場合のゲート電圧波形の周波数毎の振幅の分布を示す図である。It is a figure which shows the distribution of the amplitude for each frequency of the gate voltage waveform when the parasitic oscillation is superimposed on the gate voltage. 実施例1の電力変換装置のインピーダンス回路を示す図である。It is a figure which shows the impedance circuit of the power conversion apparatus of Example 1. 本発明の効果を示す図である。It is a figure which shows the effect of this invention. 本発明の効果を示す図である。It is a figure which shows the effect of this invention. 実施例2の電力変換装置のアーム回路を示す図である。It is a figure which shows the arm circuit of the power conversion apparatus of Example 2. 実施例3の鉄道車両電気システムを示す図である。It is a figure which shows the railroad vehicle electric system of Example 3. 実施例4の電力変換装置のインピーダンス回路を示す図である。It is a figure which shows the impedance circuit of the power conversion apparatus of Example 4. 実施例5の電力変換装置のインピーダンス回路を示す図である。It is a figure which shows the impedance circuit of the power conversion apparatus of Example 5. 実施例5の電力変換装置のインピーダンス回路を示す図である。It is a figure which shows the impedance circuit of the power conversion apparatus of Example 5. 実施例6の電力変換装置のインピーダンス回路を示す図である。It is a figure which shows the impedance circuit of the power conversion apparatus of Example 6.
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, examples of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and the detailed description of overlapping portions will be omitted.
 図1から図4Cを参照して、本発明の実施例1の電力変換装置について説明する。本実施例では、先ず、並列接続したパワー半導体モジュールを用いた電力変換装置に寄生発振が発生する例を示し、その場合のゲート電圧波形の挙動について説明する。 The power conversion device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4C. In this embodiment, first, an example in which parasitic oscillation occurs in a power conversion device using power semiconductor modules connected in parallel will be shown, and the behavior of the gate voltage waveform in that case will be described.
 ここで、ゲート電圧(Vgs)とは、ゲート駆動回路の出力端子であるゲート駆動端子とソースセンス駆動端子間の電圧、もしくは、パワー半導体モジュールのゲート端子とソースセンス端子間の電圧を示す。特定する端子間のゲート電圧については、端子名を以下明示する。 Here, the gate voltage (Vgs) indicates the voltage between the gate drive terminal and the source sense drive terminal, which are the output terminals of the gate drive circuit, or the voltage between the gate terminal and the source sense terminal of the power semiconductor module. For the gate voltage between the specified terminals, the terminal name will be specified below.
 図2Aおよび図2Bは、並列接続したパワー半導体モジュールを含んで構成する電力変換装置において、スイッチング時のゲート電圧に寄生発振が発生しない例を示す。 FIGS. 2A and 2B show an example in which parasitic oscillation does not occur in the gate voltage during switching in a power conversion device including power semiconductor modules connected in parallel.
 図2Aは、ターンオン動作時のゲート端子とソースセンス端子間の電圧Vgsの過渡応答波形である。オフ電圧であるVGSMからオン電圧であるVGSPに向けてVgsが変化する。その電圧波形の変化率は緩やかであり、図示した時間範囲では、正負両側のゲート電圧定格以内(ゲート電圧定格の上限と下限の範囲内)で動作している。 FIG. 2A is a transient response waveform of the voltage Vgs between the gate terminal and the source sense terminal during the turn-on operation. Vgs changes from the off-voltage VGSM to the on-voltage VGSP. The rate of change of the voltage waveform is gradual, and in the time range shown in the figure, it operates within the gate voltage ratings on both the positive and negative sides (within the upper and lower limits of the gate voltage rating).
 この波形のFFT解析結果(FFT:高速フーリエ変換)を図2Bに示す。横軸を周波数の対数表示で、縦軸を周波数毎に分析した電圧振幅の値で示す。図2Bからわかるように、低域周波数では、Vgsの過渡応答に対応して、振幅が大きい分布をしている。また、高域周波数では、低域に比較して更に小さい振幅レベルで分布しており、Vgsが寄生発振の無い正常動作をする限りはその過渡波形に応答する周波数分布は主に低域周波数に発生すると言える。 The FFT analysis result (FFT: Fast Fourier Transform) of this waveform is shown in FIG. 2B. The horizontal axis is the logarithmic display of frequencies, and the vertical axis is the value of the voltage amplitude analyzed for each frequency. As can be seen from FIG. 2B, in the low frequency range, the amplitude has a large distribution corresponding to the transient response of Vgs. In the high frequency range, the amplitude level is smaller than that in the low frequency range, and as long as Vgs operates normally without parasitic oscillation, the frequency distribution that responds to the transient waveform is mainly in the low frequency range. It can be said that it occurs.
 一方、図3Aおよび図3Bは、同じVgsのターンオン波形に寄生発振が重畳した場合を示す。図3Aの過渡応答波形では、Vgsがオン電圧であるVGSPに近づくタイミングで寄生発振が発生している。その発振の振動振幅は大きく、ゲートの最大定格を正側と負側のいずれも超過する波形になっている。この場合、パワー半導体モジュールに搭載したパワー半導体チップのゲート部位が損傷し、破壊する可能性がある。また、図3Bに示すように、ゲート電圧波形の周波数毎の振幅分布は、発生した振動(ゲート電圧寄生発振振動)の影響から、高域周波数において振幅値が増大していることが明らかである。図3Aで示した寄生発振振動は特定の周波数で振動している。この波形を周波数毎の振幅分布で見た場合には前記の特定の周波数を中心とする高域周波数にて振幅が大きくなるからである。 On the other hand, FIGS. 3A and 3B show a case where parasitic oscillation is superimposed on a turn-on waveform of the same Vgs. In the transient response waveform of FIG. 3A, parasitic oscillation occurs at the timing when Vgs approaches VGSP, which is the on-voltage. The vibration amplitude of the oscillation is large, and the waveform is such that it exceeds the maximum rating of the gate on both the positive side and the negative side. In this case, the gate portion of the power semiconductor chip mounted on the power semiconductor module may be damaged and destroyed. Further, as shown in FIG. 3B, it is clear that the amplitude value of the gate voltage waveform for each frequency increases in the high frequency range due to the influence of the generated vibration (gate voltage parasitic oscillation vibration). .. The parasitic oscillation vibration shown in FIG. 3A vibrates at a specific frequency. This is because when this waveform is viewed as an amplitude distribution for each frequency, the amplitude increases at the high frequency centered on the specific frequency.
 上記のゲート電圧波形における寄生発振の有無の比較から、次のことがわかる。 The following can be seen from the comparison of the presence or absence of parasitic oscillation in the above gate voltage waveform.
 (1)寄生発振の無い正常動作をするゲート波形の周波数分布は低域周波数に集中している。 (1) The frequency distribution of the gate waveform that operates normally without parasitic oscillation is concentrated in the low frequency range.
 (2)寄生発振が発生した場合、その周波数分布は高域周波数に重畳する。 (2) When parasitic oscillation occurs, its frequency distribution is superimposed on the high frequency.
 寄生発振の過渡応答波形が占めるその周波数域、すなわち高域周波数において、共振電圧や共振電流の振幅を低減することができれば、寄生発振まで至ることはなく、ゲート電圧をその定格の範囲内で利用することができる。 If the amplitude of the resonance voltage and the resonance current can be reduced in the frequency range occupied by the transient response waveform of the parasitic oscillation, that is, the high frequency, the parasitic oscillation will not occur and the gate voltage will be used within the rated range. can do.
 次に、図1を用いて、本実施例の電力変換装置の構成について説明する。図1は、本実施例の電力変換装置を構成するアーム回路90を示す図である。アーム回路90は、ゲート駆動回路1と複数のパワー半導体モジュール10a~10nとゲート配線回路を構成する複数のインピーダンス回路20a~20nで構成されている。 Next, the configuration of the power conversion device of this embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an arm circuit 90 constituting the power conversion device of this embodiment. The arm circuit 90 is composed of a gate drive circuit 1, a plurality of power semiconductor modules 10a to 10n, and a plurality of impedance circuits 20a to 20n constituting a gate wiring circuit.
 インピーダンス回路20a~20nは、ゲート駆動回路1のゲート駆動端子とソースセンス駆動端子とパワー半導体モジュール10a~10nの各々のゲート端子とソースセンス端子とを接続する回路である。 The impedance circuits 20a to 20n are circuits that connect the gate drive terminal and the source sense drive terminal of the gate drive circuit 1 and the gate terminal and the source sense terminal of each of the power semiconductor modules 10a to 10n.
 パワー半導体モジュール10a~10nの各々に対応するインピーダンス回路20a~20nの一端は、ゲート駆動回路1のゲート駆動端子nGDgとソースセンス駆動端子nGDssにまとめて接続され、インピーダンス回路20a~20nの各々の他端は、対応するパワー半導体モジュール10a~10nのゲート端子とソースセンス端子とにそれぞれ接続される。 One end of the impedance circuits 20a to 20n corresponding to each of the power semiconductor modules 10a to 10n is collectively connected to the gate drive terminal nGDg and the source sense drive terminal nGDss of the gate drive circuit 1, and other than each of the impedance circuits 20a to 20n. The ends are connected to the gate terminals and source sense terminals of the corresponding power semiconductor modules 10a to 10n, respectively.
 ゲート駆動回路1は、端子nCNTにて電力変換装置の制御回路からの制御回路信号を入力とし、ゲート駆動端子nGDgとソースセンス駆動端子nGDssを介してパワー半導体モジュール10a~10nの駆動制御を行う。 The gate drive circuit 1 receives a control circuit signal from the control circuit of the power converter at the terminal nCNT, and controls the drive of the power semiconductor modules 10a to 10n via the gate drive terminal nGDg and the source sense drive terminal nGDss.
 パワー半導体モジュール10a~10nの個数は2つ以上備え、ドレイン端子は端子nDにて、ソース端子は端子nSにてお互いに接続される。ゲート端子とソースセンス端子は、後述するゲート配線回路を構成するインピーダンス回路に接続する。なお、パワー半導体モジュールの並列接続数は2つ以上の自然数n個であって、その上限は限定するものではない。 The number of power semiconductor modules 10a to 10n is two or more, and the drain terminal is connected to each other at the terminal nD and the source terminal is connected to each other at the terminal nS. The gate terminal and the source sense terminal are connected to an impedance circuit constituting a gate wiring circuit described later. The number of parallel connections of the power semiconductor module is two or more natural numbers n, and the upper limit thereof is not limited.
 ゲート配線回路は、図1に示すように、複数のインピーダンス回路20a~20nと電気的な接続を行う配線によって構成される。ゲート駆動端子nGDgとソースセンス駆動端子nGDssをゲート配線回路の入力とし、ゲート駆動端子nGDgとソースセンス駆動端子nGDssからパワー半導体モジュール10a~10nの各々に対応するインピーダンス回路20a~20nに並列分岐される。 As shown in FIG. 1, the gate wiring circuit is composed of wiring that electrically connects to a plurality of impedance circuits 20a to 20n. The gate drive terminal nGDg and the source sense drive terminal nGDss are used as inputs of the gate wiring circuit, and the gate drive terminal nGDg and the source sense drive terminal nGDss are branched in parallel to the impedance circuits 20a to 20n corresponding to each of the power semiconductor modules 10a to 10n. ..
 インピーダンス回路20a~20nは、その出力端子である端子nPMga~nPMgnと端子nPMssa~nPMssnにてパワー半導体モジュール10a~10nのゲート端子とソースセンス端子に接続される。ゲート配線回路の電気的な接続配線の長さは、ゲート駆動端子nGDgおよびソースセンス駆動端子nGDssから、パワー半導体モジュール10a~10nの各々のゲート端子およびソースセンス端子との間に生じる電気長が均一になるよう設計と実装がされるのが好ましい。 The impedance circuits 20a to 20n are connected to the gate terminals and source sense terminals of the power semiconductor modules 10a to 10n at the output terminals nPMga to nPMgn and terminals nPMssa to nPMssn. The length of the electrical connection wiring of the gate wiring circuit is such that the electrical length generated from the gate drive terminal nGDg and the source sense drive terminal nGDss to each of the gate terminals and source sense terminals of the power semiconductor modules 10a to 10n is uniform. It is preferable that it is designed and implemented so as to be.
 但し、電気長の均一性が損なわれても、ゲート駆動回路1がパワー半導体モジュール10a~10nに向けて駆動する電圧波形と電流波形の時間遅延誤差(各々のパワー半導体モジュール間のゲート駆動波形の遅延誤差)が、パワー半導体モジュール10a~10nの動作に影響を与えない範囲で許容できることは言うまでもない。 However, even if the uniformity of the electric length is impaired, the time delay error of the voltage waveform and the current waveform that the gate drive circuit 1 drives toward the power semiconductor modules 10a to 10n (the gate drive waveform between the power semiconductor modules). Needless to say, the delay error) is acceptable within a range that does not affect the operation of the power semiconductor modules 10a to 10n.
 インピーダンス回路20a~20nは、互いに並列接続されたパワー半導体モジュール10a~10nのゲート間の共振に起因して発生する寄生発振を抑制しながら、パワー半導体モジュール10a~10nのスイッチング動作、すなわちターンオン動作とターンオフ動作の所要時間を短くしてスイッチング損失を小さくするために用いられる。 The impedance circuits 20a to 20n suppress the parasitic oscillation generated due to the resonance between the gates of the power semiconductor modules 10a to 10n connected in parallel with each other, and the switching operation of the power semiconductor modules 10a to 10n, that is, the turn-on operation. It is used to shorten the time required for turn-off operation and reduce switching loss.
 その構造の一例を図1のインピーダンス回路20aに示す。インピーダンス回路20aは、ゲート配線経路に、抵抗R1aとインダクタL1aの並列回路に抵抗R2aを直列接続し、ソースセンス配線経路は、電気的配線を配置したものである。 An example of the structure is shown in the impedance circuit 20a of FIG. In the impedance circuit 20a, the resistor R1a and the inductor L1a are connected in series to the parallel circuit of the resistor R1a in the gate wiring path, and the source sense wiring path is arranged with electrical wiring.
 インダクタL1aのインピーダンスは、低域周波数では低く、高域周波数では高いため、L1aと並列の抵抗R1aは、低域周波数では低インピーダンス短絡され、高域周波数ではその値である抵抗R1aの値に見える。ここで、図1中の抵抗R1a~R1nと抵抗R2a~R2nの値をそれぞれ、R1とR2として以降示す。 Since the impedance of the inductor L1a is low at low frequencies and high at high frequencies, the resistor R1a in parallel with L1a is short-circuited with low impedance at low frequencies, and looks like the value of the resistor R1a at high frequencies. .. Here, the values of the resistors R1a to R1n and the resistors R2a to R2n in FIG. 1 are shown below as R1 and R2, respectively.
 本実施例のインピーダンス回路の動作の一例を、図4Aから図4Cを用いて説明する。
図4Aから図4Cには、図1からインピーダンス回路20a,20bのみを取り出し、その端子間のインピーダンスについて算出した特性を示す。
An example of the operation of the impedance circuit of this embodiment will be described with reference to FIGS. 4A to 4C.
4A to 4C show the characteristics calculated for the impedance between the terminals of the impedance circuits 20a and 20b taken out from FIG.
 図4Aは、図1からインピーダンス回路20a,20bのみを取り出し、その効果を検討した回路である。図4Bは、ゲート駆動端子nGDgおよびソースセンス駆動端子nGDssから、端子nPMgaおよび端子nPMssaまでのインピーダンス値の周波数依存性を示す。具体的には、端子nGDssから端子nPMssa間は電気的配線で接続されていることから、ゲート駆動端子nGDgから端子nPMgaまでのインピーダンス値を示す。図4Aの回路構成の場合、そのインピーダンス値は、図4Bに実線で示すように、低域周波数ではインダクタL1による短絡効果が効いて抵抗値R2のインピーダンスが発生する。 FIG. 4A is a circuit in which only the impedance circuits 20a and 20b are taken out from FIG. 1 and their effects are examined. FIG. 4B shows the frequency dependence of the impedance value from the gate drive terminal nGDg and the source sense drive terminal nGDss to the terminal nPMga and the terminal nPMssa. Specifically, since the terminal nGDss and the terminal nPMssa are connected by electrical wiring, the impedance value from the gate drive terminal nGDg to the terminal nPMga is shown. In the case of the circuit configuration of FIG. 4A, as shown by the solid line in FIG. 4B, the short-circuit effect of the inductor L1 is effective at low frequencies, and the impedance of the resistance value R2 is generated.
 一方、高域周波数では、抵抗R1と抵抗R2の直列回路に見えるため、R1+R2で決まるインピーダンスが発生する。低域周波数と高域周波数の間の中域周波数が上記のインピーダンス2値(R1,R1+R2)の切り替わり範囲になっている。インピーダンス回路20a,20bは必ず、低域周波数のインピーダンス値より高域周波数のインピーダンス値が高い構成になっている。 On the other hand, at the high frequency, it looks like a series circuit of the resistor R1 and the resistor R2, so the impedance determined by R1 + R2 is generated. The mid-range frequency between the low-frequency and high-frequency is the switching range of the above impedance 2 values (R1, R1 + R2). The impedance circuits 20a and 20b always have a configuration in which the impedance value of the high frequency frequency is higher than the impedance value of the low frequency frequency.
 図4Cに示すインピーダンスの周波数依存性は、端子nPMgaと端子nPMssaの2端子と、端子nPMgbと端子nPMssbの2端子との間に発生するインピーダンス値を示している。具体的には、端子nPMssaから端子nPMssb間は電気的配線で接続されていることから、端子nPMgaから端子nPMgbまでのインピーダンス値を示す。すなわち、その経路は、インピーダンス回路20aとインピーダンス回路20bの直列回路となる。この経路は、並列接続したパワー半導体モジュール10aと10b(図1に図示)のゲート端子間の接続経路に相当する。 The frequency dependence of the impedance shown in FIG. 4C indicates the impedance value generated between the two terminals of the terminal nPMga and the terminal nPMssa and the two terminals of the terminal nPMgb and the terminal nPMssb. Specifically, since the terminal nPMssa and the terminal nPMssb are connected by electrical wiring, the impedance value from the terminal nPMga to the terminal nPMgb is shown. That is, the path is a series circuit of the impedance circuit 20a and the impedance circuit 20b. This path corresponds to the connection path between the gate terminals of the power semiconductor modules 10a and 10b (shown in FIG. 1) connected in parallel.
 図4Cのインピーダンス特性から、高域周波数ではそのインピーダンスが2・(R1+R2)の値となり、低域周波数の2・R2の値に比較して2・R1分だけ高抵抗化できる。このインピーダンスの周波数領域(低域と高域)による依存性によって、本発明の解決すべき課題である「並列接続したパワー半導体モジュールのゲート間の共振に起因して発生する寄生発振を抑制しながら、パワー半導体モジュールのスイッチング動作を速くする」ことを実現可能とする。 From the impedance characteristics of FIG. 4C, the impedance becomes a value of 2. (R1 + R2) at the high frequency, and the resistance can be increased by 2.R1 compared to the value of 2.R2 at the low frequency. Due to the dependence of this impedance on the frequency domain (low and high frequencies), the problem to be solved by the present invention, "while suppressing the parasitic oscillation generated due to the resonance between the gates of the power semiconductor modules connected in parallel". , Speeding up the switching operation of the power semiconductor module ”is made possible.
 図4Bおよび図4Cにそれぞれ示した破線の特性は、インピーダンス回路20(20a,20b)にL1(L1a,L1b)を導入しない場合(L1無し)の特性を示す。この場合、図4Bでは、周波数の低域と高域にかかわらず、ゲート駆動端子nGDgおよびソースセンス駆動端子nGDssから、端子nPMgaおよび端子nPMssa端子の間に、ゲート経路のインピーダンスとして抵抗R1+R2が発生する。 The characteristics of the broken lines shown in FIGS. 4B and 4C show the characteristics when L1 (L1a, L1b) is not introduced into the impedance circuit 20 (20a, 20b) (without L1). In this case, in FIG. 4B, resistors R1 + R2 are generated as the impedance of the gate path between the gate drive terminal nGDg and the source sense drive terminal nGDss and the terminal nPMga and the terminal nPMssa terminal regardless of the low frequency range and the high frequency range. ..
 また、図4Cに示すように、端子nPMgaと端子nPMgssaの2端子と、端子nPMgbと端子nPMgssbの2端子との間に、抵抗2・(R1+R2)が発生する。
インダクタL1(L1a,L1b)を導入しない場合には、高い抵抗値となるインピーダンスが発生することになり、この場合は並列接続したパワー半導体モジュールのゲート間の共振をダンピングする効果は得られるが、スイッチング動作のターンオン時間とターンオフ時間が長くなり、スイッチング損失が増えてしまう。
Further, as shown in FIG. 4C, a resistor 2 (R1 + R2) is generated between the two terminals of the terminal nPMga and the terminal nPMgssa and the two terminals of the terminal nPMgb and the terminal nPMgssb.
When the inductor L1 (L1a, L1b) is not introduced, impedance having a high resistance value is generated. In this case, the effect of damping the resonance between the gates of the power semiconductor modules connected in parallel can be obtained. The turn-on time and turn-off time of the switching operation become long, and the switching loss increases.
 以上説明したように、本実施例の電力変換装置は、複数のパワー半導体モジュール10a~10nと、複数のパワー半導体モジュール10a~10nを駆動制御するゲート駆動回路1と、複数のパワー半導体モジュール10a~10nとゲート駆動回路1の間に接続され、ゲート駆動回路1に対して複数のパワー半導体モジュール10a~10nを互いに並列接続させるゲート配線回路により構成されるアーム回路90を備えており、ゲート配線回路は、複数のパワー半導体モジュール10a~10nの各々に対応する複数のインピーダンス回路20a~20nを有し、インピーダンス回路20a~20nの各々のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなるように構成されている。 As described above, the power conversion device of this embodiment includes a plurality of power semiconductor modules 10a to 10n, a gate drive circuit 1 for driving and controlling a plurality of power semiconductor modules 10a to 10n, and a plurality of power semiconductor modules 10a to 10a. An arm circuit 90 is provided which is connected between 10n and the gate drive circuit 1 and is composed of a gate wiring circuit for connecting a plurality of power semiconductor modules 10a to 10n in parallel to the gate drive circuit 1. Has a plurality of impedance circuits 20a to 20n corresponding to each of the plurality of power semiconductor modules 10a to 10n, and each impedance value of the impedance circuits 20a to 20n depends on the frequency of the voltage applied to the impedance circuit. The impedance value is small at low frequencies and large at high frequencies.
 また、インピーダンス回路20aは、第1の抵抗(抵抗R1a)の一端とインダクタL1aの一端とが互いに接続され、かつ、第1の抵抗(抵抗R1a)の他端とインダクタL1aの他端とが互いに接続されて成る並列回路と、当該並列回路に直列接続された第2の抵抗(抵抗R2a)を有するように構成されている。 Further, in the impedance circuit 20a, one end of the first resistor (resistor R1a) and one end of the inductor L1a are connected to each other, and the other end of the first resistor (resistor R1a) and the other end of the inductor L1a are connected to each other. It is configured to have a connected parallel circuit and a second resistor (resistor R2a) connected in series to the parallel circuit.
 なお、第1の抵抗(抵抗R1a)とインダクタL1aの並列回路のみで、上記した本実施例の効果が得られる場合は、第2の抵抗(抵抗R2a)を設けない構成もあり得る。 If the effect of this embodiment described above can be obtained only by the parallel circuit of the first resistor (resistor R1a) and the inductor L1a, there may be a configuration in which the second resistor (resistor R2a) is not provided.
 これにより、複数のパワー半導体モジュールを互いに並列接続して構成する電力変換装置において、高速スイッチング動作時に発生する寄生発振を抑制しつつ、スイッチング損失を低減することができる。 This makes it possible to reduce switching loss while suppressing parasitic oscillation that occurs during high-speed switching operation in a power conversion device that is configured by connecting multiple power semiconductor modules in parallel with each other.
 なお、第1の抵抗(抵抗R1a)の抵抗値は、第2の抵抗(抵抗R2a)の抵抗値より大きい(R1>R2)ことが必要である。図4Bに示すように、本発明のインピーダンス回路を用いることで、R2の抵抗値を低く設定することができるが、低いR2の2倍の(R1+R2)では、高域周波数のインピーダンスとして低く、実用的ではない。そのため、定性的にR1>R2とする必要がある。 The resistance value of the first resistor (resistor R1a) needs to be larger than the resistance value of the second resistor (resistor R2a) (R1> R2). As shown in FIG. 4B, the resistance value of R2 can be set low by using the impedance circuit of the present invention, but at twice the low R2 (R1 + R2), the impedance in the high frequency range is low and practical. Not the target. Therefore, it is necessary to qualitatively set R1> R2.
 また、本発明の効果を最大限に享受するためには、第1の抵抗(抵抗R1a)の抵抗値を、第2の抵抗(抵抗R2a)の抵抗値の3倍以上(例えば3倍~4倍程度)とするのがより好適である。 Further, in order to maximize the effect of the present invention, the resistance value of the first resistor (resistor R1a) is set to 3 times or more (for example, 3 times to 4 times) the resistance value of the second resistor (resistor R2a). It is more preferable to set it to about twice).
 図5を参照して、本発明の実施例2の電力変換装置について説明する。実施例1(図1)と同様に、電力変換装置を構成するアーム回路90を示す図である。本実施例のアーム回路90は、ゲート駆動回路1と複数のパワー半導体モジュール11a~11nとゲート配線回路で構成されている。 The power conversion device according to the second embodiment of the present invention will be described with reference to FIG. Similar to the first embodiment (FIG. 1), it is a diagram showing an arm circuit 90 constituting a power conversion device. The arm circuit 90 of this embodiment includes a gate drive circuit 1, a plurality of power semiconductor modules 11a to 11n, and a gate wiring circuit.
 ゲート配線回路は、ゲート駆動回路1のゲート駆動端子nGDgとソースセンス駆動端子nGDssとパワー半導体モジュール11a~11nの各々のゲート端子とソースセンス端子とを接続する回路である。本実施例では、ゲート配線回路は電気的な接続を行う配線で構成する。 The gate wiring circuit is a circuit that connects the gate drive terminal nGDg of the gate drive circuit 1, the source sense drive terminal nGDss, and the gate terminals and source sense terminals of the power semiconductor modules 11a to 11n. In this embodiment, the gate wiring circuit is composed of wiring for electrical connection.
 本実施例のパワー半導体モジュール11a~11nは、その内部構成に特徴があり、インピーダンス回路21a~21nをモジュール内部のゲート配線経路に配置している。つまり、インピーダンス回路21a~21nの各々は、パワー半導体モジュール11a~11nにそれぞれ内蔵された形で構成されている。 The power semiconductor modules 11a to 11n of this embodiment are characterized in their internal configuration, and the impedance circuits 21a to 21n are arranged in the gate wiring path inside the module. That is, each of the impedance circuits 21a to 21n is configured to be built in each of the power semiconductor modules 11a to 11n.
 インピーダンス回路21a~21nの構成は、実施例1(図1)に示したインピーダンス回路20a~20nと同様であり、その接続構成と周波数領域に依存したインピーダンス値の変化についての説明は割愛する。 The configurations of the impedance circuits 21a to 21n are the same as those of the impedance circuits 20a to 20n shown in the first embodiment (FIG. 1), and the description of the connection configuration and the change in the impedance value depending on the frequency domain will be omitted.
 以上説明したように、本実施例の電力変換装置では、複数のパワー半導体モジュール11a~11nと、複数のパワー半導体モジュール11a~11nを駆動制御するゲート駆動回路1と、複数のパワー半導体モジュール11a~11nとゲート駆動回路1の間に接続され、ゲート駆動回路1に対して複数のパワー半導体モジュール11a~11nを互いに並列接続させるゲート配線回路により構成されるアーム回路90を備えており、複数のパワー半導体モジュール11a~11nの各々は、パワー半導体トランジスタと共にパワー半導体モジュール11a~11nに内蔵され、パワー半導体トランジスタのゲート端子とゲート駆動回路1の間に直列に接続されるインピーダンス回路21a~21nを有し、インピーダンス回路21a~21nの各々のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなるように構成されている。 As described above, in the power conversion device of the present embodiment, the plurality of power semiconductor modules 11a to 11n, the gate drive circuit 1 for driving and controlling the plurality of power semiconductor modules 11a to 11n, and the plurality of power semiconductor modules 11a to 11a to It is provided with an arm circuit 90 which is connected between 11n and the gate drive circuit 1 and is composed of a gate wiring circuit which connects a plurality of power semiconductor modules 11a to 11n in parallel to the gate drive circuit 1 and has a plurality of powers. Each of the semiconductor modules 11a to 11n has impedance circuits 21a to 21n which are built in the power semiconductor modules 11a to 11n together with the power semiconductor transistor and are connected in series between the gate terminal of the power semiconductor transistor and the gate drive circuit 1. The impedance values of the impedance circuits 21a to 21n change depending on the frequency of the voltage applied to the impedance circuits, so that the impedance value is small in the low frequency range and large in the high frequency range. It is configured in.
 本実施例では、インピーダンス回路21a~21nをそれぞれパワー半導体モジュール11a~11nの内部に配置したことにより、以下の利点が発生する。 In this embodiment, the following advantages occur by arranging the impedance circuits 21a to 21n inside the power semiconductor modules 11a to 11n, respectively.
 (1)ゲート配線回路の構成が簡単となり、組み立て工数を低減できる。 (1) The configuration of the gate wiring circuit is simplified, and the assembly man-hours can be reduced.
 (2)モジュール内蔵のパワー半導体素子の特性を考慮して並列モジュールのゲート間に発生し得る寄生発振を抑制するよう予め周波数依存性を調整したインピーダンス回路21a~21nを内蔵することにより、パワー半導体モジュールの並列接続の設計において、ゲート間の寄生発振に対する設計工数が不要となる。 (2) Power semiconductors by incorporating impedance circuits 21a to 21n whose frequency dependence has been adjusted in advance so as to suppress parasitic oscillation that may occur between the gates of parallel modules in consideration of the characteristics of the power semiconductor element built into the module. In the design of parallel connection of modules, the design effort for parasitic oscillation between gates is not required.
 図6を参照して、本発明の実施例3の鉄道車両電気システムについて説明する。図6は、実施例1または実施例2で示したアーム回路90を用いて、3相電力変換装置を含む鉄道車両電気システムを構成した一例である。 The railway vehicle electric system according to the third embodiment of the present invention will be described with reference to FIG. FIG. 6 is an example in which a railroad vehicle electric system including a three-phase power conversion device is configured by using the arm circuit 90 shown in the first or second embodiment.
 本実施例の鉄道車両電気システムは、パンタグラフ100と、遮断器200と、リアクトル300と、電力変換装置400と、負荷となる電動機500によって構成される。 The railroad vehicle electric system of this embodiment is composed of a pantograph 100, a circuit breaker 200, a reactor 300, a power conversion device 400, and an electric motor 500 as a load.
 電力変換装置400は、コンデンサ4および制御回路3を備えており、コンデンサ4により主電圧Vccを保持し、制御回路3によりゲート駆動回路の制御信号を生成し、6つのアーム回路90a~90fの各ゲート駆動回路1a~1fにそれぞれ入力する。 The power conversion device 400 includes a capacitor 4 and a control circuit 3. The capacitor 4 holds a main voltage Vcc, the control circuit 3 generates a control signal of a gate drive circuit, and each of the six arm circuits 90a to 90f. Inputs are made to the gate drive circuits 1a to 1f, respectively.
 アーム回路90aと90bは第1相のインバータレグを構成し、同様にアーム回路90cと90dは第2相のインバータレグを構成し、アーム回路90eと90fは第3相のインバータレグを構成する。各インバータレグの出力線を電動機500へと接続する。各アーム回路90a~90fは、それぞれゲート駆動回路1a~1fとパワー半導体モジュールの並列接続回路(並列モジュール回路)2a~2fで構成されている。 The arm circuits 90a and 90b form a first phase inverter leg, similarly, the arm circuits 90c and 90d form a second phase inverter leg, and the arm circuits 90e and 90f form a third phase inverter leg. The output line of each inverter leg is connected to the motor 500. The arm circuits 90a to 90f are composed of gate drive circuits 1a to 1f and parallel connection circuits (parallel module circuits) 2a to 2f of power semiconductor modules, respectively.
 本実施例の利点は、
 (1)本発明のインピーダンス回路を用いたパワー半導体モジュールの並列構成を含むアーム回路を用いることで、モジュール間のゲート寄生発振を抑圧しながら低スイッチング損失の3相電力変換装置を構成することができる。
The advantage of this example is
(1) By using an arm circuit including a parallel configuration of power semiconductor modules using the impedance circuit of the present invention, it is possible to configure a three-phase power conversion device with low switching loss while suppressing gate parasitic oscillation between modules. it can.
 その結果、電動機500に出力する出力電流の仕様値に適うようにパワー半導体モジュールの並列接続を容易に設計でき、鉄道車両電気システムに用いるパワー半導体モジュールの調達性を向上し、その設計工数を減少させることができる。 As a result, the parallel connection of the power semiconductor module can be easily designed so as to meet the specification value of the output current output to the electric motor 500, the availability of the power semiconductor module used for the railway vehicle electric system is improved, and the design manpower is reduced. Can be made to.
 (2)電動機500への必要な電流仕様を満足するために、小型のパワー半導体モジュールを並列接続することで電流仕様を過剰なマージンを設けずに設定できる。 (2) In order to satisfy the required current specifications for the motor 500, the current specifications can be set without providing an excessive margin by connecting small power semiconductor modules in parallel.
 その結果、小型のパワー半導体モジュールを必要最小限の並列数で電力変換装置を構成し、かつ、そのスイッチング損失を低く設定できることから、電力変換装置に内包される放熱器の体積も小型化できる。従って、電力変換装置を小型化することが可能になり、鉄道車両電気システムの小型化を実現できる、ことにある。 As a result, the power converter can be configured with the minimum number of parallel power semiconductor modules required, and the switching loss can be set low, so that the volume of the radiator included in the power converter can also be reduced. Therefore, the power conversion device can be miniaturized, and the railroad vehicle electric system can be miniaturized.
 図7を参照して、本発明の実施例4の電力変換装置について説明する。図7は、インピーダンス回路22a,22bを用いて構成したゲート配線回路である。本実施例のインピーダンス回路22a,22bは、インダクタL1(L1a,L1b)に磁気コアを用いる。(図7中のインダクタL1a,L1bをコア付きシンボルで示す。)
 磁気コアを用いることによって、本実施例のインピーダンス回路で新たに得られる利点は、
 (1)磁気コアによってインダクタを流れる電流が発生する磁束をコア内に閉じ込めることにより、インダクタL1(L1a,L1b)の所定のインダクタンス値を満足するのに必要なコイル配線長を短くすることができる。
The power conversion device according to the fourth embodiment of the present invention will be described with reference to FIG. 7. FIG. 7 is a gate wiring circuit configured by using the impedance circuits 22a and 22b. The impedance circuits 22a and 22b of this embodiment use a magnetic core for the inductor L1 (L1a, L1b). (Inductors L1a and L1b in FIG. 7 are indicated by symbols with cores.)
The advantages newly obtained by the impedance circuit of this embodiment by using the magnetic core are
(1) By confining the magnetic flux generated by the current flowing through the inductor by the magnetic core in the core, the coil wiring length required to satisfy the predetermined inductance value of the inductor L1 (L1a, L1b) can be shortened. ..
 その結果、インダクタL1(L1a,L1b)の部品体積を減少させることができ、インピーダンス回路22(22a,22b)は、実施例1や実施例2のインピーダンス回路20,21に比較して小型化できる。 As a result, the component volume of the inductor L1 (L1a, L1b) can be reduced, and the impedance circuit 22 (22a, 22b) can be miniaturized as compared with the impedance circuits 20 and 21 of the first and second embodiments. ..
 (2)磁気コアの透磁率の周波数依存性において、高域周波数にてインピーダンスの絶対値が増大する磁気コアを用いることによって、インダクタL1(L1a,L1b)のインダクタンス値が周波数によって増大する効果が得られる。 (2) In terms of the frequency dependence of the magnetic permeability of the magnetic core, the effect of increasing the inductance value of the inductor L1 (L1a, L1b) with frequency by using the magnetic core whose absolute value of impedance increases at high frequencies is effective. can get.
 このため、実施例1で説明したインピーダンス回路のインピーダンスの周波数依存性、すなわち図4Bおよび図4Cで示したインピーダンス値R2(低域周波数)からR1+R2(高域周波数)、若しくは、2・R2(低域周波数)から2・(R1+R2)(高域周波数)へのインピーダンスの変化率が急峻となる。この結果、低域周波数と高域周波数との弁別性が高まる、ことにある。 Therefore, the frequency dependence of the impedance of the impedance circuit described in the first embodiment, that is, the impedance values R2 (low frequency) to R1 + R2 (high frequency) or 2 · R2 (low) shown in FIGS. 4B and 4C. The rate of change in impedance from (regional frequency) to 2 (R1 + R2) (high frequency) becomes steep. As a result, the discrimination between the low frequency and the high frequency is improved.
 以上説明したように、本実施例の電力変換装置では、インダクタL1(L1a,L1b)は、磁気コアにコイル配線を巻き付けて構成される。この磁気コアは、高域周波数において高インピーダンス透磁率を有することが望ましい。上記した本実施例の効果をより高めることができる。 As described above, in the power conversion device of this embodiment, the inductor L1 (L1a, L1b) is configured by winding the coil wiring around the magnetic core. It is desirable that this magnetic core has high impedance magnetic permeability at high frequencies. The effect of this embodiment described above can be further enhanced.
 図8Aおよび図8Bを参照して、本発明の実施例5の電力変換装置について説明する。
図8Aは、インピーダンス回路23abを用いて構成したゲート配線回路である。本実施例のインピーダンス回路23abは、抵抗R1aと抵抗R1bのそれぞれにインダクタL1aとインダクタL1bを並列配置し、インダクタL1aとインダクタL1bに共通の磁気コアを用いる。磁気コアを用いる基本的な効果は実施例4にて説明した通りである。
The power conversion device according to the fifth embodiment of the present invention will be described with reference to FIGS. 8A and 8B.
FIG. 8A is a gate wiring circuit configured by using the impedance circuit 23ab. In the impedance circuit 23ab of this embodiment, the inductor L1a and the inductor L1b are arranged in parallel on the resistor R1a and the resistor R1b, respectively, and a common magnetic core is used for the inductor L1a and the inductor L1b. The basic effect of using the magnetic core is as described in Example 4.
 本実施例の利点として、
 (1)磁気コアを隣接のインピーダンス回路同士で共用することによって、コア内に発生する磁束を2倍化することができ、実効的な誘電率を増大させることが可能になる。
As an advantage of this embodiment,
(1) By sharing the magnetic core between adjacent impedance circuits, the magnetic flux generated in the core can be doubled, and the effective dielectric constant can be increased.
 その結果、インダクタL1aおよびインダクタL1bの部品体積を一層減少させることができ、インピーダンス回路23abは、実施例1や実施例2のインピーダンス回路20,21に比較して大幅に小型化できる、ことにある。 As a result, the component volumes of the inductor L1a and the inductor L1b can be further reduced, and the impedance circuit 23ab can be significantly miniaturized as compared with the impedance circuits 20 and 21 of the first and second embodiments. ..
 図8Bは、隣接するインピーダンス回路同士で磁気コアを共用する具体的な形態を示す図である。図8Bに示すように、L1aとL1bで1つの磁気コア30を共用し、そのコイル配線の巻く向きを考慮して実装することにより、上記(1)の利点を得ることができる。 FIG. 8B is a diagram showing a specific form in which a magnetic core is shared between adjacent impedance circuits. As shown in FIG. 8B, the advantage of the above (1) can be obtained by sharing one magnetic core 30 between L1a and L1b and mounting the magnetic core 30 in consideration of the winding direction of the coil wiring.
 以上説明したように、本実施例の電力変換装置では、インピーダンス回路を複数個備えており、互いに隣接して配置される2つのインピーダンス回路において、各々のインダクタL1a,L1bを構成する磁気コアを1つの磁気コアで共用するように構成されている。 As described above, the power conversion device of the present embodiment includes a plurality of impedance circuits, and in two impedance circuits arranged adjacent to each other, one magnetic core constituting each inductor L1a and L1b is used. It is configured to be shared by two magnetic cores.
 図9を参照して、本発明の実施例6の電力変換装置について説明する。図9は、インピーダンス回路24a,24bを用いて構成したゲート配線回路およびソースセンス配線回路を示す図である。インピーダンス回路24aは、抵抗R1aとインダクタL1aの並列回路に抵抗R2aを直列に接続して構成するゲート配線回路と、抵抗R3aとインダクタL2aの並列回路に抵抗R4aを直列に接続して構成するソースセンス配線回路の両方備えている。インピーダンス回路24bについても、インピーダンス回路24aと同様に構成される。 The power conversion device according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a diagram showing a gate wiring circuit and a source sense wiring circuit configured by using the impedance circuits 24a and 24b. The impedance circuit 24a is a gate wiring circuit configured by connecting the resistor R2a in series to a parallel circuit of the resistor R1a and the inductor L1a, and a source sense configured by connecting the resistor R4a in series to the parallel circuit of the resistor R3a and the inductor L2a. It has both a wiring circuit. The impedance circuit 24b is also configured in the same manner as the impedance circuit 24a.
 ゲート配線回路に加えてソースセンス配線回路にも周波数依存性のあるインピーダンス回路を用いることにより得られる利点は、
 (1)並列接続されたモジュールのゲート間に発生する共振は、成長して寄生発振まで至る。起因となる共振電圧や共振電流は、モジュール間のゲート端子間の配線だけではなく、モジュールのゲート・ソース間容量(例えばMOSFETの場合)を介して、ソース端子やソースセンス端子を経由する。
The advantage obtained by using a frequency-dependent impedance circuit for the source sense wiring circuit in addition to the gate wiring circuit is
(1) Resonance generated between the gates of modules connected in parallel grows to parasitic oscillation. The resulting resonance voltage and resonance current pass not only through the wiring between the gate terminals between the modules but also through the gate-source capacitance of the module (for example, in the case of a MOSFET) and the source terminal and the source sense terminal.
 そのため、本発明の周波数依存性のあるインピーダンス回路を、共振の経由路であるソースセンス配線にも配置することによって、寄生発振の抑制効果をより高めることができる。 Therefore, the effect of suppressing parasitic oscillation can be further enhanced by arranging the frequency-dependent impedance circuit of the present invention also in the source sense wiring which is the passage of resonance.
 なお、ゲート配線回路とソースセンス配線回路の回路定数(R1,L1,R2とR3,L2,R4)は、必ずしもお互いに等しい値である必要はない。 The circuit constants (R1, L1, R2 and R3, L2, R4) of the gate wiring circuit and the source sense wiring circuit do not necessarily have to be equal to each other.
 以上の説明を言い換えると、本実施例の電力変換装置では、複数のパワー半導体モジュールとゲート駆動回路1の間に接続され、ゲート駆動回路1に対して複数のパワー半導体モジュールを互いに並列接続させるソースセンス配線回路を備えており、インピーダンス回路(24a,24b)は、ゲート配線回路およびソースセンス配線回路の両方にそれぞれ配置されている。 In other words, in the power conversion device of the present embodiment, a source that is connected between the plurality of power semiconductor modules and the gate drive circuit 1 and connects the plurality of power semiconductor modules to the gate drive circuit 1 in parallel with each other. A sense wiring circuit is provided, and impedance circuits (24a, 24b) are arranged in both a gate wiring circuit and a source sense wiring circuit, respectively.
 以上説明した本発明の各実施例によれば、複数のパワー半導体モジュールを互いに並列接続して構成する電力変換装置において、スイッチング動作時に発生する寄生発振を抑制しつつ、スイッチング損失を低減可能な電力変換装置とそれを搭載する鉄道車両電気システムを実現することができる。 According to each embodiment of the present invention described above, in a power conversion device configured by connecting a plurality of power semiconductor modules in parallel to each other, a power capable of reducing switching loss while suppressing parasitic oscillation generated during switching operation. It is possible to realize a conversion device and a railway vehicle electric system equipped with the conversion device.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 例えば、インピーダンス回路における抵抗やインダクタの値について、実現可能な値であれば、その値や実現方法、実装方法については特に限定するものではない。さらに、本発明の説明では、パワー半導体モジュールのパワー半導体チップを本実施例で用いたMOSFET型(MOS型電界効果トランジスタ)に対して、J-FET型(接合型電界効果トランジスタ)のユニポーラデバイス、そしてIGBT型(絶縁ゲートバイポーラトランジスタ)のようなバイポーラデバイスのいずれかのデバイスに置き換え、さらに端子の機能の内、例えば、ドレインをコレクタ、ソースをエミッタに置き換えた場合であっても、本発明の効果は変わるものではない。この場合、各実施例の「ソースセンス配線回路(ソースセンス配線経路)」は「エミッタセンス配線回路(エミッタセンス配線経路)」に置き換えられる。 For example, if the values of the resistor and the inductor in the impedance circuit are feasible values, the values, the realization method, and the mounting method are not particularly limited. Further, in the description of the present invention, the J-FET type (junction type field effect transistor) unipolar device is used as opposed to the MOSFET type (MOS type field effect transistor) in which the power semiconductor chip of the power semiconductor module is used in this embodiment. Then, even when the device is replaced with one of the bipolar devices such as the IGBT type (insulated gate bipolar transistor), and the drain is replaced with the collector and the source is replaced with the emitter among the functions of the terminals, the present invention The effect does not change. In this case, the "source sense wiring circuit (source sense wiring path)" of each embodiment is replaced with the "emitter sense wiring circuit (emitter sense wiring path)".
 また、実施例3(図6)で示したように、アーム回路はパワー半導体モジュールの形態が1in1構成に限定するものではなく、2in1構成のパワー半導体を用いて上下アームを構成する場合においても、本発明の効果を得ることができる。 Further, as shown in the third embodiment (FIG. 6), the form of the power semiconductor module of the arm circuit is not limited to the 1in1 configuration, and even when the upper and lower arms are configured by using the power semiconductor having the 2in1 configuration. The effect of the present invention can be obtained.
 また、実施例3(図6)では、本発明の電力変換装置を鉄道車両電気システムに適用する例を説明したが、太陽光発電のPCS(Power Conditioning System)や電気自動車の電力変換装置等にも適用可能であることは言うまでもない。 Further, in Example 3 (FIG. 6), an example in which the power conversion device of the present invention is applied to a railway vehicle electric system has been described, but it can be applied to a PCS (Power Conditioning System) for photovoltaic power generation, a power conversion device for an electric vehicle, or the like. Needless to say, it is also applicable.
 1,1a~1f:ゲート駆動回路、2,2a~2f:パワー半導体モジュールの並列接続回路、3:制御回路、4:コンデンサ、10,10a~10n,11,11a~11n:パワー半導体モジュール、20a~20n,21a~21n,22a,22b,22ab,23ab,24a,24b:インピーダンス回路、30:磁気コア、90,90a~90f:アーム回路、100:パンタグラフ、200:遮断器、300:リアクトル、400:電力変換装置、500:電動機、L1,L1a~L1n:インダクタ、R1,R1a~R1n,R2,R3,R4:抵抗 1,1a to 1f: Gate drive circuit, 2,2a to 2f: Parallel connection circuit of power semiconductor module, 3: Control circuit, 4: Capacitor, 10,10a to 10n, 11,11a to 11n: Power semiconductor module, 20a ~ 20n, 21a ~ 21n, 22a, 22b, 22ab, 23ab, 24a, 24b: Impedance circuit, 30: Magnetic core, 90, 90a ~ 90f: Arm circuit, 100: Pantograph, 200: Breaker, 300: Reactor, 400 : Power converter, 500: Electric circuit, L1, L1a to L1n: Inductor, R1, R1a to R1n, R2, R3, R4: Resistor

Claims (10)

  1.  複数のパワー半導体モジュールと、
     前記複数のパワー半導体モジュールを駆動制御するゲート駆動回路と、
     前記複数のパワー半導体モジュールと前記ゲート駆動回路の間に接続され、前記ゲート駆動回路に対して前記複数のパワー半導体モジュールを互いに並列接続させるゲート配線回路により構成されるアーム回路を備えた電力変換装置であって、
     前記ゲート配線回路は、前記複数のパワー半導体モジュールの各々に対応する複数のインピーダンス回路を有し、
     前記インピーダンス回路のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなることを特徴とする電力変換装置。
    With multiple power semiconductor modules
    A gate drive circuit that drives and controls the plurality of power semiconductor modules,
    A power conversion device including an arm circuit connected between the plurality of power semiconductor modules and the gate drive circuit and composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to the gate drive circuit. And
    The gate wiring circuit has a plurality of impedance circuits corresponding to each of the plurality of power semiconductor modules.
    The impedance value of the impedance circuit changes depending on the frequency of the voltage applied to the impedance circuit, and the impedance value is small in the low frequency range and large in the high frequency range. Conversion device.
  2.  複数のパワー半導体モジュールと、
     前記複数のパワー半導体モジュールを駆動制御するゲート駆動回路と、
     前記複数のパワー半導体モジュールと前記ゲート駆動回路の間に接続され、前記ゲート駆動回路に対して前記複数のパワー半導体モジュールを互いに並列接続させるゲート配線回路により構成されるアーム回路を備えた電力変換装置であって、
     前記複数のパワー半導体モジュールの各々は、パワー半導体トランジスタと共に当該パワー半導体モジュールに内蔵され、前記パワー半導体トランジスタのゲート端子と前記ゲート駆動回路の間に直列に接続されるインピーダンス回路を有し、
     前記インピーダンス回路のインピーダンス値は、当該インピーダンス回路に印加される電圧の周波数に依って変化し、低域の周波数ではインピーダンス値が小さく、高域の周波数ではインピーダンス値が大きくなることを特徴とする電力変換装置。
    With multiple power semiconductor modules
    A gate drive circuit that drives and controls the plurality of power semiconductor modules,
    A power conversion device including an arm circuit connected between the plurality of power semiconductor modules and the gate drive circuit and composed of a gate wiring circuit for connecting the plurality of power semiconductor modules in parallel to the gate drive circuit. And
    Each of the plurality of power semiconductor modules has an impedance circuit built in the power semiconductor module together with the power semiconductor transistor and connected in series between the gate terminal of the power semiconductor transistor and the gate drive circuit.
    The impedance value of the impedance circuit changes depending on the frequency of the voltage applied to the impedance circuit, and the impedance value is small in the low frequency range and large in the high frequency range. Conversion device.
  3.  請求項1または2に記載の電力変換装置であって、
     前記インピーダンス回路は、第1の抵抗の一端とインダクタの一端とが互いに接続され、かつ、前記第1の抵抗の他端と前記インダクタの他端とが互いに接続されて成る並列回路と、前記並列回路に直列接続された第2の抵抗を有することを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2.
    The impedance circuit includes a parallel circuit in which one end of the first resistor and one end of the inductor are connected to each other, and the other end of the first resistor and the other end of the inductor are connected to each other, and the parallel circuit. A power converter characterized by having a second resistor connected in series to the circuit.
  4.  請求項3に記載の電力変換装置であって、
     前記第1の抵抗の抵抗値は、前記第2の抵抗の抵抗値より大きいことを特徴とする電力変換装置。
    The power conversion device according to claim 3.
    A power conversion device characterized in that the resistance value of the first resistor is larger than the resistance value of the second resistor.
  5.  請求項4に記載の電力変換装置であって、
     前記第1の抵抗の抵抗値は、前記第2の抵抗の抵抗値の3倍以上であることを特徴とする電力変換装置。
    The power conversion device according to claim 4.
    A power conversion device characterized in that the resistance value of the first resistor is three times or more the resistance value of the second resistor.
  6.  請求項3に記載の電力変換装置であって、
     前記インダクタは、磁気コアにコイル配線を巻き付けて構成されることを特徴とする電力変換装置。
    The power conversion device according to claim 3.
    The inductor is a power conversion device characterized in that a coil wiring is wound around a magnetic core.
  7.  請求項6に記載の電力変換装置であって、
     前記磁気コアは、前記高域の周波数において高インピーダンス透磁率を有することを特徴とする電力変換装置。
    The power conversion device according to claim 6.
    The magnetic core is a power conversion device having a high impedance magnetic permeability in the high frequency range.
  8.  請求項6に記載の電力変換装置であって、
     前記インピーダンス回路を複数個備え、
     互いに隣接して配置される2つのインピーダンス回路において、各々のインダクタを構成する磁気コアを1つの磁気コアで共用することを特徴とする電力変換装置。
    The power conversion device according to claim 6.
    A plurality of the impedance circuits are provided.
    A power conversion device characterized in that, in two impedance circuits arranged adjacent to each other, the magnetic cores constituting the respective inductors are shared by one magnetic core.
  9.  請求項1または2に記載の電力変換装置であって、
     前記複数のパワー半導体モジュールと前記ゲート駆動回路の間に接続され、前記ゲート駆動回路に対して前記複数のパワー半導体モジュールを互いに並列接続させるソースセンス配線回路またはエミッタセンス配線回路を備え、
     前記インピーダンス回路は、前記ゲート配線回路および前記ソースセンス配線回路またはエミッタセンス配線回路の両方にそれぞれ配置されていることを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2.
    A source sense wiring circuit or an emitter sense wiring circuit which is connected between the plurality of power semiconductor modules and the gate drive circuit and connects the plurality of power semiconductor modules in parallel to the gate drive circuit is provided.
    A power conversion device, wherein the impedance circuit is arranged in both the gate wiring circuit and the source sense wiring circuit or the emitter sense wiring circuit, respectively.
  10.  パンタグラフと、
     前記パンタグラフに接続された遮断器と、
     前記遮断器に接続されたリアクトルと、
     前記リアクトルに接続された電力変換装置と、
     前記電力変換装置に接続された電動機と、を備え、
     前記電力変換装置は、請求項1から9のいずれか1項に記載の電力変換装置であることを特徴とする鉄道車両電気システム。
    Pantograph and
    The circuit breaker connected to the pantograph and
    The reactor connected to the circuit breaker and
    The power converter connected to the reactor and
    The electric motor connected to the power conversion device is provided.
    The railway vehicle electric system, wherein the power conversion device is the power conversion device according to any one of claims 1 to 9.
PCT/JP2020/017352 2019-09-13 2020-04-22 Electric power conversion device and railway vehicle electric system WO2021049091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166782 2019-09-13
JP2019166782A JP7133524B2 (en) 2019-09-13 2019-09-13 Power converters, railway vehicle electrical systems

Publications (1)

Publication Number Publication Date
WO2021049091A1 true WO2021049091A1 (en) 2021-03-18

Family

ID=74862118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017352 WO2021049091A1 (en) 2019-09-13 2020-04-22 Electric power conversion device and railway vehicle electric system

Country Status (2)

Country Link
JP (1) JP7133524B2 (en)
WO (1) WO2021049091A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264851A1 (en) * 2021-06-17 2022-12-22 ローム株式会社 Semiconductor device
JP7254159B1 (en) * 2021-12-24 2023-04-07 三菱電機株式会社 power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121395U (en) * 1991-04-19 1992-10-29 神鋼電機株式会社 Base wiring structure
JP2004096829A (en) * 2002-08-29 2004-03-25 Fuji Electric Holdings Co Ltd Controller of voltage-driven semiconductor device connected in parallel
JP2019054665A (en) * 2017-09-15 2019-04-04 株式会社日立製作所 Power conversion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243721A (en) * 1988-03-25 1989-09-28 Fujitsu Denso Ltd Power mos fet driving circuit
JP3456836B2 (en) * 1996-06-17 2003-10-14 株式会社東芝 Gate drive circuit
TW201703406A (en) * 2015-04-14 2017-01-16 電源整合有限責任公司 Switching device and power module
JP6430345B2 (en) * 2015-08-24 2018-11-28 本田技研工業株式会社 Semiconductor power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121395U (en) * 1991-04-19 1992-10-29 神鋼電機株式会社 Base wiring structure
JP2004096829A (en) * 2002-08-29 2004-03-25 Fuji Electric Holdings Co Ltd Controller of voltage-driven semiconductor device connected in parallel
JP2019054665A (en) * 2017-09-15 2019-04-04 株式会社日立製作所 Power conversion device

Also Published As

Publication number Publication date
JP7133524B2 (en) 2022-09-08
JP2021044996A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
Morya et al. Wide bandgap devices in AC electric drives: Opportunities and challenges
Velander et al. An ultralow loss inductorless $ dv/dt $ filter concept for medium-power voltage source motor drive converters with SiC devices
US6985371B2 (en) Output choke arrangement for inverter, and method in conjunction therewith
Li et al. Paralleled operation of high-voltage cascode GaN HEMTs
WO2021049091A1 (en) Electric power conversion device and railway vehicle electric system
US20050073863A1 (en) Ripple-current reduction for transformers
Narayanasamy et al. Impact of cable and motor loads on wide bandgap device switching and reflected wave phenomenon in motor drives
Lai et al. Development of a 10 kW high power density three-phase ac-dc-ac converter using SiC devices
Trung et al. Analysis and PCB design of class D inverter for wireless power transfer systems operating at 13.56 MHz
JP6637065B2 (en) Parallelization of switching devices for high power circuits
JP7384714B2 (en) Wiring circuits for semiconductor devices, methods for controlling wiring circuits for semiconductor devices, semiconductor devices, power conversion devices, and electrical systems for railway vehicles
Emon et al. Design and optimization of 650V/60A double-sided cooled multichip GaN module
WO2013046458A1 (en) Power conversion device
Haider et al. Comparative Evaluation of Gate Driver and LC-Filter Based dv/dt-Limitation for SiC-Based Motor-Integrated Variable Speed Drive Inverters
Jagannathan et al. Impacts of package, layout and freewheeling diode on switching characteristics of Super Junction MOSFET in automotive DC-DC applications
Zhang et al. Realization of high speed switching of SiC power devices in voltage source converters
Bröcker et al. Modular Silicon Carbide Inverter for Drive Applications with High Voltage Slopes-Challenges Concerning Conducted EMC
CN112838750A (en) Active common mode cancellation
JP2010063284A (en) Power conversion device and power conversion system
US11374485B2 (en) Filter unit and frequency inverter
JP6195691B1 (en) Power converter and power module
US11128226B2 (en) Power conversion device
WO2019163114A1 (en) Power module and switching power supply
JP2017055584A (en) Three-phase noise filter and ac motor driving system using the same
JP2020022256A (en) Gate drive circuit and electric power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862239

Country of ref document: EP

Kind code of ref document: A1