WO2021039130A1 - Energization control device and power supply unit - Google Patents

Energization control device and power supply unit Download PDF

Info

Publication number
WO2021039130A1
WO2021039130A1 PCT/JP2020/026405 JP2020026405W WO2021039130A1 WO 2021039130 A1 WO2021039130 A1 WO 2021039130A1 JP 2020026405 W JP2020026405 W JP 2020026405W WO 2021039130 A1 WO2021039130 A1 WO 2021039130A1
Authority
WO
WIPO (PCT)
Prior art keywords
inter
value
current value
threshold value
current
Prior art date
Application number
PCT/JP2020/026405
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 増元
幸幹 松下
竜乃介 力田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020091648A external-priority patent/JP2021040475A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021039130A1 publication Critical patent/WO2021039130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the disclosure in this specification relates to an energization control device and a power supply unit.
  • power supply can be made redundant by making it possible to supply electric power from either of the two batteries to the load group mounted on the vehicle.
  • This redundant system includes a first system bus, a second system bus, and an intersystem bus.
  • the first system bus transmits the electric power supplied from the first battery to the first load.
  • the second system bus transmits the electric power supplied from the second power source to the second load.
  • the inter-system bus electrically connects the first system bus and the second system bus.
  • the inter-system bus is provided with an inter-system switch for switching between energization and interruption of current. Then, in the normal state where no ground fault has occurred, the inter-system switch is turned on to exert the redundancy function. On the other hand, when the current flowing through the inter-system bus rises beyond the threshold value, it is considered that a ground fault has occurred and the inter-system switch is shut off. As a result, both the first and second system buses are prevented from falling into a state of a large voltage drop (abnormally low voltage state) that causes a malfunction.
  • the inrush current may be erroneously detected as a current caused by a ground fault and the inter-system switch may be cut off. Further improvements are required in the energization control device in the above viewpoint or in other viewpoints not mentioned.
  • One purpose to be disclosed is to provide an energization control device that suppresses false detection of ground faults when shutting off the inter-system switch when a ground fault occurrence is detected.
  • the first system bus that transmits the power supplied from the first power supply to the first load
  • the second system bus that transmits the power supplied from the second power supply to the second load
  • An inter-system bus that electrically connects the first system bus and the second system bus
  • An inter-system switch control unit that controls the operating state of the inter-system switch
  • the inter-system switch control unit Obtain the discharge current value, which is the magnitude of the current discharged from the second power supply, When the acquired discharge current value rises beyond the over-discharge threshold value, it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state.
  • the magnitude of the current discharged from the second power supply (discharge current value) is used as the current used for detecting the ground fault abnormality.
  • This discharge current value becomes a negative value when it is desired to supply power from the first system to the second power source to charge the second power source. Therefore, when charging the second power source, the discharge current value does not exceed the over-discharge threshold value.
  • the energization control device when power is supplied from the second power supply to the second load, etc., it becomes a positive value. Therefore, when a ground fault occurs in the second system bus, the first system bus, or the like, it is expected that the discharge current value will increase and exceed the over-discharge threshold value. As described above, according to the energization control device, the direction of the current used for detecting the ground fault abnormality is different between when the second power source is charged and when the ground fault occurs. Therefore, even if the current flowing through the inter-system bus increases as the second power source is charged, the possibility of erroneously detecting a ground fault and shutting off the inter-system switch can be reduced.
  • the first system bus that transmits the power supplied from the first power supply to the first load
  • the second system bus that transmits the power supplied from the second power supply to the second load
  • An inter-system bus that electrically connects the first system bus and the second system bus
  • An inter-system switch control unit that controls the operating state of the inter-system switch, With The inter-system switch control unit Obtain the current value, which is the magnitude of the current flowing through one of the first system bus, the second system bus, and the inter-system bus.
  • the current gradient is used to control the inter-system switch.
  • the current that flows when a ground fault occurs has a larger current gradient than the inrush current.
  • the current slope is expected to exceed the current slope threshold. Therefore, when an inrush current flows, it is possible to reduce the risk of erroneously detecting a ground fault and shutting off the inter-system switch.
  • FIG. 5 is a flowchart showing a processing procedure of control by an energization control device in the fifth embodiment.
  • FIG. 6 it is a flowchart which shows the processing procedure of the control by an energization control device. It is a block diagram which shows the operation when the ground fault occurs in the main system bus in 7th Embodiment.
  • the seventh embodiment it is a flowchart which shows the processing procedure of control by an energization control device. It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 8th Embodiment.
  • FIG. 10 It is a circuit diagram which shows typically the redundant power supply system which concerns on 10th Embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 11th Embodiment. In the eleventh embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. It is a circuit diagram which shows typically the redundant power supply system which concerns on 12th Embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 13th Embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 14th Embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 15th Embodiment. FIG.
  • FIG. 15 is a flowchart showing an example of a processing procedure of control by an energization control device in the fifteenth embodiment.
  • FIG. 15 is a flowchart showing an example of a processing procedure of control by an energization control device in the fifteenth embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 16th Embodiment.
  • 16 is a flowchart showing an example of a processing procedure of control by an energization control device in the 16th embodiment.
  • 16 is a flowchart showing an example of a processing procedure of control by an energization control device in the 16th embodiment. It is a circuit diagram which shows typically the redundant power supply system which concerns on 17th Embodiment.
  • it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination.
  • it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination.
  • it is a flowchart which shows the processing procedure of the control by an energization control device.
  • the 19th embodiment it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination. It is a figure which shows the reference example of a redundant power supply system. In the reference example, it is a figure which shows the relationship with the ground fault current, the inrush current, and the overcurrent threshold. It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 20th Embodiment.
  • it is a flowchart which shows the processing procedure of control by an energization control device.
  • the 21st embodiment it is a flowchart which shows the processing procedure of the control by an energization control device.
  • the 22nd embodiment it is a flowchart which shows the processing procedure of the control by an energization control device.
  • the 23rd embodiment it is a flowchart which shows the processing procedure of control by an energization control device.
  • the energization control device D In the present embodiment shown in FIG. 1, an example in which the energization control device D is applied to a redundant power supply system of a vehicle which is a moving body will be described. However, the energization control device D can also be applied to a redundant power supply system other than that for vehicles. It can also be applied to moving objects other than vehicles, such as flying objects such as drones, and redundant power supply systems such as ships, construction machinery, and agricultural machinery.
  • the redundant power supply system shown in FIG. 1 includes a main power supply B10 and a sub power supply B20 as a first power supply and a second power supply mounted on the vehicle. Although only one main power supply B10 and one sub power supply B20 are shown in FIG. 1, a plurality of main power supplies B10 and / or a plurality of sub power supplies B20 may be provided as vehicle-mounted power supplies.
  • main power supply B10 and sub power supply B20 are secondary batteries that generate a voltage of, for example, about 12V.
  • the charging capacity of the main power supply B10 is larger than the charging capacity of the sub power supply B20.
  • the energy density of the sub power supply B20 is higher than the energy density of the main power supply B10.
  • a lead storage battery is used for the main power supply B10, and a lithium ion battery is used for the sub power supply B20.
  • the redundant power supply system includes a main system bus 10 (first system bus), a sub system bus 20 (second system bus), and an inter-system bus 30.
  • the main system bus 10 transmits the electric power supplied from the main power source B10 to the first loads L10 and L11.
  • the sub system bus 20 transmits the electric power supplied from the sub power source B20 to the second loads L20 and L21.
  • the inter-system bus 30 electrically connects the main system bus 10 and the sub-system bus 20.
  • one end of the inter-system bus 30 is connected to the junction box (JB11) of the main system, and the other end of the inter-system bus 30 is connected to the junction box (JB21) of the sub system.
  • the bus that connects JB11 and the main power supply B10 is called the main power supply side bus 10a
  • the bus that connects JB11 and the first loads L10 and L11 is the main load side bus 10b.
  • the bus connecting the JB 21 and the sub power supply B20 is called the sub power supply side bus 20a
  • the bus connecting the JB 21 with the second loads L20 and L21 is called the sub load side bus 20b.
  • the bus that connects the inter-system switch 31a and JB11, which will be described later, is called the main inter-system bus 30a.
  • the bus that connects the inter-system switch 31b and JB21, which will be described later, is called the sub-side inter-system bus 30b.
  • the JB 11 corresponds to the first node located between the main power supply B10 and the first load in the main system bus 10.
  • the JB 21 corresponds to a second node located between the sub power supply B20 and the second load in the sub system bus 20.
  • a generator G10 (alternator) is connected to the main system bus 10 via JB11.
  • the electric power output from the generator G10 is used for charging the main power source B10, charging the sub power source B20, supplying the first loads L10 and L11 and the second loads L20 and L21. It is also possible to charge the sub power source B20 from the main power source B10 via the inter-system bus 30. It is also possible to charge the main power supply B10 from the sub power supply B20 via the inter-system bus 30.
  • a high-voltage power source may be provided as a power source for the drive motor.
  • the voltage of the high-voltage power supply may be stepped down by a DC-DC converter so that the main power supply B10 or the like can be charged.
  • the redundant power supply system includes a set of inter-system switches 31a and 31b provided on the inter-system bus 30.
  • Each of the set of inter-system switches 31a and 31b is composed of a semiconductor switching element made of MOSFET. Due to the structure of MOSFET, a body diode (parasitic diode) is formed between drain and source. Therefore, even if the MOSFET is cut off, the current flows through the body diode, so that the bidirectional current cannot be cut off with only one MOSFET. In a redundant power supply system, current may flow in both directions between the main system bus 10 and the sub system bus 20.
  • a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of inter-system switches 31a and 31b.
  • one set of inter-system switches 31a and 31b are both cut off, so that the current can be completely cut off regardless of the direction in which the current flows.
  • the redundant power supply system includes a set of cutoff switches 22a and 22b provided on the sub power supply side bus 20a.
  • Each of the set of cutoff switches 22a and 22b is composed of a semiconductor switching element made of MOSFET.
  • a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of cutoff switches 22a and 22b.
  • inter-system SW and SMR system main relay
  • the inter-system SW and SMR are not limited to MOSFETs, and other semiconductor switching elements may be used.
  • the semiconductor switching element such as a so-called IGBT in which a body diode does not exist
  • the semiconductor switching element alone can be used as an inter-system SW or SMR.
  • FIG. 1 Only one set of intersystem switches 31a and 31b and one set of cutoff switches 22a and 22b are shown in FIG. 1, a plurality of sets of these switches may be provided.
  • the redundant power supply system is provided with a plurality of power supplies such as the main power supply B10 and the sub power supply B20.
  • the reason is that even if power cannot be supplied from one power source, power can be supplied from the remaining power sources to prevent the in-vehicle load from becoming inoperable.
  • Specific examples of the inability to supply power include the case where the power supply itself fails, the case where a ground fault occurs at any part of the electrical wiring path such as each bus or junction box, and the like.
  • the in-vehicle load corresponds to the first loads L10 and L11 and the second loads L20 and L21 described above. In-vehicle loads are classified into general loads and important loads. These two types of loads are connected to each of the main load side bus 10b and the sub load side bus 20b.
  • the general loads L10 and L20 are loads that have little influence on the running of the vehicle even if the worst operation is stopped when the power supply fails.
  • Specific examples of the general loads L10 and L20 include a power window, an electric fan for cooling the radiator, an audio device, a device for air-conditioning the vehicle interior, and the like.
  • the important loads L11 and L21 are loads that need to be continued even when one of the main power supply B10 and the sub power supply B20 fails and the inter-system SW is turned off (cut off).
  • Specific examples of the important loads L11 and L21 include a drive motor for traveling, a braking device, a power steering device, and the like.
  • a pair of important loads L11 and L21 have different types of functions such as a camera and a distance measuring device for monitoring the front of a vehicle, even if they are made redundant by one component such as completely redundant power steering. It is also possible to use a combination realized by the device. Then, one important load L11 is connected to the main load side bus 10b, and the other important load L21 is connected to the sub load side bus 20b, so that the redundancy of the power supply is ensured.
  • the power supply from the main power supply B10 to the first loads L10 and L11 is normally performed by switching the inter-system SW from the conductive state to the cutoff state. You can continue. As a result, for example, when the first loads L10 and L11 are components necessary for vehicle traveling, the vehicle can continue traveling even if the sub system bus 20 has a ground fault.
  • the redundant power supply system includes a switch control circuit (SW control circuit 40) that controls the operation of the inter-system SW and SMR.
  • SW control circuit 40 when controlling the inter-system SW corresponds to the "power switch control unit", and the SW control circuit 40 when controlling the SMR corresponds to the "inter-system switch control unit”.
  • the SW control circuit 40 acquires the inter-system current value IISO, which is the magnitude of the current flowing through the inter-system SW, and the discharge current value ISMR, which is the magnitude of the current discharged from the sub power supply B20.
  • a shunt resistor 31c is connected to a portion of the inter-system bus 30 between one set of inter-system switches 31a and 31b.
  • a shunt resistor 22c is connected to a portion of the sub power supply side bus 20a between one set of cutoff switches 22a and 22b. Then, the SW control circuit 40 detects the potentials across the shunt resistors 22c and 31c, and calculates the inter-system current value IISO and the discharge current value ISMR based on the potential difference between the two ends.
  • the inter-system current value IISO is defined as a positive value in the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30.
  • the discharge current value ISMR is defined with the direction of discharge from the sub power supply B20 as a positive value.
  • the cutoff switches 22a and 22b and the shunt resistor 22c are unitized as one SMR device 22.
  • the inter-system switches 31a and 31b and the shunt resistor 31c are unitized as one inter-system device 31.
  • the redundant power supply system includes a higher-level control circuit 50 (upper-level control unit) that commands the control content to the SW control circuit 40.
  • the upper control circuit 50 commands the operation of the inter-system SW and SMR based on the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the vehicle running state, the amount of power required by the load, and the like.
  • the SW control circuit 40 controls the operation of the inter-system SW and SMR according to the command of the host control circuit 50 (normal control).
  • the SW control circuit 40 When a ground fault or the like is detected, the SW control circuit 40 gives priority to the command of the upper control circuit 50, and the SW control circuit 40 has the inter-system SW and SMR based on the acquired inter-system current value IISO and discharge current value ISMR. Controls the operation of (control in case of abnormality).
  • the SMR In normal control, when the vehicle start switch is turned on, the SMR is turned on (energized) and the on operation is continued. However, when it is predicted that the sub-power supply B20 will fall into an over-discharged state, the SMR is turned off (cut-off operation) to prevent the sub-power supply B20 from being over-discharged. Further, when the sub power supply B20 is in an overheated state, the SMR is turned off to avoid thermal damage to the sub power supply B20. In this case, the power supply to the second loads L20 and L21 is supplied from the main system bus 10 through the intersystem bus 30. In the normal control of the inter-system SW, on operation and off operation are switched according to the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the load required electric energy, and the like.
  • the inter-system SW when charging the sub power supply B20, the inter-system SW is turned on to supply power from the main power supply B10 or the generator G10 to the sub power supply B20. Further, when the sub power source B20 is charged with the regenerative energy generated by the generator G10, the inter-system SW is turned on. Further, when power is supplied from the sub power source B20 to the main power source B10 to charge the main power source B10, the inter-system SW is turned on. Further, the operation of the inter-system SW is controlled so that the terminal voltage (main voltage) of the main power supply B10 becomes higher than the terminal voltage (sub-voltage) of the sub power supply B20. For example, when the sub voltage becomes higher than the main voltage, the inter-system SW is turned off so that the sub power supply B20 is not charged. In normal control, the inter-system SW may be always on.
  • the SW control circuit 40 and the upper control circuit 50 include, for example, a memory as a non-transitional and substantive storage medium in which software is temporarily recorded, a processor that executes the software, an input / output interface, and the like. It can be configured by a equipped microcomputer. Alternatively, these control circuits may be realized by a dedicated hardware logic circuit, or may be realized by a combination of a processor and one or more hardware logic circuits.
  • the upper control circuit 50 may be provided in an ECU different from the control unit (ECU) having the SW control circuit 40, or may be provided in a common ECU.
  • a ground fault occurs in the sub-load side bus 20b as illustrated in FIG. 2 when the inter-system SW is on-operated together with the SMR in normal control, the ground fault location at the moment of the ground fault occurrence A large amount of current flows into. That is, a large current flows from the main power supply B10 to the ground fault portion through the main power supply side bus 10a, the inter-system bus 30 and the subload side bus 20b. As a result, the voltage of the main system bus 10 drops significantly, and there is a concern that the first load may malfunction. Further, a large current flows from the sub power supply B20 to the ground fault portion through the sub system bus 20. As a result, the voltage of the sub system bus 20 drops significantly, and there is a concern that the second load may malfunction.
  • the SMR may be turned off as soon as the occurrence of a ground fault is detected.
  • This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle.
  • step S10 the operation of the inter-system SW and SMR is controlled according to the command of the host control circuit 50.
  • the SMR and the system-to-system SW are turned on (energized).
  • step S20 the discharge current value ISMR is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c.
  • step S30 it is determined whether or not the discharge current value ISMR detected in step S20 is larger than the preset over-discharge threshold value Is.
  • step S40 the inter-system SW is turned off regardless of the content of the command from the host control circuit 50.
  • the above-mentioned "ground fault abnormality" is not limited to the ground fault in the sub system bus 20 as shown in FIG. For example, when a ground fault occurs in the main system bus 10, a ground fault in the JBs 11 and 21, and a ground fault in the main power supply B10, the discharge current value ISMR becomes larger than the over-discharge threshold value Is. These ground faults can also cause "ground fault abnormalities".
  • step S40 When step S40 is executed, unless there is a trigger such as a reset signal, the interruption of the inter-system SW is latched regardless of the command content from the host control circuit 50. That is, the SW control circuit 40 continues to cut off the SW between the systems so that the power is not supplied by the command from the host control circuit 50.
  • a trigger such as a reset signal
  • the over-discharge threshold value Is used for the determination in step S30 is set to a positive value. Therefore, when the sub power source B20 is charged, the discharge current value ISMR becomes a negative value, so that it is not determined as a ground fault abnormality in step S30.
  • the energization control device D includes an inter-system SW and a SW control circuit 40 (inter-system switch control unit). Then, the SW control circuit 40 acquires the discharge current value ISMR, which is the magnitude of the current discharged from the sub power supply B20. Then, when the acquired discharge current value ISMR rises beyond the over-discharge threshold value Is, it is considered that a ground fault has occurred and the inter-system SW is controlled to the cutoff state.
  • ISMR discharge current value
  • discharge current value ISMR the magnitude of the current discharged from the sub power supply B20 (discharge current value ISMR) is used as the current used for detecting the ground fault abnormality.
  • This discharge current value ISMR becomes a negative value when it is desired to supply power from the main power source B10 or the generator G10 to the sub power source B20 to charge the sub power source B20. Therefore, when the sub power source B20 is charged, the discharge current value ISMR does not exceed the over-discharge threshold value Is.
  • the value becomes a positive value. Therefore, when a ground fault occurs in the sub-load side bus 20b, it is expected that the discharge current value ISMR rises and exceeds the over-discharge threshold value Is. Therefore, according to the energization control device according to the present embodiment, the direction of the current used for detecting the ground fault abnormality is different between the time of charging the second power source and the time of the ground fault. Therefore, even if the inter-system current value IISO increases to the extent that it exceeds the over-discharge threshold value Is as the sub-power supply B20 is charged, the concern that it may be erroneously detected as a ground fault can be reduced.
  • the inter-system SW even if the following failure occurs when the inter-system SW is energized, it is regarded as a ground fault abnormality in step S30 of FIG. 3, and the inter-system SW is cut off. That is, a ground fault in the main system bus 10 and the inter-system bus 30, a failure in the main power supply B10 and the generator G10, a ground fault in the first loads L10 and L11 and the second loads L20 and L21, and the like.
  • the main system bus 10 In a state where the redundant power supply system is mounted on an actual vehicle, the main system bus 10, the sub system bus 20, and the inter-system bus 30 have a predetermined physical length. Therefore, it can be said that these buses have equivalent series inductance (ESL) which is a parasitic inductance component.
  • ESL equivalent series inductance
  • FIGS. 1 and 2 the inductance L1 related to the main side intersystem bus 30a and the inductance L2 related to the sub side intersystem bus 30b are shown.
  • ground fault detection is delayed. That is, the detection time from the time when the ground fault occurs to the time when the inter-system current value IISO rises and reaches the over-discharge threshold value Is becomes long, and the detection responsiveness is poor.
  • the discharge current value ISMR when a ground fault occurs in the sub power supply B20 rises rapidly without being significantly affected by the inductances L1 and L2. Therefore, according to the present embodiment in which the discharge current value ISMR is used for ground fault detection, the ground fault generated in the sub power supply B20 can be detected more quickly than in the case where the inter-system current value IISO is used. If the ground fault can be detected quickly, the inter-system SW can be quickly shut off. Therefore, it is possible to quickly avoid a situation in which the voltage of both the main system bus 10 and the sub system bus 20 drops significantly. That is, it is possible to suppress the concern that both the first load and the second load will malfunction.
  • the over-discharge threshold value Is used for determining the ground fault abnormality is set to a fixed value.
  • the over-discharge threshold value Is is variably set according to the inter-system current value IISO. Specifically, when the inter-system current value IISO is smaller than the predetermined threshold value IsISO, the over-discharge threshold value Is is changed to a smaller value. The technical significance of such variable settings will be described in detail below.
  • the ground fault detection is delayed due to the existence of the above-mentioned inductances L1 and L2. That is, there is a concern that the detection time from the time when the ground fault occurs to the time when the discharge current value ISMR rises and reaches the over-discharge threshold value Is becomes long, and the detection responsiveness deteriorates.
  • the inter-system current value IISO is defined as a value in which the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30 is positive. Then, when a ground fault occurs in the main system bus 10, the inter-system current value IISO becomes small due to the large current flowing into the ground fault location. Specifically, if a ground fault occurs when a current is flowing from the main system bus 10 to the sub system bus 20, the current flow direction remains the same, the current decreases, or the current flow direction changes. .. Further, if a ground fault occurs while a current is flowing from the sub system bus 20 to the main system bus 10, the amount of the current increases.
  • step S10 of FIG. 5 the operation of the inter-system SW is controlled according to the command of the host control circuit 50.
  • the inter-system SW is turned on (energized).
  • step S21 the inter-system current value IISO is detected (acquired) based on the potential difference between both ends of the shunt resistor 31c.
  • step S22 the discharge current value ISMR is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c.
  • step S31 it is determined whether or not the inter-system current value IISO detected in step S21 is smaller than the preset predetermined threshold value IsISO.
  • the predetermined threshold value IsISO is set to a positive value, but may be set to a negative value.
  • the over-discharge threshold value IsH is set to the same value as the over-discharge threshold value Is according to step S30 in FIG. Then, in the following step S32, it is determined whether or not the discharge current value ISMR detected in step S22 is larger than the over-discharge threshold value IsH.
  • the over-discharge threshold value IsL is set to a value smaller than the over-discharge threshold value IsH. That is, the sensitivity of over-discharge detection is increased. Then, in the following step S33, it is determined whether or not the discharge current value ISMR detected in step S22 is larger than the over-discharge threshold value IsL.
  • step S40 If it is determined in any of steps S32 and S33 that the discharge current value ISMR is larger than the over-discharge threshold value, the inter-system SW is turned off in the following step S40. This process is the same as step S40 in FIG.
  • the energization control device D includes a threshold value changing unit that changes the over-discharge threshold value to a smaller value when the inter-system current value IISO is smaller than the predetermined threshold value Iso.
  • the threshold value changing unit corresponds to the SW control circuit 40 when the process of step S31 is being executed. Therefore, when a ground fault occurs in the main system bus 10, the inter-system current value IISO becomes smaller than the predetermined threshold value IsISO, and the over-discharge threshold value Is is changed to a smaller value. That is, the over-discharge threshold value Is is changed so as to increase the sensitivity of over-discharge detection. Therefore, even when the discharge current value ISMR does not rise rapidly due to the influence of the inductances L1 and L2, the sensitivity is increased, so that it is possible to suppress the delay in ground fault detection.
  • the determination order shown in FIG. 5 is modified as follows when the over-discharge threshold value Is is variably set according to the inter-system current value IISO. That is, after detecting the inter-system current value IISO and the discharge current value ISMR in steps S21 and S22, first, the discharge current value ISMR is determined in step S30. Then, when it is determined that the discharge current value ISMR is larger than the over-discharge threshold value Is, the inter-system SW is shut off in step S40 in the same manner as in FIG. On the other hand, when the discharge current value ISMR is determined to be less than the over-discharge threshold value Is, the inter-system current value IISO is determined in step S31. Then, even when it is determined that the inter-system current value IISO is smaller than the predetermined threshold value Iso, the inter-system SW is shut off in step S40.
  • the SW control circuit 40 can be used even when the discharge current value ISMR does not exceed the over-discharge threshold value Is when the inter-system current value IISO is smaller than the predetermined threshold value Is ISO. It is considered that a ground fault has occurred, and the inter-system switch is shut off. Therefore, if the discharge current value ISMR does not rise rapidly due to the influence of the inductances L1 and L2, the ground fault is detected using the inter-system current value IISO. When a ground fault occurs in the main system bus 10, the inter-system current value IISO changes with higher sensitivity than the discharge current value ISMR by the amount of the inductance L2. Therefore, even with this embodiment, it is possible to suppress the delay in ground fault detection.
  • step S32 of FIG. 8 When it is determined in step S32 of FIG. 8 that the discharge current value ISMR is larger than the over-discharge threshold value IsH, the ground fault location is considered to be the sub system bus 20. Then, in the following step S41, both the inter-system SW and the SMR are cut off and latched in preference to the command of the upper control circuit 50. Further, in step S41, the SW control circuit 40 performs cutoff control so that the cutoff timings of the inter-system SW and SMR are simultaneous.
  • step S33 of FIG. 8 If it is determined in step S33 of FIG. 8 that the discharge current value ISMR is larger than the over-discharge threshold value IsL, the ground fault location is considered to be the main system bus 10. Then, in the following step S42, the inter-system SW is cut off and latched prior to the command of the upper control circuit 50, and the SMR is controlled according to the command of the upper control circuit 50.
  • the SMR when a ground fault occurs in the sub system bus 20, in addition to blocking the inter-system SW, the SMR is also blocked. Therefore, it is possible to prevent the sub power supply B20 from falling into over-discharging.
  • the SW control circuit 40 is cut-off controlled so that the cut-off timings of the inter-system SW and the SMR are simultaneous.
  • the SMR is interrupted after the inter-system SW, a large current larger than that of the inter-system SW flows through the SMR. Then, an SMR having a large breaking resistance must be selected.
  • the cut-off withstand capacity required for the SMR can be reduced.
  • the ground fault portion is regarded as the sub system bus 20.
  • the ground fault location is considered to be the main system bus 10.
  • the SW control circuit 40 when the processes of steps S32 and S33 are being executed corresponds to the "ground fault determination unit".
  • the ground fault discriminating unit determines on which side of the main system bus 10 or the sub system bus 20 the ground fault has occurred with respect to the intersystem bus 30.
  • the discharge current value ISMR is larger than the over-discharge threshold value Is and the inter-system current value IISO is smaller than the discrimination threshold value, it is determined to be a ground fault on the main system bus 10 side. Further, when the discharge current value ISMR is larger than the over-discharge threshold value Is and the inter-system current value IISO is equal to or higher than the discrimination threshold value, it is determined that a ground fault has occurred on the sub-system bus 20 side.
  • the discrimination threshold is set to the same value as the predetermined threshold ISO ISO described above.
  • the energization control device D includes a ground fault discriminating unit, and operates the inter-system SW and SMR differently according to the discriminating result. Therefore, the operating state of the inter-system SW and SMR can be set to the optimum state according to the ground fault location.
  • the ground fault may be determined in steps S30 and S31 of FIG. In this case, if it is determined that the ground fault is abnormal in step S30, it is determined that the ground fault is on the sub system bus 20. If it is determined in step S31 that the ground fault is abnormal, it is determined to be a ground fault on the main system bus 10.
  • the SW control circuit 40 controls the inter-system SW in a cutoff state regardless of the command content of the upper control circuit 50. Therefore, it is possible to avoid energizing the inter-system SW by the command of the upper control circuit 50 in the state of the ground fault abnormality. Therefore, it is possible to improve the certainty of avoiding that a large current continues to flow from the main power supply B10 or the sub power supply B20 to the ground fault location.
  • the SW control circuit 40 controls the operation of the SMR according to the location where the ground fault occurs, regardless of the command content of the upper control circuit 50. Therefore, there are many opportunities to supply power from the sub power source B20 to the second load L20.
  • step S33 of FIG. 10 When it is determined in step S33 of FIG. 10 that the discharge current value ISMR is larger than the over-discharge threshold value IsL, the ground fault location is considered to be the main system bus 10. Then, in the subsequent step S42A, the SMR is energized and latched in preference to the command of the upper control circuit 50. In the following step S42, the inter-system SW is cut off and latched in preference to the command of the upper control circuit 50.
  • the SMR when a ground fault occurs in the main system bus 10, in addition to shutting off the inter-system SW, the SMR is energized. Therefore, even if a ground fault occurs and the inter-system SW is cut off, the power supply to the second loads L20 and L21 can be continued.
  • step S50 shown in FIG. 11 the host control circuit 50 is notified that an abnormality due to a ground fault or the like has occurred. Further, the SW control circuit 40 also notifies the upper control circuit 50 of the determination result as to which of the main system bus 10 and the sub system bus 20 has a ground fault. The SW control circuit 40 when the process of step S50 is being executed corresponds to the "abnormality notification unit".
  • step S60 the host control circuit 50 prohibits the output of a command that shuts off the SMR, or takes measures to prevent the output.
  • the above-mentioned normal control may include a control that shuts off the SMR when the sub power supply B20 becomes hot to prevent the sub power supply B20 from being damaged.
  • the host control circuit 50 does not give a command to shut off the SMR. That is, the power supply to the second load L20 is prioritized over the damage of the sub power supply B20.
  • the energization control device D includes an abnormality notification unit.
  • the abnormality notification unit notifies the host control circuit 50 to that effect. Therefore, it is possible to improve the certainty of shutting off the SW between systems in a situation where a ground fault has occurred. Further, it is possible to improve the certainty of supplying electric power to the second load L20 when a ground fault occurs in the main system bus 10.
  • the energization control device D includes a cutoff switch different from the SMR that cuts off the power supply between the sub power supply B20 and the sub system bus 20.
  • the cutoff switch is configured so that the cutoff operation can be performed regardless of the command content of the SW control circuit 40.
  • the fuse 23 is used as the cutoff switch, but a relay may be used instead of the fuse 23.
  • a control circuit other than the SW control circuit 40 for example, a host control circuit 50 or the like controls the opening / closing operation of the relay.
  • the cutoff switch is provided between the sub power supply B20 and the ground of the sub system bus 20.
  • the process of FIG. 13 is obtained by changing the process of step S60 shown in FIG. 11 to steps S61 and S62. Further, in the process of FIG. 13, the SMR is energized and latched regardless of the ground fault location. Steps S61 and S62 shown by the dotted line in FIG. 13 indicate the processing contents by the upper control circuit 50 or the operation of the fuse 23.
  • step S61 it is determined whether the SMR energization latch according to step S42A is a sub ground fault according to step S32 or a main ground fault according to step S33. If it is determined to be a sub-ground fault, a large current is discharged from the sub power supply B20 by SMR energization in the state of the sub-ground fault. Therefore, in the following step S62, the fuse 23 is blown and cut off due to heat generated by the discharge of a large current. Alternatively, when a relay is used instead of the fuse 23, the host control circuit 50 cuts off the relay.
  • a cutoff switch for protecting the sub power supply B20 is provided. Therefore, if the state in which the SMR is energized and latched is continued when a ground fault occurs, the discharge of the sub power supply B20 is cut off by the cutoff switch, and the sub power supply B20 is protected. Therefore, it is possible to reduce the possibility that the B20 will break down due to the SMR energization latch.
  • the energization control device D includes a set of cutoff switches 12a and 12b provided on the main power supply side bus 10a (see FIG. 14).
  • one set of cutoff switches 12a and 12b may be referred to as SMR1
  • one set of cutoff switches 22a and 22b may be referred to as SMR2.
  • a shunt resistor 12c is connected to a portion of the main power supply side bus 10a between one set of cutoff switches 12a and 12b.
  • the cutoff switches 12a and 12b and the shunt resistor 12c are unitized as one SMR device 12.
  • the SW control circuit 40 detects the potentials at both ends of the shunt resistor 12c and calculates the first discharge current value ISMR1 based on the potential difference between both ends.
  • the first discharge current value ISMR1 is defined as a positive value in the direction of discharge from the main power supply B10.
  • the discharge current value ISMR discharged from the sub power supply B20 is referred to as the second discharge current value ISMR2.
  • the SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value ISMR1 and the second discharge current value ISMR2. Specifically, as shown in FIG. 15, first, in step S11, the operation of the inter-system SW is controlled according to the command of the host control circuit 50. In the example shown in FIG. 15, SMR1, SMR2 and the inter-system SW are turned on (energized). In the following step S23, the second discharge current value ISMR2 is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c. In the following step S24, the first discharge current value ISMR1 is detected (acquired) based on the potential difference between both ends of the shunt resistor 12c.
  • step S34 it is determined whether or not the second discharge current value ISMR2 detected in step S23 is larger than the preset over-discharge threshold value IsSMR2.
  • the over-discharge threshold IsSMR2 corresponds to the second threshold.
  • step S34 If it is not determined in step S34 that ISMR2> IsSMR2, the process proceeds to step S35, and it is determined whether or not the first discharge current value ISMR1 detected in step S24 is larger than the preset over-discharge threshold value IsSMR1.
  • the over-discharge threshold IsSMR1 corresponds to the first threshold.
  • the first discharge current value ISMR1 does not rise rapidly.
  • the second discharge current value ISMR2 does not rise rapidly.
  • the SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value ISMR1 and the second discharge current value ISMR2. Therefore, the sub-ground fault can be quickly detected by the second discharge current value ISMR2, and the main ground fault can be quickly detected by the first discharge current value ISMR1.
  • the second discharge current value ISMR2 does not rise rapidly. Therefore, if the determination in step S35 is abolished and both the sub-ground fault and the main ground fault are detected only by the determination in step S34, the detection of the main ground fault is delayed. Therefore, in the present embodiment, even if the second discharge current value ISMR2 does not exceed the second threshold value, the inter-system SW is cut off if the first discharge current value ISMR1 rises beyond the first threshold value. Therefore, the main ground fault can be detected quickly, and the SW between systems can be quickly shut off.
  • step S34 when ISMR2> IsSMR2 is established in step S34 and ISMR1> IsSMR1 is established in step S35, the blocking process of step S40 may be executed. In this way, it is considered that the ground fault has occurred only when a positive determination is made in both steps S34 and S35. Therefore, erroneous detection of a ground fault can be suppressed as compared with a configuration in which a positive determination is made in any of steps S34 and S35 and the ground fault is regarded as a ground fault.
  • the energization control device D is the energization control device D shown in FIG. 1 provided with a case 60 (see FIG. 17).
  • the case 60 houses the SW control circuit 40, the inter-system SW, the SMR, and the shunt resistors 31c and 22c inside.
  • the energization control device D is formed as one current cutoff module.
  • a plurality of terminals 61, 62, 63 are attached to the case 60 (see FIG. 18).
  • One end of the wiring connected to the sub power supply B20 is connected to the terminal 61.
  • One end of the wiring connected to the second loads L20 and L21 is connected to the terminal 62.
  • One end of the wiring connected to the first loads L10 and L11, the main power supply B10, and the generator G10 is connected to the terminal 63.
  • the SW drive circuit 41 and the overcurrent determination circuit 42 shown in FIG. 18 represent a part of the functions of the SW control circuit 40 with functional blocks.
  • the SW drive circuit 41 corresponds to an inter-system switch control unit that controls the operating state of the inter-system SW. This is achieved by step S40 in FIG.
  • the overcurrent determination circuit 42 is a circuit for determining whether or not the discharge current value ISMR is an overcurrent, and is realized by step S30 of FIG.
  • the shunt resistor 31c may be abolished.
  • at least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60.
  • the housed power supply and the energization control device D provide a power supply unit.
  • the energization control device D is the energization control device D shown in FIG. 14 provided with a case 60 (see FIG. 19).
  • the case 60 houses the SW control circuit 40, the inter-system SW, SMR1, SMR2, and shunt resistors 31c, 22c, and 12c inside.
  • the energization control device D is formed as one current cutoff module.
  • a plurality of terminals 61, 62, 64, and 65 are attached to the case 60 (see FIG. 20).
  • the terminals 61 and 62 are connected in the same manner as in FIG.
  • One end of the wiring connected to the first loads L10 and L11 and the generator G10 is connected to the terminal 64.
  • One end of the wiring connected to the main power supply B10 is connected to the terminal 65.
  • the junction box is not shown in FIGS. 19 and 20.
  • the overcurrent determination circuit 42 shown in FIG. 20 is a circuit for determining an overcurrent based on the first discharge current value ISMR1 and the second discharge current value ISMR2, and is realized by steps S34 and S35 of FIG.
  • the shunt resistor 31c may be abolished.
  • at least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60.
  • the energization control device D has a function of terminating the shutoff and energization latch control when it is determined that the cause of the ground fault abnormality has been resolved and restored.
  • the SW control circuit 40 has a return determination circuit 43.
  • the return determination circuit 43 determines whether or not an abnormal state such as a ground fault has been restored, and if it is determined that the recovery has been restored, transmits a return signal to the SW drive circuit 41.
  • FIG. 22 shows that the process of step S70 is added to the process of FIG. 11, and in step S70, it is determined whether or not the return signal from the return determination circuit 43 has been received.
  • the SW control circuit 40 at the time of executing the process in step S70 corresponds to a "recovery determination unit" that determines whether or not the ground fault has been restored during the period in which the inter-system SW is controlled by the cutoff latch. If the return signal is not received, the control given priority to the upper control circuit 50 in steps S41 and S42 is continued. When it is determined that the return signal has been received, the priority control (latch control) is released and the process is restarted from the START of FIG. 22.
  • the SW control circuit 40 has a return determination circuit 43.
  • the return determination circuit is provided outside the SW control circuit 40.
  • the host control circuit 50 has a return determination circuit 51.
  • the energization control device D includes a timer 44 (see FIG. 24).
  • the timer 44 measures the elapsed time from the start of the cutoff latch control.
  • the return determination circuit 43 determines that an abnormal state such as a ground fault has been restored, and outputs a return signal.
  • the recovery determination unit (step S70) receives the return signal and determines that the restoration has been performed when a predetermined time has elapsed from the start of the cutoff latch control. According to this, it is possible to easily determine whether or not the restoration has been performed by a simple process.
  • the energization control device D includes a voltage detection circuit 45 that detects the ground potentials of both terminals of the inter-system SW (see FIG. 25). For example, the voltage detection circuit 45 detects the potential on the main system bus 10 side of the inter-system switch 31a and the potential on the sub-system bus 20 side of the inter-system switch 31b. The voltage detection circuit 45 outputs the detected ground potential information (voltage information) to the return determination circuit 43.
  • the return determination circuit 43 determines that the restoration is performed when each of the acquired ground potentials of both terminals is equal to or higher than a predetermined potential. Alternatively, the return determination circuit 43 determines that the restoration is performed when the potential difference between the acquired terminals and the ground potential is less than a predetermined value. When the recovery determination circuit 43 determines that the recovery is performed in this way, the recovery determination circuit 43 considers that an abnormal state such as a ground fault has been recovered and outputs a recovery signal.
  • the ground potential on the sub-system bus 20 side becomes a lower value than in the case of normal control. There is a high probability that it has become.
  • the ground potential of the main system bus 10 is the same value as in the case of normal control. The same applies when the ground fault has not been restored while the main ground fault has occurred and the inter-system SW is shut off, and the ground potential on the main system bus 10 side is lower than that in the case of normal control. There is a high probability that it has become.
  • the ground potential of the sub system bus 20 is the same value as in the case of normal control.
  • the recovery determination unit (step S70) receives a return signal when each of the ground potentials is equal to or higher than a predetermined potential or when the potential difference is less than a predetermined potential. It will be judged that it has been restored. According to this, it can be accurately determined whether or not the restoration has been performed.
  • the energization control device D includes a shunt resistor 24c provided on the sub-load side bus 20b instead of the shunt resistor 22c (see FIG. 1) provided on the sub power supply side bus 20a (see FIG. 26).
  • the magnitude of the current detected by the shunt resistor 24c is called the sub system current value ISUB.
  • the sub system current value ISUB is defined as a positive value in the direction in which the current flows from the sub load side bus 20b to the second load L20. In the present embodiment, the sub system current value ISUB is considered to be equivalent to the discharge current value ISMR.
  • the SW control circuit 40 determines that a ground fault has occurred when the sub-system current value ISUB rises above the over-discharge threshold value Is, and shuts off the inter-system SW. However, in consideration of the inter-system current value IISO detected by the shunt resistor 31c in addition to the sub-system current value ISUB, the SW control circuit 40 determines the presence or absence of a ground fault abnormality. For example, according to the control flow shown in FIG. 27 or 28, the SW control circuit 40 determines the presence or absence of a ground fault abnormality in consideration of the sub-system current value ISUB and the inter-system current value IISO.
  • the discharge current value ISMR of the control shown in FIG. 5 is replaced with the sub system current value ISUB. That is, in step S22A of FIG. 27, instead of detecting the discharge current value ISMR, the sub system current value ISUB is detected (acquired) based on the potential difference between both ends of the shunt resistor 24c. In steps S32A and S33A of FIG. 27, instead of the determination related to the discharge current value ISMR, it is determined whether or not the sub-system current value ISUB is larger than the over-discharge thresholds IsH and IsL. In short, the over-discharge threshold value Is is changed according to the sub system current value ISUB. As a result, the same effect as the control shown in FIG. 5 is exhibited.
  • the discharge current value ISMR of the control shown in FIG. 6 is replaced with the sub system current value ISUB. That is, in step S30A of FIG. 28, instead of the determination related to the discharge current value ISMR, it is determined whether or not the sub-system current value ISUB is larger than the over-discharge threshold value Is. In short, even if the sub-system current value ISUB does not exceed the over-discharge threshold value Is, if the inter-system current value IISO is smaller than the predetermined threshold value Iso, it is considered that a ground fault has occurred and the inter-system switch. To shut off. As a result, the same effect as the control shown in FIG. 6 is exhibited.
  • the energization control device D includes a shunt resistor 24c provided on the subload side bus 20b instead of the shunt resistor 12c (see FIG. 14) provided on the main power supply side bus 10a (see FIG. 29).
  • the sub system current value ISUB is defined with the direction in which the current flows from the sub load side bus 20b to the second load L20 as a positive value.
  • the SW control circuit 40 calculates the value obtained by subtracting the discharge current value ISMR from the sub system current value ISUB as the differential current value IDIF.
  • the differential current value IDIF is considered to be equivalent to the first discharge current value ISMR1.
  • the SW control circuit 40 determines that a ground fault has occurred and shuts off the inter-system SW. However, in consideration of the sub system current value ISUB in addition to the discharge current value ISMR, the SW control circuit 40 determines the presence or absence of a ground fault abnormality. For example, according to the control flow shown in FIG. 30 or 31, the SW control circuit 40 determines the presence or absence of a ground fault abnormality in consideration of the discharge current value ISMR and the sub system current value ISUB.
  • step S31B it is determined whether or not the differential current value IDIF is smaller than the preset over-discharge threshold value IsDIF.
  • the over-discharge threshold value IsDIF is set to the same value as the predetermined threshold value IsISO. This also exerts the same effect as the control shown in FIG. 27.
  • step S30A in FIG. 28 is replaced with step S30, and step S31 in FIG. 28 is replaced with step S31A.
  • step S31A it is determined whether or not the differential current value IDIF is smaller than the over-discharge threshold value IsDIF. This also exerts the same effect as the control shown in FIG. 28.
  • the energization control device D includes a discharge current acquisition unit and an ascending speed acquisition unit.
  • the discharge current acquisition unit acquires the discharge current value ISMR from the sub power supply B20.
  • the ascending speed acquisition unit acquires the ascending speed (current slope) of the discharge current value ISMR.
  • the discharge current value ISMR increases when a ground fault occurs, but even in the normal state when no ground fault occurs, the discharge current value ISMR increases significantly in the following cases. ..
  • the inrush current to the electric load is large.
  • the discharge current value ISMR may increase instantaneously and exceed the over-discharge threshold value Is. In that case, there is a concern that the SW between systems will be cut off due to erroneous detection as a ground fault even though it is a normal time when no ground fault has occurred.
  • the rate of increase of the discharge current value ISMR due to the inrush current is slower than the rate of increase of the discharge current value ISMR (current slope) when a ground fault occurs.
  • the wire harness connecting the electric load to the main system bus 10 or the sub system bus 20 is long, it becomes even slower due to the parasitic inductance component of the wire harness. Therefore, if the presence or absence of a ground fault abnormality is determined from the discharge current value ISMR while considering the current inclination, it should be possible to suppress the false detection related to the above concern. In other words, the slower the current gradient, the more difficult it is to determine that a ground fault has occurred, so that the above false detection can be suppressed.
  • the energization control device D shown in FIG. 32 is obtained by adding the voltage detection circuit 45 shown in FIG. 25 to the energization control device D shown in FIG. 24, and further adding the current inclination determination circuit 48.
  • the return determination circuit 43 determines that an abnormal state such as a ground fault has been restored when either of the following conditions 1 and 2 is satisfied, or when both are satisfied, and outputs a return signal.
  • Condition 1 is that the elapsed time measured by the timer 44 has reached a predetermined time in the same manner as in the thirteenth embodiment.
  • Condition 2 is the same as in the 14th embodiment, that each of the potentials of both terminals detected by the voltage detection circuit 45 to the ground is equal to or higher than a predetermined potential, or the potential difference between both terminals is less than a predetermined value.
  • the overcurrent determination circuit 42 of this embodiment is realized by step S30 of FIG. That is, when the discharge current value ISMR exceeds the overdischarge threshold value Is, it is determined as an overcurrent, and the overcurrent determination result is output to the SW drive circuit 41.
  • the overcurrent determination circuit 42 may be realized by steps S34 and S35 of FIG. 15 instead of step S30 of FIG.
  • the current slope determination circuit 48 detects the rising speed (current slope) of the discharge current value ISMR based on the time change of the potential difference between both ends of the shunt resistor 22c. Then, when the detected current slope is less than the predetermined slope threshold value, it is determined to be the above-mentioned low-speed rising state, and when it is equal to or more than the predetermined slope threshold value, it is determined to be the non-slow speed rising state. When the current inclination determination circuit 48 determines that the non-slow speed rise state is determined, the current inclination determination circuit 48 outputs the inclination determination result to the SW drive circuit 41.
  • the SW drive circuit 41 determines whether or not a ground fault has occurred based on these overcurrent determination results and inclination determination results, and if it is determined to be abnormal, the SW between systems is cut off. The SW drive circuit 41 determines that the ground fault is abnormal when the current is overcurrent and the non-slow speed rises. On the other hand, the SW drive circuit 41 considers the current increase due to the inrush current rather than the overdischarge when the current is increasing at a low speed even if the current is overcurrent. That is, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited.
  • the presence or absence of a ground fault abnormality is determined from the discharge current value ISMR while considering the current slope. That is, in the case of the low-speed rising state in which the rising speed of the discharge current value ISMR is less than a predetermined value, it is difficult to determine that the ground fault has occurred as compared with the case of the non-low-speed rising state. Therefore, it is possible to suppress erroneous detection of the inrush current as a ground fault abnormality.
  • the energization control device D includes an overcurrent determination circuit 42 and a current inclination determination circuit 48. Even if the overcurrent determination circuit 42 determines that the discharge current value ISMR exceeds the overdischarge threshold Is, if the current gradient determination circuit 48 determines that the current is in a low-speed rising state, it is not an overdischarge. It is regarded as a current increase due to inrush current. That is, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
  • the control by the overcurrent determination circuit 42, the current inclination determination circuit 48, and the SW drive circuit 41 may be changed to the discharge current value detection circuit, the current inclination detection circuit, and the abnormality determination circuit described below.
  • the discharge current value detection circuit calculates the discharge current value ISMR based on the potential difference between both ends of the shunt resistor 22c.
  • the current slope detection circuit calculates the rising speed (current slope) of the discharge current value ISMR based on the time change of the potential difference between both ends of the shunt resistor 22c.
  • the abnormality determination circuit determines that a ground fault has occurred when the calculated discharge current value ISMR rises above the overdischarge threshold value Is. However, the smaller the calculated current slope, the larger the value of the over-discharge threshold value Is is changed.
  • the SW control circuit 40 changes the over-discharge threshold value Is to a larger value in the low-speed rising state than in the non-low-speed rising state. Therefore, in the case of the low-speed rising state, it is difficult to determine that the ground fault has occurred as compared with the case of the non-low-speed rising state.
  • the SW control circuit 40 includes a current detection circuit 46, an overcurrent determination circuit 42, a filter circuit 47, a current inclination determination circuit 48, and an abnormality determination circuit 42J (see FIG. 33).
  • the current detection circuit 46 includes a differential amplifier 46a that outputs a signal corresponding to the potential difference between both ends of the shunt resistor 22c as a signal indicating the discharge current value ISMR.
  • the overcurrent determination circuit 42 has a comparator 42a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset threshold value Vref1.
  • the comparator 42a outputs an on signal when the discharge current value ISMR is equal to or higher than the threshold value Vref1.
  • the on signal is described as 1 and the off signal is described as 0.
  • the filter circuit 47 extracts and outputs a signal whose rising speed is equal to or higher than a predetermined value from the signals output from the current detection circuit 46.
  • the current gradient determination circuit 48 includes a comparator 48a that compares the signal output from the filter circuit 47, that is, the discharge current value ISMR whose current gradient is equal to or higher than a predetermined value, with the preset inclination threshold value Vref2.
  • the comparator 48a outputs an on signal when the extracted discharge current value ISMR is equal to or higher than the inclination threshold value Vref2.
  • the abnormality determination circuit 42J determines whether or not a ground fault has occurred based on the signals output from the overcurrent determination circuit 42 and the current inclination determination circuit 48. For example, as illustrated in FIGS. 34 and 35 below, the abnormality determination circuit 42J determines an abnormality.
  • FIG. 34 shows an example of the correspondence between the combination of the determination results of the overcurrent determination circuit 42 and the current inclination determination circuit 48 and the abnormality determination result.
  • FIG. 34 when it is determined that "overcurrent” and "inclination is large”, it is determined as "abnormal".
  • the above “overcurrent” is a determination result of the overcurrent determination circuit 42 such that the discharge current value ISMR is equal to or greater than the threshold value Vref1.
  • the above-mentioned “large slope” is a judgment result of the current slope determination circuit 48 such that the current value having a large current slope among the discharge current value ISMR is the slope threshold Vref2 or more.
  • the SW control circuit 40 also includes a current detection circuit 460, an overcurrent determination circuit 420, and a current inclination determination circuit 480 for the shunt resistor 31c.
  • the current detection circuit 460 outputs a signal corresponding to the potential difference between both ends of the shunt resistor 31c as a signal indicating the inter-system current value IISO.
  • the overcurrent determination circuit 420 determines that the overcurrent is overcurrent when the inter-system current value IISO exceeds a predetermined threshold value Iso, and outputs the overcurrent determination result to the SW drive circuit 41.
  • the current slope determination circuit 480 detects the rate of increase (current slope) of the inter-system current value IISO based on the time change of the potential difference between both ends of the shunt resistor 31c. Then, when the detected current gradient is less than a predetermined inclination threshold value, it is determined to be a low-speed rising state, and when it is equal to or more than a predetermined inclination threshold value, it is determined to be a non-slow-speed rising state. When the current inclination determination circuit 480 determines that the non-slow speed rise state is determined, the current inclination determination circuit 480 outputs the inclination determination result to the SW drive circuit 41.
  • control procedure (see FIG. 36) according to the present embodiment is a combination of the above-mentioned third and eleventh embodiments with steps S36 and S37 added.
  • step S36 it is determined whether or not the rising speed (current slope) of the discharge current value ISMR is larger than the predetermined value ⁇ . If it is negatively determined that the value is not greater than the predetermined value ⁇ , it is regarded as a low-speed rising state, and the interruption of the inter-system SW in step S40 is prohibited. If it is determined affirmative that the current slope is larger than the predetermined value ⁇ , it is regarded as a non-slow speed rising state, and the inter-system SW is shut off in step S40.
  • step S37 it is determined whether or not the rate of increase (current slope) of the inter-system current value IISO is greater than the predetermined value ⁇ .
  • the current slope dIISO / dt has a negative value.
  • a negative value is also set for the predetermined value ⁇ . Satisfying the relationship of current slope ⁇ predetermined value ⁇ means that the current slope is larger than the predetermined value ⁇ as a negative value, that is, the current slope is larger than the predetermined value ⁇ in absolute value.
  • step S40 If it is negatively determined that the current slope is not larger than the predetermined value ⁇ (negative value), it is regarded as a low-speed rising state, and the interruption of the inter-system SW in step S40 is prohibited. If it is determined affirmative that the current slope is larger than the predetermined value ⁇ , it is regarded as a non-slow speed rising state, and the inter-system SW is shut off in step S40.
  • steps S30 and S36 the abnormality determination according to the table of FIG. 34 is realized. Similar to this abnormality determination, in steps S31 and S37, an abnormality determination is made based on the inter-system current value IISO and its current slope.
  • the SW control circuit 40 includes the filter circuit 47 and the current inclination determination circuit 48 in addition to the overcurrent determination circuit 42. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
  • the abnormality judgment according to FIG. 34 it is prohibited to judge as “abnormal” when the vehicle is in a low speed rising state. Therefore, it is possible to reduce the possibility that the inrush current is erroneously detected as a ground fault. Further, according to the abnormality determination according to FIG. 35, even if it is negatively determined that it is not an "overcurrent", it is determined to be "abnormal” in the non-slow rising state. According to this, the ground fault can be detected quickly.
  • the first comparison circuit 421 has a comparator 421a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset first threshold value VrefLo.
  • the comparator 421a outputs an on signal when the discharge current value ISMR is equal to or higher than the first threshold value VrefLo.
  • the second comparison circuit 422 has a comparator 422a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset second threshold value VrefHi.
  • the comparator 422a outputs an on signal when the discharge current value ISMR is equal to or higher than the second threshold value VrefHi.
  • the second threshold value VrefHi is set to a value higher than the first threshold value VrefLo.
  • the abnormality determination circuit 42J calculates the time difference between the time when the first comparison circuit 421 starts to output the on signal and the time when the second comparison circuit 422 starts to output the on signal. The faster the rate of increase of the discharge current value ISMR, the shorter the time difference should be.
  • the filter circuit 47 is used to detect the low speed rising state.
  • the low-speed rising state is detected by using the output time difference between two comparators having different threshold values.
  • the abnormality determination circuit 42J determines that the non-slow speed rise state is obtained when the calculated time difference is less than a predetermined time threshold value.
  • the abnormality determination circuit 42J determines whether or not a ground fault has occurred based on the signals output from the first comparison circuit 421 and the second comparison circuit 422 and the determination result by the inclination determination unit. For example, as illustrated in FIG. 38 below, the abnormality determination circuit 42J determines an abnormality.
  • FIG. 38 shows an example of the correspondence between the combination of the first comparison circuit 421, the second comparison circuit 422, and the time difference determination result and the abnormality determination result.
  • it is determined that "overcurrent (low threshold value)", “overcurrent (high threshold value)”, and "short time difference”, it is determined as "abnormal”.
  • the above “overcurrent (low threshold value)” is a determination result of the first comparison circuit 421 that the discharge current value ISMR is equal to or higher than the first threshold value VrefLo.
  • the above “overcurrent (high threshold value)” is a determination result of the second comparison circuit 422 that the discharge current value ISMR is equal to or higher than the second threshold value VrefHi.
  • the above-mentioned “short time difference” is a judgment result of the inclination determination unit that the output time difference between the two comparators is less than the time threshold value.
  • the SW control circuit 40 includes the first comparison circuit 421, the second comparison circuit 422, and the abnormality determination circuit 42J. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
  • the abnormality judgment according to FIG. 38 it is prohibited to judge as "abnormal" when the vehicle is in a low speed rising state. Therefore, it is possible to reduce the possibility that the inrush current is erroneously detected as a ground fault.
  • the same configuration as that of the first comparison circuit 421 and the second comparison circuit 422 on the shunt resistor 22c side is adopted instead of the overcurrent determination circuit 420 and the inclination determination circuit 480 on the shunt resistor 31c side. You may.
  • (20th Embodiment) 39 and 40 show reference examples of redundant power supply systems.
  • This redundant power supply system detects ground faults based on the current flowing through the inter-system bus.
  • an inter-system SW is provided in the inter-system bus connecting the junction box of the main system and the junction box of the sub system.
  • the control circuit (not shown) considers that a ground fault has occurred and shuts off the inter-system SW.
  • the solid line arrow shown in FIG. 39 indicates the current path from the main power supply when a ground fault occurs in the sub system bus on the load side.
  • the broken line arrow indicates the current path from the main power supply when the inrush current flows through the general load connected to the sub system bus.
  • Both the ground fault current and the inrush current flow from the main power supply via the junction box of the main system, the SW between the systems, and the junction box of the sub system.
  • the voltage of the main power supply is V1
  • the current value of the inter-system bus is I
  • the resistance value of the main system bus on the power supply side is R10
  • the inductance L10
  • the voltage VJB1 of the junction box of the main system is as follows. Is shown.
  • VJB1 V1-R10 ⁇ I-L10 ⁇ dI / dt
  • the overcurrent threshold value must be set low as shown in FIG. 40. Therefore, the inrush current may be erroneously detected as a ground fault current.
  • the inrush current and the ground fault on the sub system side have been described, but the same applies to the main system side.
  • the energization control device D and the redundant power supply system are configured so as to reduce the risk of erroneously detecting a ground fault and interrupting the inter-system SW when an inrush current flows.
  • the inter-system bus 30 is provided with inter-system SW (31a, 31b), and the main system bus 10 and the sub-system bus 20 are not provided with SMR. ..
  • the inter-system bus 30 is provided with a shunt resistor 31c for detecting a current, and the main system bus 10 and the sub-system bus 20 are not provided with a shunt resistor.
  • the SW control circuit 40 detects the potential across the shunt resistor 31c and calculates the inter-system current value IISO based on the potential difference between the two ends.
  • the SW control circuit 40 determines whether or not a ground fault has occurred based on the slope (current slope) of the inter-system current value IISO, and controls the inter-system SW based on the determination result.
  • the SW control circuit 40 includes, for example, a current detection circuit 46 having a differential amplifier 46a, a filter circuit 47, and a comparator 48a in the circuit configuration of the SW control circuit 40 shown in the 18th embodiment (see FIG. 33). It includes a current inclination determination circuit 48 and a SW drive circuit 41.
  • FIG. 42 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment.
  • the processes of S20 and S30 of the first embodiment are replaced with the processes of S21 and S38.
  • This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle.
  • FIG. 42 shows an example in which the inter-system current value IISO takes a positive value.
  • step S10 the SW control circuit 40 controls the operation of the inter-system SW according to the command of the host control circuit 50.
  • the SW control circuit 40 detects (acquires) the inter-system current value IISO based on the potential difference between both ends of the shunt resistor 31c.
  • the SW control circuit 40 determines whether or not the current slope (dIISO / dt), which is the amount of change in the inter-system current value IISO per unit time, exceeds the predetermined value ⁇ .
  • the predetermined value ⁇ is the current slope threshold value and corresponds to Vref2 in FIG. 33. If it is negatively determined that the value does not exceed the predetermined value ⁇ , the interruption of the inter-system SW in step S40 is prohibited.
  • the SW control circuit 40 re-executes the processes after step S10. If it is determined affirmative that the current slope exceeds the predetermined value ⁇ , the inter-system SW is shut off in step S40. In step S40, the inter-system SW is turned off regardless of the content of the command from the host control circuit 50.
  • the current gradient is used to control the SW between systems. Specifically, it is determined whether or not the current inclination exceeds a predetermined current inclination threshold value, and the inter-system SW is controlled to the cutoff state based on the determination result that the current inclination exceeds the current inclination threshold value.
  • the slope of the current that flows when a ground fault occurs is larger than the slope of the inrush current.
  • the current slope is expected to exceed the current slope threshold, and when an inrush current flows, the current slope does not easily exceed the current slope threshold. Therefore, when an inrush current flows, it is possible to reduce the possibility of erroneously detecting a ground fault and interrupting the inter-system SW.
  • the inter-system SW when the current slope of the inter-system current value IISO exceeds a predetermined value ⁇ (current slope threshold value), the inter-system SW is cut off. Therefore, when an inrush current flows, the risk of erroneously detecting a ground fault and interrupting the inter-system SW can be reduced with a simple configuration.
  • the inter-system current value IISO takes a positive value when a current flows in a predetermined direction
  • the inter-system current value IISO takes a negative value when the current flows in the opposite direction to the one direction.
  • the SW control circuit 40 may be configured. That is, the reference voltage of the differential amplifier 46a may be set to 0V.
  • the current slope threshold with respect to the opposite direction is set as a predetermined negative value, and when the current slope exceeds the negative current slope threshold, that is, when the current slope becomes larger than the current slope threshold as a negative value, the SW control circuit 40 intersystems. Shut off the SW.
  • step S38 may be performed as to whether or not the current slope of the absolute value of the inter-system current value IISO exceeds a predetermined value ⁇ (positive value).
  • the reference voltage of the differential amplifier 46a is set to half the value of the power supply voltage supplied to the differential amplifier 46a (for example, 2.5V), and the inter-system current value IISO takes a positive value even when the current flows in the opposite direction.
  • the SW control circuit 40 may be configured.
  • the detection target is not limited to the current flowing through the inter-system bus 30.
  • the current flowing through one of the main system bus 10, the sub system bus 20, and the inter-system bus 30 may be used.
  • the current flowing through the main system bus 10 may be used, or the current flowing through the sub system bus 20 may be used.
  • the current flowing through the power supply side buses 10a and 20a may be used, or the current flowing through the load side buses 10b and 20b may be used.
  • a shunt resistor 22c is provided on the sub power supply side bus 20a, and the slope of the current value (current slope) detected by the shunt resistor 22c is determined by whether or not a ground fault has occurred. It may be used for judgment.
  • the magnitude of the current flowing through the inter-system bus 30, that is, the inter-system current value IISO is used.
  • the sensitivity of the sub system bus 20 to a ground fault abnormality and the inrush currents of the second loads 20L and 21L is low.
  • the sensitivity of the main system bus 10 to the ground fault abnormality and the inrush currents of the second loads 20L and 21L is low.
  • the current values of a plurality of buses are acquired, and the current inclination of each is compared with the corresponding current inclination threshold, resulting in a ground fault. It may be determined whether or not there is. For example, if the slope of the inter-system current value IISO exceeds the predetermined value ⁇ and the slope of the current value (ISMR) of the sub-system bus 20 exceeds the predetermined value ⁇ , it is considered that a ground fault has occurred and the system The SW may be cut off for a while. When the slope of the inter-system current value IISO exceeds the predetermined value ⁇ , or when the slope of the current value (ISMR) of the sub-system bus 20 exceeds the predetermined value ⁇ , the inter-system SW may be cut off.
  • the configuration shown in the present embodiment and the configuration shown in the preceding embodiment may be combined. According to this, it is possible to suppress false detection of charging as a ground fault while suppressing false detection of a ground fault when an inrush current flows. That is, it is possible to reduce the risk of interrupting the inter-system SW by regarding it as a ground fault during charging or when an inrush current flows.
  • FIG. 43 shows a processing procedure for abnormal time control executed by the SW control circuit 40 of the present embodiment. This control procedure is obtained by adding the process of S39 described later to the process of the 20th embodiment.
  • FIG. 43 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
  • the SW control circuit 40 executes the process of step S38. That is, it is determined whether or not the current slope (dIISO / dt) exceeds the predetermined value ⁇ . When it is negatively determined that the current slope does not exceed the predetermined value ⁇ , the SW control circuit 40 prohibits the interruption of the inter-system SW by step S40, and executes the processes after step S10 again.
  • the SW control circuit 40 executes the process of step S39.
  • the SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a preset predetermined threshold value IsISO. That is, the overcurrent determination is executed.
  • the threshold IsISO corresponds to the overcurrent threshold.
  • step S39 If it is negatively determined in step S39 that the inter-system current value IISO does not exceed the threshold value IsISO, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 executes the process of step S10 or less again.
  • step S39 When it is determined in step S39 that the inter-system current value IISO exceeds the threshold value Iso, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW.
  • the inter-system current value IISO is a negative value
  • the inter-system current value IISO exceeding the threshold value Iso means that the relationship of IISO / dt ⁇ threshold value IsISO (negative value) is satisfied.
  • the process of step S39 may be performed as to whether or not the absolute value of the inter-system current value IISO exceeds a predetermined threshold value IsISO (positive value).
  • the inter-system current value IISO is positively determined to exceed the threshold value Iso
  • the inter-system current value is negatively determined not to exceed the predetermined value ⁇
  • the inter-system current value is determined to be negative.
  • the shutoff of SW is prohibited.
  • the overcurrent determination is enabled only when the current slope exceeds the predetermined value ⁇ . Therefore, when an inrush current flows, the possibility of erroneously detecting a ground fault can be reduced more effectively.
  • the SW control circuit 40 shuts off the inter-system SW. Therefore, when the current slope exceeds the predetermined value ⁇ due to noise or the like instead of a ground fault, and if the inter-system current value IISO does not exceed the threshold value Iso, it is possible to prohibit the interruption of the inter-system SW. As a result, it is possible to reduce the risk of erroneously detecting temporary noise as a ground fault and interrupting the inter-system SW.
  • steps S38 and S39 are not limited to the example shown in FIG. 43. If it is determined in step S39 that the inter-system current value IISO exceeds the threshold value ISO, the process of step S38 may be executed. Further, the processes of steps S38 and S39 may be performed at the same time.
  • FIG. 44 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment.
  • the condition for shutting off the inter-system SW is changed to a condition in which a positive determination is established in one of steps S38 and S39, that is, an OR condition.
  • FIG. 44 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
  • step S38 the SW control circuit 40 determines whether or not the current slope exceeds the predetermined value ⁇ . When it is determined that the current slope exceeds the predetermined value ⁇ , the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW.
  • step S38 When it is determined in step S38 that the current slope does not exceed the predetermined value ⁇ , the SW control circuit 40 executes the overcurrent determination process in step S39. That is, it is determined whether or not the inter-system current value IISO detected in step S21 exceeds a preset predetermined threshold value IsISO.
  • step S39 When it is determined in step S39 that the inter-system current value IISO exceeds the threshold value Iso, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW. On the other hand, when it is negatively determined that the inter-system current value IISO does not exceed the threshold value Iso, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 re-executes the processes after step S10.
  • the inter-system SW is shut off when the current slope exceeds the predetermined value ⁇ or when the inter-system current value IISO exceeds the threshold value Iso. That is, even if the current slope does not exceed the predetermined value ⁇ , if the inter-system current value IISO exceeds the threshold value Iso, the inter-system SW is shut off. As a result, the inter-system SW can be cut off even when the current gradient is small due to, for example, the influence of the motor lock or the wiring inductance to the load.
  • steps S38 and S39 are not limited to the example shown in FIG. 44. If it is determined in step S38 that the inter-system current value IISO does not exceed the threshold value ISO, the process of step S37 may be executed. Further, the processes of steps S37 and S38 may be performed at the same time.
  • FIG. 45 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment.
  • the process of step S39 is replaced with the process of steps S39A and S39B.
  • the SW control circuit 40 has IsISOH and IsISOL, which is a threshold value having an absolute value smaller than that of IsISOH, as a threshold value for determining overcurrent.
  • IsISOH corresponds to the first overcurrent threshold and IsISOL corresponds to the second overcurrent threshold.
  • FIG. 45 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
  • the SW control circuit 40 executes the process of step S39A before executing the process of step S38.
  • the SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a predetermined threshold value IsISOH set in advance.
  • step S39A When it is determined in step S39A that the inter-system current value IISO exceeds the threshold value IsISOH, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW. On the other hand, when it is negatively determined that the inter-system current value IISO does not exceed the threshold value IsISOH, the SW control circuit 40 executes the process of step S38.
  • step S38 If it is negatively determined in step S38 that the current slope does not exceed the predetermined value ⁇ , the SW control circuit 40 prohibits the interruption of the inter-system SW by step S40, and executes the processes after step S10 again. On the other hand, when it is determined affirmative that the current slope exceeds the predetermined value ⁇ , the SW control circuit 40 executes the process of step S39B.
  • the SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a predetermined threshold value IsISOL set in advance.
  • step S39B If it is negatively determined in step S39B that the inter-system current value IISO does not exceed the threshold value IsISOL, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 executes the process of step S10 or less again.
  • step S39B When it is determined in step S39B that the inter-system current value IISO exceeds the threshold value IsISOL, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW.
  • the inter-system current value IISO exceeds the threshold value IsISO, or when the current slope exceeds the predetermined value ⁇ and the inter-system current value IISO exceeds the threshold value IsISOL. , Shut off the SW between systems. Even if the current slope does not exceed the predetermined value ⁇ , if the inter-system current value IISO exceeds the threshold value IsISOH, the inter-system SW is shut off. Similar to the 22nd embodiment, the inter-system SW can be cut off even when the current slope is small.
  • the SW control circuit 40 shuts off the inter-system SW. Therefore, when the current slope exceeds the predetermined value ⁇ due to noise or the like instead of a ground fault, and if the inter-system current value IISO does not exceed the threshold value IsISOL, the interruption of the inter-system SW can be prohibited. As a result, it is possible to reduce the risk of erroneously detecting temporary noise as a ground fault and interrupting the inter-system SW.
  • steps S38, S39A, and S39B are not limited to the example shown in FIG. 45.
  • the order of steps S38 and S39B may be reversed or may be carried out at the same time.
  • the order of steps S38 and S39B and step S39A may be reversed or may be performed at the same time.
  • the inter-system SW is shut off if the first discharge current value ISMR1 rises beyond the first threshold value.
  • the second discharge current value ISMR2 exceeds the second threshold value and the first discharge current value ISMR1 exceeds the first threshold value, it may be regarded as a ground fault abnormality and the inter-system SW may be shut off. ..
  • the generator G10 is connected to the main system bus 10. Therefore, the sub power supply B20 is configured to be rechargeable by the electric power supplied through the inter-system bus 30. On the other hand, the generator G10 may be connected to the sub system bus 20. Further, the generator G10 may be connected to the high potential side of the main power source B10 or the sub power source B20, or may be connected to the ground side.
  • the energization control device has the following configurations A and B.
  • the energization control device may be provided with the configuration B by abolishing the configuration A.
  • the configuration A is "when the inter-system switch control unit acquires a discharge current value ISMR, which is the magnitude of the current discharged from the second power source, and the acquired discharge current value rises beyond the over-discharge threshold value Is. , It is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state.
  • Configuration B states that "when the inter-system switch control unit is in a low-speed rising state in which the rising speed of the discharge current value ISMR is equal to or less than a predetermined value, a ground fault abnormality occurs as compared with the case where it is in a non-low-speed rising state. It makes it difficult to judge that it is. "
  • a sense element for detecting the current may be used.
  • the sense element is configured together with, for example, a semiconductor switching element that constitutes an intersystem SW (31a, 31b).

Abstract

This energization control device (D) comprises: inter-system SWs (31a, 31b) and a SW control circuit (40) which is an inter-system switch control unit. The inter-system SW switches between energization and interruption of current in an inter-system bus (30). The SW control circuit controls the operating state of the inter-system SW. The SW control circuit acquires a discharge current value ISMR which is the magnitude of the current discharged from a sub power supply (B20). Further, when the acquired discharge current value ISMR rises beyond an over-discharge threshold value Ith, the SW control circuit considers that a ground fault abnormality has occurred and shuts off the inter-system SW.

Description

通電制御装置および電源ユニットEnergization control device and power supply unit 関連出願の相互参照Cross-reference of related applications
 この出願は、2019年8月28日に日本に出願された特許出願第2019-156093号、および、2020年5月26日に日本に出願された特許出願第2020-091648号に基づくもので、ここにその記載内容を援用する。 This application is based on Patent Application No. 2019-156093 filed in Japan on August 28, 2019 and Patent Application No. 2020-091648 filed in Japan on May 26, 2020. The contents of the description are used here.
 この明細書における開示は、通電制御装置および電源ユニットに関する。 The disclosure in this specification relates to an energization control device and a power supply unit.
 特許文献1に記載の冗長化システムでは、車両に搭載された負荷群に対して、2つのバッテリのいずれからも電力供給可能にすることで、給電の冗長化が図られている。この冗長化システムは、第1系統バス、第2系統バスおよび系統間バスを備える。第1系統バスは、第1バッテリから供給される電力を第1負荷へ送電する。第2系統バスは、第2電源から供給される電力を第2負荷へ送電する。系統間バスは、第1系統バスと第2系統バスとを電気的に接続する。 In the redundancy system described in Patent Document 1, power supply can be made redundant by making it possible to supply electric power from either of the two batteries to the load group mounted on the vehicle. This redundant system includes a first system bus, a second system bus, and an intersystem bus. The first system bus transmits the electric power supplied from the first battery to the first load. The second system bus transmits the electric power supplied from the second power source to the second load. The inter-system bus electrically connects the first system bus and the second system bus.
 このような冗長化システムでは、2つの系統バスのいずれで地絡が生じた場合であっても、第1および第2系統バスの両方ともが大きく電圧低下する。この場合、第1および第2負荷の両方ともが作動不良に陥る懸念がある。この懸念に対し、上記系統間バスには、電流の通電と遮断を切り替える系統間スイッチが設けられている。そして、地絡が生じていない正常時には、系統間スイッチを通電状態にすることで、冗長化機能を発揮させる。一方、系統間バスを流れる電流が閾値を超えて上昇した場合には、地絡異常が生じているとみなして系統間スイッチを遮断状態にする。これにより、第1および第2系統バスの両方ともが、作動不良を生じさせるような大幅な電圧低下の状態(異常低電圧状態)に陥ることを回避させている。 In such a redundant system, even if a ground fault occurs in either of the two system buses, the voltage of both the first system bus and the second system bus drops significantly. In this case, there is a concern that both the first and second loads may malfunction. In response to this concern, the inter-system bus is provided with an inter-system switch for switching between energization and interruption of current. Then, in the normal state where no ground fault has occurred, the inter-system switch is turned on to exert the redundancy function. On the other hand, when the current flowing through the inter-system bus rises beyond the threshold value, it is considered that a ground fault has occurred and the inter-system switch is shut off. As a result, both the first and second system buses are prevented from falling into a state of a large voltage drop (abnormally low voltage state) that causes a malfunction.
特許第6432355号公報Japanese Patent No. 6432355
 さて、第1系統から第2バッテリに電力供給して第2バッテリを充電させたい場合があり、この場合には系統間バスに大電流が流れる。そのため、地絡異常が原因で系統間バスに大電流が流れる場合と、上記充電が原因で系統間バスに大電流が流れる場合との判別が困難になる。よって、系統間バスを流れる電流が閾値を超えて上昇した場合に系統間スイッチを遮断する上記制御では、充電を地絡と誤検知して系統間スイッチを遮断する懸念がある。また、突入電流を地絡に伴う電流と誤検知して系統間スイッチを遮断する懸念がある。上述の観点において、または言及されていない他の観点において、通電制御装置にはさらなる改良が求められている。 By the way, there is a case where it is desired to supply power from the first system to the second battery to charge the second battery, and in this case, a large current flows through the inter-system bus. Therefore, it is difficult to distinguish between a case where a large current flows through the inter-system bus due to a ground fault abnormality and a case where a large current flows through the inter-system bus due to the above charging. Therefore, in the above control of shutting off the inter-system switch when the current flowing through the inter-system bus rises beyond the threshold value, there is a concern that the inter-system switch may be shut off by erroneously detecting charging as a ground fault. In addition, there is a concern that the inrush current may be erroneously detected as a current caused by a ground fault and the inter-system switch may be cut off. Further improvements are required in the energization control device in the above viewpoint or in other viewpoints not mentioned.
 開示される1つの目的は、地絡発生を検知したら系統間スイッチを遮断するにあたり、地絡の誤検知抑制を図った通電制御装置を提供することである。 One purpose to be disclosed is to provide an energization control device that suppresses false detection of ground faults when shutting off the inter-system switch when a ground fault occurrence is detected.
 上記目的を達成するため、開示された1つの態様は、
 第1電源から供給される電力を第1負荷へ送電する第1系統バスと、
 第2電源から供給される電力を第2負荷へ送電する第2系統バスと、
 第1系統バスと、第2系統バスとを電気的に接続する系統間バスと、
を備える車両用の冗長電源システムに適用された通電制御装置において、
 系統間バスにおける電流の通電と遮断を切り替える系統間スイッチと、
 系統間スイッチの作動状態を制御する系統間スイッチ制御部と、
を備え、
 系統間スイッチ制御部は、
 第2電源から放電される電流の大きさである放電電流値を取得し、
 取得した放電電流値が過放電閾値を超えて上昇した場合に、地絡異常が生じているとみなして系統間スイッチを遮断状態に制御する。
In order to achieve the above object, one aspect disclosed is
The first system bus that transmits the power supplied from the first power supply to the first load, and
The second system bus that transmits the power supplied from the second power supply to the second load, and
An inter-system bus that electrically connects the first system bus and the second system bus,
In the energization control device applied to the redundant power supply system for vehicles equipped with
An inter-system switch that switches between energizing and shutting off current in the inter-system bus,
An inter-system switch control unit that controls the operating state of the inter-system switch,
With
The inter-system switch control unit
Obtain the discharge current value, which is the magnitude of the current discharged from the second power supply,
When the acquired discharge current value rises beyond the over-discharge threshold value, it is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state.
 ここに開示された通電制御装置によると、地絡異常の検知に用いられる電流に、第2電源から放電される電流の大きさ(放電電流値)が用いられる。この放電電流値は、第1系統から第2電源に電力供給して第2電源を充電させたい場合にはマイナスの値になる。よって、第2電源の充電時には、放電電流値が過放電閾値を超えることはない。 According to the energization control device disclosed here, the magnitude of the current discharged from the second power supply (discharge current value) is used as the current used for detecting the ground fault abnormality. This discharge current value becomes a negative value when it is desired to supply power from the first system to the second power source to charge the second power source. Therefore, when charging the second power source, the discharge current value does not exceed the over-discharge threshold value.
 一方、第2電源から第2負荷等へ電力供給する場合にはプラスの値になる。よって、第2系統バスや第1系統バス等で地絡が生じた場合には、放電電流値が上昇して過放電閾値を超えることが見込まれる。このように、上記通電制御装置によれば、第2電源への充電時と地絡時とで、地絡異常の検知に用いられる電流の向きが異なるようになる。よって、第2電源への充電に伴い系統間バスを流れる電流が増大したとしても、地絡と誤検知して系統間スイッチを遮断させるおそれを低減できる。 On the other hand, when power is supplied from the second power supply to the second load, etc., it becomes a positive value. Therefore, when a ground fault occurs in the second system bus, the first system bus, or the like, it is expected that the discharge current value will increase and exceed the over-discharge threshold value. As described above, according to the energization control device, the direction of the current used for detecting the ground fault abnormality is different between when the second power source is charged and when the ground fault occurs. Therefore, even if the current flowing through the inter-system bus increases as the second power source is charged, the possibility of erroneously detecting a ground fault and shutting off the inter-system switch can be reduced.
 開示された他の1つの態様は、
 第1電源から供給される電力を第1負荷へ送電する第1系統バスと、
 第2電源から供給される電力を第2負荷へ送電する第2系統バスと、
 第1系統バスと第2系統バスとを電気的に接続する系統間バスと、
を備える冗長電源システムに適用された通電制御装置において、
 系統間バスにおける電流の通電と遮断を切り替える系統間スイッチと、
 系統間スイッチの作動状態を制御する系統間スイッチ制御部と、
を備え、
 系統間スイッチ制御部は、
 第1系統バス、第2系統バス、および系統間バスの1つを流れる電流の大きさである電流値を取得し、
 取得した電流値の単位時間当たりの変化量である電流傾きが所定の電流傾き閾値を超えているか否かを判定し、電流傾きが電流傾き閾値を超えているとの判定結果に基づいて系統間スイッチを遮断状態に制御する。
Another aspect disclosed is
The first system bus that transmits the power supplied from the first power supply to the first load, and
The second system bus that transmits the power supplied from the second power supply to the second load, and
An inter-system bus that electrically connects the first system bus and the second system bus,
In the energization control device applied to the redundant power supply system equipped with
An inter-system switch that switches between energizing and shutting off current in the inter-system bus,
An inter-system switch control unit that controls the operating state of the inter-system switch,
With
The inter-system switch control unit
Obtain the current value, which is the magnitude of the current flowing through one of the first system bus, the second system bus, and the inter-system bus.
It is determined whether or not the current slope, which is the amount of change in the acquired current value per unit time, exceeds the predetermined current slope threshold value, and based on the judgment result that the current slope exceeds the current slope threshold value, between the systems. Control the switch to the cutoff state.
 ここに開示された通電制御装置によれば、系統間スイッチの制御に電流傾きを用いる。地絡が生じたときに流れる電流は、突入電流に較べて電流傾きが大きい。地絡時には、電流傾きが電流傾き閾値を超えることが見込まれる。よって、突入電流が流れたときに、地絡と誤検知して系統間スイッチを遮断させるおそれを低減できる。 According to the energization control device disclosed here, the current gradient is used to control the inter-system switch. The current that flows when a ground fault occurs has a larger current gradient than the inrush current. At the time of a ground fault, the current slope is expected to exceed the current slope threshold. Therefore, when an inrush current flows, it is possible to reduce the risk of erroneously detecting a ground fault and shutting off the inter-system switch.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The plurality of aspects disclosed herein employ different technical means to achieve their respective objectives. The reference numerals in parentheses described in the claims exemplify the correspondence with the parts of the embodiments described later, and are not intended to limit the technical scope. The objectives, features, and effects disclosed herein will be made clearer by reference to the subsequent detailed description and accompanying drawings.
第1実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 1st Embodiment. 第1実施形態において、サブ系統バスで地絡が生じた場合の作動を示す構成図である。It is a block diagram which shows the operation when the ground fault occurs in the sub system bus in 1st Embodiment. 第1実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the first embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第2実施形態において、メイン系統バスで地絡が生じた場合の作動を示す構成図である。In the second embodiment, it is a block diagram which shows the operation when the ground fault occurs in the main system bus. 第2実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the second embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第3実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the third embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第4実施形態において、サブ系統バスで地絡が生じた場合の作動を示す構成図である。It is a block diagram which shows the operation when the ground fault occurs in the sub system bus in 4th Embodiment. 第4実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the fourth embodiment, it is a flowchart which shows the processing procedure of control by an energization control device. 第5実施形態において、メイン系統バスで地絡が生じた場合の作動を示す構成図である。It is a block diagram which shows the operation when the ground fault occurs in the main system bus in 5th Embodiment. 第5実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a processing procedure of control by an energization control device in the fifth embodiment. 第6実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the sixth embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第7実施形態において、メイン系統バスで地絡が生じた場合の作動を示す構成図である。It is a block diagram which shows the operation when the ground fault occurs in the main system bus in 7th Embodiment. 第7実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the seventh embodiment, it is a flowchart which shows the processing procedure of control by an energization control device. 第8実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 8th Embodiment. 第8実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the eighth embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 制御の変形例を示すフローチャートである。It is a flowchart which shows the modification of control. 第9実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 9th Embodiment. 第9実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 9th Embodiment. 第10実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 10th Embodiment. 第10実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 10th Embodiment. 第11実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 11th Embodiment. 第11実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the eleventh embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第12実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 12th Embodiment. 第13実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 13th Embodiment. 第14実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 14th Embodiment. 第15実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 15th Embodiment. 第15実施形態において、通電制御装置による制御の処理手順の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of a processing procedure of control by an energization control device in the fifteenth embodiment. 第15実施形態において、通電制御装置による制御の処理手順の一例を示すフローチャートである。FIG. 15 is a flowchart showing an example of a processing procedure of control by an energization control device in the fifteenth embodiment. 第16実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 16th Embodiment. 第16実施形態において、通電制御装置による制御の処理手順の一例を示すフローチャートである。16 is a flowchart showing an example of a processing procedure of control by an energization control device in the 16th embodiment. 第16実施形態において、通電制御装置による制御の処理手順の一例を示すフローチャートである。16 is a flowchart showing an example of a processing procedure of control by an energization control device in the 16th embodiment. 第17実施形態に係る冗長電源システムを模式的に示した回路図である。It is a circuit diagram which shows typically the redundant power supply system which concerns on 17th Embodiment. 第18実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 18th Embodiment. 第18実施形態において、過電流判定および電流傾き判定と、異常判定との対応関係の一例を示す図である。In the eighteenth embodiment, it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination. 第18実施形態において、過電流判定および電流傾き判定と、異常判定との対応関係の一例を示す図である。In the eighteenth embodiment, it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination. 第18実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the eighteenth embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第19実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 19th Embodiment. 第19実施形態において、過電流判定および電流傾き判定と、異常判定との対応関係の一例を示す図である。In the 19th embodiment, it is a figure which shows an example of the correspondence relationship between the overcurrent determination and the current inclination determination, and the abnormality determination. 冗長電源システムの参考例を示す図である。It is a figure which shows the reference example of a redundant power supply system. 参考例において、地絡電流、突入電流、および過電流閾値との関係を示す図である。In the reference example, it is a figure which shows the relationship with the ground fault current, the inrush current, and the overcurrent threshold. 第20実施形態に係る冗長電源システム全体の概略を示す構成図である。It is a block diagram which shows the outline of the whole redundant power supply system which concerns on 20th Embodiment. 第20実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the twentieth embodiment, it is a flowchart which shows the processing procedure of control by an energization control device. 第21実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the 21st embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第22実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the 22nd embodiment, it is a flowchart which shows the processing procedure of the control by an energization control device. 第23実施形態において、通電制御装置による制御の処理手順を示すフローチャートである。In the 23rd embodiment, it is a flowchart which shows the processing procedure of control by an energization control device.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In addition, duplicate description may be omitted by assigning the same reference numerals to the corresponding components in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration.
 (第1実施形態)
 図1に示す本実施形態では、通電制御装置Dが、移動体である車両の冗長電源システムに適用された例について説明する。ただし、通電制御装置Dは、車両用以外の冗長電源システムに適用することも可能である。車両以外の移動体、たとえばドローンなどの飛行体、船舶、建設機械、農業機械などの冗長電源システムにも適用することができる。
(First Embodiment)
In the present embodiment shown in FIG. 1, an example in which the energization control device D is applied to a redundant power supply system of a vehicle which is a moving body will be described. However, the energization control device D can also be applied to a redundant power supply system other than that for vehicles. It can also be applied to moving objects other than vehicles, such as flying objects such as drones, and redundant power supply systems such as ships, construction machinery, and agricultural machinery.
 図1に示す冗長電源システムは、車両に搭載された第1電源および第2電源として、メイン電源B10およびサブ電源B20を備えている。図1では、1つのメイン電源B10と1つのサブ電源B20しか示していないが、車載電源として、複数のメイン電源B10、および/または複数のサブ電源B20を設けてもよい。 The redundant power supply system shown in FIG. 1 includes a main power supply B10 and a sub power supply B20 as a first power supply and a second power supply mounted on the vehicle. Although only one main power supply B10 and one sub power supply B20 are shown in FIG. 1, a plurality of main power supplies B10 and / or a plurality of sub power supplies B20 may be provided as vehicle-mounted power supplies.
 これらのメイン電源B10およびサブ電源B20は、例えば約12Vの電圧を発生する二次電池である。メイン電源B10の充電容量はサブ電源B20の充電容量より大きい。サブ電源B20のエネルギ密度はメイン電源B10のエネルギ密度より大きい。例えば、メイン電源B10には鉛蓄電池が用いられ、サブ電源B20にはリチウムイオン電池が用いられている。 These main power supply B10 and sub power supply B20 are secondary batteries that generate a voltage of, for example, about 12V. The charging capacity of the main power supply B10 is larger than the charging capacity of the sub power supply B20. The energy density of the sub power supply B20 is higher than the energy density of the main power supply B10. For example, a lead storage battery is used for the main power supply B10, and a lithium ion battery is used for the sub power supply B20.
 さらに冗長電源システムは、メイン系統バス10(第1系統バス)、サブ系統バス20(第2系統バス)および系統間バス30を備えている。メイン系統バス10は、メイン電源B10から供給される電力を第1負荷L10、L11へ送電する。サブ系統バス20は、サブ電源B20から供給される電力を第2負荷L20、L21へ送電する。系統間バス30は、メイン系統バス10とサブ系統バス20とを電気的に接続する。 Further, the redundant power supply system includes a main system bus 10 (first system bus), a sub system bus 20 (second system bus), and an inter-system bus 30. The main system bus 10 transmits the electric power supplied from the main power source B10 to the first loads L10 and L11. The sub system bus 20 transmits the electric power supplied from the sub power source B20 to the second loads L20 and L21. The inter-system bus 30 electrically connects the main system bus 10 and the sub-system bus 20.
 具体的には、系統間バス30の一端がメイン系統のジャンクションボックス(JB11)に接続され、系統間バス30の他端がサブ系統のジャンクションボックス(JB21)に接続されている。 Specifically, one end of the inter-system bus 30 is connected to the junction box (JB11) of the main system, and the other end of the inter-system bus 30 is connected to the junction box (JB21) of the sub system.
 以下の説明では、メイン系統バス10のうち、JB11とメイン電源B10とを接続するバスをメイン電源側バス10aと呼び、JB11と第1負荷L10、L11とを接続するバスをメイン負荷側バス10bと呼ぶ。サブ系統バス20のうち、JB21とサブ電源B20とを接続するバスをサブ電源側バス20aと呼び、JB21と第2負荷L20、L21とを接続するバスをサブ負荷側バス20bと呼ぶ。系統間バス30のうち、後述する系統間スイッチ31aとJB11とを接続するバスをメイン側系統間バス30aと呼ぶ。系統間バス30のうち、後述する系統間スイッチ31bとJB21とを接続するバスをサブ側系統間バス30bと呼ぶ。JB11は、メイン系統バス10のうちのメイン電源B10と第1負荷の間に位置する第1ノードに相当する。JB21は、サブ系統バス20のうちのサブ電源B20と第2負荷の間に位置する第2ノードに相当する。 In the following description, among the main system buses 10, the bus that connects JB11 and the main power supply B10 is called the main power supply side bus 10a, and the bus that connects JB11 and the first loads L10 and L11 is the main load side bus 10b. Called. Among the sub system buses 20, the bus connecting the JB 21 and the sub power supply B20 is called the sub power supply side bus 20a, and the bus connecting the JB 21 with the second loads L20 and L21 is called the sub load side bus 20b. Of the inter-system buses 30, the bus that connects the inter-system switch 31a and JB11, which will be described later, is called the main inter-system bus 30a. Of the inter-system buses 30, the bus that connects the inter-system switch 31b and JB21, which will be described later, is called the sub-side inter-system bus 30b. The JB 11 corresponds to the first node located between the main power supply B10 and the first load in the main system bus 10. The JB 21 corresponds to a second node located between the sub power supply B20 and the second load in the sub system bus 20.
 メイン系統バス10には、JB11を介して発電機G10(オルタネータ)が接続されている。発電機G10から出力される電力は、メイン電源B10への充電、サブ電源B20への充電、第1負荷L10、L11および第2負荷L20、L21への供給等に用いられる。また、系統間バス30を介してメイン電源B10からサブ電源B20への充電も可能である。系統間バス30を介してサブ電源B20からメイン電源B10への充電も可能である。 A generator G10 (alternator) is connected to the main system bus 10 via JB11. The electric power output from the generator G10 is used for charging the main power source B10, charging the sub power source B20, supplying the first loads L10 and L11 and the second loads L20 and L21. It is also possible to charge the sub power source B20 from the main power source B10 via the inter-system bus 30. It is also possible to charge the main power supply B10 from the sub power supply B20 via the inter-system bus 30.
 なお、動力源としてエンジンと駆動モータを有するハイブリッド車両や、動力源として駆動モータを有する電気車両の場合には、駆動モータの電源として高圧電源を有している場合がある。その高圧電源の電圧をDC-DCコンバータによって降圧してメイン電源B10等を充電可能に構成してもよい。 In the case of a hybrid vehicle having an engine and a drive motor as a power source, or an electric vehicle having a drive motor as a power source, a high-voltage power source may be provided as a power source for the drive motor. The voltage of the high-voltage power supply may be stepped down by a DC-DC converter so that the main power supply B10 or the like can be charged.
 さらに冗長電源システムは、系統間バス30に設けられた1セットの系統間スイッチ31a、31bを備える。1セットの系統間スイッチ31a、31bは、それぞれ、MOSFETからなる半導体スイッチング素子によって構成される。MOSFETは、その構造上、ドレインーソース間にボディダイオード(寄生ダイオード)が形成される。このため、MOSFETを遮断しても、ボディダイオードを介して電流が流れるので、1つのMOSFETだけでは、双方向の電流を遮断することができない。冗長電源システムでは、メイン系統バス10とサブ系統バス20との間で双方向に電流が流れる可能性がある。そのため、本実施形態では、ボディダイオードの順方向となる向きを互いに逆方向とした1対のMOSFETを、1セットの系統間スイッチ31a、31bとして採用している。これにより、電源失陥が生じたときに、1セットの系統間スイッチ31a、31bをともに遮断状態とすることで、電流の流れる方向によらず、電流を完全に遮断することができる。 Further, the redundant power supply system includes a set of inter-system switches 31a and 31b provided on the inter-system bus 30. Each of the set of inter-system switches 31a and 31b is composed of a semiconductor switching element made of MOSFET. Due to the structure of MOSFET, a body diode (parasitic diode) is formed between drain and source. Therefore, even if the MOSFET is cut off, the current flows through the body diode, so that the bidirectional current cannot be cut off with only one MOSFET. In a redundant power supply system, current may flow in both directions between the main system bus 10 and the sub system bus 20. Therefore, in the present embodiment, a pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of inter-system switches 31a and 31b. As a result, when a power failure occurs, one set of inter-system switches 31a and 31b are both cut off, so that the current can be completely cut off regardless of the direction in which the current flows.
 さらに冗長電源システムは、サブ電源側バス20aに設けられた1セットの遮断スイッチ22a、22bを備える。1セットの遮断スイッチ22a、22bは、それぞれ、MOSFETからなる半導体スイッチング素子によって構成される。ボディダイオードの順方向となる向きを互いに逆方向とした1対のMOSFETを、1セットの遮断スイッチ22a、22bとして採用している。 Further, the redundant power supply system includes a set of cutoff switches 22a and 22b provided on the sub power supply side bus 20a. Each of the set of cutoff switches 22a and 22b is composed of a semiconductor switching element made of MOSFET. A pair of MOSFETs in which the forward directions of the body diodes are opposite to each other are adopted as one set of cutoff switches 22a and 22b.
 以下の説明では、1セットの系統間スイッチ31a、31bや1セットの遮断スイッチ22a、22bのことを、単に系統間SWやシステムメインリレー(SMR)と記載する場合がある。なお、系統間SWやSMRとして、MOSFETに限らず、他の半導体スイッチング素子を採用してもよい。この際、いわゆるIGBTなどボディダイオードが存在しない半導体スイッチング素子を採用する場合には、その半導体スイッチング素子単独で系統間SWやSMRとして用いることが可能である。なお、図1には、1セットの系統間スイッチ31a、31bや1セットの遮断スイッチ22a、22bしか図示していないが、これらのスイッチのセットを複数設けてもよい。 In the following description, one set of inter-system switches 31a and 31b and one set of cut- off switches 22a and 22b may be simply referred to as inter-system SW and system main relay (SMR). The inter-system SW and SMR are not limited to MOSFETs, and other semiconductor switching elements may be used. At this time, when a semiconductor switching element such as a so-called IGBT in which a body diode does not exist is adopted, the semiconductor switching element alone can be used as an inter-system SW or SMR. Although only one set of intersystem switches 31a and 31b and one set of cutoff switches 22a and 22b are shown in FIG. 1, a plurality of sets of these switches may be provided.
 上述した通り、冗長電源システムは、メイン電源B10およびサブ電源B20のように複数の電源を設けている。その理由は、1つの電源から電力供給できなくなった場合でも、残りの電源で電力供給可能にすることで、車載負荷が動作不能に陥ることを回避するためである。電力供給不可の具体例としては、電源自体が故障した場合や、各バスやジャンクションボックス等の電気配線経路のいずれかの箇所で地絡が生じた場合等が挙げられる。 As described above, the redundant power supply system is provided with a plurality of power supplies such as the main power supply B10 and the sub power supply B20. The reason is that even if power cannot be supplied from one power source, power can be supplied from the remaining power sources to prevent the in-vehicle load from becoming inoperable. Specific examples of the inability to supply power include the case where the power supply itself fails, the case where a ground fault occurs at any part of the electrical wiring path such as each bus or junction box, and the like.
 上記車載負荷は、先述した第1負荷L10、L11および第2負荷L20、L21に相当する。車載負荷には、一般負荷と重要負荷に分類される。これら2種類の負荷は、メイン負荷側バス10bとサブ負荷側バス20bの各々に接続されている。 The in-vehicle load corresponds to the first loads L10 and L11 and the second loads L20 and L21 described above. In-vehicle loads are classified into general loads and important loads. These two types of loads are connected to each of the main load side bus 10b and the sub load side bus 20b.
 一般負荷L10、L20は、電源失陥時に最悪動作を停止しても車両の走行には影響度の少ない負荷である。一般負荷L10、L20の具体例としては、パワーウインドウやラジエータ冷却用の電動ファン、オーディオ機器、車室内を空調する装置等が挙げられる。 The general loads L10 and L20 are loads that have little influence on the running of the vehicle even if the worst operation is stopped when the power supply fails. Specific examples of the general loads L10 and L20 include a power window, an electric fan for cooling the radiator, an audio device, a device for air-conditioning the vehicle interior, and the like.
 重要負荷L11、L21は、メイン電源B10およびサブ電源B20の一方が失陥し、かつ、系統間SWをオフ作動(遮断作動)させた時にも動作を継続させる必要のある負荷である。重要負荷L11、L21の具体例としては、走行用の駆動モータ、ブレーキ装置、パワーステアリング装置等が挙げられる。1対の重要負荷L11、L21は、完全冗長パワーステアリングのように1つのコンポーネントで冗長化しているものでも、車両前方監視を目的としたカメラと測距装置のように同等機能を持つ異なる形式の機器で実現する組み合わせでも可能である。そして、一方の重要負荷L11がメイン負荷側バス10bに接続され、他方の重要負荷L21がサブ負荷側バス20bに接続されることで、電源の冗長性が確保されている。 The important loads L11 and L21 are loads that need to be continued even when one of the main power supply B10 and the sub power supply B20 fails and the inter-system SW is turned off (cut off). Specific examples of the important loads L11 and L21 include a drive motor for traveling, a braking device, a power steering device, and the like. A pair of important loads L11 and L21 have different types of functions such as a camera and a distance measuring device for monitoring the front of a vehicle, even if they are made redundant by one component such as completely redundant power steering. It is also possible to use a combination realized by the device. Then, one important load L11 is connected to the main load side bus 10b, and the other important load L21 is connected to the sub load side bus 20b, so that the redundancy of the power supply is ensured.
 例えば、図1に示す構成において、サブ系統バス20が地絡した場合、系統間SWを導通状態から遮断状態に切り替えることにより、メイン電源B10から第1負荷L10、L11への電力供給は正常に継続することができる。これにより、例えば、第1負荷L10、L11が、車両走行に必要なコンポーネントである場合、サブ系統バス20が地絡したとしても、車両は走行を継続することが可能となる。 For example, in the configuration shown in FIG. 1, when the sub system bus 20 has a ground fault, the power supply from the main power supply B10 to the first loads L10 and L11 is normally performed by switching the inter-system SW from the conductive state to the cutoff state. You can continue. As a result, for example, when the first loads L10 and L11 are components necessary for vehicle traveling, the vehicle can continue traveling even if the sub system bus 20 has a ground fault.
 さらに冗長電源システムは、系統間SWおよびSMRの作動を制御するスイッチ制御回路(SW制御回路40)を備える。系統間SWを制御している時のSW制御回路40は「電源スイッチ制御部」に相当し、SMRを制御している時のSW制御回路40は「系統間スイッチ制御部」に相当する。 Further, the redundant power supply system includes a switch control circuit (SW control circuit 40) that controls the operation of the inter-system SW and SMR. The SW control circuit 40 when controlling the inter-system SW corresponds to the "power switch control unit", and the SW control circuit 40 when controlling the SMR corresponds to the "inter-system switch control unit".
 SW制御回路40は、系統間SWを流れる電流の大きさである系統間電流値IISOと、サブ電源B20から放電される電流の大きさである放電電流値ISMRを取得する。電流値取得の具体的な手法を説明すると、系統間バス30のうち、1セットの系統間スイッチ31a、31bの間の部分には、シャント抵抗31cが接続されている。また、サブ電源側バス20aのうち、1セットの遮断スイッチ22a、22bの間の部分には、シャント抵抗22cが接続されている。そして、SW制御回路40は、これらシャント抵抗22c、31cの両端電位を検出し、両端電位差に基づき系統間電流値IISOと放電電流値ISMRを算出する。 The SW control circuit 40 acquires the inter-system current value IISO, which is the magnitude of the current flowing through the inter-system SW, and the discharge current value ISMR, which is the magnitude of the current discharged from the sub power supply B20. Explaining a specific method for acquiring the current value, a shunt resistor 31c is connected to a portion of the inter-system bus 30 between one set of inter-system switches 31a and 31b. Further, a shunt resistor 22c is connected to a portion of the sub power supply side bus 20a between one set of cutoff switches 22a and 22b. Then, the SW control circuit 40 detects the potentials across the shunt resistors 22c and 31c, and calculates the inter-system current value IISO and the discharge current value ISMR based on the potential difference between the two ends.
 なお、系統間電流値IISOは、系統間バス30を通じてメイン系統バス10の側からサブ系統バス20の側へ電流が流れる向きを正の値として定義される。放電電流値ISMRは、サブ電源B20から放電される向きを正の値として定義される。また、遮断スイッチ22a、22bおよびシャント抵抗22cは、1つのSMR装置22としてユニット化されている。また、系統間スイッチ31a、31bおよびシャント抵抗31cは、1つの系統間装置31としてユニット化されている。 The inter-system current value IISO is defined as a positive value in the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30. The discharge current value ISMR is defined with the direction of discharge from the sub power supply B20 as a positive value. Further, the cutoff switches 22a and 22b and the shunt resistor 22c are unitized as one SMR device 22. Further, the inter-system switches 31a and 31b and the shunt resistor 31c are unitized as one inter-system device 31.
 さらに冗長電源システムは、SW制御回路40へ制御内容を指令する上位制御回路50(上位制御部)を備える。上位制御回路50は、メイン電源B10やサブ電源B20の充電状態、発電機G10の発電状態、車両走行状態、負荷が要求する電力量等に基づき、系統間SWおよびSMRの作動を指令する。SW制御回路40は、地絡等の異常が検知されていない場合には、上位制御回路50の指令に従って系統間SWおよびSMRの作動を制御(正常時制御)する。地絡異常等が検知されている場合には、上位制御回路50の指令よりも優先して、SW制御回路40は、取得した系統間電流値IISOおよび放電電流値ISMRに基づき系統間SWおよびSMRの作動を制御(異常時制御)する。 Further, the redundant power supply system includes a higher-level control circuit 50 (upper-level control unit) that commands the control content to the SW control circuit 40. The upper control circuit 50 commands the operation of the inter-system SW and SMR based on the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the vehicle running state, the amount of power required by the load, and the like. When an abnormality such as a ground fault is not detected, the SW control circuit 40 controls the operation of the inter-system SW and SMR according to the command of the host control circuit 50 (normal control). When a ground fault or the like is detected, the SW control circuit 40 gives priority to the command of the upper control circuit 50, and the SW control circuit 40 has the inter-system SW and SMR based on the acquired inter-system current value IISO and discharge current value ISMR. Controls the operation of (control in case of abnormality).
 正常時制御では、車両の起動スイッチがオン操作されるとSMRをオン作動(通電作動)させ、そのオン作動を継続させる。但し、サブ電源B20が過放電状態に陥ることを予測した場合には、SMRをオフ作動(遮断作動)させて、サブ電源B20の過放電を予防する。また、サブ電源B20が過昇温状態になっている場合には、SMRをオフ作動させて、サブ電源B20の熱損傷回避を図る。この場合、第2負荷L20、L21への電力供給は、系統間バス30を通じてメイン系統バス10から賄われる。系統間SWについての正常時制御では、メイン電源B10やサブ電源B20の充電状態、発電機G10の発電状態、負荷要求電力量等に応じてオン作動とオフ作動が切り替えられる。 In normal control, when the vehicle start switch is turned on, the SMR is turned on (energized) and the on operation is continued. However, when it is predicted that the sub-power supply B20 will fall into an over-discharged state, the SMR is turned off (cut-off operation) to prevent the sub-power supply B20 from being over-discharged. Further, when the sub power supply B20 is in an overheated state, the SMR is turned off to avoid thermal damage to the sub power supply B20. In this case, the power supply to the second loads L20 and L21 is supplied from the main system bus 10 through the intersystem bus 30. In the normal control of the inter-system SW, on operation and off operation are switched according to the charging state of the main power source B10 and the sub power source B20, the power generation state of the generator G10, the load required electric energy, and the like.
 例えば、サブ電源B20に充電させる場合には、系統間SWをオン作動させて、メイン電源B10または発電機G10からサブ電源B20へ電力供給させる。また、発電機G10で生じた回生エネルギをサブ電源B20に充電させる場合には、系統間SWをオン作動させる。また、サブ電源B20からメイン電源B10へ電力供給してメイン電源B10を充電させる場合には、系統間SWをオン作動させる。また、メイン電源B10の端子電圧(メイン電圧)がサブ電源B20の端子電圧(サブ電圧)より高くなるように系統間SWの作動を制御する。例えば、サブ電圧がメイン電圧より高くなった場合には、系統間SWをオフ作動させて、サブ電源B20に充電されないようにする。なお、正常時制御において、系統間SWを常時オン作動させておいてもよい。 For example, when charging the sub power supply B20, the inter-system SW is turned on to supply power from the main power supply B10 or the generator G10 to the sub power supply B20. Further, when the sub power source B20 is charged with the regenerative energy generated by the generator G10, the inter-system SW is turned on. Further, when power is supplied from the sub power source B20 to the main power source B10 to charge the main power source B10, the inter-system SW is turned on. Further, the operation of the inter-system SW is controlled so that the terminal voltage (main voltage) of the main power supply B10 becomes higher than the terminal voltage (sub-voltage) of the sub power supply B20. For example, when the sub voltage becomes higher than the main voltage, the inter-system SW is turned off so that the sub power supply B20 is not charged. In normal control, the inter-system SW may be always on.
 なお、SW制御回路40および上位制御回路50は、例えば、ソフトウエアを非一時的に記録した非遷移的かつ実体的な記憶媒体としてのメモリ、ソフトウエアを実行するプロセッサ、および入出力インターフェースなどを備えたマイクロコンピュータによって構成することができる。或いは、これらの制御回路は、専用ハードウエア論理回路により実現されてもよいし、プロセッサと一つ以上のハードウエア論理回路との組み合わせにより実現されてもよい。上位制御回路50は、SW制御回路40を有する制御ユニット(ECU)とは別のECUに設けられていてもよいし、共通のECUに設けられていてもよい。 The SW control circuit 40 and the upper control circuit 50 include, for example, a memory as a non-transitional and substantive storage medium in which software is temporarily recorded, a processor that executes the software, an input / output interface, and the like. It can be configured by a equipped microcomputer. Alternatively, these control circuits may be realized by a dedicated hardware logic circuit, or may be realized by a combination of a processor and one or more hardware logic circuits. The upper control circuit 50 may be provided in an ECU different from the control unit (ECU) having the SW control circuit 40, or may be provided in a common ECU.
 次に、図2および図3を用いて、SW制御回路40が実行する異常時制御について説明する。 Next, the abnormal time control executed by the SW control circuit 40 will be described with reference to FIGS. 2 and 3.
 正常時制御においてSMRとともに系統間SWがオン作動している時に、図2に例示されるようにサブ負荷側バス20bで地絡が生じた場合、その地絡発生の瞬間には、地絡箇所へ大量の電流が流れ込む。すなわち、メイン電源側バス10a、系統間バス30およびサブ負荷側バス20bを通じて、メイン電源B10から地絡箇所へ大電流が流れ込む。その結果、メイン系統バス10の電圧が大幅に低下し、第1負荷の作動不良発生が懸念される。また、サブ系統バス20を通じて、サブ電源B20から地絡箇所へ大電流が流れ込む。その結果、サブ系統バス20の電圧が大幅に低下し、第2負荷の作動不良発生が懸念される。 If a ground fault occurs in the sub-load side bus 20b as illustrated in FIG. 2 when the inter-system SW is on-operated together with the SMR in normal control, the ground fault location at the moment of the ground fault occurrence A large amount of current flows into. That is, a large current flows from the main power supply B10 to the ground fault portion through the main power supply side bus 10a, the inter-system bus 30 and the subload side bus 20b. As a result, the voltage of the main system bus 10 drops significantly, and there is a concern that the first load may malfunction. Further, a large current flows from the sub power supply B20 to the ground fault portion through the sub system bus 20. As a result, the voltage of the sub system bus 20 drops significantly, and there is a concern that the second load may malfunction.
 また、このように大電流が流れ込む状況を放置しておくと、上述の如く大幅な電圧低下を招くとともに、メイン電源B10が過放電状態に陥り、メイン電源B10から第1負荷L10、L11への電力供給ができなくなってしまう。そこで、異常時制御では、このようなサブ系統バス20での地絡発生が検知された場合に、系統間SWをオフ作動させている。これにより、メイン系統バス10およびサブ系統バス20の両方ともが異常低電圧状態に陥ることを回避させている。なお、SMRについては、本実施形態では地絡発生が検知された場合であってもオン作動を継続させている。サブ電源B20が過放電状態に陥るまでの期間に、サブ電源B20から第2負荷L20、L21への電力供給を継続させるためである。但し、サブ電源B20が過放電状態に陥ることを回避させるべく、地絡発生が検知されると直ぐにSMRをオフ作動させるようにしてもよい。 Further, if the situation in which a large current flows in such a state is left unattended, the voltage drops significantly as described above, and the main power supply B10 falls into an over-discharged state, so that the main power supply B10 is transferred to the first loads L10 and L11. Power cannot be supplied. Therefore, in the abnormal time control, when such a ground fault occurrence in the sub system bus 20 is detected, the inter-system SW is turned off. As a result, both the main system bus 10 and the sub system bus 20 are prevented from falling into an abnormally low voltage state. Regarding SMR, in the present embodiment, the ON operation is continued even when the occurrence of a ground fault is detected. This is to continue the power supply from the sub power supply B20 to the second loads L20 and L21 during the period until the sub power supply B20 falls into the over-discharged state. However, in order to prevent the sub power supply B20 from falling into an over-discharged state, the SMR may be turned off as soon as the occurrence of a ground fault is detected.
 次に、図3を用いて、SW制御回路40が実行する異常時制御の処理手順について説明する。本処理は、SW制御回路40の起動とともに実行を開始し、所定周期で繰り返し実行される。 Next, the processing procedure of the abnormal state control executed by the SW control circuit 40 will be described with reference to FIG. This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle.
 先ずステップS10では、上位制御回路50の指令に従って系統間SWとSMRの作動を制御する。図3に示す例では、SMRと系統間SWをオン作動(通電)させている。続くステップS20では、シャント抵抗22cの両端電位差に基づき放電電流値ISMRを検出(取得)する。続くステップS30では、ステップS20で検出した放電電流値ISMRが、予め設定された過放電閾値Ithより大きいか否かを判定する。 First, in step S10, the operation of the inter-system SW and SMR is controlled according to the command of the host control circuit 50. In the example shown in FIG. 3, the SMR and the system-to-system SW are turned on (energized). In the following step S20, the discharge current value ISMR is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c. In the following step S30, it is determined whether or not the discharge current value ISMR detected in step S20 is larger than the preset over-discharge threshold value Is.
 放電電流値ISMRが過放電閾値Ithより大きいと判定された場合には、地絡異常が生じているとみなして、続くステップS40にて系統間SWをオフ作動(遮断)させる。ステップS40では、上位制御回路50からの指令内容に拘らず、系統間SWをオフ作動させる。上述した「地絡異常」は、図2に示すようなサブ系統バス20での地絡に限るものではない。例えば、メイン系統バス10での地絡や、JB11、21での地絡、メイン電源B10での地絡が生じた場合にも、放電電流値ISMRが過放電閾値Ithより大きくなる。これらの地絡によっても「地絡異常」になり得る。 When it is determined that the discharge current value ISMR is larger than the over-discharge threshold value Is, it is considered that a ground fault has occurred, and the inter-system SW is turned off (cut off) in the following step S40. In step S40, the inter-system SW is turned off regardless of the content of the command from the host control circuit 50. The above-mentioned "ground fault abnormality" is not limited to the ground fault in the sub system bus 20 as shown in FIG. For example, when a ground fault occurs in the main system bus 10, a ground fault in the JBs 11 and 21, and a ground fault in the main power supply B10, the discharge current value ISMR becomes larger than the over-discharge threshold value Is. These ground faults can also cause "ground fault abnormalities".
 ステップS40を実行した場合、リセット信号等のトリガがない限り、上位制御回路50からの指令内容に拘らず、系統間SWの遮断をラッチさせる。つまり、上位制御回路50からの指令で通電させることがないように、SW制御回路40は系統間SWの遮断を継続させる。 When step S40 is executed, unless there is a trigger such as a reset signal, the interruption of the inter-system SW is latched regardless of the command content from the host control circuit 50. That is, the SW control circuit 40 continues to cut off the SW between the systems so that the power is not supplied by the command from the host control circuit 50.
 なお、ステップS30の判定に用いる過放電閾値Ithは、プラスの値に設定されている。したがって、サブ電源B20の充電時には、放電電流値ISMRはマイナスの値になるため、ステップS30で地絡異常と判定されることはない。 The over-discharge threshold value Is used for the determination in step S30 is set to a positive value. Therefore, when the sub power source B20 is charged, the discharge current value ISMR becomes a negative value, so that it is not determined as a ground fault abnormality in step S30.
 以上により、本実施形態に係る通電制御装置Dは、系統間SWおよびSW制御回路40(系統間スイッチ制御部)を備える。そして、SW制御回路40は、サブ電源B20から放電される電流の大きさである放電電流値ISMRを取得する。そして、取得した放電電流値ISMRが過放電閾値Ithを超えて上昇した場合に、地絡異常が生じているとみなして系統間SWを遮断状態に制御する。 As described above, the energization control device D according to the present embodiment includes an inter-system SW and a SW control circuit 40 (inter-system switch control unit). Then, the SW control circuit 40 acquires the discharge current value ISMR, which is the magnitude of the current discharged from the sub power supply B20. Then, when the acquired discharge current value ISMR rises beyond the over-discharge threshold value Is, it is considered that a ground fault has occurred and the inter-system SW is controlled to the cutoff state.
 これによれば、地絡異常の検知に用いられる電流に、サブ電源B20から放電される電流の大きさ(放電電流値ISMR)が用いられる。この放電電流値ISMRは、メイン電源B10や発電機G10からサブ電源B20に電力供給してサブ電源B20を充電させたい場合には、マイナスの値になる。よって、サブ電源B20の充電時には、放電電流値ISMRが過放電閾値Ithを超えることはない。 According to this, the magnitude of the current discharged from the sub power supply B20 (discharge current value ISMR) is used as the current used for detecting the ground fault abnormality. This discharge current value ISMR becomes a negative value when it is desired to supply power from the main power source B10 or the generator G10 to the sub power source B20 to charge the sub power source B20. Therefore, when the sub power source B20 is charged, the discharge current value ISMR does not exceed the over-discharge threshold value Is.
 一方、サブ電源B20から第2負荷L20、L21へ電力供給する場合にはプラスの値になる。よって、サブ負荷側バス20bで地絡が生じた場合には、放電電流値ISMRが上昇して過放電閾値Ithを超えることが見込まれる。したがって、本実施形態に係る通電制御装置によれば、第2電源への充電時と地絡時とで、地絡異常の検知に用いられる電流の向きが異なるようになる。よって、サブ電源B20への充電に伴い系統間電流値IISOが過放電閾値Ithを超えるほどに増大したとしても、地絡と誤検知する懸念を低減できる。 On the other hand, when power is supplied from the sub power supply B20 to the second loads L20 and L21, the value becomes a positive value. Therefore, when a ground fault occurs in the sub-load side bus 20b, it is expected that the discharge current value ISMR rises and exceeds the over-discharge threshold value Is. Therefore, according to the energization control device according to the present embodiment, the direction of the current used for detecting the ground fault abnormality is different between the time of charging the second power source and the time of the ground fault. Therefore, even if the inter-system current value IISO increases to the extent that it exceeds the over-discharge threshold value Is as the sub-power supply B20 is charged, the concern that it may be erroneously detected as a ground fault can be reduced.
 なお、本実施形態によれば、系統間SWの通電時に以下の故障が生じた場合においても、図3のステップS30にて地絡異常とみなされて、系統間SWが遮断される。すなわち、メイン系統バス10や系統間バス30での地絡故障、メイン電源B10や発電機G10の故障、第1負荷L10、L11および第2負荷L20、L21の地絡故障等である。 According to the present embodiment, even if the following failure occurs when the inter-system SW is energized, it is regarded as a ground fault abnormality in step S30 of FIG. 3, and the inter-system SW is cut off. That is, a ground fault in the main system bus 10 and the inter-system bus 30, a failure in the main power supply B10 and the generator G10, a ground fault in the first loads L10 and L11 and the second loads L20 and L21, and the like.
 ここで、冗長電源システムが実際の車両に搭載された状態では、メイン系統バス10、サブ系統バス20および系統間バス30は所定の物理的長さを持つ。そのため、これらのバスは、寄生的なインダクタンス成分である等価直列インダクタンス(ESL)を有していると言える。図1および図2では、メイン側系統間バス30aに係るインダクタンスL1、およびサブ側系統間バス30bに係るインダクタンスL2が示されている。 Here, in a state where the redundant power supply system is mounted on an actual vehicle, the main system bus 10, the sub system bus 20, and the inter-system bus 30 have a predetermined physical length. Therefore, it can be said that these buses have equivalent series inductance (ESL) which is a parasitic inductance component. In FIGS. 1 and 2, the inductance L1 related to the main side intersystem bus 30a and the inductance L2 related to the sub side intersystem bus 30b are shown.
 上記インダクタンスL1、L2が存在することに起因して、図2に示すようにサブ系統バス20で地絡が生じた場合には、系統間電流値IISOは迅速に上昇しない。そのため、本実施形態に反して系統間電流値IISOが過放電閾値Ithを超えた場合に地絡発生(地絡異常)と判定しようとすると、地絡検知が遅くなる。つまり、地絡発生時点から、系統間電流値IISOが上昇して過放電閾値Ithに達する時点までの検知時間が長くなり、検知応答性が悪い。一方、サブ電源B20での地絡発生時の放電電流値ISMRは、インダクタンスL1、L2の影響を大きく受けることなく迅速に上昇する。よって、地絡検知に放電電流値ISMRを用いた本実施形態によれば、系統間電流値IISOを用いた場合に比べて、サブ電源B20で生じた地絡を迅速に検知できる。なお、地絡を迅速に検知できれば、系統間SWを迅速に遮断することができる。そのため、メイン系統バス10およびサブ系統バス20の両方ともが大きく電圧低下するといった状況を、迅速に回避できる。つまり、第1負荷および第2負荷の両方ともが作動不良に陥る懸念を抑制できる。 When a ground fault occurs in the sub system bus 20 as shown in FIG. 2 due to the presence of the above inductances L1 and L2, the inter-system current value IISO does not rise rapidly. Therefore, contrary to the present embodiment, if it is attempted to determine that a ground fault has occurred (ground fault abnormality) when the inter-system current value IISO exceeds the over-discharge threshold value Is, ground fault detection is delayed. That is, the detection time from the time when the ground fault occurs to the time when the inter-system current value IISO rises and reaches the over-discharge threshold value Is becomes long, and the detection responsiveness is poor. On the other hand, the discharge current value ISMR when a ground fault occurs in the sub power supply B20 rises rapidly without being significantly affected by the inductances L1 and L2. Therefore, according to the present embodiment in which the discharge current value ISMR is used for ground fault detection, the ground fault generated in the sub power supply B20 can be detected more quickly than in the case where the inter-system current value IISO is used. If the ground fault can be detected quickly, the inter-system SW can be quickly shut off. Therefore, it is possible to quickly avoid a situation in which the voltage of both the main system bus 10 and the sub system bus 20 drops significantly. That is, it is possible to suppress the concern that both the first load and the second load will malfunction.
 (第2実施形態)
 上記第1実施形態では、地絡異常の判定に用いる過放電閾値Ithは、固定値に設定されている。これに対し本実施形態では、過放電閾値Ithは、系統間電流値IISOに応じて可変設定されている。具体的には、系統間電流値IISOが所定閾値IthISOより小さい場合に、過放電閾値Ithは小さい値に変更される。このような可変設定による技術的意義について、以下に詳述する。
(Second Embodiment)
In the first embodiment, the over-discharge threshold value Is used for determining the ground fault abnormality is set to a fixed value. On the other hand, in the present embodiment, the over-discharge threshold value Is is variably set according to the inter-system current value IISO. Specifically, when the inter-system current value IISO is smaller than the predetermined threshold value IsISO, the over-discharge threshold value Is is changed to a smaller value. The technical significance of such variable settings will be described in detail below.
 図4に示すようにメイン系統バス10で地絡が生じた場合には、先述したインダクタンスL1、L2の存在に起因して、地絡検知が遅くなる。つまり、地絡発生時点から、放電電流値ISMRが上昇して過放電閾値Ithに達する時点までの検知時間が長くなり、検知応答性が悪くなることが懸念される。 When a ground fault occurs in the main system bus 10 as shown in FIG. 4, the ground fault detection is delayed due to the existence of the above-mentioned inductances L1 and L2. That is, there is a concern that the detection time from the time when the ground fault occurs to the time when the discharge current value ISMR rises and reaches the over-discharge threshold value Is becomes long, and the detection responsiveness deteriorates.
 先述した通り、系統間電流値IISOは、系統間バス30を通じてメイン系統バス10の側からサブ系統バス20の側へ電流が流れる向きを正とした値に定義されている。そして、メイン系統バス10で地絡が生じた場合、その地絡箇所へ大電流が流れ込むことに起因して、系統間電流値IISOが小さくなる。具体的には、メイン系統バス10からサブ系統バス20へ電流が流れている時に地絡が発生した場合、その電流の流れる向きはそのままで電流が少なくなったり、電流の流れる向きが変わったりする。また、サブ系統バス20からメイン系統バス10へ電流が流れている時に地絡が発生した場合、その電流量は多くなる。 As described above, the inter-system current value IISO is defined as a value in which the direction in which the current flows from the side of the main system bus 10 to the side of the sub-system bus 20 through the inter-system bus 30 is positive. Then, when a ground fault occurs in the main system bus 10, the inter-system current value IISO becomes small due to the large current flowing into the ground fault location. Specifically, if a ground fault occurs when a current is flowing from the main system bus 10 to the sub system bus 20, the current flow direction remains the same, the current decreases, or the current flow direction changes. .. Further, if a ground fault occurs while a current is flowing from the sub system bus 20 to the main system bus 10, the amount of the current increases.
 この点に着目し、本実施形態では、図3の処理を図5の処理に変更している。先ず、図5のステップS10では、上位制御回路50の指令に従って系統間SWの作動を制御する。図5に示す例では、系統間SWをオン作動(通電)させている。続くステップS21では、シャント抵抗31cの両端電位差に基づき系統間電流値IISOを検出(取得)する。続くステップS22では、シャント抵抗22cの両端電位差に基づき放電電流値ISMRを検出(取得)する。 Focusing on this point, in this embodiment, the process of FIG. 3 is changed to the process of FIG. First, in step S10 of FIG. 5, the operation of the inter-system SW is controlled according to the command of the host control circuit 50. In the example shown in FIG. 5, the inter-system SW is turned on (energized). In the following step S21, the inter-system current value IISO is detected (acquired) based on the potential difference between both ends of the shunt resistor 31c. In the following step S22, the discharge current value ISMR is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c.
 続くステップS31では、ステップS21で検出した系統間電流値IISOが、予め設定された所定閾値IthISOよりも小さいか否かを判定する。本実施形態では、所定閾値IthISOは正の値に設定されているが、負の値に設定されていてもよい。 In the following step S31, it is determined whether or not the inter-system current value IISO detected in step S21 is smaller than the preset predetermined threshold value IsISO. In the present embodiment, the predetermined threshold value IsISO is set to a positive value, but may be set to a negative value.
 系統間電流値IISOが所定閾値IthISO以上であると判定された場合には、過放電閾値IthHを、図3のステップS30に係る過放電閾値Ithと同じ値に設定する。そして、続くステップS32において、ステップS22で検出した放電電流値ISMRが、過放電閾値IthHより大きいか否かを判定する。 When it is determined that the inter-system current value IISO is equal to or higher than the predetermined threshold value IsISO, the over-discharge threshold value IsH is set to the same value as the over-discharge threshold value Is according to step S30 in FIG. Then, in the following step S32, it is determined whether or not the discharge current value ISMR detected in step S22 is larger than the over-discharge threshold value IsH.
 一方、系統間電流値IISOが所定閾値IthISO未満であると判定された場合には、過放電閾値IthLを、過放電閾値IthHよりも小さい値に設定する。つまり、過放電検知の感度を高くする。そして、続くステップS33において、ステップS22で検出した放電電流値ISMRが、過放電閾値IthLより大きいか否かを判定する。 On the other hand, when it is determined that the inter-system current value IISO is less than the predetermined threshold value IsISO, the over-discharge threshold value IsL is set to a value smaller than the over-discharge threshold value IsH. That is, the sensitivity of over-discharge detection is increased. Then, in the following step S33, it is determined whether or not the discharge current value ISMR detected in step S22 is larger than the over-discharge threshold value IsL.
 ステップS32、S33のいずれかにおいて、放電電流値ISMRが過放電閾値よりも大きいと判定された場合、続くステップS40にて系統間SWをオフ作動させる。この処理は、図3のステップS40と同じである。 If it is determined in any of steps S32 and S33 that the discharge current value ISMR is larger than the over-discharge threshold value, the inter-system SW is turned off in the following step S40. This process is the same as step S40 in FIG.
 以上により、本実施形態に係る通電制御装置Dは、系統間電流値IISOが所定閾値IthISOより小さい場合に過放電閾値を小さい値に変更する閾値変更部を備える。閾値変更部は、ステップS31の処理を実行している時のSW制御回路40に相当する。したがって、メイン系統バス10で地絡が生じた場合には、系統間電流値IISOが所定閾値IthISOより小さくなり、過放電閾値Ithが小さい値に変更される。つまり、過放電検知の感度を上げるように過放電閾値Ithが変更される。そのため、インダクタンスL1、L2の影響で放電電流値ISMRが迅速に上昇しない場合であっても、感度を上げているため、地絡検知が遅くなることを抑制できる。 As described above, the energization control device D according to the present embodiment includes a threshold value changing unit that changes the over-discharge threshold value to a smaller value when the inter-system current value IISO is smaller than the predetermined threshold value Iso. The threshold value changing unit corresponds to the SW control circuit 40 when the process of step S31 is being executed. Therefore, when a ground fault occurs in the main system bus 10, the inter-system current value IISO becomes smaller than the predetermined threshold value IsISO, and the over-discharge threshold value Is is changed to a smaller value. That is, the over-discharge threshold value Is is changed so as to increase the sensitivity of over-discharge detection. Therefore, even when the discharge current value ISMR does not rise rapidly due to the influence of the inductances L1 and L2, the sensitivity is increased, so that it is possible to suppress the delay in ground fault detection.
 (第3実施形態)
 図6に示す本実施形態では、系統間電流値IISOに応じて過放電閾値Ithを可変設定するにあたり、図5に示す判定順序を以下のように変形させている。すなわち、ステップS21、S22で系統間電流値IISOおよび放電電流値ISMRを検出した後、先ずはステップS30で放電電流値ISMRについて判定する。そして、放電電流値ISMRが過放電閾値Ithより大きいと判定された場合には、図3と同様にしてステップS40にて系統間SWを遮断する。一方、放電電流値ISMRが過放電閾値Ith未満と判定された場合には、ステップS31において、系統間電流値IISOについて判定する。そして、系統間電流値IISOが所定閾値IthISOより小さいと判定された場合にも、ステップS40にて系統間SWを遮断する。
(Third Embodiment)
In the present embodiment shown in FIG. 6, the determination order shown in FIG. 5 is modified as follows when the over-discharge threshold value Is is variably set according to the inter-system current value IISO. That is, after detecting the inter-system current value IISO and the discharge current value ISMR in steps S21 and S22, first, the discharge current value ISMR is determined in step S30. Then, when it is determined that the discharge current value ISMR is larger than the over-discharge threshold value Is, the inter-system SW is shut off in step S40 in the same manner as in FIG. On the other hand, when the discharge current value ISMR is determined to be less than the over-discharge threshold value Is, the inter-system current value IISO is determined in step S31. Then, even when it is determined that the inter-system current value IISO is smaller than the predetermined threshold value Iso, the inter-system SW is shut off in step S40.
 以上により、本実施形態によれば、SW制御回路40は、放電電流値ISMRが過放電閾値Ithを超えていない場合であっても、系統間電流値IISOが所定閾値IthISOより小さい場合には、地絡異常が生じているとみなし、系統間スイッチを遮断する。したがって、インダクタンスL1、L2の影響で放電電流値ISMRが迅速に上昇しない場合には、系統間電流値IISOを用いて地絡検知することになる。メイン系統バス10で地絡が生じた場合には、インダクタンスL2の分だけ、放電電流値ISMRよりも系統間電流値IISOの方が、高感度で変化する。よって、本実施形態によっても、地絡検知が遅くなることを抑制できる。 Based on the above, according to the present embodiment, the SW control circuit 40 can be used even when the discharge current value ISMR does not exceed the over-discharge threshold value Is when the inter-system current value IISO is smaller than the predetermined threshold value Is ISO. It is considered that a ground fault has occurred, and the inter-system switch is shut off. Therefore, if the discharge current value ISMR does not rise rapidly due to the influence of the inductances L1 and L2, the ground fault is detected using the inter-system current value IISO. When a ground fault occurs in the main system bus 10, the inter-system current value IISO changes with higher sensitivity than the discharge current value ISMR by the amount of the inductance L2. Therefore, even with this embodiment, it is possible to suppress the delay in ground fault detection.
 (第4実施形態)
 本実施形態では、サブ系統バス20で地絡が発生した場合に、系統間SWを遮断ラッチすることに加え、SMRも遮断ラッチさせている(図7、図8参照)。図8に記載のステップS10~S33の処理は、図5と同じである。
(Fourth Embodiment)
In the present embodiment, when a ground fault occurs in the sub system bus 20, in addition to the inter-system SW shut-off latch, the SMR is also cut-off latched (see FIGS. 7 and 8). The processing of steps S10 to S33 described in FIG. 8 is the same as that in FIG.
 図8のステップS32にて放電電流値ISMRが過放電閾値IthHよりも大きいと判定された場合、地絡箇所がサブ系統バス20であるとみなす。そして、続くステップS41において、上位制御回路50の指令よりも優先して系統間SWとSMRの両方を遮断ラッチさせる。また、ステップS41では、系統間SWとSMRの遮断タイミングが同時になるように、SW制御回路40は遮断制御する。 When it is determined in step S32 of FIG. 8 that the discharge current value ISMR is larger than the over-discharge threshold value IsH, the ground fault location is considered to be the sub system bus 20. Then, in the following step S41, both the inter-system SW and the SMR are cut off and latched in preference to the command of the upper control circuit 50. Further, in step S41, the SW control circuit 40 performs cutoff control so that the cutoff timings of the inter-system SW and SMR are simultaneous.
 図8のステップS33にて放電電流値ISMRが過放電閾値IthLよりも大きいと判定された場合、地絡箇所がメイン系統バス10であるとみなす。そして、続くステップS42において、上位制御回路50の指令よりも優先して系統間SWを遮断ラッチさせ、SMRについては上位制御回路50の指令に従って制御する。 If it is determined in step S33 of FIG. 8 that the discharge current value ISMR is larger than the over-discharge threshold value IsL, the ground fault location is considered to be the main system bus 10. Then, in the following step S42, the inter-system SW is cut off and latched prior to the command of the upper control circuit 50, and the SMR is controlled according to the command of the upper control circuit 50.
 本実施形態によれば、サブ系統バス20で地絡が発生した場合に、系統間SWを遮断することに加え、SMRも遮断させる。よって、サブ電源B20が過放電に陥ることを抑制できる。 According to this embodiment, when a ground fault occurs in the sub system bus 20, in addition to blocking the inter-system SW, the SMR is also blocked. Therefore, it is possible to prevent the sub power supply B20 from falling into over-discharging.
 さらに本実施形態では、系統間SWとSMRの遮断タイミングが同時になるように、SW制御回路40は遮断制御する。ここで、系統間SWに遅れてSMRを遮断させると、SMRには系統間SWよりも大きい大電流が流れる。そうすると、遮断耐量の大きいSMRを選定せざるを得なくなる。この点を鑑み、系統間SWとSMRの遮断タイミングを同時にしている本実施形態によれば、SMRに要求される遮断耐量を小さくできる。 Further, in the present embodiment, the SW control circuit 40 is cut-off controlled so that the cut-off timings of the inter-system SW and the SMR are simultaneous. Here, if the SMR is interrupted after the inter-system SW, a large current larger than that of the inter-system SW flows through the SMR. Then, an SMR having a large breaking resistance must be selected. In view of this point, according to the present embodiment in which the inter-system SW and the SMR are cut off at the same time, the cut-off withstand capacity required for the SMR can be reduced.
 さらに本実施形態では、ステップS32にて放電電流値ISMRが過放電閾値IthHよりも大きいと判定された場合、地絡箇所がサブ系統バス20であるとみなす。また、ステップS33にて放電電流値ISMRが過放電閾値IthLよりも大きいと判定された場合、地絡箇所がメイン系統バス10であるとみなす。これらステップS32、S33の処理を実行している時のSW制御回路40は「地絡判別部」に相当する。地絡判別部は、系統間バス30に対してメイン系統バス10およびサブ系統バス20のいずれの側で地絡が生じているかを判別する。 Further, in the present embodiment, when the discharge current value ISMR is determined to be larger than the over-discharge threshold value IsH in step S32, the ground fault portion is regarded as the sub system bus 20. Further, when it is determined in step S33 that the discharge current value ISMR is larger than the over-discharge threshold value IsL, the ground fault location is considered to be the main system bus 10. The SW control circuit 40 when the processes of steps S32 and S33 are being executed corresponds to the "ground fault determination unit". The ground fault discriminating unit determines on which side of the main system bus 10 or the sub system bus 20 the ground fault has occurred with respect to the intersystem bus 30.
 具体的には、放電電流値ISMRが過放電閾値Ithより大きく、かつ、系統間電流値IISOが判別閾値より小さい場合に、メイン系統バス10側での地絡と判別する。また、放電電流値ISMRが過放電閾値Ithより大きく、かつ、系統間電流値IISOが判別閾値以上である場合にはサブ系統バス20の側で地絡が生じていると判別する。判別閾値は、先述した所定閾値IthISOと同じ値に設定されている。 Specifically, when the discharge current value ISMR is larger than the over-discharge threshold value Is and the inter-system current value IISO is smaller than the discrimination threshold value, it is determined to be a ground fault on the main system bus 10 side. Further, when the discharge current value ISMR is larger than the over-discharge threshold value Is and the inter-system current value IISO is equal to or higher than the discrimination threshold value, it is determined that a ground fault has occurred on the sub-system bus 20 side. The discrimination threshold is set to the same value as the predetermined threshold ISO ISO described above.
 本実施形態に係る通電制御装置Dは、地絡判別部を備え、その判別結果に応じて系統間SWとSMRの作動を異ならせる。よって、系統間SWとSMRの作動状態を、地絡箇所に応じた最適な状態にできる。なお、ステップS32、S33により地絡判別することに替えて、図6のステップS30、S31により地絡判別してもよい。この場合、ステップS30にて地絡異常と判定された場合にはサブ系統バス20での地絡と判別する。また、ステップS31にて地絡異常と判定された場合にはメイン系統バス10での地絡と判別する。 The energization control device D according to the present embodiment includes a ground fault discriminating unit, and operates the inter-system SW and SMR differently according to the discriminating result. Therefore, the operating state of the inter-system SW and SMR can be set to the optimum state according to the ground fault location. Instead of determining the ground fault in steps S32 and S33, the ground fault may be determined in steps S30 and S31 of FIG. In this case, if it is determined that the ground fault is abnormal in step S30, it is determined that the ground fault is on the sub system bus 20. If it is determined in step S31 that the ground fault is abnormal, it is determined to be a ground fault on the main system bus 10.
 さらに本実施形態では、SW制御回路40は、地絡異常が生じている場合には、上位制御回路50の指令内容に拘らず、系統間SWを遮断状態に制御する。そのため、地絡異常の状態で、上位制御回路50の指令により系統間SWを通電作動させることを回避できる。よって、メイン電源B10やサブ電源B20から地絡箇所へ大電流が流れ続けることの回避確実性を向上できる。 Further, in the present embodiment, when a ground fault has occurred, the SW control circuit 40 controls the inter-system SW in a cutoff state regardless of the command content of the upper control circuit 50. Therefore, it is possible to avoid energizing the inter-system SW by the command of the upper control circuit 50 in the state of the ground fault abnormality. Therefore, it is possible to improve the certainty of avoiding that a large current continues to flow from the main power supply B10 or the sub power supply B20 to the ground fault location.
 さらに本実施形態では、SW制御回路40は、地絡異常が生じている場合には、上位制御回路50の指令内容に拘らず、地絡発生箇所に応じてSMRの作動を制御する。そのため、サブ電源B20から第2負荷L20へ電力供給させる機会を多くできる。 Further, in the present embodiment, when a ground fault has occurred, the SW control circuit 40 controls the operation of the SMR according to the location where the ground fault occurs, regardless of the command content of the upper control circuit 50. Therefore, there are many opportunities to supply power from the sub power source B20 to the second load L20.
 (第5実施形態)
 本実施形態では、メイン系統バス10で地絡が発生した場合に、系統間SWを遮断することに加え、SMRを通電ラッチさせている(図9、図10参照)。図10の処理は、図8の処理にステップS42Aの処理を追加したものである。
(Fifth Embodiment)
In the present embodiment, when a ground fault occurs in the main system bus 10, in addition to shutting off the inter-system SW, the SMR is energized and latched (see FIGS. 9 and 10). The process of FIG. 10 is obtained by adding the process of step S42A to the process of FIG.
 図10のステップS33にて放電電流値ISMRが過放電閾値IthLよりも大きいと判定された場合、地絡箇所がメイン系統バス10であるとみなす。そして、続くステップS42Aにおいて、上位制御回路50の指令よりも優先してSMRを通電ラッチさせる。続くステップS42では、上位制御回路50の指令よりも優先して系統間SWを遮断ラッチさせる。 When it is determined in step S33 of FIG. 10 that the discharge current value ISMR is larger than the over-discharge threshold value IsL, the ground fault location is considered to be the main system bus 10. Then, in the subsequent step S42A, the SMR is energized and latched in preference to the command of the upper control circuit 50. In the following step S42, the inter-system SW is cut off and latched in preference to the command of the upper control circuit 50.
 本実施形態によれば、メイン系統バス10で地絡が発生した場合に、系統間SWを遮断することに加え、SMRを通電させる。そのため、地絡発生して系統間SWを遮断していても、第2負荷L20、L21への電力供給を継続させることができる。 According to this embodiment, when a ground fault occurs in the main system bus 10, in addition to shutting off the inter-system SW, the SMR is energized. Therefore, even if a ground fault occurs and the inter-system SW is cut off, the power supply to the second loads L20 and L21 can be continued.
 (第6実施形態)
 本実施形態では、地絡が検知されたことに伴い系統間SWを遮断させている場合に、このように異常が発生している旨を、SW制御回路40が上位制御回路50に通知する。本実施形態に係る図11の処理は、図10の処理にステップS50の処理を追加したものである。なお、図10中の点線に示すステップS60は、上位制御回路50による処理内容を示す。
(Sixth Embodiment)
In the present embodiment, when the inter-system SW is shut off due to the detection of a ground fault, the SW control circuit 40 notifies the host control circuit 50 that such an abnormality has occurred. The process of FIG. 11 according to the present embodiment is obtained by adding the process of step S50 to the process of FIG. The step S60 shown by the dotted line in FIG. 10 shows the processing contents by the upper control circuit 50.
 図11に示すステップS50では、地絡等による異常が発生している旨を、上位制御回路50へ通知する。また、メイン系統バス10およびサブ系統バス20のいずれで地絡が生じているかについての判別結果も、SW制御回路40は上位制御回路50へ通知する。ステップS50の処理を実行している時のSW制御回路40は「異常通知部」に相当する。 In step S50 shown in FIG. 11, the host control circuit 50 is notified that an abnormality due to a ground fault or the like has occurred. Further, the SW control circuit 40 also notifies the upper control circuit 50 of the determination result as to which of the main system bus 10 and the sub system bus 20 has a ground fault. The SW control circuit 40 when the process of step S50 is being executed corresponds to the "abnormality notification unit".
 ステップS60では、上位制御回路50は、SMRを遮断させる指令の出力を禁止させたり、該出力を防止する措置を講じたりする。例えば、先述した正常時制御に、サブ電源B20が高温になるとSMRを遮断させてサブ電源B20が損傷することを防止する制御が含まれている場合がある。この場合であっても、ステップS50での異常通知を受信した場合には、上位制御回路50は、SMRを遮断させる指令をしないようにする。つまり、サブ電源B20の損傷よりも、第2負荷L20への電力供給を優先させる。 In step S60, the host control circuit 50 prohibits the output of a command that shuts off the SMR, or takes measures to prevent the output. For example, the above-mentioned normal control may include a control that shuts off the SMR when the sub power supply B20 becomes hot to prevent the sub power supply B20 from being damaged. Even in this case, when the abnormality notification in step S50 is received, the host control circuit 50 does not give a command to shut off the SMR. That is, the power supply to the second load L20 is prioritized over the damage of the sub power supply B20.
 以上により、本実施形態によれば、通電制御装置Dは異常通知部を備える。異常通知部は、地絡異常が生じたことに起因して指令内容が無効にされている場合に、その旨を上位制御回路50へ通知する。そのため、地絡が発生している状況下で、系統間SWを遮断させることの確実性を向上できる。また、メイン系統バス10での地絡発生時に第2負荷L20へ電力供給することの確実性を向上できる。 From the above, according to the present embodiment, the energization control device D includes an abnormality notification unit. When the command content is invalidated due to the occurrence of a ground fault abnormality, the abnormality notification unit notifies the host control circuit 50 to that effect. Therefore, it is possible to improve the certainty of shutting off the SW between systems in a situation where a ground fault has occurred. Further, it is possible to improve the certainty of supplying electric power to the second load L20 when a ground fault occurs in the main system bus 10.
 (第7実施形態)
 本実施形態に係る通電制御装置Dは、サブ電源B20とサブ系統バス20との通電を遮断する、SMRとは別の遮断スイッチを備える。遮断スイッチは、SW制御回路40の指令内容に拘らず遮断作動可能に構成されている。
(7th Embodiment)
The energization control device D according to the present embodiment includes a cutoff switch different from the SMR that cuts off the power supply between the sub power supply B20 and the sub system bus 20. The cutoff switch is configured so that the cutoff operation can be performed regardless of the command content of the SW control circuit 40.
 図12に示す例では、遮断スイッチとしてヒューズ23を用いているが、ヒューズ23に代えてリレーを用いてもよい。リレーを用いた場合、SW制御回路40以外の制御回路、例えば上位制御回路50等が、リレーの開閉作動を制御する。遮断スイッチは、サブ系統バス20のうちサブ電源B20とグランドの間に設けられている。 In the example shown in FIG. 12, the fuse 23 is used as the cutoff switch, but a relay may be used instead of the fuse 23. When a relay is used, a control circuit other than the SW control circuit 40, for example, a host control circuit 50 or the like controls the opening / closing operation of the relay. The cutoff switch is provided between the sub power supply B20 and the ground of the sub system bus 20.
 本実施形態に係る図13の処理は、図11に示すステップS60の処理を、ステップS61、S62に変更したものである。また、図13の処理では、地絡箇所に拘らずSMRを通電ラッチさせている。なお、図13中の点線に示すステップS61、S62は、上位制御回路50による処理内容またはヒューズ23の作動を示す。 The process of FIG. 13 according to the present embodiment is obtained by changing the process of step S60 shown in FIG. 11 to steps S61 and S62. Further, in the process of FIG. 13, the SMR is energized and latched regardless of the ground fault location. Steps S61 and S62 shown by the dotted line in FIG. 13 indicate the processing contents by the upper control circuit 50 or the operation of the fuse 23.
 ステップS61では、ステップS42AによるSMR通電ラッチが、ステップS32に係るサブ地絡およびステップS33に係るメイン地絡のいずれであるかを判定する。サブ地絡であると判定された場合には、サブ地絡の状態でSMR通電によりサブ電源B20から大電流を放電させることになる。そのため、続くステップS62では、大電流の放電に伴う発熱により、ヒューズ23が溶断されて遮断作動する。或いは、ヒューズ23に代えてリレーを用いる場合には、上位制御回路50はリレーを遮断作動させる。 In step S61, it is determined whether the SMR energization latch according to step S42A is a sub ground fault according to step S32 or a main ground fault according to step S33. If it is determined to be a sub-ground fault, a large current is discharged from the sub power supply B20 by SMR energization in the state of the sub-ground fault. Therefore, in the following step S62, the fuse 23 is blown and cut off due to heat generated by the discharge of a large current. Alternatively, when a relay is used instead of the fuse 23, the host control circuit 50 cuts off the relay.
 以上により、本実施形態では、サブ電源B20を保護するための遮断スイッチが設けられている。そのため、地絡発生時にSMRを通電ラッチさせた状態が継続されると、サブ電源B20の放電が遮断スイッチにより遮断され、サブ電源B20が保護される。よって、SMR通電ラッチに伴いB20が故障するおそれを低減できる。 From the above, in the present embodiment, a cutoff switch for protecting the sub power supply B20 is provided. Therefore, if the state in which the SMR is energized and latched is continued when a ground fault occurs, the discharge of the sub power supply B20 is cut off by the cutoff switch, and the sub power supply B20 is protected. Therefore, it is possible to reduce the possibility that the B20 will break down due to the SMR energization latch.
 (第8実施形態)
 本実施形態に係る通電制御装置Dは、メイン電源側バス10aに設けられた1セットの遮断スイッチ12a、12bを備える(図14参照)。以下の説明では、1セットの遮断スイッチ12a、12bのことをSMR1と記載し、1セットの遮断スイッチ22a、22bのことをSMR2と記載する場合がある。
(8th Embodiment)
The energization control device D according to the present embodiment includes a set of cutoff switches 12a and 12b provided on the main power supply side bus 10a (see FIG. 14). In the following description, one set of cutoff switches 12a and 12b may be referred to as SMR1, and one set of cutoff switches 22a and 22b may be referred to as SMR2.
 メイン電源側バス10aのうち、1セットの遮断スイッチ12a、12bの間の部分には、シャント抵抗12cが接続されている。遮断スイッチ12a、12bおよびシャント抵抗12cは、1つのSMR装置12としてユニット化されている。 A shunt resistor 12c is connected to a portion of the main power supply side bus 10a between one set of cutoff switches 12a and 12b. The cutoff switches 12a and 12b and the shunt resistor 12c are unitized as one SMR device 12.
 SW制御回路40は、シャント抵抗12cの両端電位を検出し、両端電位差に基づき第1放電電流値ISMR1を算出する。なお、第1放電電流値ISMR1は、メイン電源B10から放電される向きを正の値として定義される。なお、本実施形態では、サブ電源B20から放電される放電電流値ISMRを、第2放電電流値ISMR2と記載する。 The SW control circuit 40 detects the potentials at both ends of the shunt resistor 12c and calculates the first discharge current value ISMR1 based on the potential difference between both ends. The first discharge current value ISMR1 is defined as a positive value in the direction of discharge from the main power supply B10. In this embodiment, the discharge current value ISMR discharged from the sub power supply B20 is referred to as the second discharge current value ISMR2.
 SW制御回路40は、第1放電電流値ISMR1および第2放電電流値ISMR2の両方に基づいて系統間SWの作動を制御する。具体的には、図15に示すように、先ずステップS11において、上位制御回路50の指令に従って系統間SWの作動を制御する。図15に示す例では、SMR1、SMR2および系統間SWをオン作動(通電)させている。続くステップS23では、シャント抵抗22cの両端電位差に基づき第2放電電流値ISMR2を検出(取得)する。続くステップS24では、シャント抵抗12cの両端電位差に基づき第1放電電流値ISMR1を検出(取得)する。 The SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value ISMR1 and the second discharge current value ISMR2. Specifically, as shown in FIG. 15, first, in step S11, the operation of the inter-system SW is controlled according to the command of the host control circuit 50. In the example shown in FIG. 15, SMR1, SMR2 and the inter-system SW are turned on (energized). In the following step S23, the second discharge current value ISMR2 is detected (acquired) based on the potential difference between both ends of the shunt resistor 22c. In the following step S24, the first discharge current value ISMR1 is detected (acquired) based on the potential difference between both ends of the shunt resistor 12c.
 続くステップS34では、ステップS23で検出した第2放電電流値ISMR2が、予め設定された過放電閾値IthSMR2より大きいか否かを判定する。過放電閾値IthSMR2は第2閾値に相当する。ISMR2>IthSMR2と判定された場合には、地絡異常が生じているとみなし、続くステップS40にて系統間SWをオフ作動(遮断)させる。 In the following step S34, it is determined whether or not the second discharge current value ISMR2 detected in step S23 is larger than the preset over-discharge threshold value IsSMR2. The over-discharge threshold IsSMR2 corresponds to the second threshold. When it is determined that ISMR2> IsSMR2, it is considered that a ground fault has occurred, and the inter-system SW is turned off (blocked) in the following step S40.
 ステップS34にてISMR2>IthSMR2と判定されない場合には、ステップS35に進み、ステップS24で検出した第1放電電流値ISMR1が、予め設定された過放電閾値IthSMR1より大きいか否かを判定する。過放電閾値IthSMR1は第1閾値に相当する。ISMR1>IthSMR1と判定された場合には、地絡異常が生じているとみなし、続くステップS40にて系統間SWをオフ作動(遮断)させる。 If it is not determined in step S34 that ISMR2> IsSMR2, the process proceeds to step S35, and it is determined whether or not the first discharge current value ISMR1 detected in step S24 is larger than the preset over-discharge threshold value IsSMR1. The over-discharge threshold IsSMR1 corresponds to the first threshold. When it is determined that ISMR1> IsSMR1, it is considered that a ground fault has occurred, and the inter-system SW is turned off (blocked) in the following step S40.
 ここで、先述したインダクタンスL1、L2が存在することに起因して、サブ系統バス20で地絡が生じた場合には、第1放電電流値ISMR1は迅速に上昇しない。また、インダクタンスL1、L2が存在することに起因して、メイン系統バス10で地絡が生じた場合には、第2放電電流値ISMR2は迅速に上昇しない。 Here, when a ground fault occurs in the sub system bus 20 due to the existence of the above-mentioned inductances L1 and L2, the first discharge current value ISMR1 does not rise rapidly. Further, when a ground fault occurs in the main system bus 10 due to the presence of the inductances L1 and L2, the second discharge current value ISMR2 does not rise rapidly.
 これらの点を鑑み、本実施形態では、SW制御回路40は、第1放電電流値ISMR1および第2放電電流値ISMR2の両方に基づいて系統間SWの作動を制御する。そのため、サブ地絡については第2放電電流値ISMR2で迅速に検知でき、メイン地絡については第1放電電流値ISMR1で迅速に検知できる。 In view of these points, in the present embodiment, the SW control circuit 40 controls the operation of the inter-system SW based on both the first discharge current value ISMR1 and the second discharge current value ISMR2. Therefore, the sub-ground fault can be quickly detected by the second discharge current value ISMR2, and the main ground fault can be quickly detected by the first discharge current value ISMR1.
 ここで、メイン地絡が生じた場合には、第2放電電流値ISMR2が迅速に上昇しないことは先述した通りである。そのため、ステップS35の判定を廃止してステップS34の判定だけでサブ地絡とメイン地絡の両方を検知しようとすると、メイン地絡の検知が遅くなる。そこで本実施形態では、第2放電電流値ISMR2が第2閾値を超えていなくても、第1放電電流値ISMR1が第1閾値を超えて上昇していれば系統間SWを遮断する。そのため、メイン地絡についても迅速に検知でき、系統間SWを迅速に遮断できる。 Here, as described above, when the main ground fault occurs, the second discharge current value ISMR2 does not rise rapidly. Therefore, if the determination in step S35 is abolished and both the sub-ground fault and the main ground fault are detected only by the determination in step S34, the detection of the main ground fault is delayed. Therefore, in the present embodiment, even if the second discharge current value ISMR2 does not exceed the second threshold value, the inter-system SW is cut off if the first discharge current value ISMR1 rises beyond the first threshold value. Therefore, the main ground fault can be detected quickly, and the SW between systems can be quickly shut off.
 <第8実施形態の変形例>
 図16に示すように、ステップS34にてISMR2>IthSMR2が成立し、且つ、ステップS35にてISMR1>IthSMR1が成立した場合に、ステップS40の遮断処理を実行してもよい。このように、ステップS34、S35の両方において肯定的判定がなされた場合のみ、地絡異常が生じているとみなす。よって、ステップS34、S35のいずれかにおいて肯定的判定がなされた場合に地絡とみなす構成に較べて、地絡の誤検出を抑制できる。
<Modified example of the eighth embodiment>
As shown in FIG. 16, when ISMR2> IsSMR2 is established in step S34 and ISMR1> IsSMR1 is established in step S35, the blocking process of step S40 may be executed. In this way, it is considered that the ground fault has occurred only when a positive determination is made in both steps S34 and S35. Therefore, erroneous detection of a ground fault can be suppressed as compared with a configuration in which a positive determination is made in any of steps S34 and S35 and the ground fault is regarded as a ground fault.
 (第9実施形態)
 本実施形態に係る通電制御装置Dは、図1に示す通電制御装置Dにケース60を備えさせたものである(図17参照)。ケース60は、SW制御回路40、系統間SW、SMR、およびシャント抵抗31c、22cを内部に収容する。これにより、通電制御装置Dは、1つの電流遮断モジュールとして形成される。ケース60には、複数の端子61、62、63が取り付けられている(図18参照)。端子61には、サブ電源B20と接続される配線の一端が接続される。端子62には、第2負荷L20、L21と接続される配線の一端が接続される。端子63には、第1負荷L10、L11、メイン電源B10および発電機G10と接続される配線の一端が接続される。
(9th Embodiment)
The energization control device D according to the present embodiment is the energization control device D shown in FIG. 1 provided with a case 60 (see FIG. 17). The case 60 houses the SW control circuit 40, the inter-system SW, the SMR, and the shunt resistors 31c and 22c inside. As a result, the energization control device D is formed as one current cutoff module. A plurality of terminals 61, 62, 63 are attached to the case 60 (see FIG. 18). One end of the wiring connected to the sub power supply B20 is connected to the terminal 61. One end of the wiring connected to the second loads L20 and L21 is connected to the terminal 62. One end of the wiring connected to the first loads L10 and L11, the main power supply B10, and the generator G10 is connected to the terminal 63.
 図17および図18ではジャンクションボックスの図示を省略している。図18に示すSW駆動回路41および過電流判定回路42は、SW制御回路40が有する機能の一部を機能ブロックで表現したものである。SW駆動回路41は、系統間SWの作動状態を制御する系統間スイッチ制御部に相当する。図3のステップS40により実現される。過電流判定回路42は、放電電流値ISMRが過電流であるか否かを判定する回路であり、図3のステップS30により実現される。 In FIGS. 17 and 18, the junction box is not shown. The SW drive circuit 41 and the overcurrent determination circuit 42 shown in FIG. 18 represent a part of the functions of the SW control circuit 40 with functional blocks. The SW drive circuit 41 corresponds to an inter-system switch control unit that controls the operating state of the inter-system SW. This is achieved by step S40 in FIG. The overcurrent determination circuit 42 is a circuit for determining whether or not the discharge current value ISMR is an overcurrent, and is realized by step S30 of FIG.
 なお、図18に示すように、シャント抵抗31cは廃止されていてもよい。また、本実施形態の変形例として、サブ電源B20および上位制御回路50の少なくとも一方についても、ケース60内部に収容させてもよい。なお、メイン電源B10およびサブ電源B20の少なくとも一方をケース60内部に収容させた場合、収容されている電源および通電制御装置Dは電源ユニットを提供する。 Note that, as shown in FIG. 18, the shunt resistor 31c may be abolished. Further, as a modification of the present embodiment, at least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60. When at least one of the main power supply B10 and the sub power supply B20 is housed inside the case 60, the housed power supply and the energization control device D provide a power supply unit.
 (第10実施形態)
 本実施形態に係る通電制御装置Dは、図14に示す通電制御装置Dにケース60を備えさせたものである(図19参照)。ケース60は、SW制御回路40、系統間SW、SMR1、SMR2、シャント抵抗31c、22c、12cを内部に収容する。これにより、通電制御装置Dは、1つの電流遮断モジュールとして形成される。ケース60には、複数の端子61、62、64、65が取り付けられている(図20参照)。端子61、62は図17と同様に接続される。端子64には、第1負荷L10、L11および発電機G10と接続される配線の一端が接続される。端子65には、メイン電源B10と接続される配線の一端が接続される。
(10th Embodiment)
The energization control device D according to the present embodiment is the energization control device D shown in FIG. 14 provided with a case 60 (see FIG. 19). The case 60 houses the SW control circuit 40, the inter-system SW, SMR1, SMR2, and shunt resistors 31c, 22c, and 12c inside. As a result, the energization control device D is formed as one current cutoff module. A plurality of terminals 61, 62, 64, and 65 are attached to the case 60 (see FIG. 20). The terminals 61 and 62 are connected in the same manner as in FIG. One end of the wiring connected to the first loads L10 and L11 and the generator G10 is connected to the terminal 64. One end of the wiring connected to the main power supply B10 is connected to the terminal 65.
 図19および図20ではジャンクションボックスの図示を省略している。図20に示す過電流判定回路42は、第1放電電流値ISMR1および第2放電電流値ISMR2に基づき過電流判定する回路であり、図15のステップS34、S35により実現される。 The junction box is not shown in FIGS. 19 and 20. The overcurrent determination circuit 42 shown in FIG. 20 is a circuit for determining an overcurrent based on the first discharge current value ISMR1 and the second discharge current value ISMR2, and is realized by steps S34 and S35 of FIG.
 なお、図20に示すように、シャント抵抗31cは廃止されていてもよい。また、本実施形態の変形例として、サブ電源B20および上位制御回路50の少なくとも一方についても、ケース60内部に収容させてもよい。 As shown in FIG. 20, the shunt resistor 31c may be abolished. Further, as a modification of the present embodiment, at least one of the sub power supply B20 and the upper control circuit 50 may be housed inside the case 60.
 (第11実施形態)
 本実施形態に係る通電制御装置Dは、地絡異常の原因が解消されて復旧したと判定された場合に、遮断や通電のラッチ制御を終了させる機能を有する。具体的には、図21に示すように、SW制御回路40は復帰判断回路43を有する。復帰判断回路43は、地絡等の異常状態が復旧したか否かを判断し、復旧したと判断した場合には復帰信号をSW駆動回路41へ送信する。
(11th Embodiment)
The energization control device D according to the present embodiment has a function of terminating the shutoff and energization latch control when it is determined that the cause of the ground fault abnormality has been resolved and restored. Specifically, as shown in FIG. 21, the SW control circuit 40 has a return determination circuit 43. The return determination circuit 43 determines whether or not an abnormal state such as a ground fault has been restored, and if it is determined that the recovery has been restored, transmits a return signal to the SW drive circuit 41.
 図22は、図11の処理にステップS70の処理を追加したものであり、ステップS70では、復帰判断回路43からの復帰信号を受信したか否かを判定する。ステップS70の処理実行時のSW制御回路40は、系統間SWが遮断ラッチ制御されている期間に地絡異常が復旧したか否かを判定する「復旧判定部」に相当する。復帰信号が受信されなければ、ステップS41、S42による上位制御回路50に優先した制御を継続させる。復帰信号が受信されたと判定された場合には、上記優先制御(ラッチ制御)を解除して、図22のSTARTから処理を再開する。 FIG. 22 shows that the process of step S70 is added to the process of FIG. 11, and in step S70, it is determined whether or not the return signal from the return determination circuit 43 has been received. The SW control circuit 40 at the time of executing the process in step S70 corresponds to a "recovery determination unit" that determines whether or not the ground fault has been restored during the period in which the inter-system SW is controlled by the cutoff latch. If the return signal is not received, the control given priority to the upper control circuit 50 in steps S41 and S42 is continued. When it is determined that the return signal has been received, the priority control (latch control) is released and the process is restarted from the START of FIG. 22.
 以上により、地絡異常の原因が解消されて復旧したと判定された場合には、系統間SWを遮断状態にする遮断ラッチ制御が終了される。そのため、遮断ラッチ制御が自動で解除されるので、復旧の作業性を向上できる。 From the above, when it is determined that the cause of the ground fault abnormality has been resolved and recovered, the cutoff latch control that puts the inter-system SW in the cutoff state is terminated. Therefore, the cutoff latch control is automatically released, and the workability of restoration can be improved.
 (第12実施形態)
 上記第11実施形態では、復帰判断回路43をSW制御回路40が有している。これに対し本実施形態では、復帰判断回路がSW制御回路40の外部に設けられている。例えば図23に示す例では、復帰判断回路51を上位制御回路50が有している。
(12th Embodiment)
In the eleventh embodiment, the SW control circuit 40 has a return determination circuit 43. On the other hand, in the present embodiment, the return determination circuit is provided outside the SW control circuit 40. For example, in the example shown in FIG. 23, the host control circuit 50 has a return determination circuit 51.
 (第13実施形態)
 本実施形態に係る通電制御装置Dは、タイマ44を備えている(図24参照)。タイマ44は、遮断ラッチ制御の開始からの経過時間を計測する。復帰判断回路43は、タイマ44で計測された経過時間が所定時間に達した場合に、地絡等の異常状態が復旧したと判断して、復帰信号を出力する。
(13th Embodiment)
The energization control device D according to the present embodiment includes a timer 44 (see FIG. 24). The timer 44 measures the elapsed time from the start of the cutoff latch control. When the elapsed time measured by the timer 44 reaches a predetermined time, the return determination circuit 43 determines that an abnormal state such as a ground fault has been restored, and outputs a return signal.
 以上により、本実施形態に係る復旧判定部(ステップS70)は、遮断ラッチ制御の開始から所定時間が経過した場合に、復帰信号を受信して復旧したと判定することになる。これによれば、復旧したか否かの判定を、簡素な処理で容易に実現できる。 As described above, the recovery determination unit (step S70) according to the present embodiment receives the return signal and determines that the restoration has been performed when a predetermined time has elapsed from the start of the cutoff latch control. According to this, it is possible to easily determine whether or not the restoration has been performed by a simple process.
 (第14実施形態)
 本実施形態に係る通電制御装置Dは、系統間SWの両端子の対地電位を検出する電圧検出回路45を備えている(図25参照)。例えば、系統間スイッチ31aのメイン系統バス10側の電位と、系統間スイッチ31bのサブ系統バス20側の電位を、電圧検出回路45は検出する。電圧検出回路45は、検出した対地電位の情報(電圧情報)を復帰判断回路43へ出力する。
(14th Embodiment)
The energization control device D according to the present embodiment includes a voltage detection circuit 45 that detects the ground potentials of both terminals of the inter-system SW (see FIG. 25). For example, the voltage detection circuit 45 detects the potential on the main system bus 10 side of the inter-system switch 31a and the potential on the sub-system bus 20 side of the inter-system switch 31b. The voltage detection circuit 45 outputs the detected ground potential information (voltage information) to the return determination circuit 43.
 復帰判断回路43は、取得した両端子の対地電位の各々が所定電位以上である場合に復旧したと判断する。或いは、復帰判断回路43は、取得した両端子の対地電位の電位差が所定未満である場合に復旧したと判断する。復帰判断回路43は、このように復旧したと判断した場合に、地絡等の異常状態が復旧したとみなして復帰信号を出力する。 The return determination circuit 43 determines that the restoration is performed when each of the acquired ground potentials of both terminals is equal to or higher than a predetermined potential. Alternatively, the return determination circuit 43 determines that the restoration is performed when the potential difference between the acquired terminals and the ground potential is less than a predetermined value. When the recovery determination circuit 43 determines that the recovery is performed in this way, the recovery determination circuit 43 considers that an abnormal state such as a ground fault has been recovered and outputs a recovery signal.
 ここで、サブ地絡が生じて系統間SWを遮断させている状態において、地絡が復旧していなければ、サブ系統バス20側の対地電位は、正常時制御の場合に比べて低い値になっている蓋然性が高い。その一方で、メイン系統バス10の対地電位は、正常時制御の場合と同等の値になっている蓋然性が高い。メイン地絡が生じて系統間SWを遮断させている状態で地絡が復旧していない場合も同様であり、メイン系統バス10側の対地電位は、正常時制御の場合に比べて低い値になっている蓋然性が高い。その一方で、サブ系統バス20の対地電位は、正常時制御の場合と同等の値になっている蓋然性が高い。 Here, if the ground fault is not restored in the state where the sub-ground fault occurs and the inter-system SW is cut off, the ground potential on the sub-system bus 20 side becomes a lower value than in the case of normal control. There is a high probability that it has become. On the other hand, it is highly probable that the ground potential of the main system bus 10 is the same value as in the case of normal control. The same applies when the ground fault has not been restored while the main ground fault has occurred and the inter-system SW is shut off, and the ground potential on the main system bus 10 side is lower than that in the case of normal control. There is a high probability that it has become. On the other hand, it is highly probable that the ground potential of the sub system bus 20 is the same value as in the case of normal control.
 これらの点を鑑み、本実施形態に係る復旧判定部(ステップS70)は、上記対地電位の各々が所定電位以上である場合、或いは、上記電位差が所定未満である場合に、復帰信号を受信して復旧したと判定することになる。これによれば、復旧したか否かを精度良く判定できる。 In view of these points, the recovery determination unit (step S70) according to the present embodiment receives a return signal when each of the ground potentials is equal to or higher than a predetermined potential or when the potential difference is less than a predetermined potential. It will be judged that it has been restored. According to this, it can be accurately determined whether or not the restoration has been performed.
 (第15実施形態)
 本実施形態に係る通電制御装置Dは、サブ電源側バス20aに設けられるシャント抵抗22c(図1参照)の代わりに、サブ負荷側バス20bに設けられるシャント抵抗24cを備える(図26参照)。
(15th Embodiment)
The energization control device D according to the present embodiment includes a shunt resistor 24c provided on the sub-load side bus 20b instead of the shunt resistor 22c (see FIG. 1) provided on the sub power supply side bus 20a (see FIG. 26).
 シャント抵抗24cで検知される電流の大きさを、サブ系統電流値ISUBと呼ぶ。サブ系統電流値ISUBは、サブ負荷側バス20bから第2負荷L20へ電流が流れる向きを正の値として定義される。本実施形態では、サブ系統電流値ISUBが放電電流値ISMRと同等であるとみなす。 The magnitude of the current detected by the shunt resistor 24c is called the sub system current value ISUB. The sub system current value ISUB is defined as a positive value in the direction in which the current flows from the sub load side bus 20b to the second load L20. In the present embodiment, the sub system current value ISUB is considered to be equivalent to the discharge current value ISMR.
 SW制御回路40は、サブ系統電流値ISUBが過放電閾値Ithを超えて上昇した場合に、地絡異常が生じていると判定して、系統間SWを遮断する。但し、サブ系統電流値ISUBに加えて、シャント抵抗31cによって検知された系統間電流値IISOを考慮して、SW制御回路40は地絡異常の有無を判定する。例えば、図27或いは図28に示す制御フローにより、サブ系統電流値ISUBと系統間電流値IISOを考慮してSW制御回路40は地絡異常の有無を判定する。 The SW control circuit 40 determines that a ground fault has occurred when the sub-system current value ISUB rises above the over-discharge threshold value Is, and shuts off the inter-system SW. However, in consideration of the inter-system current value IISO detected by the shunt resistor 31c in addition to the sub-system current value ISUB, the SW control circuit 40 determines the presence or absence of a ground fault abnormality. For example, according to the control flow shown in FIG. 27 or 28, the SW control circuit 40 determines the presence or absence of a ground fault abnormality in consideration of the sub-system current value ISUB and the inter-system current value IISO.
 図27に示す制御では、図5に示す制御の放電電流値ISMRをサブ系統電流値ISUBに置き換えている。すなわち、図27のステップS22Aでは、放電電流値ISMRの検出に代えて、シャント抵抗24cの両端電位差に基づきサブ系統電流値ISUBを検出(取得)する。図27のステップS32A、S33Aでは、放電電流値ISMRに係る判定に代えて、サブ系統電流値ISUBが過放電閾値IthH、IthLより大きいか否かを判定する。要するに、サブ系統電流値ISUBに応じて、過放電閾値Ithが変更される。これにより、図5に示す制御と同様の効果が発揮される。 In the control shown in FIG. 27, the discharge current value ISMR of the control shown in FIG. 5 is replaced with the sub system current value ISUB. That is, in step S22A of FIG. 27, instead of detecting the discharge current value ISMR, the sub system current value ISUB is detected (acquired) based on the potential difference between both ends of the shunt resistor 24c. In steps S32A and S33A of FIG. 27, instead of the determination related to the discharge current value ISMR, it is determined whether or not the sub-system current value ISUB is larger than the over-discharge thresholds IsH and IsL. In short, the over-discharge threshold value Is is changed according to the sub system current value ISUB. As a result, the same effect as the control shown in FIG. 5 is exhibited.
 図28に示す制御では、図6に示す制御の放電電流値ISMRをサブ系統電流値ISUBに置き換えている。すなわち、図28のステップS30Aでは、放電電流値ISMRに係る判定に代えて、サブ系統電流値ISUBが過放電閾値Ithより大きいか否かを判定する。要するに、サブ系統電流値ISUBが過放電閾値Ithを超えていない場合であっても、系統間電流値IISOが所定閾値IthISOより小さい場合には、地絡異常が生じているとみなし、系統間スイッチを遮断する。これにより、図6に示す制御と同様の効果が発揮される。 In the control shown in FIG. 28, the discharge current value ISMR of the control shown in FIG. 6 is replaced with the sub system current value ISUB. That is, in step S30A of FIG. 28, instead of the determination related to the discharge current value ISMR, it is determined whether or not the sub-system current value ISUB is larger than the over-discharge threshold value Is. In short, even if the sub-system current value ISUB does not exceed the over-discharge threshold value Is, if the inter-system current value IISO is smaller than the predetermined threshold value Iso, it is considered that a ground fault has occurred and the inter-system switch. To shut off. As a result, the same effect as the control shown in FIG. 6 is exhibited.
 (第16実施形態)
 本実施形態に係る通電制御装置Dは、メイン電源側バス10aに設けられるシャント抵抗12c(図14参照)の代わりに、サブ負荷側バス20bに設けられるシャント抵抗24cを備える(図29参照)。
(16th Embodiment)
The energization control device D according to the present embodiment includes a shunt resistor 24c provided on the subload side bus 20b instead of the shunt resistor 12c (see FIG. 14) provided on the main power supply side bus 10a (see FIG. 29).
 上記第15実施形態と同様にして、サブ系統電流値ISUBは、サブ負荷側バス20bから第2負荷L20へ電流が流れる向きを正の値として定義される。SW制御回路40は、サブ系統電流値ISUBから放電電流値ISMRを減算した値を、差分電流値IDIFとして算出する。本実施形態では、差分電流値IDIFが第1放電電流値ISMR1と同等であるとみなす。 Similar to the fifteenth embodiment, the sub system current value ISUB is defined with the direction in which the current flows from the sub load side bus 20b to the second load L20 as a positive value. The SW control circuit 40 calculates the value obtained by subtracting the discharge current value ISMR from the sub system current value ISUB as the differential current value IDIF. In the present embodiment, the differential current value IDIF is considered to be equivalent to the first discharge current value ISMR1.
 SW制御回路40は、放電電流値ISMRが過放電閾値Ithを超えて上昇した場合に、地絡異常が生じていると判定して、系統間SWを遮断する。但し、放電電流値ISMRに加えて、サブ系統電流値ISUBを考慮して、SW制御回路40は地絡異常の有無を判定する。例えば、図30或いは図31に示す制御フローにより、放電電流値ISMRとサブ系統電流値ISUBを考慮してSW制御回路40は地絡異常の有無を判定する。 When the discharge current value ISMR rises above the over-discharge threshold value Is, the SW control circuit 40 determines that a ground fault has occurred and shuts off the inter-system SW. However, in consideration of the sub system current value ISUB in addition to the discharge current value ISMR, the SW control circuit 40 determines the presence or absence of a ground fault abnormality. For example, according to the control flow shown in FIG. 30 or 31, the SW control circuit 40 determines the presence or absence of a ground fault abnormality in consideration of the discharge current value ISMR and the sub system current value ISUB.
 図30に示す制御は、図27のステップS31AをステップS31Bに置き換えている。このステップS31Bでは、差分電流値IDIFが予め設定された過放電閾値IthDIFよりも小さいか否かを判定する。過放電閾値IthDIFは所定閾値IthISOと同じ値に設定されている。これによっても、図27に示す制御と同様の効果が発揮される。 The control shown in FIG. 30 replaces step S31A in FIG. 27 with step S31B. In this step S31B, it is determined whether or not the differential current value IDIF is smaller than the preset over-discharge threshold value IsDIF. The over-discharge threshold value IsDIF is set to the same value as the predetermined threshold value IsISO. This also exerts the same effect as the control shown in FIG. 27.
 図31に示す制御は、図28のステップS30AをステップS30に置き換え、図28のステップS31をステップS31Aに置き換えている。ステップS31Aでは、差分電流値IDIFが過放電閾値IthDIFよりも小さいか否かを判定する。これによっても、図28に示す制御と同様の効果が発揮される。 In the control shown in FIG. 31, step S30A in FIG. 28 is replaced with step S30, and step S31 in FIG. 28 is replaced with step S31A. In step S31A, it is determined whether or not the differential current value IDIF is smaller than the over-discharge threshold value IsDIF. This also exerts the same effect as the control shown in FIG. 28.
 (第17実施形態)
 本実施形態に係る通電制御装置Dは、放電電流取得部および上昇速度取得部を備える。放電電流取得部は、サブ電源B20からの放電電流値ISMRを取得する。上昇速度取得部は、放電電流値ISMRの上昇速度(電流傾き)を取得する。上記各実施形態と同様にして、取得した放電電流値ISMRが過放電閾値Ithを超えて上昇した場合に、地絡異常が生じているとみなして系統間SWを遮断する。但し、取得した電流傾きが小さい場合、つまり放電電流値ISMRの上昇速度が緩慢な状態(低速上昇状態)である場合には、地絡異常が生じていると判断されにくくする。つまり、低速上昇状態の場合には系統間SWが遮断されにくくする。
(17th Embodiment)
The energization control device D according to the present embodiment includes a discharge current acquisition unit and an ascending speed acquisition unit. The discharge current acquisition unit acquires the discharge current value ISMR from the sub power supply B20. The ascending speed acquisition unit acquires the ascending speed (current slope) of the discharge current value ISMR. In the same manner as in each of the above embodiments, when the acquired discharge current value ISMR rises above the over-discharge threshold value Is, it is considered that a ground fault has occurred and the inter-system SW is shut off. However, when the acquired current slope is small, that is, when the discharge current value ISMR rises slowly (low speed rise), it is difficult to determine that a ground fault has occurred. That is, in the case of a low speed rising state, it is difficult to shut off the SW between systems.
 このように制御することによる技術的意義について、以下に詳述する。 The technical significance of controlling in this way will be described in detail below.
 地絡が生じた場合に放電電流値ISMRが増大することは先述した通りであるが、地絡が生じていない正常時であっても、以下の場合には放電電流値ISMRが大幅に増大する。例えば、冗長電源システムを電源とする電気負荷が大電力を要するものである場合、電気負荷への突入電流が大きい。例えば、パワーステアリング装置やブレーキ装置の場合、突入電流が極めて大きい。そのため、この種の突入電流が流れる時に、放電電流値ISMRが瞬時的に増大して、過放電閾値Ithを超える場合がある。その場合、地絡が生じていない正常時であるにも拘らず、地絡と誤って検知され、系統間SWを遮断することが懸念される。 As mentioned above, the discharge current value ISMR increases when a ground fault occurs, but even in the normal state when no ground fault occurs, the discharge current value ISMR increases significantly in the following cases. .. For example, when an electric load using a redundant power supply system as a power source requires a large amount of electric power, the inrush current to the electric load is large. For example, in the case of a power steering device or a braking device, the inrush current is extremely large. Therefore, when this kind of inrush current flows, the discharge current value ISMR may increase instantaneously and exceed the over-discharge threshold value Is. In that case, there is a concern that the SW between systems will be cut off due to erroneous detection as a ground fault even though it is a normal time when no ground fault has occurred.
 しかし、突入電流による放電電流値ISMRの上昇速度は、地絡発生時の放電電流値ISMRの上昇速度(電流傾き)に比べて緩慢である。特に、メイン系統バス10やサブ系統バス20と電気負荷を接続するワイヤハーネスが長い場合には、ワイヤハーネスの寄生インダクタンス成分により、より一層緩慢になる。そのため、電流傾きを考慮しつつ放電電流値ISMRから地絡異常の有無を判定すれば、上記懸念に係る誤検知を抑制できる筈である。換言すれば、電流傾きが緩慢であるほど、地絡異常が生じていると判定されにくくすれば、上記誤検知を抑制できる。 However, the rate of increase of the discharge current value ISMR due to the inrush current is slower than the rate of increase of the discharge current value ISMR (current slope) when a ground fault occurs. In particular, when the wire harness connecting the electric load to the main system bus 10 or the sub system bus 20 is long, it becomes even slower due to the parasitic inductance component of the wire harness. Therefore, if the presence or absence of a ground fault abnormality is determined from the discharge current value ISMR while considering the current inclination, it should be possible to suppress the false detection related to the above concern. In other words, the slower the current gradient, the more difficult it is to determine that a ground fault has occurred, so that the above false detection can be suppressed.
 以下、図32を用いて、本実施形態の具体的な構成について説明する。図32に示す通電制御装置Dは、図24に示す通電制御装置Dに、図25に記載の電圧検出回路45を追加し、さらに、電流傾き判定回路48を追加したものである。 Hereinafter, a specific configuration of the present embodiment will be described with reference to FIG. 32. The energization control device D shown in FIG. 32 is obtained by adding the voltage detection circuit 45 shown in FIG. 25 to the energization control device D shown in FIG. 24, and further adding the current inclination determination circuit 48.
 復帰判断回路43は、以下の条件1、2のいずれかを満たした場合、或いは、両方を満たした場合に、地絡等の異常状態が復旧したと判断して、復帰信号を出力する。条件1は、上記第13実施形態と同様にして、タイマ44で計測された経過時間が所定時間に達したことである。条件2は、上記第14実施形態と同様にして、電圧検出回路45で検出された両端子の対地電位の各々が所定電位以上、或いは、両端子の電位差が所定未満であることである。 The return determination circuit 43 determines that an abnormal state such as a ground fault has been restored when either of the following conditions 1 and 2 is satisfied, or when both are satisfied, and outputs a return signal. Condition 1 is that the elapsed time measured by the timer 44 has reached a predetermined time in the same manner as in the thirteenth embodiment. Condition 2 is the same as in the 14th embodiment, that each of the potentials of both terminals detected by the voltage detection circuit 45 to the ground is equal to or higher than a predetermined potential, or the potential difference between both terminals is less than a predetermined value.
 本実施形態の過電流判定回路42は、図3のステップS30により実現される。つまり、放電電流値ISMRが過放電閾値Ithを超えた場合に過電流と判定して、その過電流判定結果をSW駆動回路41に出力する。なお、図3のステップS30に代えて、図15のステップS34、S35により過電流判定回路42が実現されていてもよい。 The overcurrent determination circuit 42 of this embodiment is realized by step S30 of FIG. That is, when the discharge current value ISMR exceeds the overdischarge threshold value Is, it is determined as an overcurrent, and the overcurrent determination result is output to the SW drive circuit 41. The overcurrent determination circuit 42 may be realized by steps S34 and S35 of FIG. 15 instead of step S30 of FIG.
 電流傾き判定回路48は、シャント抵抗22cの両端電位差の時間変化に基づき放電電流値ISMRの上昇速度(電流傾き)を検出する。そして、検出された電流傾きが所定の傾き閾値未満である場合に先述した低速上昇状態と判定し、所定の傾き閾値以上である場合に非低速上昇状態と判定する。電流傾き判定回路48は、非低速上昇状態と判定した場合には、その傾き判定結果をSW駆動回路41に出力する。 The current slope determination circuit 48 detects the rising speed (current slope) of the discharge current value ISMR based on the time change of the potential difference between both ends of the shunt resistor 22c. Then, when the detected current slope is less than the predetermined slope threshold value, it is determined to be the above-mentioned low-speed rising state, and when it is equal to or more than the predetermined slope threshold value, it is determined to be the non-slow speed rising state. When the current inclination determination circuit 48 determines that the non-slow speed rise state is determined, the current inclination determination circuit 48 outputs the inclination determination result to the SW drive circuit 41.
 SW駆動回路41は、これらの過電流判定結果および傾き判定結果に基づき、地絡異常が生じているか否かを判定し、異常と判定した場合には系統間SWを遮断する。SW駆動回路41は、過電流かつ非低速上昇状態の場合に地絡異常であると判定する。一方、SW駆動回路41は、過電流であっても低速上昇状態の場合には、過放電ではなく突入電流による電流上昇とみなす。つまり、地絡異常とみなした系統間SWの遮断を禁止する。 The SW drive circuit 41 determines whether or not a ground fault has occurred based on these overcurrent determination results and inclination determination results, and if it is determined to be abnormal, the SW between systems is cut off. The SW drive circuit 41 determines that the ground fault is abnormal when the current is overcurrent and the non-slow speed rises. On the other hand, the SW drive circuit 41 considers the current increase due to the inrush current rather than the overdischarge when the current is increasing at a low speed even if the current is overcurrent. That is, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited.
 以上により、本実施形態によれば、電流傾きを考慮しつつ放電電流値ISMRから地絡異常の有無を判定する。すなわち、放電電流値ISMRの上昇速度が所定値未満となる低速上昇状態の場合には、非低速上昇状態の場合に比べて、地絡異常が生じていると判定されにくくする。そのため、突入電流を地絡異常と誤検知することを抑制できる。 Based on the above, according to the present embodiment, the presence or absence of a ground fault abnormality is determined from the discharge current value ISMR while considering the current slope. That is, in the case of the low-speed rising state in which the rising speed of the discharge current value ISMR is less than a predetermined value, it is difficult to determine that the ground fault has occurred as compared with the case of the non-low-speed rising state. Therefore, it is possible to suppress erroneous detection of the inrush current as a ground fault abnormality.
 また、通電制御装置Dは、過電流判定回路42と電流傾き判定回路48を備える。そして、過電流判定回路42において放電電流値ISMRが過放電閾値Ithを超えたと判定された場合であっても、電流傾き判定回路48において低速上昇状態と判定された場合には、過放電ではなく突入電流による電流上昇とみなす。つまり、地絡異常とみなした系統間SWの遮断を禁止する。そのため、低速上昇状態の場合には地絡異常が生じていると判定されにくくすることを、簡素な制御で容易に実現できる。 Further, the energization control device D includes an overcurrent determination circuit 42 and a current inclination determination circuit 48. Even if the overcurrent determination circuit 42 determines that the discharge current value ISMR exceeds the overdischarge threshold Is, if the current gradient determination circuit 48 determines that the current is in a low-speed rising state, it is not an overdischarge. It is regarded as a current increase due to inrush current. That is, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
 <第17実施形態の変形例>
 過電流判定回路42、電流傾き判定回路48およびSW駆動回路41による制御を、以下に説明する放電電流値検出回路、電流傾き検出回路および異常判定回路に変更してもよい。
<Modified example of the 17th embodiment>
The control by the overcurrent determination circuit 42, the current inclination determination circuit 48, and the SW drive circuit 41 may be changed to the discharge current value detection circuit, the current inclination detection circuit, and the abnormality determination circuit described below.
 放電電流値検出回路は、シャント抵抗22cの両端電位差に基づき放電電流値ISMRを算出する。電流傾き検出回路は、シャント抵抗22cの両端電位差の時間変化に基づき、放電電流値ISMRの上昇速度(電流傾き)を算出する。異常判定回路は、算出された放電電流値ISMRが過放電閾値Ithを超えて上昇した場合に、地絡異常が生じていると異常判定する。但し、算出された電流傾きが小さいほど、過放電閾値Ithの値を大きい値に変更する。 The discharge current value detection circuit calculates the discharge current value ISMR based on the potential difference between both ends of the shunt resistor 22c. The current slope detection circuit calculates the rising speed (current slope) of the discharge current value ISMR based on the time change of the potential difference between both ends of the shunt resistor 22c. The abnormality determination circuit determines that a ground fault has occurred when the calculated discharge current value ISMR rises above the overdischarge threshold value Is. However, the smaller the calculated current slope, the larger the value of the over-discharge threshold value Is is changed.
 以上により、本変形例によれば、SW制御回路40は、低速上昇状態である場合には、非低速上昇状態である場合に比べて過放電閾値Ithを大きい値に変更する。そのため、低速上昇状態の場合には、非低速上昇状態の場合に比べて、地絡異常が生じていると判定されにくくなる。 Based on the above, according to the present modification, the SW control circuit 40 changes the over-discharge threshold value Is to a larger value in the low-speed rising state than in the non-low-speed rising state. Therefore, in the case of the low-speed rising state, it is difficult to determine that the ground fault has occurred as compared with the case of the non-low-speed rising state.
 (第18実施形態)
 本実施形態に係るSW制御回路40は、電流検出回路46、過電流判定回路42、フィルタ回路47、電流傾き判定回路48および異常判定回路42Jを備える(図33参照)。電流検出回路46は、シャント抵抗22cの両端電位差に応じた信号を、放電電流値ISMRを示す信号として出力する差動アンプ46aを有する。
(18th Embodiment)
The SW control circuit 40 according to the present embodiment includes a current detection circuit 46, an overcurrent determination circuit 42, a filter circuit 47, a current inclination determination circuit 48, and an abnormality determination circuit 42J (see FIG. 33). The current detection circuit 46 includes a differential amplifier 46a that outputs a signal corresponding to the potential difference between both ends of the shunt resistor 22c as a signal indicating the discharge current value ISMR.
 過電流判定回路42は、電流検出回路46から出力される放電電流値ISMRの信号と、予め設定された閾値Vref1とを比較する比較器42aを有する。比較器42aは、放電電流値ISMRが閾値Vref1以上である場合に、オン信号を出力する。後述する図34および図35の真理値表では、オン信号を1、オフ信号を0と表記している。 The overcurrent determination circuit 42 has a comparator 42a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset threshold value Vref1. The comparator 42a outputs an on signal when the discharge current value ISMR is equal to or higher than the threshold value Vref1. In the truth table of FIGS. 34 and 35, which will be described later, the on signal is described as 1 and the off signal is described as 0.
 フィルタ回路47は、電流検出回路46から出力される信号のうち、上昇速度が所定以上である信号を抽出して出力する。電流傾き判定回路48は、フィルタ回路47から出力された信号、つまり電流傾きが所定以上である放電電流値ISMRと、予め設定された傾き用閾値Vref2とを比較する比較器48aを有する。比較器48aは、抽出された放電電流値ISMRが傾き用閾値Vref2以上である場合に、オン信号を出力する。 The filter circuit 47 extracts and outputs a signal whose rising speed is equal to or higher than a predetermined value from the signals output from the current detection circuit 46. The current gradient determination circuit 48 includes a comparator 48a that compares the signal output from the filter circuit 47, that is, the discharge current value ISMR whose current gradient is equal to or higher than a predetermined value, with the preset inclination threshold value Vref2. The comparator 48a outputs an on signal when the extracted discharge current value ISMR is equal to or higher than the inclination threshold value Vref2.
 異常判定回路42Jは、過電流判定回路42および電流傾き判定回路48から出力される信号に基づき、地絡異常が生じているか否かを判定する。例えば、以下の図34および図35に例示するように異常判定回路42Jは異常判定する。 The abnormality determination circuit 42J determines whether or not a ground fault has occurred based on the signals output from the overcurrent determination circuit 42 and the current inclination determination circuit 48. For example, as illustrated in FIGS. 34 and 35 below, the abnormality determination circuit 42J determines an abnormality.
 図34は、過電流判定回路42および電流傾き判定回路48の判定結果の組み合わせと、異常判定結果との対応関係の一例を示す。図34の例では、「過電流」かつ「傾き大」と判定された場合に「異常」と判定している。 FIG. 34 shows an example of the correspondence between the combination of the determination results of the overcurrent determination circuit 42 and the current inclination determination circuit 48 and the abnormality determination result. In the example of FIG. 34, when it is determined that "overcurrent" and "inclination is large", it is determined as "abnormal".
 上記「過電流」は、放電電流値ISMRが閾値Vref1以上である、といった過電流判定回路42の判定結果である。上記「傾き大」は、放電電流値ISMRのうち電流傾きが大きい電流値が傾き用閾値Vref2以上である、といった電流傾き判定回路48の判定結果である。また、「傾き大」ではないと否定判定された低速上昇状態の場合には、「過電流」と判定された場合であっても「正常」と判定している。つまり、低速上昇状態である場合には、地絡異常とみなした系統間SWの遮断を禁止している。 The above "overcurrent" is a determination result of the overcurrent determination circuit 42 such that the discharge current value ISMR is equal to or greater than the threshold value Vref1. The above-mentioned "large slope" is a judgment result of the current slope determination circuit 48 such that the current value having a large current slope among the discharge current value ISMR is the slope threshold Vref2 or more. Further, in the case of a low-speed rising state in which it is negatively determined that the inclination is not large, it is determined to be "normal" even if it is determined to be "overcurrent". That is, in the case of a low-speed rising state, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited.
 図35に示す例では、「過電流」と「傾き大」の少なくとも一方が判定された場合に「異常」と判定している。つまり、「過電流」ではないと否定判定された場合であっても、「傾き大」の場合には「異常」と判定している。 In the example shown in FIG. 35, when at least one of "overcurrent" and "large inclination" is determined, it is determined to be "abnormal". That is, even if it is negatively determined that it is not an "overcurrent", it is determined to be "abnormal" if it is "largely tilted".
 さらにSW制御回路40は、シャント抵抗31cに対しても、電流検出回路460、過電流判定回路420および電流傾き判定回路480を備える。電流検出回路460は、シャント抵抗31cの両端電位差に応じた信号を、系統間電流値IISOを示す信号として出力する。過電流判定回路420は、系統間電流値IISOが所定閾値IthISOを超えた場合に過電流と判定して、その過電流判定結果をSW駆動回路41に出力する。 Further, the SW control circuit 40 also includes a current detection circuit 460, an overcurrent determination circuit 420, and a current inclination determination circuit 480 for the shunt resistor 31c. The current detection circuit 460 outputs a signal corresponding to the potential difference between both ends of the shunt resistor 31c as a signal indicating the inter-system current value IISO. The overcurrent determination circuit 420 determines that the overcurrent is overcurrent when the inter-system current value IISO exceeds a predetermined threshold value Iso, and outputs the overcurrent determination result to the SW drive circuit 41.
 電流傾き判定回路480は、シャント抵抗31cの両端電位差の時間変化に基づき系統間電流値IISOの上昇速度(電流傾き)を検出する。そして、検出された電流傾きが所定の傾き閾値未満である場合に低速上昇状態と判定し、所定の傾き閾値以上である場合に非低速上昇状態と判定する。電流傾き判定回路480は、非低速上昇状態と判定した場合には、その傾き判定結果をSW駆動回路41に出力する。 The current slope determination circuit 480 detects the rate of increase (current slope) of the inter-system current value IISO based on the time change of the potential difference between both ends of the shunt resistor 31c. Then, when the detected current gradient is less than a predetermined inclination threshold value, it is determined to be a low-speed rising state, and when it is equal to or more than a predetermined inclination threshold value, it is determined to be a non-slow-speed rising state. When the current inclination determination circuit 480 determines that the non-slow speed rise state is determined, the current inclination determination circuit 480 outputs the inclination determination result to the SW drive circuit 41.
 本実施形態に係る制御手順(図36参照)は、上述した第3および第11実施形態を組み合わせたものに、ステップS36、S37を追加したものである。 The control procedure (see FIG. 36) according to the present embodiment is a combination of the above-mentioned third and eleventh embodiments with steps S36 and S37 added.
 ステップS36では、放電電流値ISMRの上昇速度(電流傾き)が所定値αより大きいか否かを判定する。所定値αより大きくないと否定判定された場合には、低速上昇状態であるとみなして、ステップS40による系統間SWの遮断を禁止する。電流傾きが所定値αより大きいと肯定判定された場合には、非低速上昇状態であるとみなして、ステップS40にて系統間SWを遮断する。 In step S36, it is determined whether or not the rising speed (current slope) of the discharge current value ISMR is larger than the predetermined value α. If it is negatively determined that the value is not greater than the predetermined value α, it is regarded as a low-speed rising state, and the interruption of the inter-system SW in step S40 is prohibited. If it is determined affirmative that the current slope is larger than the predetermined value α, it is regarded as a non-slow speed rising state, and the inter-system SW is shut off in step S40.
 ステップS37では、系統間電流値IISOの上昇速度(電流傾き)が所定値βより大きいか否かを判定する。ステップS31の肯定判定により、電流はサブ系統バス20からメイン系統バス10に流れようとしている。よって、電流傾きdIISO/dtは、負の値となる。所定値βも、負の値が設定されている。電流傾き<所定値βの関係を満たすとは、負の値として電流傾きのほうが所定値βよりも大きいこと、すなわち絶対値において電流傾きのほうが所定値βよりも大きいことを示す。電流傾きが所定値β(負の値)より大きくないと否定判定された場合には、低速上昇状態であるとみなして、ステップS40による系統間SWの遮断を禁止する。電流傾きが所定値βより大きいと肯定判定された場合には、非低速上昇状態であるとみなして、ステップS40にて系統間SWを遮断する。 In step S37, it is determined whether or not the rate of increase (current slope) of the inter-system current value IISO is greater than the predetermined value β. By the affirmative determination in step S31, the current is about to flow from the sub system bus 20 to the main system bus 10. Therefore, the current slope dIISO / dt has a negative value. A negative value is also set for the predetermined value β. Satisfying the relationship of current slope <predetermined value β means that the current slope is larger than the predetermined value β as a negative value, that is, the current slope is larger than the predetermined value β in absolute value. If it is negatively determined that the current slope is not larger than the predetermined value β (negative value), it is regarded as a low-speed rising state, and the interruption of the inter-system SW in step S40 is prohibited. If it is determined affirmative that the current slope is larger than the predetermined value β, it is regarded as a non-slow speed rising state, and the inter-system SW is shut off in step S40.
 要するに、ステップS30とステップS36により、図34の表に従った異常判定が実現される。この異常判定と同様にして、ステップS31とステップS37では、系統間電流値IISOとその電流傾きに基づき異常判定している。 In short, in steps S30 and S36, the abnormality determination according to the table of FIG. 34 is realized. Similar to this abnormality determination, in steps S31 and S37, an abnormality determination is made based on the inter-system current value IISO and its current slope.
 以上により、本実施形態に係るSW制御回路40は、過電流判定回路42に加えて、フィルタ回路47および電流傾き判定回路48を有する。よって、低速上昇状態の場合には地絡異常が生じていると判定されにくくすることを、簡素な制御で容易に実現できる。 As described above, the SW control circuit 40 according to the present embodiment includes the filter circuit 47 and the current inclination determination circuit 48 in addition to the overcurrent determination circuit 42. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
 また、図34に従う異常判定によれば、低速上昇状態である場合には「異常」と判定することを禁止している。そのため、突入電流を地絡と誤検知してしまうおそれを低減できる。また、図35に従う異常判定によれば、「過電流」ではないと否定判定された場合であっても、非低速上昇状態の場合には「異常」と判定している。これによれば、地絡を迅速に検知できる。 Further, according to the abnormality judgment according to FIG. 34, it is prohibited to judge as "abnormal" when the vehicle is in a low speed rising state. Therefore, it is possible to reduce the possibility that the inrush current is erroneously detected as a ground fault. Further, according to the abnormality determination according to FIG. 35, even if it is negatively determined that it is not an "overcurrent", it is determined to be "abnormal" in the non-slow rising state. According to this, the ground fault can be detected quickly.
 また、放電電流値ISMRのうち上昇速度が所定以上である放電電流値が、所定の傾き用閾値Vref2以上である場合に、非低速上昇状態であると判定される。そのため、電気ノイズのように、上昇傾きは大きいものの電流値自体は小さいものについては、「傾き大」ではないと否定判定される。よって、電気ノイズを地絡と誤検知してしまうおそれを低減できる。 Further, when the discharge current value of the discharge current value ISMR whose rising speed is equal to or higher than a predetermined value is equal to or higher than the predetermined tilting threshold value Vref2, it is determined to be in a non-slow rising state. Therefore, a noise having a large rising slope but a small current value itself, such as electrical noise, is negatively determined not to have a “large slope”. Therefore, it is possible to reduce the possibility that electrical noise is erroneously detected as a ground fault.
 (第19実施形態)
 図37に示す本実施形態では、図33に示す過電流判定回路42および電流傾き判定回路48を、第1比較回路421および第2比較回路422に置き換えている。
(19th Embodiment)
In the present embodiment shown in FIG. 37, the overcurrent determination circuit 42 and the current inclination determination circuit 48 shown in FIG. 33 are replaced with the first comparison circuit 421 and the second comparison circuit 422.
 第1比較回路421は、電流検出回路46から出力される放電電流値ISMRの信号と、予め設定された第1閾値VrefLoとを比較する比較器421aを有する。比較器421aは、放電電流値ISMRが第1閾値VrefLo以上である場合に、オン信号を出力する。 The first comparison circuit 421 has a comparator 421a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset first threshold value VrefLo. The comparator 421a outputs an on signal when the discharge current value ISMR is equal to or higher than the first threshold value VrefLo.
 第2比較回路422は、電流検出回路46から出力される放電電流値ISMRの信号と、予め設定された第2閾値VrefHiとを比較する比較器422aを有する。比較器422aは、放電電流値ISMRが第2閾値VrefHi以上である場合に、オン信号を出力する。第2閾値VrefHiは、第1閾値VrefLoより高い値に設定されている。 The second comparison circuit 422 has a comparator 422a that compares the discharge current value ISMR signal output from the current detection circuit 46 with the preset second threshold value VrefHi. The comparator 422a outputs an on signal when the discharge current value ISMR is equal to or higher than the second threshold value VrefHi. The second threshold value VrefHi is set to a value higher than the first threshold value VrefLo.
 異常判定回路42Jは、第1比較回路421がオン信号の出力を開始してから、第2比較回路422がオン信号の出力を開始するまでの時間差を算出する。放電電流値ISMRの上昇速度が速いほど、上記時間差は短くなる筈である。要するに、上記第18実施形態では、フィルタ回路47を用いて低速上昇状態を検知する。これに対し本実施形態では、閾値の異なる2つの比較器の出力時間差を用いて、低速上昇状態を検知する。 The abnormality determination circuit 42J calculates the time difference between the time when the first comparison circuit 421 starts to output the on signal and the time when the second comparison circuit 422 starts to output the on signal. The faster the rate of increase of the discharge current value ISMR, the shorter the time difference should be. In short, in the 18th embodiment, the filter circuit 47 is used to detect the low speed rising state. On the other hand, in the present embodiment, the low-speed rising state is detected by using the output time difference between two comparators having different threshold values.
 異常判定回路42J(傾き判定部)は、算出した時間差が所定の時間閾値未満である場合に非低速上昇状態であると判定する。異常判定回路42Jは、第1比較回路421および第2比較回路422から出力される信号と、傾き判定部による判定結果に基づき、地絡異常が生じているか否かを判定する。例えば、以下の図38に例示するように異常判定回路42Jは異常判定する。 The abnormality determination circuit 42J (tilt determination unit) determines that the non-slow speed rise state is obtained when the calculated time difference is less than a predetermined time threshold value. The abnormality determination circuit 42J determines whether or not a ground fault has occurred based on the signals output from the first comparison circuit 421 and the second comparison circuit 422 and the determination result by the inclination determination unit. For example, as illustrated in FIG. 38 below, the abnormality determination circuit 42J determines an abnormality.
 図38は、第1比較回路421、第2比較回路422および時間差の判定結果の組み合わせと、異常判定結果との対応関係の一例を示す。図38の例では、「過電流(閾値低)」かつ「過電流(閾値高)」かつ「時間差短い」と判定された場合に「異常」と判定している。 FIG. 38 shows an example of the correspondence between the combination of the first comparison circuit 421, the second comparison circuit 422, and the time difference determination result and the abnormality determination result. In the example of FIG. 38, when it is determined that "overcurrent (low threshold value)", "overcurrent (high threshold value)", and "short time difference", it is determined as "abnormal".
 上記「過電流(閾値低)」は、放電電流値ISMRが第1閾値VrefLo以上である、といった第1比較回路421の判定結果である。上記「過電流(閾値高)」は、放電電流値ISMRが第2閾値VrefHi以上である、といった第2比較回路422の判定結果である。上記「時間差短い」は、2つの比較器の出力時間差が時間閾値未満である、といった傾き判定部の判定結果である。また、「時間差短い」ではないと否定判定された低速上昇状態の場合には、「過電流(閾値低)」かつ「過電流(閾値高)」と判定された場合であっても「正常」と判定している。つまり、低速上昇状態である場合には、地絡異常とみなした系統間SWの遮断を禁止している。 The above "overcurrent (low threshold value)" is a determination result of the first comparison circuit 421 that the discharge current value ISMR is equal to or higher than the first threshold value VrefLo. The above "overcurrent (high threshold value)" is a determination result of the second comparison circuit 422 that the discharge current value ISMR is equal to or higher than the second threshold value VrefHi. The above-mentioned "short time difference" is a judgment result of the inclination determination unit that the output time difference between the two comparators is less than the time threshold value. In addition, in the case of a low-speed rising state that is negatively determined not to be "short time difference", "normal" even if it is determined to be "overcurrent (low threshold)" and "overcurrent (high threshold)". It is judged that. That is, in the case of a low-speed rising state, the interruption of the inter-system SW regarded as a ground fault abnormality is prohibited.
 以上により、本実施形態に係るSW制御回路40は、第1比較回路421、第2比較回路422および異常判定回路42Jを有する。よって、低速上昇状態の場合には地絡異常が生じていると判定されにくくすることを、簡素な制御で容易に実現できる。 As described above, the SW control circuit 40 according to the present embodiment includes the first comparison circuit 421, the second comparison circuit 422, and the abnormality determination circuit 42J. Therefore, it is possible to easily realize with simple control that it is difficult to determine that a ground fault has occurred in the case of a low-speed climbing state.
 また、図38に従う異常判定によれば、低速上昇状態である場合には「異常」と判定することを禁止している。そのため、突入電流を地絡と誤検知してしまうおそれを低減できる。なお、図37に示す構成において、シャント抵抗31c側の過電流判定回路420、傾き判定回路480に代えて、シャント抵抗22c側の第1比較回路421および第2比較回路422と同様の構成を採用してもよい。 Further, according to the abnormality judgment according to FIG. 38, it is prohibited to judge as "abnormal" when the vehicle is in a low speed rising state. Therefore, it is possible to reduce the possibility that the inrush current is erroneously detected as a ground fault. In the configuration shown in FIG. 37, the same configuration as that of the first comparison circuit 421 and the second comparison circuit 422 on the shunt resistor 22c side is adopted instead of the overcurrent determination circuit 420 and the inclination determination circuit 480 on the shunt resistor 31c side. You may.
 (第20実施形態)
 図39および図40は、冗長電源システムの参考例を示している。この冗長電源システムは、系統間バスに流れる電流に基づいて、地絡を検知する。図39に示すように、メイン系統のジャンクションボックスとサブ系統のジャンクションボックスをつなぐ系統間バスに、系統間SWが設けられている。図示しない制御回路は、電流値が所定の過電流閾値を超えると、地絡異常が生じたとみなして系統間SWを遮断する。
(20th Embodiment)
39 and 40 show reference examples of redundant power supply systems. This redundant power supply system detects ground faults based on the current flowing through the inter-system bus. As shown in FIG. 39, an inter-system SW is provided in the inter-system bus connecting the junction box of the main system and the junction box of the sub system. When the current value exceeds a predetermined overcurrent threshold value, the control circuit (not shown) considers that a ground fault has occurred and shuts off the inter-system SW.
 図39に示す実線矢印は、負荷側のサブ系統バスに地絡が生じたときの、メイン電源からの電流経路を示している。一方、破線矢印は、サブ系統バスに接続された一般負荷に突入電流が流れるときの、メイン電源からの電流経路を示している。地絡電流および突入電流は、いずれも、メイン電源から、メイン系統のジャンクションボックス、系統間SW、およびサブ系統のジャンクションボックスを経由して流れる。ここで、メイン電源の電圧をV1、系統間バスの電流値をI、電源側のメイン系統バスの抵抗値をR10、インダクタンスをL10とすると、メイン系統のジャンクションボックスの電圧VJB1は、次式にて示される。
 VJB1=V1―R10×I―L10×dI/dt
The solid line arrow shown in FIG. 39 indicates the current path from the main power supply when a ground fault occurs in the sub system bus on the load side. On the other hand, the broken line arrow indicates the current path from the main power supply when the inrush current flows through the general load connected to the sub system bus. Both the ground fault current and the inrush current flow from the main power supply via the junction box of the main system, the SW between the systems, and the junction box of the sub system. Here, assuming that the voltage of the main power supply is V1, the current value of the inter-system bus is I, the resistance value of the main system bus on the power supply side is R10, and the inductance is L10, the voltage VJB1 of the junction box of the main system is as follows. Is shown.
VJB1 = V1-R10 × I-L10 × dI / dt
 電流傾きが大きいほど、電圧VJB1の低下が大きいため、電力失陥領域が低電流側にシフトする。すなわち、低い電流値で電力失陥に至ってしまう。よって、電力失陥を防止するためには、図40に示すように過電流閾値を低く設定せざるを得ない。このため、突入電流を、地絡電流と誤検知するおそれがある。なお、上記した例では、サブ系統側の突入電流と地絡について説明したが、メイン系統側についても同様である。 The larger the current slope, the larger the decrease in voltage VJB1, so the power failure region shifts to the low current side. That is, a low current value leads to power failure. Therefore, in order to prevent power loss, the overcurrent threshold value must be set low as shown in FIG. 40. Therefore, the inrush current may be erroneously detected as a ground fault current. In the above example, the inrush current and the ground fault on the sub system side have been described, but the same applies to the main system side.
 本実施形態では、突入電流が流れたときに、地絡と誤検知して系統間SWを遮断させるおそれを低減できるように、通電制御装置D、ひいては冗長電源システムが構成されている。 In the present embodiment, the energization control device D and the redundant power supply system are configured so as to reduce the risk of erroneously detecting a ground fault and interrupting the inter-system SW when an inrush current flows.
 図41に示すように、本実施形態の通電制御装置Dは、系統間バス30に系統間SW(31a、31b)を備えており、メイン系統バス10やサブ系統バス20にSMRを備えていない。系統間バス30に、電流を検出するためのシャント抵抗31cが設けられており、メイン系統バス10やサブ系統バス20にはシャント抵抗が設けられていない。SW制御回路40は、シャント抵抗31cの両端電位を検出し、両端電位差に基づき系統間電流値IISOを算出する。SW制御回路40は、系統間電流値IISOの傾き(電流傾き)に基づいて地絡が生じているか否かを判定し、判定結果に基づいて系統間SWを制御する。SW制御回路40は、たとえば、第18実施形態(図33参照)に示したSW制御回路40の回路構成のうち、差動アンプ46aを有する電流検出回路46、フィルタ回路47、比較器48aを有する電流傾き判定回路48、およびSW駆動回路41を備えている。 As shown in FIG. 41, in the energization control device D of the present embodiment, the inter-system bus 30 is provided with inter-system SW (31a, 31b), and the main system bus 10 and the sub-system bus 20 are not provided with SMR. .. The inter-system bus 30 is provided with a shunt resistor 31c for detecting a current, and the main system bus 10 and the sub-system bus 20 are not provided with a shunt resistor. The SW control circuit 40 detects the potential across the shunt resistor 31c and calculates the inter-system current value IISO based on the potential difference between the two ends. The SW control circuit 40 determines whether or not a ground fault has occurred based on the slope (current slope) of the inter-system current value IISO, and controls the inter-system SW based on the determination result. The SW control circuit 40 includes, for example, a current detection circuit 46 having a differential amplifier 46a, a filter circuit 47, and a comparator 48a in the circuit configuration of the SW control circuit 40 shown in the 18th embodiment (see FIG. 33). It includes a current inclination determination circuit 48 and a SW drive circuit 41.
 図42は、本実施形態のSW制御回路40が実行する異常時制御の処理手順を示している。この制御手順は、第1実施形態(図3参照)のS20、S30の処理を、S21、S38の処理に置き換えたものである。本処理は、SW制御回路40の起動とともに実行を開始し、所定周期で繰り返し実行される。図42では、系統間電流値IISOが正の値をとる場合の例を示している。 FIG. 42 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment. In this control procedure, the processes of S20 and S30 of the first embodiment (see FIG. 3) are replaced with the processes of S21 and S38. This process starts execution when the SW control circuit 40 is activated, and is repeatedly executed at a predetermined cycle. FIG. 42 shows an example in which the inter-system current value IISO takes a positive value.
 先ずステップS10において、SW制御回路40は、上位制御回路50の指令に従って系統間SWの作動を制御する。続くステップS21において、SW制御回路40は、シャント抵抗31cの両端電位差に基づき系統間電流値IISOを検出(取得)する。 First, in step S10, the SW control circuit 40 controls the operation of the inter-system SW according to the command of the host control circuit 50. In the following step S21, the SW control circuit 40 detects (acquires) the inter-system current value IISO based on the potential difference between both ends of the shunt resistor 31c.
 続くステップS38において、SW制御回路40は、系統間電流値IISOの単位時間当たりの変化量である電流傾き(dIISO/dt)が所定値γを超えているか否かを判定する。所定値γは電流傾き閾値であり、図33のVref2に相当する。所定値γを超えていないと否定判定された場合には、ステップS40による系統間SWの遮断を禁止する。SW制御回路40は、ステップS10以降の処理を再び実行する。電流傾きが所定値γを超えていると肯定判定された場合には、ステップS40にて系統間SWを遮断する。ステップS40では、上位制御回路50からの指令内容に拘らず、系統間SWをオフ作動させる。 In the following step S38, the SW control circuit 40 determines whether or not the current slope (dIISO / dt), which is the amount of change in the inter-system current value IISO per unit time, exceeds the predetermined value γ. The predetermined value γ is the current slope threshold value and corresponds to Vref2 in FIG. 33. If it is negatively determined that the value does not exceed the predetermined value γ, the interruption of the inter-system SW in step S40 is prohibited. The SW control circuit 40 re-executes the processes after step S10. If it is determined affirmative that the current slope exceeds the predetermined value γ, the inter-system SW is shut off in step S40. In step S40, the inter-system SW is turned off regardless of the content of the command from the host control circuit 50.
 このように、本実施形態に係るSW制御回路40(通電制御装置D)によれば、系統間SWの制御に電流傾きを用いる。具体的には、電流傾きが所定の電流傾き閾値を超えているか否かを判定し、電流傾きが電流傾き閾値を超えているとの判定結果に基づいて系統間SWを遮断状態に制御する。地絡が生じたときに流れる電流の傾きは、突入電流の傾きに較べて大きい。地絡時には電流傾きが電流傾き閾値を超えることが見込まれ、突入電流が流れたときには電流傾きが電流傾き閾値を超えがたい。よって、突入電流が流れたときに、地絡と誤検知して系統間SWを遮断させるおそれを低減できる。 As described above, according to the SW control circuit 40 (energization control device D) according to the present embodiment, the current gradient is used to control the SW between systems. Specifically, it is determined whether or not the current inclination exceeds a predetermined current inclination threshold value, and the inter-system SW is controlled to the cutoff state based on the determination result that the current inclination exceeds the current inclination threshold value. The slope of the current that flows when a ground fault occurs is larger than the slope of the inrush current. At the time of a ground fault, the current slope is expected to exceed the current slope threshold, and when an inrush current flows, the current slope does not easily exceed the current slope threshold. Therefore, when an inrush current flows, it is possible to reduce the possibility of erroneously detecting a ground fault and interrupting the inter-system SW.
 特に本実施形態では、系統間電流値IISOの電流傾きが所定値γ(電流傾き閾値)を超えている場合に、系統間SWを遮断する。よって、突入電流が流れたときに、地絡と誤検知して系統間SWを遮断させるおそれを、簡素な構成で低減できる。 In particular, in the present embodiment, when the current slope of the inter-system current value IISO exceeds a predetermined value γ (current slope threshold value), the inter-system SW is cut off. Therefore, when an inrush current flows, the risk of erroneously detecting a ground fault and interrupting the inter-system SW can be reduced with a simple configuration.
 なお、系統間バス30に流れる電流のうち、一方向のみを検出対象としてもよいし、両方向を検出対象としてもよい。系統間バス30において所定の一方向に電流が流れるときに系統間電流値IISOが正の値をとり、一方向とは反対の方向に流れるときに系統間電流値IISOが負の値をとるように、SW制御回路40を構成してもよい。すなわち、差動アンプ46aの基準電圧を0Vに設定してもよい。反対方向に対する電流傾き閾値は所定の負の値として設定され、電流傾きが負の電流傾き閾値を超える、すなわち負の値として電流傾きが電流傾き閾値よりも大きくなると、SW制御回路40が系統間SWを遮断する。系統間電流値IISOが正の値の場合、電流傾きが所定値γを超えるとは、dIISO/dt>所定値γ(正の値)の関係を満たすことである。系統間電流値IISOが負の値の場合、電流傾きが所定値γを超えるとは、dIISO/dt<所定値γ(負の値)の関係を満たすことである。便宜上、ステップS38の処理を、系統間電流値IISOの絶対値の電流傾きが所定値γ(正の値)を超えるか否かをとしてもよい。 Of the current flowing through the inter-system bus 30, only one direction may be the detection target, or both directions may be the detection target. In the inter-system bus 30, the inter-system current value IISO takes a positive value when a current flows in a predetermined direction, and the inter-system current value IISO takes a negative value when the current flows in the opposite direction to the one direction. In addition, the SW control circuit 40 may be configured. That is, the reference voltage of the differential amplifier 46a may be set to 0V. The current slope threshold with respect to the opposite direction is set as a predetermined negative value, and when the current slope exceeds the negative current slope threshold, that is, when the current slope becomes larger than the current slope threshold as a negative value, the SW control circuit 40 intersystems. Shut off the SW. When the inter-system current value IISO is a positive value, the fact that the current slope exceeds the predetermined value γ means that the relationship of dIISO / dt> predetermined value γ (positive value) is satisfied. When the inter-system current value IISO is a negative value, the fact that the current slope exceeds the predetermined value γ means that the relationship of dIISO / dt <predetermined value γ (negative value) is satisfied. For convenience, the process of step S38 may be performed as to whether or not the current slope of the absolute value of the inter-system current value IISO exceeds a predetermined value γ (positive value).
 また、差動アンプ46aの基準電圧を差動アンプ46aに供給される電源電圧の半値(たとえば2.5V)とし、反対方向に電流が流れるときにも系統間電流値IISOが正の値をとるように、SW制御回路40を構成してもよい。 Further, the reference voltage of the differential amplifier 46a is set to half the value of the power supply voltage supplied to the differential amplifier 46a (for example, 2.5V), and the inter-system current value IISO takes a positive value even when the current flows in the opposite direction. As described above, the SW control circuit 40 may be configured.
 検出対象は、系統間バス30に流れる電流に限定されない。メイン系統バス10、サブ系統バス20、系統間バス30のうちの1つを流れる電流を用いればよい。図示を省略するが、メイン系統バス10に流れる電流を用いてもよいし、サブ系統バス20に流れる電流を用いてもよい。また、メイン系統バス10、サブ系統バス20において、電源側バス10a、20aに流れる電流を用いてもよいし、負荷側バス10b、20bに流れる電流を用いてもよい。たとえば、図41に示すシャント抵抗31cに代えて、サブ電源側バス20aにシャント抵抗22cを設け、シャント抵抗22cにより検出される電流値の傾き(電流傾き)を地絡が生じているか否かの判定に用いてもよい。 The detection target is not limited to the current flowing through the inter-system bus 30. The current flowing through one of the main system bus 10, the sub system bus 20, and the inter-system bus 30 may be used. Although not shown, the current flowing through the main system bus 10 may be used, or the current flowing through the sub system bus 20 may be used. Further, in the main system bus 10 and the sub system bus 20, the current flowing through the power supply side buses 10a and 20a may be used, or the current flowing through the load side buses 10b and 20b may be used. For example, instead of the shunt resistor 31c shown in FIG. 41, a shunt resistor 22c is provided on the sub power supply side bus 20a, and the slope of the current value (current slope) detected by the shunt resistor 22c is determined by whether or not a ground fault has occurred. It may be used for judgment.
 本実施形態では、系統間バス30に流れる電流の大きさ、すなわち系統間電流値IISOを用いる。メイン系統バス10に流れる電流を用いる場合、サブ系統バス20の地絡異常、第2負荷20L、21Lの突入電流に対する感度が低い。サブ系統バス20に流れる電流を検出する場合、メイン系統バス10の地絡異常、第2負荷20L、21Lの突入電流に対する感度が低い。系統間バス30に流れる電流を用いることで、メイン系統バス10、サブ系統バス20のいずれで地絡が生じた場合にも、突入電流と切り分けて地絡を精度よく検出することができる。 In this embodiment, the magnitude of the current flowing through the inter-system bus 30, that is, the inter-system current value IISO is used. When the current flowing through the main system bus 10 is used, the sensitivity of the sub system bus 20 to a ground fault abnormality and the inrush currents of the second loads 20L and 21L is low. When detecting the current flowing through the sub system bus 20, the sensitivity of the main system bus 10 to the ground fault abnormality and the inrush currents of the second loads 20L and 21L is low. By using the current flowing through the inter-system bus 30, when a ground fault occurs in either the main system bus 10 or the sub system bus 20, the ground fault can be detected accurately by separating it from the inrush current.
 なお、メイン系統バス10、サブ系統バス20、系統間バス30のうち、複数のバスの電流値を取得し、それぞれの電流傾きと対応する電流傾き閾値とを比較して、地絡が生じているか否かを判定するようにしてもよい。たとえば、系統間電流値IISOの傾きが所定値γを超え、且つ、サブ系統バス20の電流値(ISMR)の傾きが所定値δを超える場合に、地絡が生じているとみなして、系統間SWを遮断するようにしてもよい。系統間電流値IISOの傾きが所定値γを超える、或いは、サブ系統バス20の電流値(ISMR)の傾きが所定値δを超える場合に、系統間SWを遮断するようにしてもよい。 Of the main system bus 10, the sub system bus 20, and the inter-system bus 30, the current values of a plurality of buses are acquired, and the current inclination of each is compared with the corresponding current inclination threshold, resulting in a ground fault. It may be determined whether or not there is. For example, if the slope of the inter-system current value IISO exceeds the predetermined value γ and the slope of the current value (ISMR) of the sub-system bus 20 exceeds the predetermined value δ, it is considered that a ground fault has occurred and the system The SW may be cut off for a while. When the slope of the inter-system current value IISO exceeds the predetermined value γ, or when the slope of the current value (ISMR) of the sub-system bus 20 exceeds the predetermined value δ, the inter-system SW may be cut off.
 本実施形態に示す構成と先行実施形態に示した構成とを組み合わせてもよい。これによれば、充電を地絡と誤検知するのを抑制しつつ、突入電流が流れたときに地絡と誤検知するのを抑制することができる。すなわち、充電時や突入電流が流れるときに地絡とみなし、系統間SWを遮断させるおそれを低減することができる。 The configuration shown in the present embodiment and the configuration shown in the preceding embodiment may be combined. According to this, it is possible to suppress false detection of charging as a ground fault while suppressing false detection of a ground fault when an inrush current flows. That is, it is possible to reduce the risk of interrupting the inter-system SW by regarding it as a ground fault during charging or when an inrush current flows.
 (第21実施形態)
 図43は、本実施形態のSW制御回路40が実行する異常時制御の処理手順を示している。この制御手順は、第20実施形態の処理に、後述するS39の処理を追加したものである。図43でも、図42同様、系統間電流値IISOが正の値をとる場合の例を示している。
(21st Embodiment)
FIG. 43 shows a processing procedure for abnormal time control executed by the SW control circuit 40 of the present embodiment. This control procedure is obtained by adding the process of S39 described later to the process of the 20th embodiment. FIG. 43 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
 ステップS21の処理を実行すると、SW制御回路40は、ステップS38の処理を実行する。すなわち、電流傾き(dIISO/dt)が所定値γを超えているか否かを判定する。電流傾きが所定値γを超えていないと否定判定された場合、SW制御回路40は、ステップS40による系統間SWの遮断を禁止し、ステップS10以降の処理を再び実行する。 When the process of step S21 is executed, the SW control circuit 40 executes the process of step S38. That is, it is determined whether or not the current slope (dIISO / dt) exceeds the predetermined value γ. When it is negatively determined that the current slope does not exceed the predetermined value γ, the SW control circuit 40 prohibits the interruption of the inter-system SW by step S40, and executes the processes after step S10 again.
 ステップS38において電流傾きが所定値γを超えていると肯定判定された場合、SW制御回路40はステップS39の処理を実行する。SW制御回路40は、ステップS21で検出した系統間電流値IISOが、予め設定された所定閾値IthISOを超えているか否かを判定する。すなわち、過電流判定を実行する。閾値IthISOが過電流閾値に相当する。 If it is determined affirmatively that the current slope exceeds the predetermined value γ in step S38, the SW control circuit 40 executes the process of step S39. The SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a preset predetermined threshold value IsISO. That is, the overcurrent determination is executed. The threshold IsISO corresponds to the overcurrent threshold.
 ステップS39において系統間電流値IISOが閾値IthISOを超えていないと否定判定された場合、SW制御回路40は、ステップS40による系統間SWの遮断を禁止する。SW制御回路40は、ステップS10以下の処理を再び実行する。 If it is negatively determined in step S39 that the inter-system current value IISO does not exceed the threshold value IsISO, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 executes the process of step S10 or less again.
 ステップS39において系統間電流値IISOが閾値IthISOを超えていると判定された場合、SW制御回路40は、ステップS40の処理を実行し、系統間SWを遮断する。なお、系統間電流値IISOが負の値の場合、系統間電流値IISOが閾値IthISOを超えるとは、IISO/dt<閾値IthISO(負の値)の関係を満たすことである。便宜上、ステップS39の処理を、系統間電流値IISOの絶対値が所定の閾値IthISO(正の値)を超えるか否かをとしてもよい。 When it is determined in step S39 that the inter-system current value IISO exceeds the threshold value Iso, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW. When the inter-system current value IISO is a negative value, the inter-system current value IISO exceeding the threshold value Iso means that the relationship of IISO / dt <threshold value IsISO (negative value) is satisfied. For convenience, the process of step S39 may be performed as to whether or not the absolute value of the inter-system current value IISO exceeds a predetermined threshold value IsISO (positive value).
 このように、本実施形態では、系統間電流値IISOが閾値IthISOを超えていると肯定判定された場合でも、電流傾きが所定値γを超えていないと否定判定された場合には、系統間SWの遮断を禁止する。換言すれば、電流傾きが所定値γを超える場合のみ、過電流判定を有効にする。よって、突入電流が流れたときに、地絡と誤検知するおそれを、より効果的に低減することができる。 As described above, in the present embodiment, even if the inter-system current value IISO is positively determined to exceed the threshold value Iso, if the inter-system current value is negatively determined not to exceed the predetermined value γ, the inter-system current value is determined to be negative. The shutoff of SW is prohibited. In other words, the overcurrent determination is enabled only when the current slope exceeds the predetermined value γ. Therefore, when an inrush current flows, the possibility of erroneously detecting a ground fault can be reduced more effectively.
 また、電流傾きが所定値γを超え、且つ、系統間電流値IISOが閾値IthISOを超えている場合に、SW制御回路40が系統間SWを遮断する。よって、地絡ではなく、ノイズ等によって電流傾きが所定値γを超える場合において、系統間電流値IISOが閾値IthISOを超えていない場合には、系統間SWの遮断を禁止することができる。これにより、一時的なノイズを地絡と誤検知して系統間SWを遮断させるおそれを低減することができる。 Further, when the current slope exceeds the predetermined value γ and the inter-system current value IISO exceeds the threshold value Iso, the SW control circuit 40 shuts off the inter-system SW. Therefore, when the current slope exceeds the predetermined value γ due to noise or the like instead of a ground fault, and if the inter-system current value IISO does not exceed the threshold value Iso, it is possible to prohibit the interruption of the inter-system SW. As a result, it is possible to reduce the risk of erroneously detecting temporary noise as a ground fault and interrupting the inter-system SW.
 なお、ステップS38、S39の処理タイミングは、図43に示す例に限定されない。ステップS39において系統間電流値IISOが閾値IthISOを超えていると肯定判定された場合に、ステップS38の処理を実行してもよい。また、ステップS38、S39の処理を同時に行ってもよい。 The processing timings of steps S38 and S39 are not limited to the example shown in FIG. 43. If it is determined in step S39 that the inter-system current value IISO exceeds the threshold value ISO, the process of step S38 may be executed. Further, the processes of steps S38 and S39 may be performed at the same time.
 (第22実施形態)
 図44は、本実施形態のSW制御回路40が実行する異常時制御の処理手順を示している。この制御手順は、第21実施形態の処理において、系統間SWを遮断する条件を、ステップS38、S39の一方において肯定的判定が成立する条件、すなわちOR条件に変更したものである。図44でも、図42同様、系統間電流値IISOが正の値をとる場合の例を示している。
(22nd Embodiment)
FIG. 44 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment. In this control procedure, in the process of the 21st embodiment, the condition for shutting off the inter-system SW is changed to a condition in which a positive determination is established in one of steps S38 and S39, that is, an OR condition. FIG. 44 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
 ステップS21の処理を実行すると、SW制御回路40は、ステップS38の処理を実行する。ステップS38において、SW制御回路40は、電流傾きが所定値γを超えているか否かを判定する。電流傾きが所定値γを超えていると判定された場合、SW制御回路40は、ステップS40の処理を実行し、系統間SWを遮断する。 When the process of step S21 is executed, the SW control circuit 40 executes the process of step S38. In step S38, the SW control circuit 40 determines whether or not the current slope exceeds the predetermined value γ. When it is determined that the current slope exceeds the predetermined value γ, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW.
 ステップS38において電流傾きが所定値γを超えていないと判定された場合、SW制御回路40は、ステップS39の過電流判定処理を実行する。すなわち、ステップS21で検出した系統間電流値IISOが、予め設定された所定閾値IthISOを超えているか否かを判定する。 When it is determined in step S38 that the current slope does not exceed the predetermined value γ, the SW control circuit 40 executes the overcurrent determination process in step S39. That is, it is determined whether or not the inter-system current value IISO detected in step S21 exceeds a preset predetermined threshold value IsISO.
 ステップS39において系統間電流値IISOが閾値IthISOを超えていると判定された場合、SW制御回路40は、ステップS40の処理を実行し、系統間SWを遮断する。一方、系統間電流値IISOが閾値IthISOを超えていないと否定判定された場合、SW制御回路40は、ステップS40による系統間SWの遮断を禁止する。SW制御回路40は、ステップS10以降の処理を再び実行する。 When it is determined in step S39 that the inter-system current value IISO exceeds the threshold value Iso, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW. On the other hand, when it is negatively determined that the inter-system current value IISO does not exceed the threshold value Iso, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 re-executes the processes after step S10.
 このように、本実施形態では、電流傾きが所定値γを超えている場合、或いは、系統間電流値IISOが閾値IthISOを超えている場合に、系統間SWを遮断する。すなわち、電流傾きが所定値γを超えていない場合でも、系統間電流値IISOが閾値IthISOを超えている場合には、系統間SWを遮断する。これにより、たとえばモータロックや、負荷までの配線インダクタンスの影響が大きいことにより電流傾きが小さい場合でも、系統間SWを遮断することができる。 As described above, in the present embodiment, the inter-system SW is shut off when the current slope exceeds the predetermined value γ or when the inter-system current value IISO exceeds the threshold value Iso. That is, even if the current slope does not exceed the predetermined value γ, if the inter-system current value IISO exceeds the threshold value Iso, the inter-system SW is shut off. As a result, the inter-system SW can be cut off even when the current gradient is small due to, for example, the influence of the motor lock or the wiring inductance to the load.
 なお、ステップS38、S39の処理タイミングは、図44に示す例に限定されない。ステップS38において系統間電流値IISOが閾値IthISOを超えていないと判定された場合に、ステップS37の処理を実行してもよい。また、ステップS37、S38の処理を同時に行ってもよい。 The processing timings of steps S38 and S39 are not limited to the example shown in FIG. 44. If it is determined in step S38 that the inter-system current value IISO does not exceed the threshold value ISO, the process of step S37 may be executed. Further, the processes of steps S37 and S38 may be performed at the same time.
 (第23実施形態)
 図45は、本実施形態のSW制御回路40が実行する異常時制御の処理手順を示している。この制御手順は、第23実施形態の処理において、ステップS39の処理を、ステップS39A、S39Bの処理に置き換えたものである。SW制御回路40は、過電流判定の閾値として、IthISOHと、IthISOHよりも絶対値の小さい閾値であるIthISOLを有している。IthISOHが第1過電流閾値に相当し、IthISOLが第2過電流閾値に相当する。図45でも、図42同様、系統間電流値IISOが正の値をとる場合の例を示している。
(23rd Embodiment)
FIG. 45 shows a processing procedure for abnormal state control executed by the SW control circuit 40 of the present embodiment. In this control procedure, in the process of the 23rd embodiment, the process of step S39 is replaced with the process of steps S39A and S39B. The SW control circuit 40 has IsISOH and IsISOL, which is a threshold value having an absolute value smaller than that of IsISOH, as a threshold value for determining overcurrent. IsISOH corresponds to the first overcurrent threshold and IsISOL corresponds to the second overcurrent threshold. FIG. 45 also shows an example in which the inter-system current value IISO takes a positive value as in FIG. 42.
 ステップS21の処理を実行すると、SW制御回路40は、ステップS38の処理を実行する前に、ステップS39Aの処理を実行する。SW制御回路40は、ステップS21で検出した系統間電流値IISOが、予め設定された所定の閾値IthISOHを超えているか否かを判定する。 When the process of step S21 is executed, the SW control circuit 40 executes the process of step S39A before executing the process of step S38. The SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a predetermined threshold value IsISOH set in advance.
 ステップS39Aにおいて系統間電流値IISOが閾値IthISOHを超えていると判定された場合、SW制御回路40は、ステップS40の処理を実行し、系統間SWを遮断する。一方、系統間電流値IISOが閾値IthISOHを超えていないと否定判定された場合、SW制御回路40は、ステップS38の処理を実行する。 When it is determined in step S39A that the inter-system current value IISO exceeds the threshold value IsISOH, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW. On the other hand, when it is negatively determined that the inter-system current value IISO does not exceed the threshold value IsISOH, the SW control circuit 40 executes the process of step S38.
 ステップS38において電流傾きが所定値γを超えていないと否定判定された場合、SW制御回路40は、ステップS40による系統間SWの遮断を禁止し、ステップS10以降の処理を再び実行する。一方、電流傾きが所定値γを超えていると肯定判定された場合、SW制御回路40はステップS39Bの処理を実行する。SW制御回路40は、ステップS21で検出した系統間電流値IISOが、予め設定された所定の閾値IthISOLを超えているか否かを判定する。 If it is negatively determined in step S38 that the current slope does not exceed the predetermined value γ, the SW control circuit 40 prohibits the interruption of the inter-system SW by step S40, and executes the processes after step S10 again. On the other hand, when it is determined affirmative that the current slope exceeds the predetermined value γ, the SW control circuit 40 executes the process of step S39B. The SW control circuit 40 determines whether or not the inter-system current value IISO detected in step S21 exceeds a predetermined threshold value IsISOL set in advance.
 ステップS39Bにおいて系統間電流値IISOが閾値IthISOLを超えていないと否定判定された場合、SW制御回路40は、ステップS40による系統間SWの遮断を禁止する。SW制御回路40は、ステップS10以下の処理を再び実行する。 If it is negatively determined in step S39B that the inter-system current value IISO does not exceed the threshold value IsISOL, the SW control circuit 40 prohibits the inter-system SW from being interrupted by step S40. The SW control circuit 40 executes the process of step S10 or less again.
 ステップS39Bにおいて系統間電流値IISOが閾値IthISOLを超えていると判定された場合、SW制御回路40は、ステップS40の処理を実行し、系統間SWを遮断する。 When it is determined in step S39B that the inter-system current value IISO exceeds the threshold value IsISOL, the SW control circuit 40 executes the process of step S40 and shuts off the inter-system SW.
 このように、本実施形態では、系統間電流値IISOが閾値IthISOHを超えている場合、或いは、電流傾きが所定値γを超え、且つ、系統間電流値IISOが閾値IthISOLを超えている場合に、系統間SWを遮断する。電流傾きが所定値γを超えていない場合でも、系統間電流値IISOが閾値IthISOHを超えている場合には、系統間SWを遮断する。第22実施形態同様、電流傾きが小さい場合でも、系統間SWを遮断することができる。 As described above, in the present embodiment, when the inter-system current value IISO exceeds the threshold value IsISO, or when the current slope exceeds the predetermined value γ and the inter-system current value IISO exceeds the threshold value IsISOL. , Shut off the SW between systems. Even if the current slope does not exceed the predetermined value γ, if the inter-system current value IISO exceeds the threshold value IsISOH, the inter-system SW is shut off. Similar to the 22nd embodiment, the inter-system SW can be cut off even when the current slope is small.
 また、電流傾きが所定値γを超え、且つ、系統間電流値IISOが閾値IthISOLを超えている場合に、SW制御回路40が系統間SWを遮断する。よって、地絡ではなく、ノイズ等によって電流傾きが所定値γを超える場合において、系統間電流値IISOが閾値IthISOLを超えていない場合には、系統間SWの遮断を禁止することができる。これにより、一時的なノイズを地絡と誤検知して系統間SWを遮断させるおそれを低減することができる。 Further, when the current slope exceeds the predetermined value γ and the inter-system current value IISO exceeds the threshold value IsISOL, the SW control circuit 40 shuts off the inter-system SW. Therefore, when the current slope exceeds the predetermined value γ due to noise or the like instead of a ground fault, and if the inter-system current value IISO does not exceed the threshold value IsISOL, the interruption of the inter-system SW can be prohibited. As a result, it is possible to reduce the risk of erroneously detecting temporary noise as a ground fault and interrupting the inter-system SW.
 なお、ステップS38、S39A、S39Bの処理タイミングは、図45に示す例に限定されない。ステップS38、S39Bの順序を逆にしてもよいし、同時に実施してもよい。ステップS38、S39Bと、ステップS39Aの順序を逆にしてもよいし、同時に実施してもよい。 The processing timings of steps S38, S39A, and S39B are not limited to the example shown in FIG. 45. The order of steps S38 and S39B may be reversed or may be carried out at the same time. The order of steps S38 and S39B and step S39A may be reversed or may be performed at the same time.
 (他の実施形態)
 以上、本開示の複数の実施形態について説明したが、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(Other embodiments)
Although the plurality of embodiments of the present disclosure have been described above, not only the combination of the configurations specified in the description of each embodiment but also the plurality of embodiments even if the combination is not specified if there is no problem in the combination. It is possible to partially combine the configurations of. Further, it is assumed that the unspecified combination of the configurations described in the plurality of embodiments and modifications is also disclosed by the following description.
 上記第8実施形態では、第2放電電流値ISMR2が第2閾値を超えていなくても、第1放電電流値ISMR1が第1閾値を超えて上昇していれば系統間SWを遮断する。これに対し、第2放電電流値ISMR2が第2閾値を超え、かつ、第1放電電流値ISMR1が第1閾値を超えた場合に、地絡異常とみなして系統間SWを遮断してもよい。 In the eighth embodiment, even if the second discharge current value ISMR2 does not exceed the second threshold value, the inter-system SW is shut off if the first discharge current value ISMR1 rises beyond the first threshold value. On the other hand, when the second discharge current value ISMR2 exceeds the second threshold value and the first discharge current value ISMR1 exceeds the first threshold value, it may be regarded as a ground fault abnormality and the inter-system SW may be shut off. ..
 図1等に記載の冗長電源システムでは、発電機G10がメイン系統バス10に接続されている。そのため、サブ電源B20は、系統間バス30を通じて供給される電力によって充電可能に構成されている。これに対し、発電機G10がサブ系統バス20に接続されていてもよい。また、発電機G10は、メイン電源B10またはサブ電源B20の高電位側に接続されていてもよいし、グランド側に接続されていてもよい。 In the redundant power supply system shown in FIG. 1 and the like, the generator G10 is connected to the main system bus 10. Therefore, the sub power supply B20 is configured to be rechargeable by the electric power supplied through the inter-system bus 30. On the other hand, the generator G10 may be connected to the sub system bus 20. Further, the generator G10 may be connected to the high potential side of the main power source B10 or the sub power source B20, or may be connected to the ground side.
 上記第17~第19実施形態に係る通電制御装置は、以下の構成Aと構成Bを備えている。これに対し、構成Aを廃止して構成Bを備えさせた通電制御装置であってもよい。構成Aは、「系統間スイッチ制御部は、第2電源から放電される電流の大きさである放電電流値ISMRを取得し、取得した放電電流値が過放電閾値Ithを超えて上昇した場合に、地絡異常が生じているとみなして系統間スイッチを遮断状態に制御する」である。構成Bは、「系統間スイッチ制御部は、放電電流値ISMRの上昇速度が所定値以下となる低速上昇状態である場合には、非低速上昇状態である場合に比べて、地絡異常が生じていると判定されにくくする」である。 The energization control device according to the 17th to 19th embodiments has the following configurations A and B. On the other hand, the energization control device may be provided with the configuration B by abolishing the configuration A. The configuration A is "when the inter-system switch control unit acquires a discharge current value ISMR, which is the magnitude of the current discharged from the second power source, and the acquired discharge current value rises beyond the over-discharge threshold value Is. , It is considered that a ground fault has occurred and the inter-system switch is controlled to the cutoff state. " Configuration B states that "when the inter-system switch control unit is in a low-speed rising state in which the rising speed of the discharge current value ISMR is equal to or less than a predetermined value, a ground fault abnormality occurs as compared with the case where it is in a non-low-speed rising state. It makes it difficult to judge that it is. "
 シャント抵抗を用いてバスに流れる電流を検出する例を示したが、これに限定されない。電流を検出するためのセンス素子を用いてもよい。センス素子は、たとえば系統間SW(31a、31b)を構成する半導体スイッチング素子とともに構成される。 An example of detecting the current flowing through the bus using a shunt resistor was shown, but the present invention is not limited to this. A sense element for detecting the current may be used. The sense element is configured together with, for example, a semiconductor switching element that constitutes an intersystem SW (31a, 31b).

Claims (30)

  1.  第1電源(B10)から供給される電力を第1負荷(L10、L11)へ送電する第1系統バス(10)と、
     第2電源(B20)から供給される電力を第2負荷(L20、L21)へ送電する第2系統バス(20)と、
     前記第1系統バスと前記第2系統バスとを電気的に接続する系統間バス(30)と、
    を備える冗長電源システムに適用された通電制御装置において、
     前記系統間バスにおける電流の通電と遮断を切り替える系統間スイッチ(31a、31b)と、
     前記系統間スイッチの作動状態を制御する系統間スイッチ制御部(40、41)と、
    を備え、
     前記系統間スイッチ制御部は、
     前記第2電源から放電される電流の大きさである放電電流値(ISMR)を取得し、
     取得した前記放電電流値が過放電閾値(Ith)を超えて上昇した場合に、地絡異常が生じているとみなして前記系統間スイッチを遮断状態に制御する、通電制御装置。
    The first system bus (10) that transmits the electric power supplied from the first power source (B10) to the first load (L10, L11), and
    The second system bus (20) that transmits the electric power supplied from the second power source (B20) to the second load (L20, L21), and
    An inter-system bus (30) that electrically connects the first system bus and the second system bus, and
    In the energization control device applied to the redundant power supply system equipped with
    Inter-system switches (31a, 31b) that switch between energization and interruption of current in the inter-system bus, and
    Inter-system switch control units (40, 41) that control the operating state of the inter-system switch, and
    With
    The inter-system switch control unit
    The discharge current value (ISMR), which is the magnitude of the current discharged from the second power source, is acquired.
    An energization control device that controls the inter-system switch to a cutoff state by regarding that a ground fault has occurred when the acquired discharge current value rises beyond the over-discharge threshold value (Ith).
  2.  前記系統間バスを通じて前記第1系統バスの側から前記第2系統バスの側へ電流が流れる向きを正とした場合における、前記系統間バスを流れる電流の値を系統間電流値(IISO)とし、
     前記系統間電流値が所定閾値(IthISO)より小さい場合に、前記過放電閾値を小さい値に変更する閾値変更部(S31)を備える、請求項1に記載の通電制御装置。
    When the direction in which the current flows from the side of the first system bus to the side of the second system bus through the inter-system bus is positive, the value of the current flowing through the inter-system bus is defined as the inter-system current value (IISO). ,
    The energization control device according to claim 1, further comprising a threshold value changing unit (S31) for changing the over-discharge threshold value to a smaller value when the inter-system current value is smaller than a predetermined threshold value (IthISO).
  3.  前記系統間バスを通じて前記第1系統バスの側から前記第2系統バスの側へ電流が流れる向きを正とした場合における、前記系統間バスを流れる電流の値を系統間電流値とし、
     前記系統間スイッチ制御部は、前記放電電流値が前記過放電閾値を超えていない場合であっても、前記系統間電流値が所定閾値(IthISO)より小さい場合には、前記地絡異常が生じているとみなして前記系統間スイッチを遮断状態に制御する、請求項1に記載の通電制御装置。
    When the direction in which the current flows from the side of the first system bus to the side of the second system bus through the inter-system bus is positive, the value of the current flowing through the inter-system bus is defined as the inter-system current value.
    Even when the discharge current value does not exceed the over-discharge threshold value, the inter-system switch control unit causes the ground fault abnormality when the inter-system current value is smaller than a predetermined threshold value (IthISO). The energization control device according to claim 1, wherein the inter-system switch is controlled to be in a cut-off state.
  4.  前記放電電流値が前記過放電閾値を超えて上昇した場合に、前記系統間バスに対して前記第1系統バスの側および前記第2系統バスの側のいずれで地絡が生じているかを判別する地絡判別部(S32、S33)を備え、
     前記系統間バスを通じて前記第1系統バスの側から前記第2系統バスの側へ電流が流れる向きを正とし、前記系統間バスを流れる電流の大きさを系統間電流値とした場合に、
     前記地絡判別部は、前記系統間電流値が判別閾値より小さい場合には前記第1系統バスの側で地絡が生じていると判別し、前記系統間電流値が前記判別閾値以上である場合には前記第2系統バスの側で地絡が生じていると判別する、請求項1~3のいずれか1つに記載の通電制御装置。
    When the discharge current value rises beyond the over-discharge threshold value, it is determined whether a ground fault has occurred on the side of the first system bus or the side of the second system bus with respect to the inter-system bus. Equipped with ground fault discrimination units (S32, S33)
    When the direction in which the current flows from the side of the first system bus to the side of the second system bus through the inter-system bus is positive, and the magnitude of the current flowing through the inter-system bus is the inter-system current value.
    When the inter-system current value is smaller than the discrimination threshold value, the ground fault discriminating unit determines that a ground fault has occurred on the side of the first system bus, and the inter-system current value is equal to or higher than the discrimination threshold value. The energization control device according to any one of claims 1 to 3, wherein in this case, it is determined that a ground fault has occurred on the side of the second system bus.
  5.  前記第2電源と前記第2系統バスとの通電と遮断を切り替える電源スイッチ(22)と、
     前記電源スイッチの作動状態を制御する電源スイッチ制御部(40)と、
    を備える、請求項1~4のいずれか1つに記載の通電制御装置。
    A power switch (22) for switching between energization and disconnection between the second power supply and the second system bus, and
    A power switch control unit (40) that controls the operating state of the power switch, and
    The energization control device according to any one of claims 1 to 4, further comprising.
  6.  前記第2系統バスの側で地絡が生じたことに起因して前記地絡異常が生じている場合には、前記電源スイッチ制御部は前記電源スイッチを遮断状態に制御する、請求項5に記載の通電制御装置。 According to claim 5, when the ground fault abnormality occurs due to the ground fault occurring on the side of the second system bus, the power switch control unit controls the power switch to a cutoff state. The energization control device described.
  7.  前記電源スイッチ制御部は、前記電源スイッチを遮断状態に制御するにあたり、前記系統間スイッチ制御部が前記系統間スイッチを遮断すると同時に前記電源スイッチを遮断する、請求項6に記載の通電制御装置。 The energization control device according to claim 6, wherein the power switch control unit shuts off the power switch at the same time as the inter-system switch control unit shuts off the inter-system switch when controlling the power switch in a cut-off state.
  8.  前記第1系統バスの側で地絡が生じたことに起因して前記地絡異常が生じている場合には、前記電源スイッチ制御部は前記電源スイッチを通電状態に制御する、請求項5~7のいずれか1つに記載の通電制御装置。 When the ground fault abnormality occurs due to the ground fault occurring on the side of the first system bus, the power switch control unit controls the power switch to the energized state, claim 5 to 5. The energization control device according to any one of 7.
  9.  前記系統間スイッチ制御部および前記電源スイッチ制御部へ制御内容を指令する上位制御部(50)を備え、
     前記系統間スイッチ制御部は、前記地絡異常が生じている場合には、前記上位制御部の指令内容に拘らず前記系統間スイッチを遮断状態に制御し、
     前記電源スイッチ制御部は、前記地絡異常が生じている場合には、前記上位制御部の指令内容に拘らず、地絡が生じた位置に応じて前記電源スイッチを制御する、請求項5~8のいずれか1つに記載の通電制御装置。
    The upper control unit (50) for instructing the control contents to the inter-system switch control unit and the power switch control unit is provided.
    When the ground fault abnormality occurs, the inter-system switch control unit controls the inter-system switch in a cutoff state regardless of the command content of the higher-level control unit.
    5. The power switch control unit controls the power switch according to the position where the ground fault occurs, regardless of the command content of the upper control unit, when the ground fault abnormality occurs. 8. The energization control device according to any one of 8.
  10.  前記地絡異常が生じたことに起因して前記指令内容が無効にされている場合に、その旨を前記上位制御部へ通知する異常通知部(S50)を備える、請求項9に記載の通電制御装置。 The energization according to claim 9, further comprising an abnormality notification unit (S50) for notifying the upper control unit of the command content when the command content is invalidated due to the occurrence of the ground fault abnormality. Control device.
  11.  前記第2電源と前記第2系統バスとの通電を遮断する遮断スイッチ(23)を備え、
     前記遮断スイッチは、前記電源スイッチ制御部の指令内容に拘らず遮断作動可能に構成されている、請求項9または10に記載の通電制御装置。
    A cutoff switch (23) for cutting off the energization between the second power supply and the second system bus is provided.
    The energization control device according to claim 9 or 10, wherein the cutoff switch is configured so that the cutoff operation can be performed regardless of the command content of the power switch control unit.
  12.  前記第1電源から放電される電流の大きさを第1放電電流値(ISMR1)とし、前記放電電流値を第2放電電流値(ISMR2)とし、
     前記系統間スイッチ制御部は、前記第1放電電流値および前記第2放電電流値の両方に基づいて前記系統間スイッチの作動を制御する、請求項1~11のいずれか1つに記載の通電制御装置。
    The magnitude of the current discharged from the first power source is defined as the first discharge current value (ISMR1), and the discharge current value is defined as the second discharge current value (ISMR2).
    The energization according to any one of claims 1 to 11, wherein the inter-system switch control unit controls the operation of the inter-system switch based on both the first discharge current value and the second discharge current value. Control device.
  13.  前記第1放電電流値に対する過放電閾値を第1閾値とし、前記第2放電電流値に対する過放電閾値を第2閾値とし、
     前記系統間スイッチ制御部は、前記第2放電電流値が前記第2閾値を超えていない場合であっても、前記第1放電電流値が前記第1閾値を超えて上昇した場合には、前記系統間スイッチを遮断状態に制御する、請求項12に記載の通電制御装置。
    The over-discharge threshold value with respect to the first discharge current value is set as the first threshold value, and the over-discharge threshold value with respect to the second discharge current value is set as the second threshold value.
    Even if the second discharge current value does not exceed the second threshold value, the inter-system switch control unit may use the inter-system switch control unit if the first discharge current value exceeds the first threshold value. The energization control device according to claim 12, which controls an inter-system switch in a cut-off state.
  14.  前記第1放電電流値に対する過放電閾値を第1閾値とし、前記第2放電電流値に対する過放電閾値を第2閾値とし、
     前記系統間スイッチ制御部は、前記第2放電電流値が前記第2閾値を超え、かつ、前記第1放電電流値が前記第1閾値を超えて上昇した場合に、前記系統間スイッチを遮断状態に制御する、請求項12に記載の通電制御装置。
    The over-discharge threshold value with respect to the first discharge current value is set as the first threshold value, and the over-discharge threshold value with respect to the second discharge current value is set as the second threshold value.
    The inter-system switch control unit shuts off the inter-system switch when the second discharge current value exceeds the second threshold value and the first discharge current value rises beyond the first threshold value. 12. The energization control device according to claim 12.
  15.  前記地絡異常の発生に起因して前記系統間スイッチ制御部が前記系統間スイッチを遮断状態にする遮断ラッチ制御を実行している期間に、前記地絡異常の原因が解消されて復旧したか否かを判定する復旧判定部(S70)を備え、
     前記復旧判定部により復旧したと判定された場合には、前記系統間スイッチ制御部は前記遮断ラッチ制御を終了させる、請求項1~14のいずれか1つに記載の通電制御装置。
    Did the cause of the ground fault disappear and recover during the period in which the inter-system switch control unit executes the cut-off latch control for shutting off the inter-system switch due to the occurrence of the ground fault abnormality? Equipped with a recovery determination unit (S70) that determines whether or not
    The energization control device according to any one of claims 1 to 14, wherein when the restoration determination unit determines that the restoration has been performed, the inter-system switch control unit terminates the cutoff latch control.
  16.  前記復旧判定部は、前記遮断ラッチ制御の開始から所定時間が経過した場合に復旧したと判定する、請求項15に記載の通電制御装置。 The energization control device according to claim 15, wherein the recovery determination unit determines that the restoration has been performed when a predetermined time has elapsed from the start of the cutoff latch control.
  17.  前記復旧判定部は、前記系統間スイッチの両端子の対地電位の各々が所定電位以上である場合に復旧したと判定する、請求項15に記載の通電制御装置。 The energization control device according to claim 15, wherein the restoration determination unit determines that the restoration is performed when each of the ground potentials of both terminals of the inter-system switch is equal to or higher than a predetermined potential.
  18.  前記復旧判定部は、前記系統間スイッチの両端子の電位差が所定未満である場合に復旧したと判定する、請求項15に記載の通電制御装置。 The energization control device according to claim 15, wherein the restoration determination unit determines that the restoration is performed when the potential difference between both terminals of the inter-system switch is less than a predetermined value.
  19.  前記系統間スイッチ制御部は、前記放電電流値の上昇速度が所定値以下となる低速上昇状態である場合には、非低速上昇状態である場合に比べて、前記地絡異常が生じていると判定されにくくする、請求項1~18のいずれか1つに記載の通電制御装置。 The inter-system switch control unit states that when the discharge current value rises at a low speed of a predetermined value or less, the ground fault abnormality occurs as compared with the case where the discharge current value rises at a low speed. The energization control device according to any one of claims 1 to 18, which makes it difficult to determine.
  20.  前記系統間スイッチ制御部は、前記低速上昇状態である場合には、前記非低速上昇状態である場合に比べて前記過放電閾値を大きい値に変更する、請求項19に記載の通電制御装置。 The energization control device according to claim 19, wherein the inter-system switch control unit changes the over-discharge threshold value to a larger value in the case of the low-speed rising state than in the case of the non-low-speed rising state.
  21.  前記系統間スイッチ制御部は、前記低速上昇状態である場合には、前記地絡異常とみなした前記系統間スイッチの遮断を禁止する、請求項19に記載の通電制御装置。 The energization control device according to claim 19, wherein the inter-system switch control unit prohibits interruption of the inter-system switch regarded as a ground fault abnormality when the low-speed rising state is present.
  22.  前記系統間スイッチ制御部は、
     取得した前記放電電流値のうち上昇速度が所定以上である放電電流値を抽出して出力するフィルタ回路(47)と、
     前記フィルタ回路の出力値が所定の傾き用閾値(Vref2)以上である場合に、前記非低速上昇状態であると判定する傾き判定部(48)と、
    を有する、請求項19~21のいずれか1つに記載の通電制御装置。
    The inter-system switch control unit
    A filter circuit (47) that extracts and outputs a discharge current value whose rising rate is equal to or higher than a predetermined value among the acquired discharge current values.
    When the output value of the filter circuit is equal to or higher than a predetermined tilt threshold value (Vref2), the tilt determination unit (48) for determining that the non-slow speed rise state is present.
    The energization control device according to any one of claims 19 to 21, wherein the energization control device has.
  23.  前記系統間スイッチ制御部は、
     取得した前記放電電流値と第1閾値(VrefLo)との大小関係を比較する第1比較回路(421)と、
     取得した前記放電電流値と、前記第1閾値より高い値に設定された第2閾値(VrefHi)との大小関係を比較する第2比較回路(422)と、
     取得した前記放電電流値が前記第1閾値を超えたタイミングから、前記第2閾値を超えたタイミングまでの時間差が所定の時間閾値未満である場合に、前記非低速上昇状態であると判定する傾き判定部(42J)と、
    を有する、請求項19~22のいずれか1つに記載の通電制御装置。
    The inter-system switch control unit
    A first comparison circuit (421) for comparing the magnitude relationship between the acquired discharge current value and the first threshold value (VrefLo), and
    A second comparison circuit (422) that compares the magnitude relationship between the acquired discharge current value and the second threshold value (VrefHi) set to a value higher than the first threshold value.
    When the time difference from the timing when the acquired discharge current value exceeds the first threshold value to the timing when the second threshold value is exceeded is less than a predetermined time threshold value, the slope for determining the non-slow speed rising state. Judgment unit (42J) and
    The energization control device according to any one of claims 19 to 22, which comprises.
  24.  第1電源(B10)から供給される電力を第1負荷(L10、L11)へ送電する第1系統バス(10)と、
     第2電源(B20)から供給される電力を第2負荷(L20、L21)へ送電する第2系統バス(20)と、
     前記第1系統バスと前記第2系統バスとを電気的に接続する系統間バス(30)と、
    を備える冗長電源システムに適用された通電制御装置において、
     前記系統間バスにおける電流の通電と遮断を切り替える系統間スイッチ(31a、31b)と、
     前記系統間スイッチの作動状態を制御する系統間スイッチ制御部(40)と、
    を備え、
     前記系統間スイッチ制御部は、
     前記第1系統バス、前記第2系統バス、および前記系統間バスの1つを流れる電流の大きさである電流値を取得し、
     取得した前記電流値の単位時間当たりの変化量である電流傾きが所定の電流傾き閾値を超えているか否かを判定し、前記電流傾きが前記電流傾き閾値を超えているとの判定結果に基づいて前記系統間スイッチを遮断状態に制御する、通電制御装置。
    The first system bus (10) that transmits the electric power supplied from the first power source (B10) to the first load (L10, L11), and
    The second system bus (20) that transmits the electric power supplied from the second power source (B20) to the second load (L20, L21), and
    An inter-system bus (30) that electrically connects the first system bus and the second system bus, and
    In the energization control device applied to the redundant power supply system equipped with
    Inter-system switches (31a, 31b) that switch between energization and interruption of current in the inter-system bus, and
    An inter-system switch control unit (40) that controls the operating state of the inter-system switch,
    With
    The inter-system switch control unit
    The current value, which is the magnitude of the current flowing through one of the first system bus, the second system bus, and the inter-system bus, is acquired.
    It is determined whether or not the current slope, which is the amount of change in the acquired current value per unit time, exceeds a predetermined current slope threshold value, and based on the determination result that the current slope exceeds the current slope threshold value. An energization control device that controls the inter-system switch to a cutoff state.
  25.  前記系統間スイッチ制御部は、前記電流傾きが前記電流傾き閾値を超えている場合に、前記系統間スイッチを遮断状態に制御する、請求項24に記載の通電制御装置。 The energization control device according to claim 24, wherein the inter-system switch control unit controls the inter-system switch in a cut-off state when the current inclination exceeds the current inclination threshold value.
  26.  前記系統間スイッチ制御部は、
    前記電流値が所定の過電流閾値を超えているか否かを判定し、
    前記電流傾きが前記電流傾き閾値を超え、且つ、前記電流値が前記過電流閾値を超えている場合に、前記系統間スイッチを遮断状態に制御する、請求項24に記載の通電制御装置。
    The inter-system switch control unit
    It is determined whether or not the current value exceeds a predetermined overcurrent threshold value, and it is determined.
    The energization control device according to claim 24, which controls the inter-system switch in a cutoff state when the current slope exceeds the current slope threshold value and the current value exceeds the overcurrent threshold value.
  27.  前記系統間スイッチ制御部は、
    前記電流値が所定の過電流閾値を超えているか否かを判定し、
    前記電流値が前記過電流閾値を超えている場合、或いは、前記電流傾きが前記電流傾き閾値を超えている場合に、前記系統間スイッチを遮断状態に制御する、請求項24に記載の通電制御装置。
    The inter-system switch control unit
    It is determined whether or not the current value exceeds a predetermined overcurrent threshold value, and it is determined.
    The energization control according to claim 24, which controls the inter-system switch in a cutoff state when the current value exceeds the overcurrent threshold value or when the current slope exceeds the current slope threshold value. apparatus.
  28.  前記系統間スイッチ制御部は、
    前記電流値が所定の過電流閾値を超えているか否かを判定し、
    前記電流値が前記過電流閾値である第1過電流閾値を超えている場合、或いは、前記電流傾きが前記電流傾き閾値を超えるとともに、前記電流値が前記第1過電流閾値よりも絶対値の小さい前記過電流閾値である第2過電流閾値を超えている場合に、前記系統間スイッチを遮断状態に制御する、請求項24に記載の通電制御装置。
    The inter-system switch control unit
    It is determined whether or not the current value exceeds a predetermined overcurrent threshold value, and it is determined.
    When the current value exceeds the first overcurrent threshold, which is the overcurrent threshold, or when the current gradient exceeds the current gradient threshold, the current value is an absolute value higher than the first overcurrent threshold. The energization control device according to claim 24, which controls the intersystem switch in a cutoff state when the second overcurrent threshold, which is a small overcurrent threshold, is exceeded.
  29.  前記系統間スイッチ制御部は、前記電流値として、前記系統間バスを流れる電流の大きさを取得する、請求項24~28のいずれか1つに記載の通電制御装置。 The energization control device according to any one of claims 24 to 28, wherein the inter-system switch control unit acquires the magnitude of the current flowing through the inter-system bus as the current value.
  30.  請求項1~29のいずれか1つに記載の通電制御装置と、
     前記第1電源および前記第2電源の少なくとも一方と、
    を備える電源ユニット。
    The energization control device according to any one of claims 1 to 29,
    With at least one of the first power supply and the second power supply
    Power supply unit with.
PCT/JP2020/026405 2019-08-28 2020-07-06 Energization control device and power supply unit WO2021039130A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019156093 2019-08-28
JP2019-156093 2019-08-28
JP2020-091648 2020-05-26
JP2020091648A JP2021040475A (en) 2019-08-28 2020-05-26 Energization control device and power supply unit

Publications (1)

Publication Number Publication Date
WO2021039130A1 true WO2021039130A1 (en) 2021-03-04

Family

ID=74685858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026405 WO2021039130A1 (en) 2019-08-28 2020-07-06 Energization control device and power supply unit

Country Status (1)

Country Link
WO (1) WO2021039130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114030388A (en) * 2021-10-27 2022-02-11 智新控制系统有限公司 Overcurrent protection system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289903A (en) * 2003-03-20 2004-10-14 Toyota Motor Corp Inverter device
JP2009298260A (en) * 2008-06-12 2009-12-24 Furukawa Electric Co Ltd:The Abnormal electric current detecting device and abnormal electric current detecting method
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device
JP2015074348A (en) * 2013-10-09 2015-04-20 株式会社オートネットワーク技術研究所 Vehicular power supply device
JP2016128283A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Power supply device for automobile and power supply box
JP2018196252A (en) * 2017-05-18 2018-12-06 矢崎総業株式会社 Power Distribution System
JP2019062727A (en) * 2017-09-22 2019-04-18 株式会社デンソー Power supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289903A (en) * 2003-03-20 2004-10-14 Toyota Motor Corp Inverter device
JP2009298260A (en) * 2008-06-12 2009-12-24 Furukawa Electric Co Ltd:The Abnormal electric current detecting device and abnormal electric current detecting method
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device
JP2015074348A (en) * 2013-10-09 2015-04-20 株式会社オートネットワーク技術研究所 Vehicular power supply device
JP2016128283A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Power supply device for automobile and power supply box
JP2018196252A (en) * 2017-05-18 2018-12-06 矢崎総業株式会社 Power Distribution System
JP2019062727A (en) * 2017-09-22 2019-04-18 株式会社デンソー Power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114030388A (en) * 2021-10-27 2022-02-11 智新控制系统有限公司 Overcurrent protection system and method
CN114030388B (en) * 2021-10-27 2024-02-27 智新控制系统有限公司 Overcurrent protection system and method

Similar Documents

Publication Publication Date Title
CN107709080B (en) Battery management device and power supply system
JP6304784B2 (en) Battery module shutoff structure
JP6662282B2 (en) Power system
US6422331B1 (en) Hybrid vehicle
US9889741B1 (en) Vehicle
CN106249154B (en) Secondary battery monitoring device, secondary battery protection system, battery pack, and vehicle
CN114103838A (en) Power control apparatus and method for autonomous vehicle
JP6629463B2 (en) Fuse system for at least one load on a vehicle
KR20180005008A (en) Apparatus for preventing overcharge of battery in eco-vehicle
US20230202410A1 (en) Method for securing in particular safety-relevant loads in a motor vehicle
WO2021039130A1 (en) Energization control device and power supply unit
WO2021039177A1 (en) Energization control device and power supply unit
JP2021040475A (en) Energization control device and power supply unit
JP6844366B2 (en) Power system
JP5950442B2 (en) Electronic control unit
US20200023742A1 (en) Fault detection device
US11837911B2 (en) Power supply control apparatus and power supply control method
WO2023073976A1 (en) Battery module and battery power supply circuit
WO2023152786A1 (en) On-vehicle shutoff control device
JP7172977B2 (en) Control device for in-vehicle power supply
WO2022230549A1 (en) Power supply control system
WO2023176228A1 (en) Power source device
US20220302726A1 (en) Onboard power supply device and onboard power supply control method
JPH1159293A (en) Power source device for vehicle and power source system for vehicle
JP7437231B2 (en) Power system control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859221

Country of ref document: EP

Kind code of ref document: A1