WO2020261947A1 - Protection device and power supply system - Google Patents

Protection device and power supply system Download PDF

Info

Publication number
WO2020261947A1
WO2020261947A1 PCT/JP2020/022427 JP2020022427W WO2020261947A1 WO 2020261947 A1 WO2020261947 A1 WO 2020261947A1 JP 2020022427 W JP2020022427 W JP 2020022427W WO 2020261947 A1 WO2020261947 A1 WO 2020261947A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switch
electric circuit
current value
state
Prior art date
Application number
PCT/JP2020/022427
Other languages
French (fr)
Japanese (ja)
Inventor
和憲 木寺
達雄 古賀
圭太 金森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021527605A priority Critical patent/JP7246010B2/en
Publication of WO2020261947A1 publication Critical patent/WO2020261947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a protective device and a power supply system.
  • a system in which DC power supplied from a plurality of DC power supply devices such as a solar panel via a DC electric circuit is converted into AC power by a power converter (power conditioner).
  • a power converter power conditioner
  • power generation failure may occur due to poor connection or the like.
  • a technique of determining a solar panel in which a power generation failure has occurred and electrically disconnecting only the solar panel in which a power generation failure has occurred from a DC electric circuit for example, a patent document). 1 etc.
  • Patent Document 1 In the system described in Patent Document 1, a monitoring control device is provided for each of a plurality of solar panels. Patent Document 1 attempts to monitor and control the operating state of each solar panel by such a monitoring and control device.
  • the monitoring control device used in the system described in Patent Document 1 includes a switch for short-circuiting a pair of output terminals of the solar panel (that is, output terminals on the high potential side and the output terminal on the low potential side), and the solar panel is in a failed state. If it is determined to be present, the solar panel is electrically disconnected from the system system by short-circuiting the pair of output terminals of the solar panel. The solar panel determined to be in a failed state in this way is substantially removed and will not be used again. However, for example, only a part of the solar panels may be shaded and the output may be reduced. In such a case, it can be determined that the solar panels are in a failed state.
  • the present invention provides a protection device that short-circuits a pair of output terminals of a DC power supply device, and can detect the output of the DC power supply device even when the pair of output terminals are short-circuited. With the goal.
  • one aspect of the protective device is a protective device connected to a DC power supply device that outputs DC power to a DC electric current, and is an output on the high potential side of the DC power supply device.
  • the first conductor connected to the terminal, the second conductor connected to the output terminal on the low potential side of the DC power supply device, the cathode connected to the first conductor, and the anode to the second conductor.
  • a diode connected to the diode, a current sensor connected in series with the diode and measuring the current flowing between the first conductor and the second conductor, and a switch connected in parallel with the diode.
  • a controller for controlling the state of the switch is provided, and the switch is controlled based on a current value measured by the current sensor.
  • one aspect of the power supply system includes the protection device and an external unit connected to the DC electric circuit, and the external unit is based on the current value. It has a control unit that generates the command signal and a communication unit that transmits the command signal to the protection device.
  • a protective device that short-circuits a pair of output terminals of a DC power supply device and can detect the output of the DC power supply device even when the pair of output terminals are short-circuited. Can be provided.
  • FIG. 1 is a schematic view showing the overall configuration of the power supply system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a protection device and a DC power supply device according to the first embodiment.
  • FIG. 3 is a flowchart showing a control method of the power supply system according to the first embodiment.
  • FIG. 4 is a schematic view showing the overall configuration of the power supply system according to the second embodiment.
  • FIG. 5 is a block diagram showing the configurations of the protection device and the DC power supply device according to the second embodiment.
  • FIG. 1 is a schematic view showing the overall configuration of the power supply system 10 according to the present embodiment.
  • FIG. 2 is a block diagram showing the configurations of the protection device 30 and the DC power supply device 50 according to the present embodiment.
  • FIG. 2 also shows the DC electric circuit 12.
  • the power supply system 10 is a system used for a DC electric circuit 12 connected to one or more DC power supply devices 50. As shown in FIG. 1, the power supply system 10 includes one or more protective devices 30 and an external unit 20. In the present embodiment, one or more DC power supply devices 50, a DC electric circuit 12, and a communication bus 14 are further provided.
  • the DC power supply device 50 is a device that outputs DC power.
  • the DC power supply device 50 is a photovoltaic power generation device.
  • the DC power supply device 50 is arranged outdoors, for example, and generates DC power by receiving sunlight or the like on the light receiving surface.
  • a DC voltage of about 40 V or more and 70 V or less is generated, although it depends on various conditions such as light receiving intensity.
  • the DC power supply device 50 has an output terminal 51 on the high potential side and an output terminal 52 on the low potential side, and outputs DC power from these output terminals to the DC electric circuit 12 via the protection device 30.
  • the DC electric circuit 12 is an electric wire connected to one or more DC power supply devices 50.
  • the DC electric circuit 12 connects a plurality of DC power supply devices 50 in series. Both ends of the DC electric circuit 12 are connected to the external unit 20, and the DC power output from the plurality of DC power supply devices 50 is input to the external unit 20.
  • the communication bus 14 is a communication line connecting each communication circuit 40 of one or more DC power supply devices 50 and the external unit 20.
  • the protection device 30 is a device connected to the DC power supply device 50.
  • the plurality of protective devices 30 are connected to the plurality of DC power supply devices 50, respectively.
  • the protective device 30 includes a first conductor 31, a second conductor 32, a diode 34, a switch 36, a controller 38, and a current sensor 46.
  • the protection device 30 further includes a communication circuit 40, an antenna 42, and an auxiliary power supply circuit 44.
  • the protective device 30 may further include a housing that houses at least a portion of its components.
  • the first conductor 31 is a conductor that connects the output terminal 51 on the high potential side of the DC power supply device 50 and the DC electric circuit 12.
  • the first conductor 31 is connected to the first end portion 12a of the DC electric circuit 12.
  • the first conductor 31 is connected to the output terminal 52 on the low potential side of another DC power supply device 50 or the input terminal on the high potential side of the external unit 20 via the DC electric circuit 12.
  • the second conductor 32 is a conductor that connects the output terminal 52 on the low potential side of the DC power supply device 50 and the DC electric circuit 12.
  • the second conductor 32 is connected to the second end portion 12b of the DC electric circuit 12.
  • the second conductor 32 is connected to the output terminal 51 on the high potential side of the other DC power supply device 50 or the input terminal on the low potential side of the external unit 20 via the DC electric circuit 12.
  • the diode 34 is a rectifying element in which the cathode is connected to the first conductor 31 and the anode is connected to the second conductor 32.
  • the cathode of the diode 34 may be directly connected to the first conductor 31 or may be indirectly connected via another element.
  • the anode of the diode 34 may be directly connected to the second conductor 32, or may be indirectly connected via another element.
  • the cathode of the diode 34 is connected to the first conductor 31 via the current sensor 46.
  • the switch 36 is an element connected in parallel to the diode 34.
  • the switch 36 is switched on or off by the controller 38.
  • the switch 36 is controlled based on the current value measured by the current sensor 46.
  • the switch 36 is a semiconductor switch. More specifically, the switch 36 may be a thyristor.
  • the switch 36 is automatically maintained in the on state while the current is flowing through the switch 36. For example, assume that a fire broke out and the controller 38 was damaged while the switch 36 was turned on. In this case, the control signal is not input from the controller 38 to the switch 36, but the switch 36 can be maintained in the ON state while the current is flowing through the switch 36. Therefore, when a fire occurs, it is possible to suppress the output of electric power from the DC power supply device 50, so that the risk of electric shock during fire extinguishing activities can be reduced.
  • the controller 38 is a device that controls the state of the switch 36.
  • the controller 38 controls the state of the switch 36 based on the current value Id measured by the current sensor 46. Details of the control by the controller 38 will be described later.
  • the current sensor 46 is a sensor that is connected in series with the diode 34 and measures the current flowing between the first conductor 31 and the second conductor 32.
  • the current sensor 46 outputs a signal corresponding to the measured current value Id to the controller 38.
  • the current sensor 46 is connected between the cathode of the diode 34 and the first conductor 31, but the current sensor 46 is connected to the anode of the diode 34 and the first conductor. It may be connected between the two conductors 32.
  • the communication circuit 40 is a circuit that communicates with the external unit 20.
  • the communication circuit 40 may be a wired communication device that performs wired communication with the external unit 20 via the communication bus 14, or may be a wireless communication device that wirelessly communicates with the external unit 20 via the antenna 42. It may be a power line communication device that performs power line communication with the external unit 20 via the DC electric line 12, or when the auxiliary power supply circuit 44 is supplied with power from an external power source other than the DC power supply device 50, the power supply line. It may be a power line communication device that performs power line communication via. In the present embodiment, the communication circuit 40 performs wired communication with the external unit 20 via the communication bus 14. Further, the communication circuit 40 may perform wireless communication with the external unit 20 via the antenna 42.
  • the antenna 42 is a device that transmits a radio wave corresponding to a signal output by the communication circuit 40 and outputs a signal corresponding to the received radio wave to the communication circuit 40.
  • the auxiliary power supply circuit 44 is a circuit that supplies electric power to the controller 38.
  • the auxiliary power supply circuit 44 may be, for example, an electric wire that supplies a part of the DC power output by the DC power supply device 50 to the controller 38, or may be a voltage divider that divides and outputs the output voltage of the DC power supply device 50. It may be a circuit, or it may be configured to supply power to the protection device 30 from an external power source other than the DC power supply device 50.
  • the external unit 20 is a unit connected to the DC electric circuit 12 and to which the DC power output by one or more DC power supply devices 50 is input. As shown in FIG. 1, the external unit 20 includes a sensor 22, a control unit 26, and a communication unit 28. In this embodiment, the external unit 20 is a power conversion device and further includes a power control unit 24.
  • the sensor 22 is a device that acquires electrical parameters from the DC electric circuit 12.
  • the sensor 22 has a current sensor, and the electric parameter acquired by the sensor 22 includes an electric circuit current value Is, which is a value of a current flowing through the DC electric circuit 12.
  • the electric parameter may further include at least one frequency component of the value of the current flowing through the DC electric circuit 12, the value of the voltage applied to the DC electric circuit 12, and the frequency component of the value of the voltage.
  • the control unit 26 is a unit that causes the communication unit 28 to transmit a signal corresponding to the electrical parameters acquired by the sensor 22. The details of the operation of the control unit 26 will be described later.
  • the communication unit 28 is a unit that communicates with one or more protection devices 30.
  • the communication unit 28 performs wired communication with the communication circuit 40 of the protection device 30 via the communication bus 14.
  • the communication unit 28 may perform wireless communication with the communication circuit 40 of the protection device 30, or may perform power line communication.
  • the power control unit 24 is a unit to which the DC power output from the DC power supply device 50 is supplied, and converts the supplied DC power into AC power and outputs the power control unit 24. That is, the power control unit 24 functions as a power conditioner.
  • the power control unit 24 employs, for example, an MPPT (Maximum Power Point Tracking) method, and adjusts the current and voltage of the DC power supplied from the DC power supply device 50 so as to maximize the power.
  • the power control unit 24 converts the input DC power into, for example, single-phase three-wire AC power having a voltage of 200 V and a frequency of 50 Hz or 60 Hz. As a result, the AC power output from the power control unit 24 can be used in household electric appliances and the like.
  • FIG. 3 is a flowchart showing a control method of the power supply system 10 according to the present embodiment.
  • the controller 38 of the protection device 30 turns off the switch 36 (S10).
  • the controllers 38 of all the protective devices 30 turn off the switch 36.
  • the current sensor 46 measures the current value Id, and the controller 38 acquires the current value Id from the current sensor 46 (S12).
  • the controller 38 determines whether or not the current value Id is larger than zero (S14). If the current value Id is zero (No in S14), the process returns to step S12, and the current value Id is acquired again. On the other hand, when the current value Id is larger than zero (Yes in S14), the controller 38 switches the switch 36 to the on state (S16).
  • the current value Id is larger than zero, it means that at least a part of the current flowing through the DC electric circuit 12 flows through the diode 34 instead of the DC power supply device 50. Such a phenomenon means that the impedance of the DC power supply device 50 is larger than the impedance of the diode 34.
  • the impedance of the DC power supply device 50 increases, for example, when an abnormality has occurred in the DC power supply device 50 or when the output of the DC power supply device 50 has decreased.
  • by turning on the switch 36 it is possible to suppress the flow of current through the diode 34. Therefore, since the heat generated by the diode 34 can be reduced, deterioration and damage caused by the heat generated by the diode 34 can be suppressed.
  • the controller 38 acquires the current value Id from the current sensor 46 (S18), and acquires the electric circuit current value Is flowing through the DC electric circuit 12 (S20).
  • the controller 38 acquires, for example, the electric current value Is measured by the sensor 22 of the external unit 20 via the communication circuit 40 or the like.
  • the order of acquisition of the current value Id and the electric circuit current value Is is not particularly limited.
  • the controller 38 may acquire the electric circuit current value Is before the current value Id, or may acquire both at the same time.
  • the controller 38 compares the current value Id with the electric circuit current value Is (S22).
  • the process returns to step S18.
  • the fact that the current value Id and the electric circuit current value Is are equal means not only the case where the two are completely the same, but also the case where the two are substantially the same. For example, even when the error between the two is about the measurement error, it is determined that the current value Id and the electric circuit current value Is are equal.
  • the protection device 30 can detect the output of the DC power supply device 50 even when the pair of output terminals of the DC power supply device 50 are short-circuited.
  • the Rapid Shutdown Standard is the NEC (National Electrical Code) standard in the United States, and when a fire breaks out in a building where a photovoltaic device (solar panel) is installed, there is a risk of electric shock in the fire fighting activities of firefighters. It is a standard for reducing.
  • the DC voltage in the area within 30 cm from the optical power generation device installed in a building, etc. is stepped down to 80 V or less within 10 seconds, and the DC voltage outside the area is stepped down to 30 V or less within 10 seconds. Is obligatory.
  • the output terminal 51 on the high potential side of the DC power supply device 50 and the output terminal 52 on the low potential side can be moved. It can be short-circuited.
  • the voltage applied to the DC electric circuit 12 by the DC power supply device 50 can be reduced to substantially 0V. Therefore, by arranging the protection device 30 according to the present embodiment at a position where the distance from the DC power supply device 50 is 30 cm or less, the DC voltage in the region within 30 cm from the DC power supply device 50 can be set within 10 seconds from the start of shutdown.
  • the protection device 30 can be applied to the rapid shutdown system by arranging the protection device 30 at a position where the distance from the DC power supply device 50 is 30 cm or less.
  • the protective device 30 may be attached to a surface on the back side of the light receiving surface of the solar panel. As a result, the distance of the protective device 30 from the solar panel can be reduced, and the direct sunlight can be reduced on the protective device 30.
  • the protection device 30 is connected to the DC power supply device 50 that outputs DC power to the DC electric circuit 12.
  • the protection device 30 includes a first conductor 31 connected to the output terminal 51 on the high potential side of the DC power supply device 50 and a second conductor 32 connected to the output terminal 52 on the low potential side of the DC power supply device 50.
  • a diode 34 having a cathode connected to the first conductor 31 and an anode connected to the second conductor 32, and a diode 34 connected in series between the first conductor 31 and the second conductor 32.
  • It includes a current sensor 46 that measures the flowing current, a switch 36 that is connected in parallel to the diode 34, and a controller 38 that controls the state of the switch 36. The switch 36 is controlled based on the current value Id measured by the current sensor 46.
  • the output drop or abnormality of the DC power supply device 50 can be detected based on the current value Id measured by the current sensor 46.
  • the current value Id is larger than zero, both ends of the diode 34 are short-circuited by switching the switch 36 to the on state. As a result, the current flowing through the diode 34 can be suppressed. Therefore, since the heat generated by the diode 34 can be reduced, deterioration and damage caused by the heat generated by the diode 34 can be suppressed.
  • the pair of output terminals 51 and 52 of the DC power supply device 50 are short-circuited with the switch 36 turned on. Even when this is done, the output of the DC power supply device 50 can be detected.
  • the power supply system 10 may further include an auxiliary power supply circuit 44 that supplies electric power from the DC power supply device 50 to the controller 38.
  • the configuration of the power supply system 10 can be simplified.
  • the switch 36 may be a semiconductor switch.
  • the switch may be a thyristor.
  • the DC power supply device 50 may be a photovoltaic power generation device.
  • the switch 36 is automatically maintained in the on state while the current is flowing through the switch 36.
  • the switch 36 is in the ON state, even if a fire breaks out and the controller 38 is damaged and the control signal is not input to the switch 36, the switch is as long as the current is flowing through the switch 36. 36 can be kept on. Therefore, when a fire occurs, it is possible to suppress the output of electric power from the DC power supply device 50, so that the risk of electric shock during fire extinguishing activities can be reduced.
  • the protection device 30 may be arranged at a position where the distance from the DC power supply device 50 is within 30 cm.
  • the DC voltage in the region within 30 cm from the DC power supply device 50 is stepped down to 80 V or less within 10 seconds from the start of shutdown, and the DC power supply device 50 is concerned. It is possible to realize a rapid shutdown system that steps down the DC voltage outside the region to 30V or less within 10 seconds from the start of shutdown.
  • the controller 38 may control the state of the switch 36 based on the current value Id.
  • the protective device 30 can control the switch 36 independently of other devices such as the external unit 20.
  • the controller 38 switches the switch 36 when the switch 36 is in the ON state and the electric circuit current value Is, which is the value of the current flowing through the DC electric circuit 12, and the current value Id do not match. You may switch to the off state.
  • the switch 36 when the switch 36 is in the ON state, by comparing the electric circuit current value Is and the current value Id, it can be detected that the current has started to be output from the DC power supply device 50. Further, when the current starts to be output from the DC power supply device 50, the output of the DC power supply device 50 can be supplied to the DC electric circuit 12 by switching the switch 36 to the off state.
  • the output of the DC power supply device 50 is detected, and the current value Id measured by the current sensor 46 is compared with the electric circuit current value Is flowing through the DC electric circuit 12.
  • the output of the DC power supply device 50 can be detected even when the switch 36 is in the ON state and the pair of output terminals 51 and 52 of the DC power supply device 50 are short-circuited.
  • the protective device and the power supply system according to the second embodiment will be described.
  • the controller of the protective device according to the present embodiment is the controller 38 of the protective device 30 according to the first embodiment in that the state of the switch 36 is controlled based on a command signal input from the outside of the protective device. It's different.
  • the power supply system according to the present embodiment will be described focusing on the differences from the power supply system 10 according to the first embodiment.
  • FIG. 4 is a schematic view showing the overall configuration of the power supply system 110 according to the present embodiment.
  • FIG. 5 is a block diagram showing the configurations of the protection device 130 and the DC power supply device 50 according to the present embodiment.
  • FIG. 5 also shows the DC electric circuit 12.
  • the power supply system 110 includes one or more protective devices 130 and an external unit 120.
  • one or more DC power supply devices 50, a DC electric circuit 12, and a communication bus 14 are further provided.
  • the protection device 130 includes a first conductor 31, a second conductor 32, a diode 34, a switch 36, a controller 138, a current sensor 46, a communication circuit 40, an antenna 42, and an auxiliary power supply circuit 44. And have.
  • the controller 138 is a device that controls the state of the switch 36, like the controller 38 according to the first embodiment, and controls the state of the switch 36 based on the current value Id measured by the current sensor 46.
  • the controller 138 according to the present embodiment is a command signal generated based on the current value Id, and controls the state of the switch 36 based on the command signal input from the outside of the protection device 130.
  • the command signal may be generated by any device outside the protective device 130. In this embodiment, the command signal is generated by the control unit 126 of the external unit 120.
  • the external unit 120 includes a sensor 22, a control unit 126, a communication unit 28, and a power conversion unit.
  • the control unit 126 is a unit that causes the communication unit 28 to transmit a signal corresponding to the electrical parameters acquired by the sensor 22, similarly to the control unit 26 according to the first embodiment. In the present embodiment, the control unit 126 generates a command signal based on the current value Id measured by the current sensor 46 of the protection device 130.
  • the controller 38 determines the current value Id and the like, but in the present embodiment, the control unit 126 of the external unit 120 determines the current value Id and the like. That is, in the present embodiment, the control unit 126 determines the current value Id in step S14 shown in FIG. Specifically, the signal corresponding to the current value Id measured by the current sensor 46 is transmitted to the communication unit 28 of the external unit 120 by the communication circuit 40. The communication unit 28 transmits a signal corresponding to the current value Id to the control unit 126. As a result, the control unit 126 acquires the current value Id.
  • the control unit 126 generates a command signal based on the current value Id. Specifically, the control unit 126 determines whether or not the current value Id is greater than zero. When the current value Id is zero, the control unit 126 keeps the switch 36 in the off state. For example, the control unit 126 generates a command signal instructing the switch 36 to remain in the off state. On the other hand, when the current value Id is larger than zero, the control unit 126 switches the switch 36 to the on state. For example, the control unit 126 generates a command signal instructing the switch 36 to be switched on.
  • the control unit 126 transmits the generated command signal to the communication unit 28.
  • the communication unit 28 transmits the command signal generated by the control unit 126 to the communication circuit 40 of the protection device 30.
  • the communication circuit 40 transmits a command signal to the controller 138.
  • the controller 138 controls the switch 36 based on the command signal.
  • control unit 126 also compares the electric circuit current value Is and the current value Id in step S22 shown in FIG.
  • the control unit 126 acquires the current value Id measured by the current sensor 46 as described above, and further acquires the electric circuit current value Is measured by the sensor 22. Then, these current values are compared.
  • the control method of the power supply system 110 according to the present embodiment also has the same effect as the control method of the power supply system 10 according to the first embodiment.
  • the controller 138 is a command signal generated based on the current value Id, and is based on the command signal input from the outside of the protection device 130. Controls the state of the switch 36.
  • the controller 138 controls based on the command signal from the outside of the protection device 130, it is not necessary for the controller 138 to determine the current value Id. Therefore, the configuration of the controller 138 can be simplified.
  • the power supply system 110 includes a protection device 130 and an external unit 120 connected to the DC electric circuit 12, and the external unit 120 is a control unit that generates a command signal based on the current value Id. It has 126 and a communication unit 28 that transmits a command signal to the protection device 130.
  • the control unit 126 can determine the current value Id, and each protection device 130 does not need to determine the current value Id. Therefore, the configuration of the protective device 130 can be simplified.
  • the current value Id of the plurality of protection devices 130 can be determined by one control unit 126, so that the effect of the simplification is even more remarkable. It becomes.
  • the controller 38 may estimate the state of the entire power supply system 10 including the DC power supply device 50 and the DC electric circuit 12.
  • the controller 38 may determine the state of the DC power supply device 50 and the DC electric circuit 12 by using an inference algorithm.
  • the inference algorithm outputs the states of the DC power supply device 50 and the DC electric circuit 12 when the electric parameters measured by at least one of the current sensor 46 and the sensor 22 are input, and outputs the electric parameters and the DC power supply device in advance. You may be learning the relationship with the state of 50 and the DC electric circuit 12.
  • an inference algorithm that determines and outputs the state of the power supply system 10 when an electrical parameter is input is prepared.
  • the inference algorithm may be made to learn the relationship between the above-mentioned current value Id and the state of the DC power supply device 50, or the magnitude of a specific frequency component of the current value Id and the DC power supply device 50 or the DC electric circuit 12. The relationship with the presence or absence of arc generation may be learned.
  • the inference algorithm that has been learned in this way can determine the state of the power supply system based on the input electrical parameters.
  • the controller 38 may include an arithmetic processing unit such as a microcomputer.
  • the control unit may determine the states of the DC power supply device 50 and the DC electric circuit 12 by using an inference algorithm.
  • the inference algorithm outputs the state of the DC power supply device 50 and the DC electric circuit 12 when the electric parameters measured by the current sensor 46 are input, and outputs the electric parameters and the DC power supply device 50 and the DC electric circuit 12 in advance. You may be learning the relationship with the state.
  • the control unit may include an arithmetic processing unit such as a microcomputer.
  • the external unit of the power supply system is a power conversion device having the power control unit 24, but the external unit does not have to have the power control unit 24.
  • the external unit may be a central control device that controls one or more power converters.
  • the present invention can be realized not only as a power supply system 10 but also as a control method including steps (processes) performed by each component constituting the power supply system 10.
  • the current value Id is acquired (S12), and whether or not the current value Id is larger than zero is determined. Judgment (S14).
  • the process returns to the step of acquiring the current value Id, and when the current value Id is larger than zero, the switch 36 is switched to the on state (S16). Further, when the switch 36 is in the ON state, the current value Id and the electric circuit current value Is are acquired (S18 and S20), and it is determined whether or not the current value Id and the electric circuit current value Is are equal (S22).
  • the process returns to steps S18 and S20 for acquiring the current value Id and the electric circuit current value Is, and if the current value Id and the electric circuit current value Is are not equal, the step Return to S10 and switch the switch 36 to the off state.
  • those steps may be performed by a computer (computer system).
  • the present invention can be realized as a program for causing a computer to execute the steps included in those methods.
  • the present invention can be realized as a non-temporary computer-readable recording medium such as a CD-ROM on which the program is recorded.
  • the controller and control unit of the power supply system may be realized by software by a microcomputer, or may be realized by software in a general-purpose computer such as a personal computer. Further, the controller and the control unit of the power supply system may be realized by hardware by a dedicated electronic circuit composed of an A / D converter, a logic circuit, a gate array, a D / A converter and the like.

Abstract

A protection device (30) connected to a DC power supply device (50) for outputting DC power to a DC electric circuit (12), the protection device (30) being provided with: a first conductor (31) connected to the high-potential-side output terminal (51) of the DC power supply device (50); a second conductor (32) connected to the low-potential-side output terminal (52) of the DC power supply device (50); a diode (34) having a cathode connected to the first conductor (31) and an anode connected to the second conductor (32); a current sensor (46) connected in series to the diode (34), the current sensor (46) measuring the current flowing between the first conductor (31) and the second conductor (32); a switch (36) connected in parallel to the diode (34); and a controller (38) for controlling the state of the switch (36). The switch (36) is controlled on the basis of the current value (Id) measured by the current sensor (46).

Description

保護装置及び電源システムProtective device and power supply system
 本発明は、保護装置及び電源システムに関する。 The present invention relates to a protective device and a power supply system.
 従来、太陽光パネルなどの複数の直流電源装置から直流電路を介して供給される直流電力を電力変換装置(パワーコンディショナ)で交流電力に変換するシステムが知られている。太陽光パネルにおいては、接続不良などに起因する発電不良が発生する場合がある。このような異常が発生した場合に、発電不良が発生した太陽光パネルを判定し、発電不良が発生した太陽光パネルだけを直流電路から電気的に切り離す技術が知られている(例えば、特許文献1など)。 Conventionally, a system is known in which DC power supplied from a plurality of DC power supply devices such as a solar panel via a DC electric circuit is converted into AC power by a power converter (power conditioner). In a solar panel, power generation failure may occur due to poor connection or the like. When such an abnormality occurs, there is known a technique of determining a solar panel in which a power generation failure has occurred and electrically disconnecting only the solar panel in which a power generation failure has occurred from a DC electric circuit (for example, a patent document). 1 etc.).
 特許文献1に記載されたシステムでは、複数の太陽光パネルの各々に監視制御装置を設けている。特許文献1では、このような監視制御装置によって、太陽光パネル毎に作動状態を監視及び制御しようとしている。 In the system described in Patent Document 1, a monitoring control device is provided for each of a plurality of solar panels. Patent Document 1 attempts to monitor and control the operating state of each solar panel by such a monitoring and control device.
特開2011-7765号公報Japanese Unexamined Patent Publication No. 2011-7765
 特許文献1に記載されたシステムで用いる監視制御装置は、太陽光パネルの一対の出力端子(つまり、高電位側及び低電位側の出力端子)を短絡するスイッチを備え太陽光パネルが故障状態にあると判定された場合には、太陽光パネルの一対の出力端子を短絡することで、当該太陽光パネルをシステムの系統から電気的に切り離している。このように故障状態にあると判定された太陽光パネルは、実質的に除去され、再度使用されることはない。しかしながら、例えば、一部の太陽光パネルだけが日陰に入り、出力が低下する場合があり、このような場合は太陽光パネルが故障状態にあると判定され得る。このような太陽光パネルが故障状態にあると判定され、一対の出力端子が短絡された状態では、当該太陽光パネルに太陽光が照射されて出力が上昇したとしても、出力が上昇したか否かを判定することができない。このため、当該太陽光パネルの使用を再開することができない。 The monitoring control device used in the system described in Patent Document 1 includes a switch for short-circuiting a pair of output terminals of the solar panel (that is, output terminals on the high potential side and the output terminal on the low potential side), and the solar panel is in a failed state. If it is determined to be present, the solar panel is electrically disconnected from the system system by short-circuiting the pair of output terminals of the solar panel. The solar panel determined to be in a failed state in this way is substantially removed and will not be used again. However, for example, only a part of the solar panels may be shaded and the output may be reduced. In such a case, it can be determined that the solar panels are in a failed state. In a state where such a solar panel is determined to be in a failed state and a pair of output terminals are short-circuited, whether or not the output has increased even if the solar panel is irradiated with sunlight and the output increases. Cannot be determined. Therefore, the use of the solar panel cannot be resumed.
 そこで、本発明は、直流電源装置の一対の出力端子を短絡する保護装置であって、一対の出力端子を短絡している場合にも直流電源装置の出力を検知できる保護装置などを提供することを目的とする。 Therefore, the present invention provides a protection device that short-circuits a pair of output terminals of a DC power supply device, and can detect the output of the DC power supply device even when the pair of output terminals are short-circuited. With the goal.
 上記目的を達成するために、本発明に係る保護装置の一態様は、直流電路に直流電力を出力する直流電源装置に接続される保護装置であって、前記直流電源装置の高電位側の出力端子に接続される第一導電体と、前記直流電源装置の低電位側の出力端子に接続される第二導電体と、前記第一導電体にカソードが接続され、前記第二導電体にアノードが接続されるダイオードと、前記ダイオードと直列に接続され、前記第一導電体と前記第二導電体との間に流れる電流を測定する電流センサと、前記ダイオードに並列に接続されるスイッチと、前記スイッチの状態を制御する制御器とを備え、前記スイッチは、前記電流センサによって測定された電流値に基づいて制御される。 In order to achieve the above object, one aspect of the protective device according to the present invention is a protective device connected to a DC power supply device that outputs DC power to a DC electric current, and is an output on the high potential side of the DC power supply device. The first conductor connected to the terminal, the second conductor connected to the output terminal on the low potential side of the DC power supply device, the cathode connected to the first conductor, and the anode to the second conductor. A diode connected to the diode, a current sensor connected in series with the diode and measuring the current flowing between the first conductor and the second conductor, and a switch connected in parallel with the diode. A controller for controlling the state of the switch is provided, and the switch is controlled based on a current value measured by the current sensor.
 また、上記目的を達成するために、本発明に係る電源システムの一態様は、上記保護装置と、前記直流電路に接続された外部ユニットとを備え、前記外部ユニットは、前記電流値に基づいて前記指令信号を生成する制御ユニットと、前記指令信号を前記保護装置に送信する通信ユニットとを有する。 Further, in order to achieve the above object, one aspect of the power supply system according to the present invention includes the protection device and an external unit connected to the DC electric circuit, and the external unit is based on the current value. It has a control unit that generates the command signal and a communication unit that transmits the command signal to the protection device.
 本発明の一態様によれば、直流電源装置の一対の出力端子を短絡する保護装置であって、一対の出力端子を短絡している場合にも直流電源装置の出力を検知できる保護装置などを提供できる。 According to one aspect of the present invention, a protective device that short-circuits a pair of output terminals of a DC power supply device and can detect the output of the DC power supply device even when the pair of output terminals are short-circuited. Can be provided.
図1は、実施の形態1に係る電源システムの全体構成を示す模式図である。FIG. 1 is a schematic view showing the overall configuration of the power supply system according to the first embodiment. 図2は、実施の形態1に係る保護装置及び直流電源装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a protection device and a DC power supply device according to the first embodiment. 図3は、実施の形態1に係る電源システムの制御方法を示すフローチャートである。FIG. 3 is a flowchart showing a control method of the power supply system according to the first embodiment. 図4は、実施の形態2に係る電源システムの全体構成を示す模式図である。FIG. 4 is a schematic view showing the overall configuration of the power supply system according to the second embodiment. 図5は、実施の形態2に係る保護装置及び直流電源装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configurations of the protection device and the DC power supply device according to the second embodiment.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement positions of the components, connection forms, etc. shown in the following embodiments are examples and are not intended to limit the present invention.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Note that each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate description will be omitted or simplified.
 (実施の形態1)
 実施の形態1に係る保護装置及び電源システムについて説明する。
(Embodiment 1)
The protective device and the power supply system according to the first embodiment will be described.
 [1-1.全体構成]
 まず、本実施の形態に係る電源システムの全体構成について、図1及び図2を用いて説明する。図1は、本実施の形態に係る電源システム10の全体構成を示す模式図である。図2は、本実施の形態に係る保護装置30及び直流電源装置50の構成を示すブロック図である。図2には、直流電路12も併せて示されている。
[1-1. overall structure]
First, the overall configuration of the power supply system according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing the overall configuration of the power supply system 10 according to the present embodiment. FIG. 2 is a block diagram showing the configurations of the protection device 30 and the DC power supply device 50 according to the present embodiment. FIG. 2 also shows the DC electric circuit 12.
 本実施の形態に係る電源システム10は、1以上の直流電源装置50に接続される直流電路12に用いられるシステムである。図1に示されるように、電源システム10は、1以上の保護装置30と、外部ユニット20とを備える。本実施の形態では、1以上の直流電源装置50と、直流電路12と、通信バス14とをさらに備える。 The power supply system 10 according to the present embodiment is a system used for a DC electric circuit 12 connected to one or more DC power supply devices 50. As shown in FIG. 1, the power supply system 10 includes one or more protective devices 30 and an external unit 20. In the present embodiment, one or more DC power supply devices 50, a DC electric circuit 12, and a communication bus 14 are further provided.
 直流電源装置50は、直流電力を出力する装置である。本実施の形態では、直流電源装置50は、光発電装置である。直流電源装置50は、例えば、屋外に配置され、受光面において太陽光等を受光することで、直流電力を生成する。1つの直流電源装置50では、受光強度等諸条件にもよるが、例えば40V以上70V以下程度の直流電圧が発生する。直流電源装置50は、高電位側の出力端子51及び低電位側の出力端子52を有し、これらの出力端子から、保護装置30を介して直流電路12に直流電力を出力する。 The DC power supply device 50 is a device that outputs DC power. In the present embodiment, the DC power supply device 50 is a photovoltaic power generation device. The DC power supply device 50 is arranged outdoors, for example, and generates DC power by receiving sunlight or the like on the light receiving surface. In one DC power supply device 50, for example, a DC voltage of about 40 V or more and 70 V or less is generated, although it depends on various conditions such as light receiving intensity. The DC power supply device 50 has an output terminal 51 on the high potential side and an output terminal 52 on the low potential side, and outputs DC power from these output terminals to the DC electric circuit 12 via the protection device 30.
 直流電路12は、1以上の直流電源装置50に接続される電線である。図1に示される例では、直流電路12は、複数の直流電源装置50を直列に接続する。直流電路12の両端は、外部ユニット20に接続されており、複数の直流電源装置50から出力された直流電力が外部ユニット20に入力される。 The DC electric circuit 12 is an electric wire connected to one or more DC power supply devices 50. In the example shown in FIG. 1, the DC electric circuit 12 connects a plurality of DC power supply devices 50 in series. Both ends of the DC electric circuit 12 are connected to the external unit 20, and the DC power output from the plurality of DC power supply devices 50 is input to the external unit 20.
 通信バス14は、1以上の直流電源装置50の各々の通信回路40と外部ユニット20との間を繋ぐ通信線である。 The communication bus 14 is a communication line connecting each communication circuit 40 of one or more DC power supply devices 50 and the external unit 20.
 保護装置30は、直流電源装置50に接続される装置である。本実施の形態では、複数の保護装置30がそれぞれ複数の直流電源装置50に接続される。図2に示されるように、保護装置30は、第一導電体31と、第二導電体32と、ダイオード34と、スイッチ36と、制御器38と、電流センサ46とを有する。本実施の形態では、保護装置30は、通信回路40と、アンテナ42と、補助電源回路44とをさらに有する。保護装置30は、その構成要素の少なくとも一部を収容する筐体をさらに有してもよい。 The protection device 30 is a device connected to the DC power supply device 50. In the present embodiment, the plurality of protective devices 30 are connected to the plurality of DC power supply devices 50, respectively. As shown in FIG. 2, the protective device 30 includes a first conductor 31, a second conductor 32, a diode 34, a switch 36, a controller 38, and a current sensor 46. In the present embodiment, the protection device 30 further includes a communication circuit 40, an antenna 42, and an auxiliary power supply circuit 44. The protective device 30 may further include a housing that houses at least a portion of its components.
 第一導電体31は、直流電源装置50の高電位側の出力端子51と直流電路12とを接続する導電体である。第一導電体31は、直流電路12の第一端部12aに接続される。第一導電体31は、直流電路12を介して他の直流電源装置50の低電位側の出力端子52又は、外部ユニット20の高電位側の入力端子に接続される。 The first conductor 31 is a conductor that connects the output terminal 51 on the high potential side of the DC power supply device 50 and the DC electric circuit 12. The first conductor 31 is connected to the first end portion 12a of the DC electric circuit 12. The first conductor 31 is connected to the output terminal 52 on the low potential side of another DC power supply device 50 or the input terminal on the high potential side of the external unit 20 via the DC electric circuit 12.
 第二導電体32は、直流電源装置50の低電位側の出力端子52と直流電路12とを接続する導電体である。第二導電体32は、直流電路12の第二端部12bに接続される。第二導電体32は、直流電路12を介して他の直流電源装置50の高電位側の出力端子51又は、外部ユニット20の低電位側の入力端子に接続される。 The second conductor 32 is a conductor that connects the output terminal 52 on the low potential side of the DC power supply device 50 and the DC electric circuit 12. The second conductor 32 is connected to the second end portion 12b of the DC electric circuit 12. The second conductor 32 is connected to the output terminal 51 on the high potential side of the other DC power supply device 50 or the input terminal on the low potential side of the external unit 20 via the DC electric circuit 12.
 ダイオード34は、第一導電体31にカソードが接続され、第二導電体32にアノードが接続される整流素子である。なお、ダイオード34のカソードは、第一導電体31に直接接続されていてもよいし、他の素子を介して間接的に接続されていてもよい。また、ダイオード34のアノードは、第二導電体32に直接接続されていてもよいし、他の素子を介して間接的に接続されていてもよい。本実施の形態では、ダイオード34のカソードは、電流センサ46を介して、第一導電体31に接続される。 The diode 34 is a rectifying element in which the cathode is connected to the first conductor 31 and the anode is connected to the second conductor 32. The cathode of the diode 34 may be directly connected to the first conductor 31 or may be indirectly connected via another element. Further, the anode of the diode 34 may be directly connected to the second conductor 32, or may be indirectly connected via another element. In this embodiment, the cathode of the diode 34 is connected to the first conductor 31 via the current sensor 46.
 スイッチ36は、図2に示されるように、ダイオード34に並列に接続される素子である。スイッチ36は、制御器38によってオン状態又はオフ状態に切り替えられる。スイッチ36は、電流センサ46によって測定された電流値に基づいて制御される。本実施の形態では、スイッチ36は、半導体スイッチである。より具体的には、スイッチ36は、サイリスタであってもよい。これにより、スイッチ36をオン状態に切り替えた後、スイッチ36に電流が流れている間は、スイッチ36がオン状態に自動的に維持される。例えば、スイッチ36がオン状態とされているときに、火災が発生して制御器38が破損したと仮定する。この場合、制御器38からスイッチ36に制御信号が入力されなくなるが、スイッチ36に電流が流れている間は、スイッチ36をオン状態に維持できる。したがって、火災発生時に、直流電源装置50から電力が出力されることを抑制できるため、消火活動の際における感電の危険性を低減できる。 As shown in FIG. 2, the switch 36 is an element connected in parallel to the diode 34. The switch 36 is switched on or off by the controller 38. The switch 36 is controlled based on the current value measured by the current sensor 46. In this embodiment, the switch 36 is a semiconductor switch. More specifically, the switch 36 may be a thyristor. As a result, after switching the switch 36 to the on state, the switch 36 is automatically maintained in the on state while the current is flowing through the switch 36. For example, assume that a fire broke out and the controller 38 was damaged while the switch 36 was turned on. In this case, the control signal is not input from the controller 38 to the switch 36, but the switch 36 can be maintained in the ON state while the current is flowing through the switch 36. Therefore, when a fire occurs, it is possible to suppress the output of electric power from the DC power supply device 50, so that the risk of electric shock during fire extinguishing activities can be reduced.
 制御器38は、スイッチ36の状態を制御する機器である。本実施の形態では、制御器38は、電流センサ46によって測定された電流値Idに基づいてスイッチ36の状態を制御する。制御器38による制御の詳細については、後述する。 The controller 38 is a device that controls the state of the switch 36. In the present embodiment, the controller 38 controls the state of the switch 36 based on the current value Id measured by the current sensor 46. Details of the control by the controller 38 will be described later.
 電流センサ46は、ダイオード34と直列に接続され、第一導電体31と第二導電体32との間に流れる電流を測定するセンサである。電流センサ46は、測定した電流値Idに対応する信号を制御器38に出力する。図2に示されるように、本実施の形態では、電流センサ46は、ダイオード34のカソードと第一導電体31との間に接続されているが、電流センサ46は、ダイオード34のアノードと第二導電体32との間に接続されてもよい。 The current sensor 46 is a sensor that is connected in series with the diode 34 and measures the current flowing between the first conductor 31 and the second conductor 32. The current sensor 46 outputs a signal corresponding to the measured current value Id to the controller 38. As shown in FIG. 2, in the present embodiment, the current sensor 46 is connected between the cathode of the diode 34 and the first conductor 31, but the current sensor 46 is connected to the anode of the diode 34 and the first conductor. It may be connected between the two conductors 32.
 通信回路40は、外部ユニット20と通信を行う回路である。通信回路40は、通信バス14を介して外部ユニット20と有線通信を行う有線通信デバイスであってもよいし、アンテナ42を介して外部ユニット20と無線通信を行う無線通信デバイスであってもよいし、直流電路12を介して外部ユニット20と電力線通信を行う電力線通信デバイスであってもよいし、補助電源回路44が直流電源装置50以外の外部電源から電力供給される場合、その電力供給線を介した電力線通信を行う電力線通信デバイスであってもよい。本実施の形態では、通信回路40は、通信バス14を介して外部ユニット20と有線通信を行う。また、通信回路40は、アンテナ42を介して外部ユニット20と無線通信を行ってもよい。 The communication circuit 40 is a circuit that communicates with the external unit 20. The communication circuit 40 may be a wired communication device that performs wired communication with the external unit 20 via the communication bus 14, or may be a wireless communication device that wirelessly communicates with the external unit 20 via the antenna 42. It may be a power line communication device that performs power line communication with the external unit 20 via the DC electric line 12, or when the auxiliary power supply circuit 44 is supplied with power from an external power source other than the DC power supply device 50, the power supply line. It may be a power line communication device that performs power line communication via. In the present embodiment, the communication circuit 40 performs wired communication with the external unit 20 via the communication bus 14. Further, the communication circuit 40 may perform wireless communication with the external unit 20 via the antenna 42.
 アンテナ42は、通信回路40が出力する信号に対応する電波を送信し、かつ、受信した電波に対応する信号を通信回路40に出力する機器である。 The antenna 42 is a device that transmits a radio wave corresponding to a signal output by the communication circuit 40 and outputs a signal corresponding to the received radio wave to the communication circuit 40.
 補助電源回路44は、制御器38へ電力を供給する回路である。補助電源回路44は、例えば、直流電源装置50が出力する直流電力の一部を制御器38に供給する電線であってもよいし、直流電源装置50の出力電圧を分圧して出力する分圧回路であってもよいし、直流電源装置50以外の外部電源から保護装置30に電力を供給する構成でもよい。 The auxiliary power supply circuit 44 is a circuit that supplies electric power to the controller 38. The auxiliary power supply circuit 44 may be, for example, an electric wire that supplies a part of the DC power output by the DC power supply device 50 to the controller 38, or may be a voltage divider that divides and outputs the output voltage of the DC power supply device 50. It may be a circuit, or it may be configured to supply power to the protection device 30 from an external power source other than the DC power supply device 50.
 外部ユニット20は、直流電路12に接続され、1以上の直流電源装置50が出力する直流電力が入力されるユニットである。図1に示されるように、外部ユニット20は、センサ22と、制御ユニット26と、通信ユニット28とを有する。本実施の形態では、外部ユニット20は、電力変換装置であり、電力制御ユニット24をさらに有する。 The external unit 20 is a unit connected to the DC electric circuit 12 and to which the DC power output by one or more DC power supply devices 50 is input. As shown in FIG. 1, the external unit 20 includes a sensor 22, a control unit 26, and a communication unit 28. In this embodiment, the external unit 20 is a power conversion device and further includes a power control unit 24.
 センサ22は、直流電路12から電気パラメータを取得する装置である。本実施の形態では、センサ22は、電流センサを有し、センサ22が取得する電気パラメータは、直流電路12に流れる電流の値である電路電流値Isを含む。なお、電気パラメータは、直流電路12に流れる電流の値の周波数成分、直流電路12に印加される電圧の値、当該電圧の値の周波数成分の少なくとも一つをさらに含んでもよい。 The sensor 22 is a device that acquires electrical parameters from the DC electric circuit 12. In the present embodiment, the sensor 22 has a current sensor, and the electric parameter acquired by the sensor 22 includes an electric circuit current value Is, which is a value of a current flowing through the DC electric circuit 12. The electric parameter may further include at least one frequency component of the value of the current flowing through the DC electric circuit 12, the value of the voltage applied to the DC electric circuit 12, and the frequency component of the value of the voltage.
 制御ユニット26は、センサ22で取得された電気パラメータに対応する信号を通信ユニット28に送信させるユニットである。制御ユニット26の動作の詳細については、後述する。 The control unit 26 is a unit that causes the communication unit 28 to transmit a signal corresponding to the electrical parameters acquired by the sensor 22. The details of the operation of the control unit 26 will be described later.
 通信ユニット28は、1以上の保護装置30と通信するユニットである。通信ユニット28は、通信バス14を介して保護装置30の通信回路40と有線通信を行う。通信ユニット28は、保護装置30の通信回路40と無線通信を行ってもよいし、電力線通信を行ってもよい。 The communication unit 28 is a unit that communicates with one or more protection devices 30. The communication unit 28 performs wired communication with the communication circuit 40 of the protection device 30 via the communication bus 14. The communication unit 28 may perform wireless communication with the communication circuit 40 of the protection device 30, or may perform power line communication.
 電力制御ユニット24は、直流電源装置50から出力される直流電力が供給されるユニットであり、供給された直流電力を交流電力に変換して出力する。つまり、電力制御ユニット24は、パワーコンディショナとして機能する。電力制御ユニット24は、例えば、MPPT(Maximum Power Point Tracking)方式を採用しており、直流電源装置50から供給される直流電力の電流及び電圧を電力が最大となるように調整する。電力制御ユニット24は、入力された直流電力を、例えば、電圧が200Vで、周波数が50Hz又は60Hzの単相3線の交流電力に変換する。これにより電力制御ユニット24から出力される交流電力を家庭用電気機器などで使用できる。 The power control unit 24 is a unit to which the DC power output from the DC power supply device 50 is supplied, and converts the supplied DC power into AC power and outputs the power control unit 24. That is, the power control unit 24 functions as a power conditioner. The power control unit 24 employs, for example, an MPPT (Maximum Power Point Tracking) method, and adjusts the current and voltage of the DC power supplied from the DC power supply device 50 so as to maximize the power. The power control unit 24 converts the input DC power into, for example, single-phase three-wire AC power having a voltage of 200 V and a frequency of 50 Hz or 60 Hz. As a result, the AC power output from the power control unit 24 can be used in household electric appliances and the like.
 [1-2.制御方法]
 次に、本実施の形態に係る電源システム10の制御方法について図3を用いて説明する。図3は、本実施の形態に係る電源システム10の制御方法を示すフローチャートである。
[1-2. Control method]
Next, the control method of the power supply system 10 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing a control method of the power supply system 10 according to the present embodiment.
 図3に示されるように、まず、保護装置30の制御器38は、スイッチ36をオフ状態とする(S10)。電源システム10が複数の保護装置30を備える場合には、すべての保護装置30の制御器38がスイッチ36をオフ状態とする。 As shown in FIG. 3, first, the controller 38 of the protection device 30 turns off the switch 36 (S10). When the power supply system 10 includes a plurality of protective devices 30, the controllers 38 of all the protective devices 30 turn off the switch 36.
 続いて、電流センサ46は、電流値Idを測定し、制御器38は、電流値Idを電流センサ46から取得する(S12)。 Subsequently, the current sensor 46 measures the current value Id, and the controller 38 acquires the current value Id from the current sensor 46 (S12).
 続いて、制御器38は、電流値Idがゼロより大きいか否かを判定する(S14)。電流値Idがゼロである場合には(S14でNo)、ステップS12に戻り、再度電流値Idを取得する。一方、電流値Idがゼロより大きい場合には(S14でYes)、制御器38は、スイッチ36をオン状態に切り替える(S16)。ここで、電流値Idがゼロより大きい場合とは、直流電路12に流れる電流の少なくとも一部が、直流電源装置50でなく、ダイオード34を流れるということを意味する。このような現象は、直流電源装置50のインピーダンスがダイオード34のインピーダンスより大きくなっていることを意味する。直流電源装置50のインピーダンスは、例えば、直流電源装置50に異常が発生している場合、直流電源装置50の出力が低下している場合などに増大する。本実施の形態では、スイッチ36をオン状態とすることで、ダイオード34に電流が流れることを抑制できる。したがって、ダイオード34における発熱を低減できるため、ダイオード34の発熱に起因する劣化及び破損を抑制できる。 Subsequently, the controller 38 determines whether or not the current value Id is larger than zero (S14). If the current value Id is zero (No in S14), the process returns to step S12, and the current value Id is acquired again. On the other hand, when the current value Id is larger than zero (Yes in S14), the controller 38 switches the switch 36 to the on state (S16). Here, when the current value Id is larger than zero, it means that at least a part of the current flowing through the DC electric circuit 12 flows through the diode 34 instead of the DC power supply device 50. Such a phenomenon means that the impedance of the DC power supply device 50 is larger than the impedance of the diode 34. The impedance of the DC power supply device 50 increases, for example, when an abnormality has occurred in the DC power supply device 50 or when the output of the DC power supply device 50 has decreased. In the present embodiment, by turning on the switch 36, it is possible to suppress the flow of current through the diode 34. Therefore, since the heat generated by the diode 34 can be reduced, deterioration and damage caused by the heat generated by the diode 34 can be suppressed.
 続いて、制御器38は、電流センサ46から電流値Idを取得し(S18)、直流電路12に流れる電路電流値Isを取得する(S20)。制御器38は、例えば、外部ユニット20のセンサ22で測定された電路電流値Isを通信回路40などを介して取得する。なお、電流値Id及び電路電流値Isの取得の順序は特に限定されない。制御器38は、電流値Idより電路電流値Isを先に取得してもよいし、両者を同時に取得してもよい。 Subsequently, the controller 38 acquires the current value Id from the current sensor 46 (S18), and acquires the electric circuit current value Is flowing through the DC electric circuit 12 (S20). The controller 38 acquires, for example, the electric current value Is measured by the sensor 22 of the external unit 20 via the communication circuit 40 or the like. The order of acquisition of the current value Id and the electric circuit current value Is is not particularly limited. The controller 38 may acquire the electric circuit current value Is before the current value Id, or may acquire both at the same time.
 続いて、制御器38は、電流値Idと電路電流値Isとを比較する(S22)。ここで、電流値Idと電路電流値Isとが等しい場合には(S22でYes)、ステップS18に戻る。なお、ここで、電流値Idと電路電流値Isとが等しいとは、両者が完全に一致する場合だけでなく、両者が実質的に一致する場合も意味する。例えば、両者の誤差が、測定誤差程度である場合も、電流値Idと電路電流値Isとは等しいと判定する。一方、電流値Idと電路電流値Isとが等しくない場合には(S22でNo)、直流電源装置50から電流が出力され始めたと判断して、スイッチ36をオフ状態に切り替える(S10)。直流電源装置50から電流が出力されない場合、直流電路12に流れる電流が電流センサ46に流れ込むため、電流値Idと電路電流値Isとは等しくなる。しかしながら、直流電源装置50から電流が出力され始めた場合、直流電源装置50の高電位側の出力端子51から出力される電流の一部は、直流電路12に流れ、残りの部分は、電流センサ46に流れる。言い換えると、直流電路12に流れる電流の一部が、直流電源装置50に流れ込む。このため、電流センサ46に流れる電流は、直流電路12に流れる電流より少なくなる。つまり、電流値Idは、電路電流値Isより小さくなる。このように、電流値Idが、電路電流値Isと等しくないことは、直流電源装置50から電流が出力され始めたことを意味するため、直流電源装置50が正常な状態となったと判断して、スイッチ36をオフ状態に切り替える。このようにスイッチ36をオフ状態に切り替えることで、直流電源装置50の出力を直流電路12に供給できる。以上のように、本実施の形態に係る保護装置30は、直流電源装置50の一対の出力端子を短絡している場合にも、直流電源装置50の出力を検知できる。 Subsequently, the controller 38 compares the current value Id with the electric circuit current value Is (S22). Here, if the current value Id and the electric circuit current value Is are equal (Yes in S22), the process returns to step S18. Here, the fact that the current value Id and the electric circuit current value Is are equal means not only the case where the two are completely the same, but also the case where the two are substantially the same. For example, even when the error between the two is about the measurement error, it is determined that the current value Id and the electric circuit current value Is are equal. On the other hand, when the current value Id and the electric circuit current value Is are not equal (No in S22), it is determined that the current has started to be output from the DC power supply device 50, and the switch 36 is switched to the off state (S10). When no current is output from the DC power supply device 50, the current flowing through the DC electric circuit 12 flows into the current sensor 46, so that the current value Id and the electric circuit current value Is are equal to each other. However, when the current starts to be output from the DC power supply device 50, a part of the current output from the output terminal 51 on the high potential side of the DC power supply device 50 flows to the DC electric circuit 12, and the rest is a current sensor. It flows to 46. In other words, a part of the current flowing through the DC electric circuit 12 flows into the DC power supply device 50. Therefore, the current flowing through the current sensor 46 is smaller than the current flowing through the DC electric circuit 12. That is, the current value Id is smaller than the electric circuit current value Is. As described above, the fact that the current value Id is not equal to the electric circuit current value Is means that the current has started to be output from the DC power supply device 50. Therefore, it is determined that the DC power supply device 50 is in a normal state. , Switch 36 is switched to the off state. By switching the switch 36 to the off state in this way, the output of the DC power supply device 50 can be supplied to the DC electric circuit 12. As described above, the protection device 30 according to the present embodiment can detect the output of the DC power supply device 50 even when the pair of output terminals of the DC power supply device 50 are short-circuited.
 以上のような制御方法によって、直流電源装置50の出力低下時には、当該直流電源装置の一対の出力端子を短絡し、当該直流電源装置50の出力が上昇した場合には、一対の出力端子間を開放できる。 By the above control method, when the output of the DC power supply device 50 decreases, the pair of output terminals of the DC power supply device is short-circuited, and when the output of the DC power supply device 50 increases, the pair of output terminals are connected. Can be opened.
 [1-3.ラピッドシャットダウンシステムへの適用]
 次に、本実施の形態に係る電源システム10のラピッドシャットダウンシステムへの適用について説明する。ラピッドシャットダウン規格は、米国のNEC(National Electrical Code)規格であり、光発電装置(太陽光パネル)が設置された建物等で火災が発生した際に、消防士の消火活動における感電等の危険を減らすための規格である。ラピッドシャットダウン規格では、建物等に設置された光発電装置から30cm以内の領域の直流電圧を10秒以内に80V以下に降圧し、当該領域外の直流電圧を10秒以内に30V以下に降圧することが義務付けられている。
[1-3. Application to Rapid Shutdown System]
Next, the application of the power supply system 10 according to the present embodiment to the rapid shutdown system will be described. The Rapid Shutdown Standard is the NEC (National Electrical Code) standard in the United States, and when a fire breaks out in a building where a photovoltaic device (solar panel) is installed, there is a risk of electric shock in the fire fighting activities of firefighters. It is a standard for reducing. According to the rapid shutdown standard, the DC voltage in the area within 30 cm from the optical power generation device installed in a building, etc. is stepped down to 80 V or less within 10 seconds, and the DC voltage outside the area is stepped down to 30 V or less within 10 seconds. Is obligatory.
 本実施の形態に係る電源システム10は、保護装置30のスイッチ36をオン状態とすることによって、直流電源装置50の高電位側の出力端子51と、低電位側の出力端子52との間を短絡させることができる。言い換えると、スイッチ36をオン状態とすることで、直流電源装置50が直流電路12に印加する電圧をほぼ0Vに低下させることができる。そこで、本実施の形態に係る保護装置30を、直流電源装置50からの距離が30cm以下の位置に配置することで、直流電源装置50から30cm以内の領域の直流電圧をシャットダウン開始から10秒以内に80V以下に降圧し、かつ、当該領域外の直流電圧をシャットダウン開始から10秒以内に30V以下に降圧するシステムを実現できる。以上のように、本実施の形態に係る電源システム10においては、保護装置30を直流電源装置50からの距離が30cm以下の位置に配置することで、ラピッドシャットダウンシステムに適用できる。保護装置30は、例えば、直流電源装置50が太陽光パネルである場合には、太陽光パネルの受光面に対して裏側の面に取り付けられてもよい。これにより、保護装置30の太陽光パネルからの距離を低減し、かつ、保護装置30に直射日光が照射されることを低減できる。 In the power supply system 10 according to the present embodiment, by turning on the switch 36 of the protection device 30, the output terminal 51 on the high potential side of the DC power supply device 50 and the output terminal 52 on the low potential side can be moved. It can be short-circuited. In other words, by turning on the switch 36, the voltage applied to the DC electric circuit 12 by the DC power supply device 50 can be reduced to substantially 0V. Therefore, by arranging the protection device 30 according to the present embodiment at a position where the distance from the DC power supply device 50 is 30 cm or less, the DC voltage in the region within 30 cm from the DC power supply device 50 can be set within 10 seconds from the start of shutdown. It is possible to realize a system that steps down the voltage to 80 V or less and lowers the DC voltage outside the region to 30 V or less within 10 seconds from the start of shutdown. As described above, in the power supply system 10 according to the present embodiment, the protection device 30 can be applied to the rapid shutdown system by arranging the protection device 30 at a position where the distance from the DC power supply device 50 is 30 cm or less. For example, when the DC power supply device 50 is a solar panel, the protective device 30 may be attached to a surface on the back side of the light receiving surface of the solar panel. As a result, the distance of the protective device 30 from the solar panel can be reduced, and the direct sunlight can be reduced on the protective device 30.
 [1-4.まとめ]
 以上のように、本実施の形態に係る保護装置30は、直流電路12に直流電力を出力する直流電源装置50に接続される。保護装置30は、直流電源装置50の高電位側の出力端子51に接続される第一導電体31と、直流電源装置50の低電位側の出力端子52に接続される第二導電体32と、第一導電体31にカソードが接続され、第二導電体32にアノードが接続されるダイオード34と、ダイオード34と直列に接続され、第一導電体31と第二導電体32との間に流れる電流を測定する電流センサ46と、ダイオード34に並列に接続されるスイッチ36と、スイッチ36の状態を制御する制御器38とを備える。スイッチ36は、電流センサ46によって測定された電流値Idに基づいて制御される。
[1-4. Summary]
As described above, the protection device 30 according to the present embodiment is connected to the DC power supply device 50 that outputs DC power to the DC electric circuit 12. The protection device 30 includes a first conductor 31 connected to the output terminal 51 on the high potential side of the DC power supply device 50 and a second conductor 32 connected to the output terminal 52 on the low potential side of the DC power supply device 50. , A diode 34 having a cathode connected to the first conductor 31 and an anode connected to the second conductor 32, and a diode 34 connected in series between the first conductor 31 and the second conductor 32. It includes a current sensor 46 that measures the flowing current, a switch 36 that is connected in parallel to the diode 34, and a controller 38 that controls the state of the switch 36. The switch 36 is controlled based on the current value Id measured by the current sensor 46.
 このような保護装置30によれば、スイッチ36がオフ状態であるときに、電流センサ46によって測定された電流値Idに基づいて、直流電源装置50の出力低下、又は異常を検知できる。電流値Idがゼロより大きい場合には、スイッチ36をオン状態に切り替えることで、ダイオード34の両端を短絡する。これにより、ダイオード34に流れる電流を抑制できる。したがって、ダイオード34における発熱を低減できるため、ダイオード34の発熱に起因する劣化及び破損を抑制できる。また、電流センサ46によって測定された電流値Idと直流電路12に流れる電路電流値Isとを比較することで、スイッチ36をオン状態として、直流電源装置50の一対の出力端子51及び52を短絡している場合にも、直流電源装置50の出力を検知できる。 According to such a protection device 30, when the switch 36 is in the off state, the output drop or abnormality of the DC power supply device 50 can be detected based on the current value Id measured by the current sensor 46. When the current value Id is larger than zero, both ends of the diode 34 are short-circuited by switching the switch 36 to the on state. As a result, the current flowing through the diode 34 can be suppressed. Therefore, since the heat generated by the diode 34 can be reduced, deterioration and damage caused by the heat generated by the diode 34 can be suppressed. Further, by comparing the current value Id measured by the current sensor 46 with the electric circuit current value Is flowing through the DC electric circuit 12, the pair of output terminals 51 and 52 of the DC power supply device 50 are short-circuited with the switch 36 turned on. Even when this is done, the output of the DC power supply device 50 can be detected.
 また、電源システム10において、直流電源装置50から制御器38へ電力を供給する補助電源回路44をさらに備えてもよい。 Further, the power supply system 10 may further include an auxiliary power supply circuit 44 that supplies electric power from the DC power supply device 50 to the controller 38.
 これにより、各保護装置30に電力を供給する電源を別途準備する必要がない。したがって、電源システム10の構成を簡素化できる。 As a result, it is not necessary to separately prepare a power source for supplying power to each protection device 30. Therefore, the configuration of the power supply system 10 can be simplified.
 また、電源システム10において、スイッチ36は、半導体スイッチであってもよい。 Further, in the power supply system 10, the switch 36 may be a semiconductor switch.
 また、電源システム10において、スイッチは、サイリスタであってもよい。 Further, in the power supply system 10, the switch may be a thyristor.
 また、電源システム10において、直流電源装置50は、光発電装置であってもよい。 Further, in the power supply system 10, the DC power supply device 50 may be a photovoltaic power generation device.
 これにより、スイッチ36をオン状態に切り替えた後、スイッチ36に電流が流れている間は、スイッチ36がオン状態に自動的に維持される。例えば、スイッチ36がオン状態とされているときに、火災が発生して制御器38が破損し、スイッチ36に制御信号が入力されなくなっても、スイッチ36に電流が流れている間は、スイッチ36をオン状態に維持できる。したがって、火災発生時に、直流電源装置50から電力が出力されることを抑制できるため、消火活動の際における感電の危険性を低減できる。 As a result, after switching the switch 36 to the on state, the switch 36 is automatically maintained in the on state while the current is flowing through the switch 36. For example, when the switch 36 is in the ON state, even if a fire breaks out and the controller 38 is damaged and the control signal is not input to the switch 36, the switch is as long as the current is flowing through the switch 36. 36 can be kept on. Therefore, when a fire occurs, it is possible to suppress the output of electric power from the DC power supply device 50, so that the risk of electric shock during fire extinguishing activities can be reduced.
 また、電源システム10において、保護装置30は、直流電源装置50からの距離が30cm以内の位置に配置されてもよい。 Further, in the power supply system 10, the protection device 30 may be arranged at a position where the distance from the DC power supply device 50 is within 30 cm.
 これにより、スイッチ36をオン状態として直流電源装置50の出力を短絡することで、直流電源装置50から30cm以内の領域の直流電圧をシャットダウン開始から10秒以内に80V以下に降圧し、かつ、当該領域外の直流電圧をシャットダウン開始から10秒以内に30V以下に降圧するラピッドシャットダウンシステムの実現が可能となる。 As a result, by short-circuiting the output of the DC power supply device 50 with the switch 36 turned on, the DC voltage in the region within 30 cm from the DC power supply device 50 is stepped down to 80 V or less within 10 seconds from the start of shutdown, and the DC power supply device 50 is concerned. It is possible to realize a rapid shutdown system that steps down the DC voltage outside the region to 30V or less within 10 seconds from the start of shutdown.
 また、電源システム10において、制御器38は、電流値Idに基づいてスイッチ36の状態を制御してもよい。 Further, in the power supply system 10, the controller 38 may control the state of the switch 36 based on the current value Id.
 これにより、保護装置30が外部ユニット20などの他の機器から独立して、スイッチ36を制御できる。 As a result, the protective device 30 can control the switch 36 independently of other devices such as the external unit 20.
 また、電源システム10において、制御器38は、スイッチ36がオン状態であって、直流電路12に流れる電流の値である電路電流値Isと、電流値Idとが一致しない場合に、スイッチ36をオフ状態に切り替えてもよい。 Further, in the power supply system 10, the controller 38 switches the switch 36 when the switch 36 is in the ON state and the electric circuit current value Is, which is the value of the current flowing through the DC electric circuit 12, and the current value Id do not match. You may switch to the off state.
 このように、スイッチ36がオン状態であって、電路電流値Isと、電流値Idとを比較することで、直流電源装置50から電流が出力され始めたことを検知できる。また、直流電源装置50から電流が出力され始めた場合に、スイッチ36をオフ状態に切り替えることで、直流電源装置50の出力を直流電路12に供給できる。 In this way, when the switch 36 is in the ON state, by comparing the electric circuit current value Is and the current value Id, it can be detected that the current has started to be output from the DC power supply device 50. Further, when the current starts to be output from the DC power supply device 50, the output of the DC power supply device 50 can be supplied to the DC electric circuit 12 by switching the switch 36 to the off state.
 これにより、スイッチ36がオン状態であるときに、直流電源装置50の出力を検知して、電流センサ46によって測定された電流値Idと直流電路12に流れる電路電流値Isとを比較することで、スイッチ36がオン状態として、直流電源装置50の一対の出力端子51及び52を短絡している場合にも、直流電源装置50の出力を検知できる。 As a result, when the switch 36 is in the ON state, the output of the DC power supply device 50 is detected, and the current value Id measured by the current sensor 46 is compared with the electric circuit current value Is flowing through the DC electric circuit 12. The output of the DC power supply device 50 can be detected even when the switch 36 is in the ON state and the pair of output terminals 51 and 52 of the DC power supply device 50 are short-circuited.
 (実施の形態2)
 実施の形態2に係る保護装置及び電源システムについて説明する。本実施の形態に係る保護装置の制御器は、保護装置の外部から入力される指令信号に基づいてスイッチ36の状態を制御する点において、実施の形態1に係る保護装置30の制御器38と相違する。以下、本実施の形態に係る電源システムについて、実施の形態1に係る電源システム10との相違点を中心に説明する。
(Embodiment 2)
The protective device and the power supply system according to the second embodiment will be described. The controller of the protective device according to the present embodiment is the controller 38 of the protective device 30 according to the first embodiment in that the state of the switch 36 is controlled based on a command signal input from the outside of the protective device. It's different. Hereinafter, the power supply system according to the present embodiment will be described focusing on the differences from the power supply system 10 according to the first embodiment.
 [2-1.全体構成]
 まず、本実施の形態に係る電源システム110の全体構成について図4及び図5を用いて説明する。図4は、本実施の形態に係る電源システム110の全体構成を示す模式図である。図5は、本実施の形態に係る保護装置130及び直流電源装置50の構成を示すブロック図である。図5には、直流電路12も併せて示されている。
[2-1. overall structure]
First, the overall configuration of the power supply system 110 according to the present embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic view showing the overall configuration of the power supply system 110 according to the present embodiment. FIG. 5 is a block diagram showing the configurations of the protection device 130 and the DC power supply device 50 according to the present embodiment. FIG. 5 also shows the DC electric circuit 12.
 図4に示されるように、本実施の形態に係る電源システム110は、1以上の保護装置130と、外部ユニット120とを備える。本実施の形態では、1以上の直流電源装置50と、直流電路12と、通信バス14とをさらに備える。 As shown in FIG. 4, the power supply system 110 according to the present embodiment includes one or more protective devices 130 and an external unit 120. In the present embodiment, one or more DC power supply devices 50, a DC electric circuit 12, and a communication bus 14 are further provided.
 保護装置130は、第一導電体31と、第二導電体32と、ダイオード34と、スイッチ36と、制御器138と、電流センサ46と、通信回路40と、アンテナ42と、補助電源回路44とを有する。 The protection device 130 includes a first conductor 31, a second conductor 32, a diode 34, a switch 36, a controller 138, a current sensor 46, a communication circuit 40, an antenna 42, and an auxiliary power supply circuit 44. And have.
 制御器138は、実施の形態1に係る制御器38と同様に、スイッチ36の状態を制御する機器であり、電流センサ46によって測定された電流値Idに基づいてスイッチ36の状態を制御する。本実施の形態に係る制御器138は、電流値Idに基づいて生成される指令信号であって、保護装置130の外部から入力される指令信号に基づいてスイッチ36の状態を制御する。指令信号は、保護装置130の外部の任意の機器によって生成されてもよい。本実施の形態では、指令信号は、外部ユニット120の制御ユニット126によって生成される。 The controller 138 is a device that controls the state of the switch 36, like the controller 38 according to the first embodiment, and controls the state of the switch 36 based on the current value Id measured by the current sensor 46. The controller 138 according to the present embodiment is a command signal generated based on the current value Id, and controls the state of the switch 36 based on the command signal input from the outside of the protection device 130. The command signal may be generated by any device outside the protective device 130. In this embodiment, the command signal is generated by the control unit 126 of the external unit 120.
 外部ユニット120は、センサ22と、制御ユニット126と、通信ユニット28と、電力変換ユニットとを有する。 The external unit 120 includes a sensor 22, a control unit 126, a communication unit 28, and a power conversion unit.
 制御ユニット126は、実施の形態1に係る制御ユニット26と同様に、センサ22で取得された電気パラメータに対応する信号を通信ユニット28に送信させるユニットである。本実施の形態では、制御ユニット126は、保護装置130の電流センサ46によって計測された電流値Idに基づいて指令信号を生成する。 The control unit 126 is a unit that causes the communication unit 28 to transmit a signal corresponding to the electrical parameters acquired by the sensor 22, similarly to the control unit 26 according to the first embodiment. In the present embodiment, the control unit 126 generates a command signal based on the current value Id measured by the current sensor 46 of the protection device 130.
 [2-2.制御方法]
 次に、本実施の形態に係る電源システム110の制御方法について説明する。実施の形態1に係る電源システム10では、制御器38が電流値Idなどの判定を行ったが、本実施の形態では、外部ユニット120の制御ユニット126が電流値Idなどの判定を行う。つまり、本実施の形態では、図3に示されるステップS14の電流値Idの判定を制御ユニット126が行う。具体的には、電流センサ46で測定された電流値Idに対応する信号が、通信回路40によって、外部ユニット120の通信ユニット28に送信される。通信ユニット28は、電流値Idに対応する信号を制御ユニット126に送信する。これにより、制御ユニット126は、電流値Idを取得する。制御ユニット126は、電流値Idに基づいて指令信号を生成する。具体的には、制御ユニット126は、電流値Idがゼロより大きいか否かを判定する。電流値Idがゼロである場合には、制御ユニット126は、スイッチ36をオフ状態に維持させる。例えば、制御ユニット126は、スイッチ36をオフ状態に維持させるように指令する指令信号を生成する。一方、電流値Idがゼロより大きい場合には、制御ユニット126は、スイッチ36をオン状態に切り替える。例えば、制御ユニット126は、スイッチ36をオン状態に切り替えるように指令する指令信号を生成する。
[2-2. Control method]
Next, a control method of the power supply system 110 according to the present embodiment will be described. In the power supply system 10 according to the first embodiment, the controller 38 determines the current value Id and the like, but in the present embodiment, the control unit 126 of the external unit 120 determines the current value Id and the like. That is, in the present embodiment, the control unit 126 determines the current value Id in step S14 shown in FIG. Specifically, the signal corresponding to the current value Id measured by the current sensor 46 is transmitted to the communication unit 28 of the external unit 120 by the communication circuit 40. The communication unit 28 transmits a signal corresponding to the current value Id to the control unit 126. As a result, the control unit 126 acquires the current value Id. The control unit 126 generates a command signal based on the current value Id. Specifically, the control unit 126 determines whether or not the current value Id is greater than zero. When the current value Id is zero, the control unit 126 keeps the switch 36 in the off state. For example, the control unit 126 generates a command signal instructing the switch 36 to remain in the off state. On the other hand, when the current value Id is larger than zero, the control unit 126 switches the switch 36 to the on state. For example, the control unit 126 generates a command signal instructing the switch 36 to be switched on.
 制御ユニット126は、生成した指令信号を通信ユニット28に送信する。通信ユニット28は、制御ユニット126が生成した指令信号を保護装置30の通信回路40に送信する。通信回路40は、制御器138に、指令信号を送信する。制御器138は、指令信号に基づいてスイッチ36を制御する。 The control unit 126 transmits the generated command signal to the communication unit 28. The communication unit 28 transmits the command signal generated by the control unit 126 to the communication circuit 40 of the protection device 30. The communication circuit 40 transmits a command signal to the controller 138. The controller 138 controls the switch 36 based on the command signal.
 また、本実施の形態では、図3に示されるステップS22の電路電流値Isと電流値Idとの比較も制御ユニット126が行う。制御ユニット126は、上述したように電流センサ46によって計測された電流値Idを取得し、さらに、センサ22が測定した電路電流値Isを取得する。そして、これらの電流値を比較する。 Further, in the present embodiment, the control unit 126 also compares the electric circuit current value Is and the current value Id in step S22 shown in FIG. The control unit 126 acquires the current value Id measured by the current sensor 46 as described above, and further acquires the electric circuit current value Is measured by the sensor 22. Then, these current values are compared.
 本実施の形態に係る電源システム110の制御方法においても、実施の形態1に係る電源システム10の制御方法と同様の効果が奏される。 The control method of the power supply system 110 according to the present embodiment also has the same effect as the control method of the power supply system 10 according to the first embodiment.
 [2-3.まとめ]
 以上のように、本実施の形態に係る保護装置130において、制御器138は、電流値Idに基づいて生成される指令信号であって、保護装置130の外部から入力される指令信号に基づいてスイッチ36の状態を制御する。
[2-3. Summary]
As described above, in the protection device 130 according to the present embodiment, the controller 138 is a command signal generated based on the current value Id, and is based on the command signal input from the outside of the protection device 130. Controls the state of the switch 36.
 このように、保護装置130の外部からの指令信号に基づいて制御器138が制御するため、制御器138が電流値Idの判定を行う必要がない。したがって、制御器138の構成を簡素化することができる。 In this way, since the controller 138 controls based on the command signal from the outside of the protection device 130, it is not necessary for the controller 138 to determine the current value Id. Therefore, the configuration of the controller 138 can be simplified.
 また、本実施の形態に係る電源システム110は、保護装置130と、直流電路12に接続された外部ユニット120とを備え、外部ユニット120は、電流値Idに基づいて指令信号を生成する制御ユニット126と、指令信号を保護装置130に送信する通信ユニット28とを有する。 Further, the power supply system 110 according to the present embodiment includes a protection device 130 and an external unit 120 connected to the DC electric circuit 12, and the external unit 120 is a control unit that generates a command signal based on the current value Id. It has 126 and a communication unit 28 that transmits a command signal to the protection device 130.
 これにより、制御ユニット126において、電流値Idの判定を行うことができ、各保護装置130において、電流値Idの判定を行う必要がない。したがって、保護装置130の構成を簡素化できる。特に、電源システム110が複数の保護装置130を備える場合には、複数の保護装置130における電流値Idの判定を一つの制御ユニット126で行うことができるため、上記簡素化の効果はより一層顕著となる。 As a result, the control unit 126 can determine the current value Id, and each protection device 130 does not need to determine the current value Id. Therefore, the configuration of the protective device 130 can be simplified. In particular, when the power supply system 110 includes a plurality of protection devices 130, the current value Id of the plurality of protection devices 130 can be determined by one control unit 126, so that the effect of the simplification is even more remarkable. It becomes.
 (その他の実施の形態)
 以上、各実施の形態に係る電源システムについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
Although the power supply system according to each embodiment has been described above, the present invention is not limited to the above embodiment.
 例えば、実施の形態1に係る制御器38は、直流電源装置50及び直流電路12を含む電源システム10全体の状態を推定してもよい。具体的には、制御器38は、推論アルゴリズムを用いて、直流電源装置50及び直流電路12の状態を判定してもよい。ここで、推論アルゴリズムは、電流センサ46及びセンサ22の少なくとも一方によって測定された電気パラメータが入力された場合に直流電源装置50及び直流電路12の状態を出力し、事前に電気パラメータと直流電源装置50及び直流電路12の状態との関係を学習していてもよい。例えば、電気パラメータが入力された場合に、電源システム10の状態を判定して出力する推論アルゴリズムを準備する。そして、電源システム10全体が正常である場合に、センサ22において複数組の電気パラメータを取得し、取得した複数組の電気パラメータと直流電源装置50及び直流電路12の状態との関係を推論アルゴリズムに学習させてもよい。例えば、推論アルゴリズムに上述の電流値Idと、直流電源装置50の状態との関係を学習させてもよいし、電流値Idの特定の周波数成分の大きさと、直流電源装置50又は直流電路12におけるアーク発生の有無との関係を学習させてもよい。 For example, the controller 38 according to the first embodiment may estimate the state of the entire power supply system 10 including the DC power supply device 50 and the DC electric circuit 12. Specifically, the controller 38 may determine the state of the DC power supply device 50 and the DC electric circuit 12 by using an inference algorithm. Here, the inference algorithm outputs the states of the DC power supply device 50 and the DC electric circuit 12 when the electric parameters measured by at least one of the current sensor 46 and the sensor 22 are input, and outputs the electric parameters and the DC power supply device in advance. You may be learning the relationship with the state of 50 and the DC electric circuit 12. For example, an inference algorithm that determines and outputs the state of the power supply system 10 when an electrical parameter is input is prepared. Then, when the entire power supply system 10 is normal, a plurality of sets of electrical parameters are acquired by the sensor 22, and the relationship between the acquired plurality of sets of electrical parameters and the states of the DC power supply device 50 and the DC electric circuit 12 is used as an inference algorithm. You may let them learn. For example, the inference algorithm may be made to learn the relationship between the above-mentioned current value Id and the state of the DC power supply device 50, or the magnitude of a specific frequency component of the current value Id and the DC power supply device 50 or the DC electric circuit 12. The relationship with the presence or absence of arc generation may be learned.
 このような学習を行った推論アルゴリズムによって、入力された電気パラメータに基づいて電源システムの状態を判定できる。このような推論アルゴリズムを用いるために、制御器38は、マイコンなどの演算処理装置を含んでもよい。 The inference algorithm that has been learned in this way can determine the state of the power supply system based on the input electrical parameters. In order to use such an inference algorithm, the controller 38 may include an arithmetic processing unit such as a microcomputer.
 また、同様の推論アルゴリズムは、外部ユニットの制御ユニットにおいて用いられてもよい。すなわち、制御ユニットは、推論アルゴリズムを用いて、直流電源装置50及び直流電路12の状態を判定してもよい。ここで、推論アルゴリズムは、電流センサ46によって測定された電気パラメータが入力された場合に直流電源装置50及び直流電路12の状態を出力し、事前に電気パラメータと直流電源装置50及び直流電路12の状態との関係を学習していてもよい。このような推論アルゴリズムを用いるために、制御ユニットは、マイコンなどの演算処理装置を含んでもよい。 Further, a similar inference algorithm may be used in the control unit of the external unit. That is, the control unit may determine the states of the DC power supply device 50 and the DC electric circuit 12 by using an inference algorithm. Here, the inference algorithm outputs the state of the DC power supply device 50 and the DC electric circuit 12 when the electric parameters measured by the current sensor 46 are input, and outputs the electric parameters and the DC power supply device 50 and the DC electric circuit 12 in advance. You may be learning the relationship with the state. In order to use such an inference algorithm, the control unit may include an arithmetic processing unit such as a microcomputer.
 また、上記各実施の形態に係る電源システムの外部ユニットは、電力制御ユニット24を有する電力変換装置であったが、外部ユニットは、電力制御ユニット24を有さなくてもよい。例えば、外部ユニットは、1以上の電力変換装置を制御する中央制御装置であってもよい。 Further, the external unit of the power supply system according to each of the above embodiments is a power conversion device having the power control unit 24, but the external unit does not have to have the power control unit 24. For example, the external unit may be a central control device that controls one or more power converters.
 また、本発明は、電源システム10として実現できるだけでなく、電源システム10を構成する各構成要素が行うステップ(処理)を含む制御方法として実現できる。 Further, the present invention can be realized not only as a power supply system 10 but also as a control method including steps (processes) performed by each component constituting the power supply system 10.
 具体的には、図3に示されるように、制御方法では、スイッチ36をオフ状態とした後(S10)、電流値Idを取得し(S12)、電流値Idがゼロより大きいか否かを判定する(S14)。電流値Idがゼロである場合には、電流値Idを取得するステップに戻り、電流値Idがゼロより大きい場合には、スイッチ36をオン状態に切り替える(S16)。さらに、スイッチ36がオン状態である場合に、電流値Id及び電路電流値Isを取得し(S18及びS20)、電流値Idと電路電流値Isとが等しいか否かを判定する(S22)。電流値Idと電路電流値Isとが等しい場合には、電流値Id及び電路電流値Isを取得するステップS18及びS20に戻り、電流値Idと電路電流値Isとが等しくない場合には、ステップS10に戻ってスイッチ36をオフ状態に切り替える。 Specifically, as shown in FIG. 3, in the control method, after the switch 36 is turned off (S10), the current value Id is acquired (S12), and whether or not the current value Id is larger than zero is determined. Judgment (S14). When the current value Id is zero, the process returns to the step of acquiring the current value Id, and when the current value Id is larger than zero, the switch 36 is switched to the on state (S16). Further, when the switch 36 is in the ON state, the current value Id and the electric circuit current value Is are acquired (S18 and S20), and it is determined whether or not the current value Id and the electric circuit current value Is are equal (S22). If the current value Id and the electric circuit current value Is are equal, the process returns to steps S18 and S20 for acquiring the current value Id and the electric circuit current value Is, and if the current value Id and the electric circuit current value Is are not equal, the step Return to S10 and switch the switch 36 to the off state.
 例えば、それらのステップは、コンピュータ(コンピュータシステム)によって実行されてもよい。そして、本発明は、それらの方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本発明は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。 For example, those steps may be performed by a computer (computer system). Then, the present invention can be realized as a program for causing a computer to execute the steps included in those methods. Further, the present invention can be realized as a non-temporary computer-readable recording medium such as a CD-ROM on which the program is recorded.
 上記各実施の形態に係る電源システムの制御器及び制御ユニットは、マイコンによってソフトウェア的に実現されてもよいし、パーソナルコンピュータなどの汎用コンピュータにおいてソフトウェア的に実現されてもよい。さらに、電源システムの制御器及び制御ユニットは、A/D変換器、論理回路、ゲートアレイ、D/A変換器等で構成される専用の電子回路によってハードウェア的に実現されてもよい。 The controller and control unit of the power supply system according to each of the above embodiments may be realized by software by a microcomputer, or may be realized by software in a general-purpose computer such as a personal computer. Further, the controller and the control unit of the power supply system may be realized by hardware by a dedicated electronic circuit composed of an A / D converter, a logic circuit, a gate array, a D / A converter and the like.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in each embodiment within the range obtained by applying various modifications to each embodiment and the gist of the present invention. Forms are also included in the present invention.
10、110 電源システム
12 直流電路
20、120 外部ユニット
22 センサ
24 電力制御ユニット
26、126 制御ユニット
28 通信ユニット
30、130 保護装置
31 第一導電体
32 第二導電体
34 ダイオード
36 スイッチ
38、138 制御器
40 通信回路
44 補助電源回路
46 電流センサ
50 直流電源装置
51、52 出力端子
Id 電流値
10, 110 Power supply system 12 DC electric circuit 20, 120 External unit 22 Sensor 24 Power control unit 26, 126 Control unit 28 Communication unit 30, 130 Protective device 31 First conductor 32 Second conductor 34 Diode 36 Switch 38, 138 Control Instrument 40 Communication circuit 44 Auxiliary power supply circuit 46 Current sensor 50 DC power supply device 51, 52 Output terminal Diode Current value

Claims (12)

  1.  直流電路に直流電力を出力する直流電源装置に接続される保護装置であって、
     前記直流電源装置の高電位側の出力端子に接続される第一導電体と、
     前記直流電源装置の低電位側の出力端子に接続される第二導電体と、
     前記第一導電体にカソードが接続され、前記第二導電体にアノードが接続されるダイオードと、
     前記ダイオードと直列に接続され、前記第一導電体と前記第二導電体との間に流れる電流を測定する電流センサと、
     前記ダイオードに並列に接続されるスイッチと、
     前記スイッチの状態を制御する制御器とを備え、
     前記スイッチは、前記電流センサによって測定された電流値に基づいて制御される
     保護装置。
    A protective device connected to a DC power supply that outputs DC power to a DC electric circuit.
    The first conductor connected to the output terminal on the high potential side of the DC power supply device,
    The second conductor connected to the output terminal on the low potential side of the DC power supply device,
    A diode in which the cathode is connected to the first conductor and the anode is connected to the second conductor.
    A current sensor connected in series with the diode and measuring the current flowing between the first conductor and the second conductor,
    A switch connected in parallel with the diode
    A controller for controlling the state of the switch is provided.
    The switch is a protective device controlled based on a current value measured by the current sensor.
  2.  前記直流電源装置から前記制御器へ電力を供給する補助電源回路をさらに備える
     請求項1に記載の保護装置。
    The protection device according to claim 1, further comprising an auxiliary power supply circuit for supplying electric power from the DC power supply device to the controller.
  3.  前記スイッチは、半導体スイッチである
     請求項1又は2に記載の保護装置。
    The protective device according to claim 1 or 2, wherein the switch is a semiconductor switch.
  4.  前記スイッチは、サイリスタである
     請求項3に記載の保護装置。
    The protective device according to claim 3, wherein the switch is a thyristor.
  5.  前記直流電源装置は、光発電装置である
     請求項1~4のいずれか1項に記載の保護装置。
    The protective device according to any one of claims 1 to 4, wherein the DC power supply device is a photovoltaic power generation device.
  6.  前記保護装置は、前記直流電源装置からの距離が30cm以内の位置に配置される
     請求項1~5のいずれか1項に記載の保護装置。
    The protective device according to any one of claims 1 to 5, wherein the protective device is arranged at a position within 30 cm from the DC power supply device.
  7.  前記制御器は、前記電流値に基づいて前記スイッチの状態を制御する
     請求項1~6のいずれか1項に記載の保護装置。
    The protective device according to any one of claims 1 to 6, wherein the controller controls a state of the switch based on the current value.
  8.  前記制御器は、前記スイッチがオン状態であって、前記直流電路に流れる電流の値である電路電流値と、前記電流値とが一致しない場合に、前記スイッチをオフ状態に切り替える
     請求項7に記載の保護装置。
    According to claim 7, the controller switches the switch to the off state when the switch is in the on state and the electric circuit current value, which is the value of the current flowing through the DC electric circuit, does not match the current value. The protective device described.
  9.  前記制御器は、推論アルゴリズムを用いて前記直流電源装置及び前記直流電路の状態を判定し、
     前記推論アルゴリズムは、前記電流センサによって測定された電気パラメータが入力された場合に前記直流電源装置及び前記直流電路の状態を出力し、事前に前記電気パラメータと前記直流電源装置及び前記直流電路の状態との関係を学習している
     請求項7又は8に記載の保護装置。
    The controller determines the state of the DC power supply and the DC electric circuit by using an inference algorithm.
    The inference algorithm outputs the state of the DC power supply device and the DC electric circuit when the electric parameter measured by the current sensor is input, and outputs the state of the electric parameter and the DC power supply device and the DC electric circuit in advance. The protective device according to claim 7 or 8, which has learned the relationship with.
  10.  前記制御器は、前記電流値に基づいて生成される指令信号であって、前記保護装置の外部から入力される指令信号に基づいて前記スイッチの状態を制御する
     請求項1~6のいずれか1項に記載の保護装置。
    The controller is a command signal generated based on the current value, and any one of claims 1 to 6 that controls the state of the switch based on a command signal input from the outside of the protection device. The protective device described in the section.
  11.  請求項10に記載の保護装置と、
     前記直流電路に接続された外部ユニットとを備え、
     前記外部ユニットは、前記電流値に基づいて前記指令信号を生成する制御ユニットと、
     前記指令信号を前記保護装置に送信する通信ユニットとを有する
     電源システム。
    The protective device according to claim 10 and
    It is equipped with an external unit connected to the DC electric circuit.
    The external unit includes a control unit that generates the command signal based on the current value and
    A power supply system including a communication unit that transmits the command signal to the protection device.
  12.  前記制御ユニットは、推論アルゴリズムを用いて、前記直流電源装置及び前記直流電路の状態を判定し、
     前記推論アルゴリズムは、前記電流センサによって測定された電気パラメータが入力された場合に前記直流電源装置及び前記直流電路の状態を出力し、事前に前記電気パラメータと前記直流電源装置及び前記直流電路の状態との関係を学習している
     請求項11に記載の電源システム。
    The control unit uses an inference algorithm to determine the state of the DC power supply and the DC electric circuit.
    The inference algorithm outputs the state of the DC power supply device and the DC electric circuit when the electric parameter measured by the current sensor is input, and outputs the state of the electric parameter and the DC power supply device and the DC electric circuit in advance. The power supply system according to claim 11, which is learning the relationship with.
PCT/JP2020/022427 2019-06-27 2020-06-05 Protection device and power supply system WO2020261947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527605A JP7246010B2 (en) 2019-06-27 2020-06-05 protector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119726 2019-06-27
JP2019119726 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020261947A1 true WO2020261947A1 (en) 2020-12-30

Family

ID=74060095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022427 WO2020261947A1 (en) 2019-06-27 2020-06-05 Protection device and power supply system

Country Status (2)

Country Link
JP (1) JP7246010B2 (en)
WO (1) WO2020261947A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252046A (en) * 2012-05-30 2013-12-12 Taida Electronic Ind Co Ltd Photovoltaic power generation system including power generation modules
US20140301003A1 (en) * 2011-08-19 2014-10-09 Phoenix Contact Gmbh & Co. Kg Socket for a Solar Panel with a Protective Circuit
JP2017220688A (en) * 2014-10-03 2017-12-14 太陽誘電株式会社 Current detection circuit for solar power system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228717A (en) 2016-03-23 2017-10-03 太阳能安吉科技有限公司 Conductor temperature detector
JP7132584B2 (en) 2016-12-15 2022-09-07 日本油圧工業株式会社 Devices for starting and running AC motors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140301003A1 (en) * 2011-08-19 2014-10-09 Phoenix Contact Gmbh & Co. Kg Socket for a Solar Panel with a Protective Circuit
JP2013252046A (en) * 2012-05-30 2013-12-12 Taida Electronic Ind Co Ltd Photovoltaic power generation system including power generation modules
JP2017220688A (en) * 2014-10-03 2017-12-14 太陽誘電株式会社 Current detection circuit for solar power system

Also Published As

Publication number Publication date
JPWO2020261947A1 (en) 2020-12-30
JP7246010B2 (en) 2023-03-27

Similar Documents

Publication Publication Date Title
CN111478290B (en) Rapid turn-off method, photovoltaic module turn-off device and photovoltaic system
JP6132919B2 (en) DC power generation system and method for protecting DC power generation system
ES2383856T3 (en) Systems, procedures and devices to operate a power converter
EP3264550B1 (en) Access control method for parallel direct current power supplies and device thereof
US20170279279A1 (en) Power converter
US9257829B2 (en) Grounding apparatus
CN111585308B (en) Control method of photovoltaic rapid turn-off system and application device and system thereof
EP3279677B1 (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
US9356553B2 (en) String continuity monitoring
JP2012112937A (en) Arc detection and prevention in power generation system
WO2017221493A1 (en) Dc electric circuit protection device and arc detection method
US10411459B2 (en) Photovoltaic power generation system and method for shutting down the same
JP2017527001A (en) MPPT concentration mode exit, switching method and its application
JP2003289626A (en) Power conditioner for solar power generation system
JP2014533921A (en) Single-phase inverter controlled cooperatively to supply single-phase, two-phase or three-phase unipolar electricity
US9300226B2 (en) Solar power generation system
JP2016157364A (en) Power control unit and control method thereof
WO2018150696A1 (en) Arc detection device and arc detection method
WO2020261946A1 (en) Electrical power supply system and electrical power supply system control method
US11644506B2 (en) Power switch fault detection method and power switch fault detection circuit
WO2020261947A1 (en) Protection device and power supply system
KR101630511B1 (en) Converter controller and operating method thereof
JP5712951B2 (en) Abnormality detection device for solar panel
AU2021204712B2 (en) Abnormality detecting system for a solar power grid
US20180279442A1 (en) Led drive circuit for controlling a leakage current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831668

Country of ref document: EP

Kind code of ref document: A1