WO2020197334A1 - Stand-alone active emi filter module - Google Patents

Stand-alone active emi filter module Download PDF

Info

Publication number
WO2020197334A1
WO2020197334A1 PCT/KR2020/004247 KR2020004247W WO2020197334A1 WO 2020197334 A1 WO2020197334 A1 WO 2020197334A1 KR 2020004247 W KR2020004247 W KR 2020004247W WO 2020197334 A1 WO2020197334 A1 WO 2020197334A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
line
emi filter
filter module
compensation
Prior art date
Application number
PCT/KR2020/004247
Other languages
French (fr)
Korean (ko)
Inventor
정상영
김진국
Original Assignee
이엠코어텍 주식회사
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190036221A external-priority patent/KR102258199B1/en
Priority claimed from KR1020190045137A external-priority patent/KR20200122190A/en
Priority claimed from KR1020190060808A external-priority patent/KR102345290B1/en
Priority claimed from KR1020190115476A external-priority patent/KR102326924B1/en
Application filed by 이엠코어텍 주식회사, 울산과학기술원 filed Critical 이엠코어텍 주식회사
Publication of WO2020197334A1 publication Critical patent/WO2020197334A1/en
Priority to US17/449,038 priority Critical patent/US11949393B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators

Definitions

  • Embodiments relate to a separate active EMI filter module and a method of manufacturing the same.
  • electric appliances such as home appliances, industrial electric appliances, and electric vehicles emit noise during operation.
  • noise may be generated due to the switching operation inside the electric device.
  • Such noise is not only harmful to the human body, but also causes malfunction or failure of other connected electronic devices.
  • Electromagnetic interference from an electronic device to other devices is referred to as EMI (Electromagnetic Interference), and among them, noise transmitted through wires and board wiring is referred to as Conducted Emission (CE) noise.
  • EMI Electromagnetic Interference
  • CE Conducted Emission
  • EMI noise emission levels are strictly regulated in all electronic products. Therefore, most electronic products essentially include an electromagnetic wave noise reduction device such as an EMI filter that reduces EMI noise in order to satisfy the regulation on the amount of noise emission.
  • an electromagnetic wave noise reduction device such as an EMI filter that reduces EMI noise in order to satisfy the regulation on the amount of noise emission.
  • CM common mode
  • CE conductive emission
  • the common mode (CM) choke has a problem in that the noise reduction performance is rapidly deteriorated due to self-saturation in a high power/high current system, and in order to maintain the noise reduction performance, the size or number of common mode chokes may be increased. In this case, there is a problem that the size and price of the EMI filter are greatly increased.
  • the conventional EMI filter is bulky as a whole and has a structure in which devices are exposed to the external environment as it is, when used in a system placed in an external environment, devices can be easily deteriorated from external shocks or environmental influences. It can have a great influence on the characteristics of
  • An embodiment of the present invention is to solve the above problems and/or limitations, and an object thereof is to provide an independent active EMI filter module capable of reducing the volume and being independent from an external environment, and a method of manufacturing the same.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • an embodiment is provided on a substrate including a first surface and a second surface facing each other, and installed on at least one surface of the first surface or the second surface, and detects electromagnetic noise.
  • a first device group provided so as to be provided, a second device group provided on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic wave noise, the substrate, and the first device group
  • an encapsulation structure provided to separate the second device group from the outside, a first pin group exposed to the outside of the encapsulation structure and electrically connected to at least a portion of the first device group or the second device group, and the encapsulation It is possible to provide an independent active EMI filter module including a second pin group exposed to the outside of the structure and electrically connected to at least a portion of the first device group or the second device group.
  • the encapsulation structure includes a space part located therein and an opening connected to the space part, a support provided to receive at least one of the substrate, a first device group, and a second device group in the space part, and the space It may include a filling portion provided to fill at least a portion of the portion.
  • At least a portion of the first pin group or the second pin group may be provided to be exposed to the outside of the support through the opening.
  • the filling part may be provided to close the opening.
  • the filling unit may include a first filling portion facing the first surface and a second filling portion facing the second surface.
  • a method for manufacturing an independent active EMI filter module including forming a structure.
  • the forming of the encapsulation structure may include preparing a support including a space part located therein and an opening connected to the space part, and at least one of the substrate, a first device group, or a second device group in the space part. And forming a filling portion provided to fill at least a portion of the space portion.
  • the forming of the encapsulation structure may further include exposing at least a portion of the first fin group or the second fin group to the outside of the support through the opening.
  • the forming of the filling part may further include closing the opening using the filling part.
  • the forming of the filling portion may include forming a first filling portion opposite to the first surface, and forming a second filling portion facing the second surface.
  • a substrate including a first surface and a second surface facing each other, a first device group installed on at least one of the first surface or the second surface and provided to detect electromagnetic noise, Separation of a second device group, the substrate, the first device group, and the second device group from the outside, provided on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic noise
  • An encapsulation structure provided so as to be formed, and a connection part provided to connect with the first and second surfaces, and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part, the An independent active EMI filter module including a connector connected to the encapsulation structure and a pin group exposed to the outside of the encapsulation structure and electrically connected to at least a portion of the first device group or the second device group may be provided.
  • the connector may be combined with at least a portion of the encapsulation structure.
  • the encapsulation structure includes a space part located therein and an opening connected to the space part, a support provided to receive at least one of the substrate, a first device group, and a second device group in the space part, and the space It may include a filling portion provided to fill at least a portion of the portion.
  • the filling portion may include a first filling portion facing the first surface and a second filling portion facing the second surface, and the connector may be provided to connect the first filling portion and the second filling portion. have.
  • a first element group provided to detect electromagnetic wave noise is installed on at least one of the first or second surfaces of the substrate including the first and second surfaces opposite to each other And installing a second element group provided to generate a compensation signal for the electromagnetic wave noise on at least one of the first and second surfaces, and connecting the first and second surfaces Forming a connection part provided to prevent interference with at least one of the first device group or the second device group, and separating the substrate, the first device group, and the second device group from the outside, and Forming an encapsulation structure provided so that a pin group electrically connected to at least a portion of the first device group or the second device group is exposed to the outside, and forming a connector located at the connection portion and connected to the encapsulation structure It is possible to provide a method of manufacturing an independent active EMI filter module.
  • the step of forming the connector may include causing the connector to be coupled to at least a portion of the encapsulation structure.
  • the forming of the encapsulation structure may include preparing a support including a space part located therein and an opening connected to the space part, and at least one of the substrate, a first device group, or a second device group in the space part. And forming a filling portion provided to fill at least a portion of the space portion.
  • the forming of the filling part includes forming a first filling part opposite to the first surface, and forming a second filling part opposite to the second surface, and forming the connector ,
  • the connector may include connecting the first filling part and the second filling part.
  • a substrate including a first surface and a second surface facing each other, a first device group installed on at least one of the first surface or the second surface and provided to detect electromagnetic noise, A second element group installed on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic wave noise, a space located therein, and an opening connected to the space, Independent including a support provided to accommodate at least one of the substrate, a first device group, or a second device group in the space part, a filling part provided to fill at least a part of the space part, and a junction part connected to the support Active EMI filter module can be provided.
  • It may include a pin group exposed to the outside of the filling part and electrically connected to at least a portion of the first device group or the second device group.
  • a connection unit provided to connect to the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and a connector located on the connection unit and connected to the filling unit.
  • Can include.
  • the filling unit may include a first filling portion facing the first surface and a second filling portion facing the second surface.
  • connection unit provided to connect to the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and a connector located on the connection unit and connected to the filling unit. Including, and the connector may be provided to connect the first filling portion and the second filling portion.
  • a first element group provided to detect electromagnetic wave noise is installed on at least one of the first or second surfaces of the substrate including the first and second surfaces opposite to each other And installing a second element group provided to generate a compensation signal for the electromagnetic wave noise on at least one of the first and second surfaces, and connecting the first and second surfaces Forming a connection part provided to prevent interference with at least one of the first device group or the second device group, and preparing a support including a space part located inside and an opening connected to the space part And, accommodating at least one of the substrate, a first device group, or a second device group in the space part, forming a filling part provided to fill at least a part of the space part, and a junction part connected to the support It is possible to provide a method of manufacturing an independent active EMI filter module including forming.
  • connection part provided to connect with the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part and connected to the filling part. It may further include forming a connector.
  • the forming of the filling portion may include forming a first filling portion opposite to the first surface, and forming a second filling portion facing the second surface.
  • connection part provided to connect with the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part and connected to the filling part.
  • the step of forming a connector may be further included, and the step of forming the connector may include connecting the first filling part and the second filling part to the connector.
  • An embodiment includes a first device group including a noise sensing unit configured to detect electromagnetic noise, and a second device group including a compensation unit configured to generate a compensation signal for the electromagnetic noise, and the first The group and the second group may provide a separate active EMI filter module provided to be mounted on different substrates, respectively.
  • It may include a second electrical connection portion coupled to the second substrate and provided to be coupled to the first electrical connection portion.
  • the second electrical connector may be provided in-line along an edge of the second substrate.
  • It may further include an encapsulation structure provided to separate the second substrate and the second device group from the outside.
  • the sealing structure can be more firmly fixed, and the durability of the sealing structure can be improved.
  • the substrate can be more firmly fixed by the bonding portion, and thus the durability of the module can be further improved.
  • FIG. 1 is a block diagram of an independent active EMI filter module according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of the independent active EMI filter module of FIG. 1 according to an embodiment.
  • FIG. 3 is a diagram showing a more detailed configuration of an independent active EMI filter module according to an embodiment.
  • FIG. 4 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
  • FIG. 5 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
  • FIG. 6 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • FIG. 7 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • 8A and 8B are bottom views illustrating different embodiments of arrangement states of a first pin group and a second pin group.
  • FIG. 9 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
  • FIG. 10 is a bottom view illustrating an example of an arrangement state of a first pin group and a second pin group according to the embodiment illustrated in FIG. 9.
  • FIG. 11 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
  • FIG. 12 is a bottom view illustrating an example of an arrangement state of a first pin group and a second pin group according to the embodiment shown in FIG. 11.
  • FIGS. 13 to 17 are diagrams illustrating a manufacturing process of an independent active EMI filter module according to embodiments.
  • FIG. 18 is a schematic cross-sectional view of the independent active EMI filter module of FIG. 1 according to another embodiment.
  • FIG. 19 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
  • 20 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • connection part 21 is a cross-sectional view illustrating an embodiment of the connection part and the connector of FIG. 20.
  • FIG. 22 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • 23A and 23B are bottom views illustrating different embodiments of arrangement states of a first pin group and a second pin group.
  • FIG. 24 is a bottom view showing another example of the arrangement of pins according to the embodiment shown in FIG. 9.
  • FIG. 25 is a bottom view showing another example of the arrangement of pins according to the embodiment shown in FIG. 11.
  • 26 to 27 are diagrams illustrating a manufacturing process of an independent active EMI filter module according to still other embodiments.
  • FIG. 28 is a diagram illustrating a part of a manufacturing process of an independent active EMI filter module according to another embodiment.
  • 29 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • FIG. 30 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • 31 is a bottom view of an independent active EMI filter module according to an embodiment.
  • 32 is a bottom view of an independent active EMI filter module according to another embodiment.
  • 33 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • 34 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
  • 35 is a configuration diagram of a separate active EMI filter module according to another embodiment.
  • 36 is a view showing a more detailed configuration of a separate active EMI filter module according to another embodiment.
  • FIG. 37 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
  • 38 is a side view illustrating a second substrate coupled to a first substrate in a separate active EMI filter module according to another exemplary embodiment.
  • 39 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
  • FIG. 40 is a side view illustrating a second substrate coupled to a first substrate in a separate active EMI filter module according to another embodiment.
  • 41 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
  • FIG. 42 is a side view illustrating a second substrate coupled to a first substrate according to another exemplary embodiment.
  • FIG 43 is a side view illustrating a second substrate coupled to a first substrate according to another embodiment.
  • FIG. 48 is a partial cross-sectional view of a separate active EMI filter module according to an embodiment.
  • FIG. 49 is a partial perspective view of a detachable active EMI filter module according to the embodiment shown in FIG. 48.
  • a specific process order may be performed differently from the described order.
  • two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to the described order.
  • FIG. 1 is a block diagram of an EMI filter module according to an embodiment.
  • the independent active EMI filter module 1 may include a substrate 10, a first element group 11, a second element group 12, and a pin group installed on the substrate 10. .
  • the substrate 10 may be an insulating and/or conductive substrate having a conductive pattern formed on at least one surface thereof.
  • the substrate 10 may be a printed circuit board provided in a flat plate shape.
  • the substrate 10 may be a rigid or flexible printed circuit board.
  • a first through line 21 and a second through line 22 pass through the substrate 10.
  • the first through line 21 and the second through line 22 may be electrically connected to a power line, and the first through line 21 is a live line (L) and a second through line 22 Silver may be electrically connected to a neutral line (N), respectively.
  • each of the first through line 21 and the second through line 22 may be a conductive pattern formed to electrically pass through the substrate 10 from one end to the other end.
  • the conductive pattern is not necessarily limited to extending in a straight line, and may be extended in a complex path.
  • the first through line 21 and the second through line 22, which are power lines as described above, may be electrically connected to the pin group, and specifically, may be electrically connected to the first pin group 14.
  • the first pin group 14 may include the 1-1th pins 141 to 1-4th pins 144.
  • the 1-1 pin 141 may be electrically connected to one end of the first through line 21, and the 1-2 pin 142 may be electrically connected to the other end of the first through line 21. .
  • the 1-3th pin 143 may be electrically connected to one end of the second through line 22, and the 1-4 pin 144 may be electrically connected to the other end of the second through line 22. .
  • the 1-1 pin 141 and the 1-3 pin 143 may be electrically connected to the first device 2 positioned outside the independent active EMI filter module 1. .
  • the first device 2 may be various types of devices for supplying power to the independent active EMI filter module 1 in the form of current and/or voltage.
  • the first device 2 may be a device that produces and supplies power, or may be a device that supplies power generated by another device (for example, an electric vehicle charging device).
  • the first device 2 may be a device that supplies stored energy.
  • this is exemplary, and the spirit of the present invention is not limited thereto.
  • the 1-2 pins 142 and 1-4 pins 144 may be electrically connected to the second device 3 located outside the independent active EMI filter module 1.
  • the second device 3 may be various types of devices and/or loads using power supplied by the first device 2.
  • the second device 3 may be a load driven by using power supplied by the first device 2.
  • the second device 3 may be a load (eg, at least one component of an electric vehicle) that stores energy using power supplied by the first device 2 and is driven using the stored energy.
  • this is exemplary, and the spirit of the present invention is not limited thereto.
  • Each of the first through line 21 and the second through line 22 may be a path through which electromagnetic noise generated by the second device 3 is transmitted to the first device 2.
  • the electromagnetic wave noise may be input to each of the first and second through lines 21 and 22 in a common mode.
  • the first device group 11 may include at least one device electrically connected to the first through line 21 and the second through line 22. According to an embodiment, the first device group 11 may include a device provided to detect electromagnetic wave noise generated from the second device 3.
  • the second device group 12 may include at least one device electrically connected to the first device group 11, the first through line 21 and the second through line 22.
  • the second device group 12 may include an active circuit unit 121 and a compensation unit 122.
  • the active circuit unit 121 may serve as an amplifier, and may amplify a current corresponding to electromagnetic wave noise sensed through the first element group 11 at a predetermined ratio.
  • the active circuit unit 121 generates an amplified current having the same magnitude as the current corresponding to the electromagnetic wave noise and opposite to the phase, and this through the compensation unit 122, the first through line 141 and the / Or it may flow through the second through line 142 to compensate for noise.
  • the current amplified through the active circuit unit 121 flows to the compensation unit 122, and the compensation current flows from the compensation unit 122 to the first through line 141 and/or the second through line 142. do.
  • first device group 11 and/or the second device group 12 may be electrically connected to the third device 4.
  • the third device 4 may be electrically connected to a pin group protruding out of the substrate 10. Specifically, the third device 4 may be electrically connected to the first device group 11 and/or the second device group 12 through the second pin group 15.
  • this third device 4 may include a device that provides power to the active circuit unit 121.
  • the third device 4 may include a device that generates input power of the active circuit unit 121, and the input power may include DC power.
  • the second pin group 15 may include pins that are not directly connected to the first through line 141 and/or the second through line 142, which is a power line.
  • the third device ( 4) and electrically connected to, and/or may include pins used for grounding purposes. A specific example will be described later.
  • the independent active EMI filter module 1 may include a substrate 10 having a first surface 101 and a second surface 102 facing each other.
  • the first surface 101 and the second surface 102 may include a conductive pattern, and at least some of the conductive patterns of the first surface 101 and the second surface 102 may be electrically connected to each other.
  • the third device group 103 may be installed on the first surface 101 of the substrate 10, and the fourth device group 104 may be installed on the opposite second surface 102.
  • Each of the third device group 103 and the fourth device group 104 may include at least one device, and at least some of them may be electrically connected to each other.
  • At least some of the devices belonging to the third device group 103 may be bulkier than at least some of the devices belonging to the fourth device group 104.
  • the third device group 103 may have a larger volume than the fourth device group 104 as a whole. Accordingly, it is possible to provide stability to the module design, and in particular, the insulating characteristics of the encapsulating structure 13 of the third device group 103 having a large volume can be further improved.
  • the third device group 103 may include the first device group 11 and/or the compensation unit 122 illustrated in FIG. 1.
  • the fourth device group 104 may include the active circuit unit 121 shown in FIG. 1.
  • the first pin group 14 and the second pin group 15 described above may be installed to protrude in a direction perpendicular to one surface of the substrate 10. According to an embodiment, the first pin group 14 and the second pin group 15 It may be installed protruding on the two sides (102).
  • the first pin group 14 and the second pin group 15 are preferably installed on the surface on which the fourth element group 104 having a relatively small volume is installed, and accordingly, the protruding length of each pin can be reduced. have.
  • the substrate 10, the third device group 103, or the fourth device group 104 may be separated from the outside by the encapsulation structure 13.
  • the encapsulation structure 13 may include various insulating encapsulation structures capable of separating at least one of the substrate 10, the third device group 103, or the fourth device group from the outside, and may be formed of an insulating material. I can.
  • the encapsulation structure 13 is provided to encapsulate all of the substrate 10, the third device group 103, and the fourth device group 104, but the present invention is not limited thereto, and the third A structure for encapsulating the device group 103 and a part of the substrate 10 or the fourth device group 104 and a part of the substrate 10 may be included, respectively.
  • the first fin group 14 and the second fin group 15 may be formed to protrude so that their ends are exposed to the outside of the encapsulation structure 13, respectively. As shown in FIG. 2, the first pin group 14 and the second pin group 15 may directly protrude, but are not limited thereto, and the first pin group 14 and the second pin group 15 Separate terminals electrically connected to and may be provided so as to be exposed.
  • FIG 3 illustrates a more specific example of the first device group 11 and the second device group 12 according to an embodiment.
  • the first through line 21 and the second through line 22 may be designed to pass through the substrate 10.
  • Both ends of the first through line 21 are connected to the 1-1 pin 141 and the 1-2 pin 142.
  • both ends of the second through line 22 are connected to the 1-3th pins 143 and the 1-4th pins 144.
  • the first element group 11 may include a sensing transformer capable of sensing noise.
  • the sensing transformer includes a first reference winding 111 and a second reference winding 112 electrically connected to a first through line 21 and a second through line 22, which are power lines, respectively, and the first and second reference windings. It may include a sensing winding 110 formed on the same core as the reference windings 111 and 112.
  • the first reference winding 111 and the second reference winding 112 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
  • the first reference winding 111 and the second reference winding 112 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 or the second reference winding At least one of 112 may have a structure passing through the core.
  • the sensing winding 110 may have a structure in which the first and second reference windings 111 and 112 are wound and/or wound around a core at least once or more.
  • the sensing winding 110 is electrically insulated from the primary winding, which is a power line, a noise current generated from the second device 3 is sensed, and a current converted from the noise current at a predetermined ratio may be induced.
  • the primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
  • a first magnetic flux density may be induced in the core.
  • a second magnetic flux density may be induced in the core.
  • a first induced current may be induced in the sensing winding 110 that is the second secondary side by the induced first and second magnetic flux densities.
  • the sensing transformer is configured so that the first magnetic flux density and the second magnetic flux density induced by the first current may overlap (or reinforce each other), and the first through line 21 and the second through line A first induced current corresponding to the first current may be generated in the second secondary side insulated from 22, that is, the sensing winding 110.
  • the number of the first reference winding 111, the second reference winding 112, and the sensing winding 110 wound around the core may be appropriately determined according to the requirements of the system in which the independent active EMI filter module 1 is used. have.
  • the first and second reference windings 111 and 112 of the primary winding and the sensing winding 110 may have a winding ratio of 1:N sen .
  • the self-inductance of the primary winding of the sensing transformer is L sen
  • the secondary winding can have a self inductance of N sen 2 ⁇ L sen .
  • the primary and secondary windings of the sensing transformer 120 may be combined with a coupling coefficient of k sen .
  • the above-described sensing transformer may be configured such that a magnetic flux density induced by a second current, which is a normal current flowing through each of the first through line 21 and the second through line 22, satisfies a predetermined magnetic flux density condition.
  • the third magnetic flux density and the fourth magnetic flux density may be induced in the core by the second current flowing through the first and second reference windings 111 and 112, respectively.
  • the third magnetic flux density and the fourth magnetic flux density may be conditions that cancel each other.
  • the sensing transformer reduces the second induced current induced to the sensing winding 120, which is the secondary side, by a second current, which is a normal current flowing through each of the first through line 21 and the second through line 22. It may be set to be less than the threshold size, and accordingly, the sensing transformer may be configured such that the magnetic flux densities induced by the second current cancel each other, so that only the above-described first current may be sensed.
  • the magnitude of the first and second magnetic flux density induced by the first current which is a noise current in the first frequency band (for example, a band having a range of 150 KHz to 30 MHz), is in the second frequency band (for example, 50 Hz to 30 MHz). It may be configured to be larger than the magnitude of the third and fourth magnetic flux densities induced by the second current, which is a typical current of a band having a range of 60 Hz).
  • the component A is configured to be B may mean that the design parameter of the component A is set to be appropriate for B.
  • the fact that the sensing transformer is configured to have a large magnetic flux induced by the current in a specific frequency band means that parameters such as the size of the sensing transformer, the diameter of the core, the number of turns, the size of the inductance, and the magnitude of the mutual inductance are It may mean that it is appropriately set so that the magnitude of the magnetic flux induced by the current in the band becomes strong.
  • the sensing winding 110 which is the secondary side of the sensing transformer, supplies the first induced current to the active circuit unit 121, as shown in FIG. 3, the input terminal of the active circuit unit 121 and the reference of the active circuit unit 121 It can be placed on the path connecting the electric potential.
  • the active circuit unit 121 may be a means for generating an amplified current by amplifying the first induced current generated by the sensing transformer.
  • the sensing winding 110 may be differentially connected to an input terminal of the active circuit unit 121.
  • the amplification by the active circuit unit 121 may mean adjusting the size and/or phase of the amplification target.
  • the active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later.
  • the sensing transformer of the first element group 11 converts a first current, which is a noise current, into a first induced current whose magnitude is 1/F1 times
  • the compensation transformer 1221 converts the magnitude of the amplified current to 1
  • the active circuit unit 121 may generate an amplified current that is F1xF2 times the magnitude of the first induced current.
  • the active circuit unit 121 may generate the amplified current so that the phase of the amplified current is opposite to the phase of the first induced current.
  • the active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 121 of the present invention.
  • BJT bipolar junction transistor
  • the active circuit unit 121 may generate an amplified current by amplifying the first induced current by receiving power from the third device 4 that is separate from the first device 2 and/or the second device 3. have.
  • the third device 4 may be a device that receives power from a power source independent of the first device 2 and the second device 3 and generates input power to the active circuit unit 121.
  • the third device 4 may be a device that receives power from any one of the first device 2 and the second device 3 and generates input power to the active circuit unit 121.
  • the active circuit unit 121 may be electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
  • the amplified current flows through the compensation unit 122 to the first through line 141 and/or the second through line 142 to compensate for noise.
  • the compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222.
  • the compensation transformer 1221 may include a primary winding positioned at an output portion of the active circuit unit 121 and a secondary winding electrically connected to the compensation capacitor unit 1222.
  • the secondary winding of the compensation transformer 1221 is electrically connected to the first through line 21 and the second through line 22 as power lines with the compensation capacitor unit 1222 interposed therebetween. Accordingly, the active circuit unit 121 may be electrically insulated from the power line, thereby protecting the active circuit unit 121.
  • the compensation transformer 1221 is insulated from the first through line 21 and the second through line 22 and/or is isolated from the above-described first through line 21 and the second through line 22 based on the amplified current. 2 It may be a means for generating a compensating current on the side of the through line 22 (or on the secondary side to be described later).
  • the compensation transformer 1221 is on the primary side disposed on the path connecting the output terminal of the active circuit unit 121 and the reference potential of the active circuit unit 121 to the amplified current generated by the active circuit unit 121 It is possible to generate a compensating current on the secondary side based on the magnetic flux density induced by it.
  • the reference potential (reference potential 2) of the active circuit unit 121 may be grounded through the 2-2 pin 152.
  • the secondary side may be disposed on a path connecting the compensation capacitor unit 1222 to be described later and the reference potential of the independent active EMI filter module 1.
  • the reference potential (reference potential 1) of the independent active EMI filter module 1 may be grounded through the 2-3rd pins 153.
  • the compensation transformer 1221 transmits the amplified current generated by the active circuit unit 121 to the first through line 21 and the second through line 22 in an insulated and/or isolated state. It can be transmitted to the line 21 and the second through line 22 side.
  • the primary side of the compensation transformer 1221, the active circuit unit 121 and the sensing winding 110 are separated from the remaining components of the independent active EMI filter module 1 ( It can be connected to the reference potential 2). That is, the reference potential (reference potential 2) of the active circuit unit 121 and the reference potential (reference potential 1) of the independent active EMI filter module 1 may be different potentials.
  • a component that generates a compensation current is operated in an insulated state by using a reference potential that is different from the other components, and by using a separate power source. In this way, the reliability of the independent active EMI filter module 1 can be improved.
  • the compensation transformer 1221 is amplified by the active circuit unit 121 and converts the current flowing through the primary side of the compensation transformer 1221 to a predetermined ratio and induces it to the secondary side of the compensation transformer 1221. have.
  • a turns ratio of a primary side and a secondary side may be 1:N inj .
  • the self-inductance of the primary side of the compensation transformer 1221 is L inj
  • the secondary side of the compensation transformer can have a self inductance of N inj 2 ⁇ L inj .
  • the primary side and the secondary side of the compensation transformer 1221 may be combined with a coupling coefficient of k inj .
  • the current converted through the compensation transformer 1221 may be injected as a compensation current I comp into the first through line 21 and the second through line 22 which are power lines through the compensation capacitor unit 1222.
  • the compensation capacitor unit 1222 may be a means for providing a path through which the current generated by the compensation transformer 1221 flows to each of the first and second through lines 21 and 22.
  • the compensation capacitor unit 1222 includes at least two compensation capacitors connecting each of the reference potential (reference potential 1) and the first through line 21 and the second through line 22 of the independent active EMI filter module 1 can do.
  • Each of the compensation capacitors may include a Y-capacitor (Y-cap).
  • One end of each compensation capacitor may share a node connected to the secondary side of the compensation transformer 1221, and the other end may have a node connected to the first through line 21 and the second through line 22, respectively.
  • the compensation capacitor unit 1222 may be configured such that a current flowing between the first through line 21 and the second through line 22 through at least two compensation capacitors satisfies a first predetermined condition.
  • the first predetermined condition may be a condition in which the magnitude of the current is less than the predetermined first threshold magnitude.
  • the compensation capacitor unit 1222 is between each of the first through line 21 and the second through line 22 and the reference potential (reference potential 1) of the independent active EMI filter module 1 through at least two compensation capacitors.
  • the flowing current may be configured to satisfy a second predetermined condition.
  • the second predetermined condition may be a condition in which the magnitude of the current is less than the predetermined second threshold magnitude.
  • the compensation current flowing to each of the first through line 21 and the second through line 22 along the compensation capacitor part 1222 cancels out the first current on the first through line 21 and the second through line 22
  • the first current and the compensation current may be currents having the same magnitude and opposite phases.
  • the independent active EMI filter module 1 is provided in each of the first through line 21 and the second through line 22, which are at least two high current paths connected to the first device 2.
  • the first current which is a noise current input in the common mode, is actively compensated to suppress the noise current emitted to the first device 2. This can prevent malfunction or damage of the second device 3 and/or other devices connected to the first device 2.
  • the second fin group 15 may include a 2-1 pin 151, a 2 -2 pin 152 and a 2-3 th pin 153.
  • the 2-1 pin 151 may electrically connect the active circuit unit 121 to the third device 4.
  • the 2-2 pin 152 may be electrically connected to the reference potential (reference potential 2) of the active circuit part 121, and the 2-3 pin 153 is the independent active EMI filter module (1) It can be electrically connected to the reference potential of (reference potential 1).
  • the 2-2 pin 152 and the 2-3 pin 153 may be grounded.
  • the independent active EMI filter module 1 shown in FIG. 3 represents a current-sense current-compensation (CSCC) independent active EMI filter module that senses current to compensate for the current.
  • the independent active EMI filter module 1 of FIG. 3 may be a feedforward type compensation filter that compensates noise input from the second device 3 at the front end, which is the power side. That is, in the independent active EMI filter module 1, the first element group 11, which is a sensing transformer, may be disposed on the EMI source side, and the compensation capacitor unit 1222 may be disposed on the power side.
  • the independent active EMI filter module 1 uses the compensation transformer 1221 despite compensating with current using the compensation capacitor unit 1222, and/or the first element group 11 as a sensing transformer. By using it, an isolated structure can be realized. That is, the independent active EMI filter module 1 according to an embodiment of the present invention may have an insulated feedforward CSCC structure.
  • the compensation current I comp may have the same magnitude as the noise current I n and may have the opposite phase. That is, the active circuit unit 121, the first element group 11, so that the current gain ratio representing the compensation current I comp to the noise current I n input to the independent active EMI filter module 1 is -1, And a compensation transformer 1221 may be designed. Through this, it is possible to provide an independent active EMI filter module 1 capable of reducing EMI noise by canceling out the noise current I n generated from the EMI source.
  • the independent active EMI filter module 1 may not include a common mode (CM) choke. Since the CM choke functions as a passive filter, it must have a very large inductance to prevent leakage of noise current. Accordingly, the CM choke has a large number of windings and a very large core size. Unlike such a CM choke, the first element group 11, which is a sensing transformer included in the independent active EMI filter module 1 according to an embodiment of the present invention, is for sensing a noise current, so it is necessary to have a large impedance. none. The sensing transformer may have an impedance of one thousandth to one hundredth of the impedance of the CM choke.
  • CM common mode
  • the independent active EMI filter module 1 can operate independently without parasitic to the CM choke. Accordingly, it can be manufactured by reducing the size and weight in a module shape corresponding to the size of the substrate 10, and through this, the sealing by the sealing structure 13 can be made simply.
  • the present invention is not necessarily limited thereto, and it goes without saying that the independent active EMI filter module 1 may operate in combination with an independent external CM choke according to still other embodiments.
  • FIG 4 illustrates a more specific example of the first device group 11 and the second device group 12 according to another embodiment.
  • a first through line 21 and a second through line 22 pass through a substrate 10, and The installed first device group 11 and the second device group 12 may be included.
  • the first element group 11 is the first pin 141 and the first device 2 side of the power supply side. 3 is electrically connected to pin 143.
  • the second element group 12 is electrically connected to the 1-2 pins 142 and the pins 1-4 144 on the side of the second device 3. Accordingly, the embodiment shown in FIG. 4 shows a CSCC active EMI filter of a feedback type, which senses a noise current going out to the first device 2 and compensates with the current at the second device 3 side.
  • the independent active EMI filter module 1 shown in FIG. 4 can also implement an isolated structure.
  • FIG 5 shows a more specific example of the first device group 11 and the second device group 12 according to another embodiment.
  • a first through line 21 and a second through line 22 pass through a substrate 10, and The installed first device group 11 and the second device group 12 may be included.
  • the first device group 11 may include a sensing capacitor unit 116.
  • the second device group 12 may include an active circuit unit 121 and a compensation capacitor unit 1222.
  • the independent active EMI filter module 1 senses the noise voltage using the sensing capacitor unit 116 and compensates with current using the compensation capacitor unit 1222- Represents a voltage-sense current-compensation (VSCC) active EMI filter.
  • VSCC voltage-sense current-compensation
  • a feedforward and a feedback may not be distinguished due to an operating principle. That is, in the independent active EMI filter module 1 shown in FIG. 5, there may be no distinction between input/output units.
  • the independent active EMI filter module 1 according to the embodiment may also have an isolated structure by using the compensation transformer 1221 and the sensing transformer 115.
  • the sensing capacitor unit 116 may sense a noise voltage input to the first through line 21 and the second through line 22 which are power lines.
  • the sensing capacitor unit 116 may include two sensing capacitors, and each sensing capacitor may include a Y-cap. One end of each of the two sensing capacitors may be electrically connected to the first through line 21 and the second through line 22, and the other end may share a node connected to the primary side of the sensing transformer 115. I can.
  • the primary side of the sensing transformer 115 may be electrically connected to the first through line 21 and the second through line 22 which are power lines through the sensing capacitor unit 116.
  • the primary winding of the sensing transformer 115 may be electrically connected to the 2-4 pins 154 of the second pin group 15 coupled to the substrate 10.
  • the sensing transformer 115 may include a primary side connected to the power line side and a secondary side connected to the active circuit unit 121 in order to sense noise flowing through the power line.
  • the secondary side of the sensing transformer 115 may be differentially connected to the input terminal of the active circuit unit 121.
  • the sensing transformer 115, the active circuit unit 121, the compensation transformer 1221, and the compensation capacitor unit 1222 included in the independent active EMI filter module 1 according to the embodiment shown in FIG. 5 are each implemented as described above. An operation corresponding to the sensing transformer, the active circuit unit 121, the compensation transformer 1221, and the compensation capacitor unit 1222 of the examples may be performed.
  • the active circuit unit 121 further includes a high-pass filter (not shown) between the compensation transformer 1221 and is less than or equal to the frequency band subject to noise reduction. It is possible to block the active circuit unit 121 from operating at a low frequency.
  • the independent active EMI filter module 1 of the embodiments shown in FIGS. 3 to 5 as described above has a sealing structure blocked from the outside through the sealing structure 13 as shown in FIG. can do.
  • a third device group 103 is installed on the first side 101 of the substrate 10, and the fourth device group 103 is on the second side 102 of the substrate 10.
  • the third device group 103 may include various transformers and capacitor units, such as Y-cap, of FIGS. 3 to 5 described above. More specifically, the third device group 103 may include a sensing transformer, a compensation transformer 1221, and a compensation capacitor unit 1222 as the first device group 11.
  • the third element group 103 is a sensing capacitor unit 116 or a sensing transformer of the first element group 11 in addition to the compensation transformer 1221 and the compensation capacitor unit 1222. It may include at least one of (115). If the third device group 103 includes the sensing capacitor unit 116 of the first device group 11 or the sensing transformer 115, the other device may be included in the fourth device group 14. .
  • the fourth device group 104 may include an active circuit unit 121. Accordingly, the fourth device group 104 may have a smaller volume than the third device group 103.
  • the encapsulation structure 13 may include a support 131 and a filling part 132.
  • the support 131 is formed of an insulating material and includes a space part 1310 located therein.
  • the space part 1310 of the support 131 may be defined by an opening 1311 and a bottom 1312.
  • the support 131 may be formed of a material capable of heat transfer.
  • a heat dissipation mechanism such as a heat sink may be additionally installed on the support 131, and accordingly, heat dissipation by the support 131 may be smoothly performed.
  • the above-described substrate 10 is accommodated in the space part 1310 of the support 131.
  • the edge of the substrate 10 is formed to correspond to the size of the side surface of the space part 1310, and accordingly, the edge of the substrate 10 may be in close contact with the side surface of the space part 1310. Accordingly, the space part 1310 may be divided into two spaces centering on the substrate 10.
  • the substrate 10 may be disposed such that the first surface 101 faces the bottom 1312 of the support 131, and the second surface 102 may face the opening 1311 of the support 131. .
  • the first distance t1 between the bottom 1312 and the first surface 101 of the substrate 10 may be greater than half of the distance between the bottom 1312 and the opening 1311.
  • the first distance t1 between the bottom 1312 and the first surface 101 of the substrate 10 is a first distance t1 between the opening 1311 and the second surface 102 of the substrate 10. It may be provided larger than 2 distance (t2). Accordingly, the length of the pin group exposed to the outside of the support 131 through the opening 1311 from the second surface 102 can be designed to be small, which is structural stability when the independent active EMI filter module 1 is installed. Can provide.
  • the independent active EMI filter module 1 may include a filling unit 132 provided to fill at least a portion of the space 1310.
  • the filling part 132 may be filled at least between the substrate 10 and the bottom 1312, and the substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132.
  • the filling part 132 may be provided with a heat-resistant and/or insulating resin material.
  • the filling part 132 may include an epoxy resin, and may further include a curing agent.
  • the second surface 102 of the substrate 10 from which the pins 14 protrude may constitute the bottom surface 133 of the module.
  • the independent active EMI filter module 1 can be simply installed in various devices and has a structure independent from external devices, in particular, the third element group 103 can be protected from external stimuli and/or impact, The independent active EMI filter module 1 itself can be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the independent active EMI filter module 1. In addition, it is possible to protect the third device group 103 from contaminated environments such as external dust. In addition, when the support 131 and/or the filling part 132 includes a heat dissipating material, the third element group 103 is prevented from deteriorating because the heat emitted from the third element group 103 can be radiated to the outside. Can be prevented.
  • the filling unit 132 includes a first filling unit 1321 and a second filling unit 1322 It may include.
  • the first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10.
  • the opening 1311 may be closed by the second filling portion 1322 as described above, and the second filling portion 1322 may constitute the bottom surface 133 of the module.
  • the second filling part 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling part 1322.
  • the independent active EMI filter module 1 Since the independent active EMI filter module 1 according to this embodiment has a structure independent from an external device, the third element group 103 and the fourth element group 104 are protected from external stimuli and/or impact. Can be, and the independent active EMI filter module 1 itself can be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the independent active EMI filter module 1. In addition, it is possible to protect the third device group 103 and the fourth device group 104 from contaminated environments such as external dust. In addition, when the support 131 and/or the filling part 132 includes a heat dissipating material, heat emitted from the third device group 103 and/or the fourth device group 104 can be radiated to the outside. It is possible to prevent the third device group 103 and/or the fourth device group 104 from deteriorating.
  • the independent active EMI filter module 1 As described above, a plurality of pins are exposed through the bottom surface 133 as shown in FIG. 8A.
  • the 1-1 pin 141, the 1-2 pin 142, the 1-3 pin 143, and the 1-4 pin of the first pin group 14 electrically connected to the power line 144 are respectively disposed at the corners of the bottom surface 133, the 2-1 pin 151, the 2-2 pin 152, and the 2-3 pin 153 of the second pin group 15 ) Is placed in the position between each corner.
  • the fins of the first fin group 14 electrically connected to the power line may be formed to be relatively thicker than the fins of the second fin group 15, and the fins of the first fin group 14 may be formed on the bottom surface ( By placing it at the corner of 133), structural stability can be provided when the independent active EMI filter module 1 is mounted on another device.
  • the pins of the first pin group 14 are mainly electrically connected to a bulky transformer, the transformers 11 and 1221 are connected to the edge of the third element group 103 as shown in FIGS. 6 and 7. It can be placed so that the weight of the entire module is distributed, and it can give stability when installed.
  • the pins of the first pin group 14 may be relatively freely disposed after the pins of the first pin group 14 are arranged, so the pins are not necessarily limited to the embodiment shown in FIG. 8A, and the first pin It may be variously installed in the area between the pins of the group 14.
  • the pins of the first pin group 14 do not necessarily have to be installed at the corners of the bottom surface 133, and as shown in FIG. 8B, at least some of the pins of the first pin group 14 are It may be installed at a location spaced from the corner of 133 inward by a certain degree. However, even in this case, structural stability can be ensured by not exceeding about 1/4 of the side distance from the edge.
  • the 1-1 pin 141 and the 1-2 pin 142 are installed at a position spaced apart from the edge of the bottom surface 133 by a predetermined distance. In this case, 2-3 pins 153 may be installed at one corner of the bottom surface 133.
  • the 2-3 pins 153 are lines electrically connected to the reference potential of the compensation transformer 1221, and thus the thickness of the pins is also the first pin group ( It can be as thick as the pins in 14). By arranging the thick 2-3 pins 153 at the corners of the bottom surface 133, structural stability can be secured.
  • FIG. 9 shows a configuration of an independent active EMI filter module 1 according to another embodiment.
  • FIG. 9 is an independent active EMI filter module 1 having a three-phase, three-wire structure unlike the single-phase embodiment shown in FIG. 3.
  • a first through line 21, a second through line 22, and a third through line 23 pass through the substrate 10, and both ends of the first through line 21, It may be electrically connected to the pins 141 to 1-6 146.
  • the first through line 21 may be an R-phase
  • the second through line 22 may be an S-phase
  • the third through line 23 may be a T-phase.
  • the first element group 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the third through line 23, respectively (111) to third reference windings 113, and a sensing winding 110 formed on the same core as the first to third reference windings 111 to 113.
  • the first reference winding 111 to the third reference winding 113 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
  • the first reference winding 111 to the third reference winding 113 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 and the second reference winding At least one of 112 or the third reference winding 113 may have a structure passing through the core.
  • the sensing winding 110 may have a structure in which the first to third reference windings 111 to 113 are wound and/or wound around a core at least once or more.
  • the sensing winding 110 is insulated from the power line as in the above-described embodiment of FIG. 3, and may sense a noise current generated from the second device 3.
  • the primary and secondary windings may be wound in consideration of the direction in which the magnetic flux and/or magnetic flux density are generated.
  • the sensing winding 110 supplies the induced current to the active circuit unit 121, and the active circuit unit 121 amplifies it to generate an amplified current.
  • the active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later.
  • the active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP.
  • the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor.
  • BJT bipolar junction transistor
  • the active circuit unit 121 is electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
  • the amplified current flows to the first through line 21, the second through line 22, and/or the third through line 23 through the compensation unit 122, thereby compensating for noise.
  • the compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222, and specific configurations and functions may be applied in the same manner as in the embodiment illustrated in FIG. 3.
  • Each capacitor of the compensation capacitor unit 1222 has one end connected to the compensation transformer 1221 and the other end connected to the first through line 21 to the third through line 23, respectively.
  • FIG. 9 is shown in a three-phase, three-wire structure based on the embodiment shown in FIG. 3, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 5.
  • the arrangement of the pins may be implemented as shown in FIG. 10. That is, the 1-1 pins 141 to 1-6 pins 146 of the first pin group 14 are arranged on the edge including the edge of the bottom surface 133 as far as possible. In addition, the 2-1 pins 151 to 2-3 pins 153 of the second pin group 15 are disposed in the remaining area of the edge of the bottom surface 133. At this time, the thick pins 2-3 pins 153, which are thick pins connected to the compensation transformer 1221, and the 2-1 pins 151 and 2-2 pins, which are relatively thin pins, are positioned to face each other, The entire batch can be evenly distributed. According to this structure, the fins may be uniformly disposed around the edge of the bottom surface 133.
  • FIG. 11 shows a configuration of an independent active EMI filter module 1 according to another embodiment.
  • FIG. 11 is an independent active EMI filter module 1 having a three-phase four-wire structure unlike the single-phase embodiment shown in FIG. 3 and the three-phase three-wire embodiment shown in FIG.
  • a first through line 21, a second through line 22, a third through line 23, and a fourth through line 24 pass through the substrate 10, both ends of which May be electrically connected to the 1-1 pins 141 to 1-8 pins 148, respectively.
  • the first through line 21 is an R phase
  • the second through line 22 is an S phase
  • the third through line 23 is a T phase
  • the fourth through line 24 is an N-phase. It can be a power line.
  • the first element group 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the fourth through line 24, respectively It may include (111) to fourth reference windings 114, and a sensing winding 110 formed on the same core as the first to fourth reference windings 111 to 114.
  • the first to fourth reference windings 111 to 114 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
  • the first reference winding 111 to the fourth reference winding 114 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 and the second reference winding At least one of 112, the third reference winding 113, and the fourth reference winding 114 may have a structure passing through the core.
  • the sensing winding 110 may have a structure in which the first to fourth reference windings 111 to 114 are wound and/or wound around a core at least once or more.
  • the sensing winding 110 is insulated from the power line as in the above-described embodiments of FIGS. 3 and 9, and may sense a noise current generated from the second device 3.
  • the primary winding and the secondary winding may be wound in consideration of the direction in which the magnetic flux and/or the magnetic flux density are generated.
  • the sensing winding 110 supplies the induced current to the active circuit unit 121, and the active circuit unit 121 amplifies it to generate an amplified current.
  • the active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later.
  • the active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP.
  • the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor.
  • BJT bipolar junction transistor
  • the active circuit unit 121 is electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
  • the amplified current flows to the first through line 21, the second through line 22, the third through line 23 and/or the fourth through line 24 through the compensation unit 122, thereby reducing noise. You can compensate.
  • the compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222, and specific configurations and functions can be applied in the same manner as the embodiments shown in FIGS. 3 and 9 described above. have.
  • Each capacitor of the compensation capacitor unit 1222 has one end connected to the compensation transformer 1221 and the other end connected to the first through line 21 to the fourth through line 24, respectively.
  • FIG. 11 is shown in a three-phase, four-wire structure based on the embodiment shown in FIG. 3, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 5.
  • the arrangement of the pins may be implemented as shown in FIG. 12. That is, the 1-1 pins 141 to 1-8 pins 148 of the first pin group 14 are arranged on the edge including the edge of the bottom surface 133 as far as possible. In addition, the 2-1 pins 151 to 2-3 pins 153 of the second pin group 15 are disposed in the remaining area of the edge of the bottom surface 133. At this time, the thick pins 2-3 pins 153, which are thick pins connected to the compensation transformer 1221, and the 2-1 pins 151 and 2-2 pins, which are relatively thin pins, are positioned to face each other, The entire batch can be evenly distributed. According to this structure, the fins may be uniformly disposed around the edge of the bottom surface 133.
  • the independent active EMI filter module 1 as described above may be manufactured by the following method.
  • a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12.
  • the first device group 11 is a device group provided to detect electromagnetic wave noise
  • the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise.
  • the first device group 11 and the second device group 12 are installed on the first surface 101 and/or the second surface 102 of the substrate 10, and elements constituting each device group In consideration of the volume of the devices, the device is classified into a third device group 103 having a larger volume and a fourth device group 104 having a smaller volume.
  • the third element group 103 is composed of transformer elements and a capacitor unit, a sensing transformer of the first element group 11, a compensation transformer 1221 of the second element group 12, and It may include a compensation capacitor unit 1222.
  • the fourth device group 104 may include an active circuit unit 121.
  • the classified third element group 103 and the fourth element group 104 are provided on the first side 101 and the second side 102 of the substrate 10, respectively.
  • the transformers of the third element group 103 that is, the sensing transformer of the first element group 11 and the compensation transformer 1221 of the second element group 12 are on both sides of the first surface 101
  • the substrate 10 on which the devices are mounted is sealed as described above.
  • a support 131 is prepared for the encapsulation.
  • the support 131 is formed of an insulating material and includes a space part 1310 located therein.
  • the space part 1310 of the support 131 may be defined by an opening 1311 and a bottom 1312.
  • the filling liquid 133 is put into the space 1310 through the opening 1311 of the support 131.
  • the filling liquid 133 is preferably in a liquid state, and may include a liquid epoxy resin, and may further include a curing agent.
  • the filling liquid 133 is sufficient if the amount is sufficient to submerge the third element group 103 installed on the substrate 10.
  • the above-described substrate 10 is accommodated in the space 1310 in which the filling liquid 133 is accommodated.
  • the third element group 103 mounted on the first surface 101 is (133) to be sufficiently immersed.
  • the upper portion of the third device group 103 may be spaced apart from the bottom 1312 of the space 1310 by a predetermined distance. And in this state, the second surface 102 of the substrate 10 is not sufficiently immersed in the filling liquid 133.
  • the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 6 may be completed.
  • the independent active EMI filter module 1 of this structure not all elements are sealed by the filling unit 132, but the active circuit unit 121 is exposed, but the third element group 103 is a filling unit ( 132) can be sufficiently protected.
  • the substrate 10 is a metal PCB, heat dissipation through the substrate 10 is also possible, and the independent active EMI filter module 1 according to the embodiment may further improve durability.
  • a filling liquid 133 is additionally filled between the opening 1311 of the support 131 and the second surface 102 of the substrate 10.
  • the filling liquid 133 allows the fourth element group 104 to be completely immersed, and then, the filling liquid 133 is cured to form the filling part 132.
  • the filling portion 132 includes a first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and a second filling portion 1322 covering the fourth element group 104 of the substrate 10.
  • the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322.
  • the present invention can simply implement the independent active EMI filter module 1 provided in a modular form, and by mixing various materials in the filling liquid 133 during the manufacturing process, the independent active EMI filter module 1 is more improved. You can have the function implemented. For example, an additional configuration related to cooling may be implemented by adding insulation, heat transfer, and/or heat dissipation material to the filling liquid 133.
  • the support 131 provided in the form of a hard case, it is possible to provide physical protection for internal elements, and in some cases, a heat dissipation mechanism such as a heat sink can be additionally installed on the support 131. And, accordingly, heat dissipation by the support 131 can be made smoothly.
  • the independent active EMI filter module according to another embodiment may further include a connection part 105 and a connection body 106 in addition to the embodiment shown in FIG. 2.
  • connection part 105 is connected to the first side 101 and the second side 102 of the substrate 10, and according to an embodiment, the first side 101 and the second side of the substrate 10 It may include a shape of a hole passing through the two sides 102.
  • the shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
  • connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
  • connection part 105 may be located at a plurality of locations that do not interfere with the third device group 103 and the fourth device group 104.
  • the connector 106 is located on the connection part 105 and may be provided to be connected to the encapsulation structure 13.
  • connection body 106 may be provided as a filler capable of filling at least a part of the hole of the connection part 105.
  • the filler may be exposed to at least one of the first surface 101 or the second surface 102 to be connected to the encapsulation structure 13.
  • the connector 106 may be formed of the same material as some of the materials forming the encapsulation structure 13, and may be selectively formed integrally with the encapsulation structure 13.
  • the encapsulation structure 13 may communicate so as to traverse the substrate 10 through the connection part 105. According to an embodiment, at least a part of the encapsulation structure 13 communicating the connection part 105 may form the connection body 106.
  • the connector 105 may be formed of a separate material, and thus may be connected to the sewing structure 13.
  • the connector 105 may include an adhesive material. Through this, it is bonded to the sealing structure 13 adjacent to the connector 105 to fix the sealing structure 13.
  • connection part 105 and the connection body 106 are provided as in the above-described embodiment with respect to the embodiment shown in FIG. 3.
  • connection parts 105 and a plurality of connectors 106 may be disposed on the substrate 10, and at least some of the connection parts 105 are formed on the substrate 10. It may be formed in a position that does not interfere with the elements and/or active elements.
  • the present invention is not necessarily limited thereto, and at least some of the connection part 105 and the connection body 106 may function as a conductive line connecting the first and second surfaces of the substrate 10, and thus the first It may function to electrically connect some elements installed on the surface and the second surface.
  • connection part 105 and the connection body 106 may be equally applied to all the embodiments of the present specification described below. That is, although not shown in the drawings, the structure of the connecting portion 105 and the connecting body 106 having the same shape as in FIG. 19 may be applied to the embodiments shown in FIGS. 4, 5, 9, and 11, respectively.
  • FIG. 20 is a view showing a cross-section of the independent active EMI filter module 1 according to another embodiment, and FIG. 21 is an enlarged cross-sectional view of the portion.
  • a filling unit 132 of the independent active EMI filter module 1 may include a first filling unit 1321 and a second filling unit 1322.
  • the first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10.
  • the opening 1311 may be closed by the second filling portion 1322 as described above, and the second filling portion 1322 may constitute the bottom surface 133 of the module.
  • the second filling part 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling part 1322.
  • the independent active EMI filter module 1 may include a connection part 105 and a connection body 106.
  • connection part 105 is connected to the first surface 101 and the second surface 102 of the substrate 10, and according to an embodiment, as shown in FIG. 21, the first surface of the substrate 10 It may include a shape of a hole penetrating the first surface 101 and the second surface 102.
  • the shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
  • connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
  • connection part 105 may be located at a plurality of locations that do not interfere with the third device group 103 and the fourth device group 104.
  • the connector 106 is located within the connection part 105 and may be provided to be connected to the encapsulation structure 13.
  • connection body 106 may be provided as a filler capable of filling at least a part of the hole of the connection part 105.
  • the filler may be exposed to at least one of the first surface 101 or the second surface 102 to be connected to the encapsulation structure 13.
  • the connector 106 may be formed of the same material as some of the materials forming the encapsulation structure 13, and may be selectively formed integrally with the encapsulation structure 13.
  • the encapsulation structure 13 may communicate so as to traverse the substrate 10 through the connection part 105. According to an embodiment, at least a part of the encapsulation structure 13 communicating the connection part 105 may form the connection body 106.
  • the connector 106 may be provided to connect the first filling portion 1321 and the second filling portion 1322 to each other. Since the first filling portion 1321 and the second filling portion 1322 can be connected to each other by the connector 106, the first filling portion 1321 and the second filling portion 1322 are prevented from being separated. And, it is possible to improve the structural stability and durability of the entire filling part 13. Accordingly, even when the filling portion 13 is deteriorated due to heat dissipation, the first filling portion 1321 and the second filling portion 1322 may be prevented from being separated from each other.
  • the connector 105 may further include a separate material different from the filling part 13, and thus may be connected to the sewing structure 13.
  • the connector 105 may include an adhesive material. Through this, it is bonded to the first filling portion 1321 and the second filling portion 1322 adjacent to the connector 105 to firmly fix the filling portion 132.
  • the filling part 132 is at least filled between the substrate 10 and the bottom 1312.
  • the substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132.
  • the second surface 102 of the substrate 10 from which the pins 14 protrude may constitute the bottom surface 133 of the module.
  • the second connector 107 in the form of a pin may be coupled to the connector 105.
  • One end of the second connector 107 may be inserted into the filling part 132 and the other end may be exposed to the outside.
  • the second connector 107 may be formed of a conductive material, and thus may be used as a path for discharging heat inside the filling part 132.
  • the second connector 107 is connected to a ground line to improve electrical stability of the independent active EMI filter module 1.
  • the second connector 107 may also be applied to the embodiment shown in FIG. 6.
  • 23A and 23B are at least one of the connecting portion 105 and/or the connecting body 106 applied to FIGS. 8A and 8B, respectively.
  • 23A to 23B at least one of the connection part 105 and/or the connection body 106 is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10, and various It can be installed in a location where the wires are not formed.
  • the connection part 105 and/or the connection body 106 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and an edge of the substrate 10.
  • the arrangement of the pins may be implemented as illustrated in FIG. 24. That is, in addition to the embodiment shown in FIG. 10, at least one of the connecting portion 105 and/or the connecting body 106 is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10 , It can be installed in a location where various wires are not formed. Specifically, the connection part 105 and/or the connection body 106 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and an edge of the substrate 10.
  • connection part 105 and/or the connector 106 It may be installed at a plurality of locations approximately at the center and along the edge of the substrate 10.
  • the independent active EMI filter module 1 as described above may be manufactured by the following method.
  • a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12.
  • the first device group 11 is a device group provided to detect electromagnetic wave noise
  • the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise.
  • connection part 105 may be formed on the substrate 10.
  • the connection part 105 may be formed in a shape of a hole penetrating the substrate 10, and is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10, and various wires are not formed. Can be installed on site. Specifically, the connection part 105 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and/or an edge of the substrate 10.
  • connection parts 105 may have a connection body 106 formed in advance.
  • the connector 106 may include a heat dissipation material, a heat transfer material, and/or an adhesive material, and may be selected according to a required function.
  • the substrate 10 on which the devices are mounted is sealed as described above.
  • a support 131 as seen in FIG. 14 is prepared, and as shown in FIG. 15, the space part 1310 through the opening 1311 of the support 131 Put the filling liquid 133 in.
  • the above-described substrate 10 is accommodated in the space 1310 in which the filling liquid 133 is accommodated.
  • the third element group 103 mounted on the first surface 101 is (133) to be sufficiently immersed.
  • the upper portion of the third device group 103 may be spaced apart from the bottom 1312 of the space 1310 by a predetermined distance.
  • the filling liquid 133 through the connection portion 105 is transferred from the first surface 101 to the second surface of the substrate 10. Can pass in the direction of (102). Accordingly, the filling liquid 133 penetrating the connection part 105 may completely immerse the fourth element group 104 installed on the second surface 102 of the substrate 10 in the filling liquid 133. Thereafter, the filling part 132 is formed by curing the filling liquid 133. According to an embodiment, the filling liquid 133 passing through the connection part 105 may form the connection body 106.
  • the filling portion 132 includes a first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and a second filling portion 1322 covering the fourth element group 104 of the substrate 10 Is done.
  • the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322.
  • first filling portion 1321 and the second filling portion 1322 may be connected to each other by the connecting body 106 positioned at the connecting portion 105, and thus the coupling structure of the filling portion 132 is It can be more solid.
  • FIG. 28 illustrates a manufacturing method according to another exemplary embodiment.
  • the substrate 10 is immersed in the filling liquid 133 filled in the space 1310 of the support 131.
  • the substrate 10 is in a state in which the connection portions 105 are formed at a plurality of locations, and the second connector 107 may be coupled to at least some of them.
  • the filling liquid 133 is sufficient if the amount is sufficient to submerge the third element group 103 installed on the substrate 10.
  • the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 22 may be completed.
  • the independent active EMI filter module 1 of this structure not all elements are sealed by the filling unit 132, but the active circuit unit 121 is exposed, but the third element group 103 is a filling unit ( 132) can be sufficiently protected.
  • the substrate 10 is a metal PCB, heat dissipation through the substrate 10 is also possible, and the independent active EMI filter module 1 according to the embodiment may further improve durability.
  • the second connector 107 may not be coupled to a part of the connection portion 105 in the above structure, and thus the filling liquid is not coupled to the second connector 107 of the connection portion 105.
  • the fourth device group 104 may be encapsulated by penetrating the substrate 10 therethrough.
  • 29 shows an encapsulation structure 13 of the independent active EMI filter module 1 according to another embodiment.
  • the independent active EMI filter module 1 may include a filling part 132 provided to fill at least a part of the space 1310.
  • the filling part 132 may be filled at least between the substrate 10 and the bottom 1312, and the substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132.
  • the independent active EMI filter module 1 may include at least one bonding portion 134 connected to at least a support 131.
  • the bonding portion 134 is a substrate 10 ) May be bonded to the second side 102 and the inner side of the support 131.
  • the second distance t2 of the second surface 102 of the substrate 10 spaced apart from the opening 1311 may be a distance sufficient for the bonding portion 134 to be installed.
  • the second distance t2 may be defined as a margin through which the junction 134 can be installed.
  • the bonding portion 134 the substrate 10 may be more firmly bonded to the support 131, and the bonding portion 134 may prevent the substrate 10 from being separated from the support 131.
  • the bonding portion 134 may be provided so that other portions not in contact with the substrate 10 and the support 131 have an inclined surface, thereby minimizing the space in which the bonding portion 134 exists, and the bonding portion 134 It is possible to minimize interference with other members.
  • the bonding part 134 may be formed of the same material as the filling part 132. However, the present invention is not necessarily limited thereto, and the bonding portion 134 may include a material different from the filling portion 132.
  • the substrate 10 may have a gap spaced apart from the support 131 at at least a part of the edge, and by this gap, a part of the filling part 132 may be formed of the substrate 10. It may protrude in the direction of the two sides 102. A portion of the protruding filling part 132 may spread outwardly to form the junction part 134. In this case, the bonding part 134 may be connected to the filling part 132 as well, and thus the substrate 10 may be more firmly fixed.
  • FIG. 30 is an independent active EMI filter module 1 according to another embodiment, and unlike the embodiment shown in FIG. 31, a filling unit 132 includes a first filling unit 1321 and a second filling unit 1322 It may include.
  • the first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10.
  • the second filling portion 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling portion 1322.
  • the independent active EMI filter module 1 may include at least one junction 134 connected to the support 131.
  • the bonding portion 134 may be bonded to the inner side of the second filling portion 1322 and the support 131.
  • the second distance t2 of the second surface 102 of the substrate 10 separated from the opening 1311 is the bottom surface of the second filling part 1322 from the second surface 102 of the substrate 10 It may be greater than the third distance t3 to (133). Accordingly, the second distance t2 may be a distance sufficient to secure the third distance t3 and to install the junction part 134.
  • the second distance t2 may be defined as a margin through which the second filling part 1322 and the junction part 134 can be installed. Accordingly, it is possible to prevent the second filling part 1322 from protruding beyond the opening 1311.
  • the end of the junction 134 may be provided to contact the opening 1311 as shown in FIG. 30, but is not limited thereto, and is spaced apart from the opening 1311 in the direction of the substrate 10 Can be located.
  • the size of the junction 134 can be sufficiently formed, and when the junction 134 is integrally formed with the second filling part 1322 2 It is possible to sufficiently prevent the filling part 1322 from protruding beyond the opening 1311.
  • the substrate 10 may be more firmly bonded to the support 131 by the bonding portion 134 as described above, and the bonding portion 134 may prevent the substrate 10 from being separated from the support 131.
  • the bonding portion 134 may be provided so that the second filling portion 1322 and other portions not in contact with the support 131 have an inclined surface, thereby minimizing the space in which the bonding portion 134 exists, and the bonding portion ( 134) can minimize interference with other members.
  • the junction part 134 may be formed of at least the same material as the second filling part 1322.
  • the bonding portion 134 may include a protruding portion extending from the second filling portion 1322 to the inner wall of the support 131 due to surface tension.
  • the bonding portion 134 may be integrally formed with the bottom surface 133 without interference with a member forming the bottom surface 133.
  • FIG. 31 is a view showing the bottom of the independent active EMI filter module 1 according to an embodiment. As can be seen in FIG. 31, the junction 134 is positioned opposite to the edge of the support 131, and the support ( 131) can be joined to each corner.
  • FIG. 32 shows the bottom of the independent active EMI filter module 1 according to another embodiment.
  • the embodiment of the junction 134 shown in FIG. 34 is formed to form a closed loop, and the support 131 It is located opposite to the edge and each side, and can be bonded to the entire inner surface of the support 131.
  • the fixing force of the bonding portion 134 to the support 131 of the substrate 10 can be further increased. It goes without saying that the embodiments shown in FIGS. 31 and 32 may be equally applied to other embodiments of the present specification.
  • the independent active EMI filter module 1 according to the embodiment shown in FIG. 33 may further include a connector 105 and a connector 106 in addition to the embodiment shown in FIG. 30. Descriptions of parts that overlap with the embodiment shown in FIG. 30 will be omitted.
  • connection part 105 is connected to the first side 101 and the second side 102 of the substrate 10, and connects the first side 101 and the second side 102 of the substrate 10 to each other. It may include a shape of a hole passing through.
  • the shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
  • connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
  • FIG. 34 is an independent active EMI filter module 1 according to another embodiment, and the independent active EMI filter module 1 according to the embodiment shown in FIG. 34 is a connection part 105 in addition to the embodiment shown in FIG. 31. ) And a second connector 107 may be further included. Descriptions of parts that overlap with the embodiment shown in FIG. 29 will be omitted. In this embodiment, the junction part 134 may be formed so that there is no positional interference with the second connector 107.
  • the independent active EMI filter module 1 as described above may be manufactured by the following method.
  • a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12.
  • the first device group 11 is a device group provided to detect electromagnetic wave noise
  • the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise.
  • the substrate 10 on which the devices are mounted is sealed as described above.
  • a support 131 is prepared, and as shown in FIG. 15, the space portion 1310 through the opening 1311 of the support 131 Put the filling solution 130 in ).
  • the above-described substrate 10 is accommodated in the space portion 1310 in which the filling liquid 130 is accommodated.
  • the third element group 103 mounted on the first surface 101 is Make sure to be sufficiently immersed in (130).
  • the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 29 may be completed.
  • the junction part 134 may be formed.
  • the bonding portion 134 may be formed by applying the same material as the filling solution 130 between the second surface 102 of the substrate 10 and the inner wall of the support 131 and curing the same.
  • the substrate 10 may have a gap spaced apart from the support 131 at at least a part of the edge, and by this gap, a part of the filling liquid 130 is It may protrude in the direction of the two sides 102.
  • a portion of the protruding filling portion 132 may spread outside the gap, and the bonding portion 134 may be formed by curing the filling liquid 130.
  • the curing of the bonding portion 134 is not necessarily performed simultaneously with the formation of the filling portion 132, but may be performed after the filling portion 132 is formed.
  • the bonding portion 134 is not limited to being formed of the same material as the filling portion 132, and is formed between the second surface 102 of the substrate 10 and the inner wall of the support 131 as a separate material. Can be.
  • the filling liquid 130 may be additionally filled between the opening 1311 of the support 131 and the second surface 102 of the substrate 10 and then cured.
  • the filling liquid 130 allows the fourth element group 104 to be completely immersed, and then, the filling portion 132 is formed by curing the filling liquid 130.
  • the filling portion 132 covers the first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and the fourth element group 104 of the substrate 10.
  • a second filling part 1322 is included.
  • the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322.
  • the bonding portion 134 may be bonded to the inner side of the second filling portion 1322 and the support 131.
  • the bonding portion 134 When the bonding portion 134 is formed of the same material as the filling portion 132, the bonding portion 134 may be cured simultaneously when the second filling portion 1322 is cured.
  • connection portion 105 when the substrate 10 is immersed in the filling liquid 130, the connection portion 105 is formed in at least one area of the substrate 10, so that the connection portion ( The filling solution 130 may pass through 105 in the direction of the second surface 102 from the first surface 101 of the substrate 10. Accordingly, the filling liquid 130 passing through the connection part 105 may cause the fourth element group 104 installed on the second surface 102 of the substrate 10 to be completely immersed in the filling liquid 130. Thereafter, the filling liquid 130 is cured to form the filling portion 132 as shown in FIG. 33. According to an embodiment, the filling liquid 133 passing through the connection part 105 may form the connection body 106. In addition, the bonding portion 134 may be formed by the filling solution 130, and the bonding portion 134 may be cured when the filling solution 130 is cured.
  • This manufacturing method can be equally applied to a structure in which the second connector 107 is coupled to a part of the connector 105 as shown in FIG. 34.
  • 35 is a configuration diagram of a separate EMI filter module according to another embodiment.
  • the detachable active EMI filter module 1000 may be interposed between the first through line 21 and the second through line 22.
  • the first through line 21 and the second through line 22 may be electrically connected to a power line, and the first through line 21 is a live line and the second through line 22 is a neutral line. (Neutral line) and each can be electrically connected.
  • each of the first through line 21 and the second through line 22 may be a conductive pattern formed to electrically pass through the PCB substrate of the separated active EMI filter module 1000 from one end to the other end.
  • the conductive pattern is not necessarily limited to extending in a straight line, and may be extended in a complex path.
  • the detachable active EMI filter module 1000 may be electrically connected to the first device 2 and the second device 3 located outside.
  • the first device 2 may be various types of devices for supplying power to the separate active EMI filter module 1000 in the form of current and/or voltage.
  • the first device 2 may be a device that produces and supplies power, or may be a device that supplies power generated by another device (for example, an electric vehicle charging device).
  • the first device 2 may be a device that supplies stored energy.
  • this is exemplary, and the spirit of the present invention is not limited thereto.
  • the second device 3 may be various types of devices and/or loads using power supplied by the first device 2.
  • the second device 3 may be a load driven by using power supplied by the first device 2.
  • the second device 3 may be a load (eg, at least one component of an electric vehicle) that stores energy using power supplied by the first device 2 and is driven using the stored energy.
  • this is exemplary, and the spirit of the present invention is not limited thereto.
  • Each of the first through line 21 and the second through line 22 may be a path through which electromagnetic noise generated by the second device 3 is transmitted to the first device 2.
  • the electromagnetic wave noise may be input to each of the first and second through lines 21 and 22 in a common mode.
  • the separate active EMI filter module 1000 may include a noise sensing unit 11, an active circuit unit 12, a compensation unit 13, and a transmission unit 14.
  • the noise sensing unit 11 may include at least one element electrically connected to the first through line 21 and the second through line 22. According to an embodiment, the noise sensing unit 11 may include an element provided to detect electromagnetic noise generated from the second device 3.
  • the active circuit unit 12 may serve as an amplifier and may amplify a current corresponding to electromagnetic wave noise sensed through the noise sensing unit 11 at a predetermined ratio. According to an exemplary embodiment, the active circuit unit 121 may generate an amplified current having the same magnitude as a current corresponding to electromagnetic wave noise and opposite in phase.
  • the amplified current may flow through the compensation unit 13 and the transfer unit 14 to the first through line 21 and/or the second through line 22 to compensate for noise.
  • the compensation unit 13 may generate a compensation signal based on the amplified current.
  • the transmission unit 14 may provide a path through which the compensation signal flows through the first through line 21 and/or the second through line 22.
  • the detachable active EMI filter module 1000 may be electrically connected to the third device 4.
  • this third device 4 may include a device that provides power to the active circuit unit 12.
  • the third device 4 may include a DC power supply unit that generates input power from the active circuit unit 12.
  • FIG. 36 shows a more specific example of a separate active EMI filter module 1000 according to another embodiment.
  • the first through line 21 and the second through line 22 may be designed to pass through the separate active EMI filter module 1000.
  • Both ends of the first through line 21 are connected to the 1-1 pin 241 and the 1-2 pin 242.
  • both ends of the second through line 22 are connected to the 1-3th pin 243 and the 1-4th pin 244.
  • the separate active EMI filter module 1000 may include a noise sensing unit 11, an active circuit unit 12, a compensation unit 13, and a transmission unit 14.
  • the noise sensing unit 11 may include a sensing transformer 110.
  • the sensing transformer 110 includes a first reference winding 1101 and a second reference winding 1102 electrically connected to the first through line 21 and the second through line 22, respectively, and the first and second power lines.
  • a sensing winding 1100 formed on the same core as the reference windings 1101 and 1102 may be included.
  • the first reference winding 1101 and the second reference winding 1102 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
  • the first reference winding 1101 and the second reference winding 1102 may each be in the form of a winding wound around a core, but is not necessarily limited thereto, and the first reference winding 1101 or the second reference winding At least one of 1102 may have a structure passing through the core.
  • the sensing winding 1100 may have a structure in which the first reference winding 1101 and the second reference winding 1102 are wound and/or wound around a core at least once or more.
  • the present invention is not necessarily limited thereto, and the sensing winding 1100 may be formed to penetrate the core.
  • the sensing winding 1100 is electrically insulated from the primary winding, a noise current generated from the second device 3 is sensed, and a current converted from the noise current at a predetermined ratio may be induced.
  • the primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
  • a first magnetic flux density may be induced in the core.
  • a second magnetic flux density may be induced in the core.
  • a first induced current may be induced in the sensing winding 1100 that is the second secondary side by the induced first and second magnetic flux densities.
  • the sensing transformer is configured so that the first magnetic flux density and the second magnetic flux density induced by the first current may overlap (or reinforce each other), and the first through line 21 and the second through line A first induced current corresponding to the first current may be generated in the second secondary side insulated from 22, that is, the sensing winding 1100.
  • the number of the first reference winding 1101, the second reference winding 1102, and the sensing winding 1100 wound around the core may be appropriately determined according to the requirements of the system in which the separate active EMI filter module 1000 is used. have.
  • a turns ratio of a primary winding which is the first reference winding 1101 and the second reference winding 1102, and a secondary winding of the sensing winding 1100, may be 1:N sen .
  • the self-inductance of the primary winding of the sensing transformer is L sen
  • the secondary winding can have a self inductance of N sen 2 ⁇ L sen .
  • the primary and secondary windings of the sensing transformer 120 may be combined with a coupling coefficient of k sen .
  • the above-described sensing transformer 110 may be configured such that the magnetic flux density induced by the second current, which is a normal current flowing through each of the first through line 21 and the second through line 22, satisfies a predetermined magnetic flux density condition. I can.
  • the third magnetic flux density and the fourth magnetic flux density may be induced in the core by the second current flowing through the first and second reference windings 1101 and 1102, respectively.
  • the third magnetic flux density and the fourth magnetic flux density may be conditions that cancel each other.
  • the sensing transformer 110 is a second induced current induced in the secondary sensing winding 1100 by the second current, which is a normal current flowing through each of the first through line 21 and the second through line 22. May be less than a predetermined threshold size, and accordingly, the sensing transformer may be configured such that magnetic flux densities induced by the second current cancel each other, so that only the aforementioned first current may be sensed.
  • the sensing transformer 110 has the magnitude of the first and second magnetic flux density induced by the first current, which is a noise current in a first frequency band (for example, a band having a range of 150 KHz to 30 MHz), in a second frequency band (for example, For example, a band having a range of 50Hz to 60Hz) may be configured to be larger than the magnitude of the third and fourth magnetic flux densities induced by the second current, which is a typical current.
  • the component A is configured to be B may mean that the design parameter of the component A is set to be appropriate for B.
  • the fact that the sensing transformer is configured to have a large magnetic flux induced by the current in a specific frequency band means that parameters such as the size of the sensing transformer, the diameter of the core, the number of turns, the size of the inductance, and the magnitude of the mutual inductance are It may mean that it is appropriately set so that the magnitude of the magnetic flux induced by the current in the band becomes strong.
  • the sensing winding 1100 which is the secondary side of the sensing transformer 110, supplies the first induced current to the active circuit unit 12. As shown in FIG. 36, the input terminal of the active circuit unit 12 and the active circuit unit 12 ) Can be placed on the path connecting the reference potential.
  • the active circuit unit 12 may be a means for generating an amplified current by amplifying the first induced current generated by the sensing transformer.
  • the sensing winding 1100 may be differentially connected to the input terminal of the active circuit unit 12.
  • amplification by the active circuit unit 12 may mean adjusting the size and/or phase of the amplification target.
  • the active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the sensing transformer 110 described above and the transformation ratio of the compensation transformer 131 to be described later.
  • the sensing transformer 110 converts a first current, which is a noise current, into a first induced current whose magnitude is 1/F1 times, and the compensation transformer 131 compensates for the amplified current, so that the magnitude becomes 1/F2 times.
  • the active circuit unit 12 may generate an amplified current that is F1xF2 times the magnitude of the first induced current.
  • the active circuit unit 12 may generate the amplified current so that the phase of the amplified current is opposite to the phase of the first induced current.
  • the active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
  • BJT bipolar junction transistor
  • the active circuit unit 12 amplifies the first induced current by amplifying the first induced current by receiving power from a separate third device 4 (refer to FIG. 35) that is separated from the first device 2 and/or the second device 3 Can be created.
  • the third device 4 may be a device that receives power from a power source independent of the first device 2 and the second device 3 and generates input power to the active circuit unit 12.
  • the third device 4 may be a device that receives power from any one of the first device 2 and the second device 3 and generates input power to the active circuit unit 12.
  • the compensation unit 13 may generate a compensation signal based on the amplified output signal.
  • the compensation unit 13 may include a compensation transformer 131.
  • the compensation transformer 131 is insulated from the first through line 21 and the second through line 22 and/or is isolated from the first through line 21 and the second through line based on the amplified current. It may be a means for generating a compensation current on the side of the through line 22 or on the second side 1312.
  • the compensation transformer 131 is applied to the third magnetic flux density induced by the amplified current generated by the active circuit unit 12 on the primary side 1311 differentially connected to the output terminal of the active circuit unit 12. Based on the compensation current may be generated in the secondary side 1312.
  • the secondary side 1312 may be grounded with a reference potential (reference potential 1) of the transmission unit 14 and the separate active EMI filter module 1000 to be described later.
  • the secondary side 1312 of the compensation transformer 131 is electrically connected to the first through line 21 and the second through line 22 as power lines with the transmission unit 14 interposed therebetween. Accordingly, the active circuit unit 12 may be insulated from the power line, thereby protecting the active circuit unit 12.
  • the primary side 1311 of the compensation transformer 131, the active circuit unit 12, and the sensing winding 1100 are separated from the remaining components of the separate active EMI filter module 1000. It can be grounded with the reference potential (reference potential 2). That is, the reference potential (reference potential 2) of the above-described active circuit unit 12 and the reference potential (reference potential 1) of the separate active EMI filter module 1000 may be different potentials. However, it is not necessarily limited thereto, and the reference potential 1 and the reference potential 2 may be the same potential.
  • a component that generates a compensation current is operated in an insulated state by using a reference potential that is different from the other components, and by using a separate power source. In this way, reliability of the separate active EMI filter module 1000 may be improved.
  • the compensation transformer 131 is amplified by the active circuit unit 12 and converts the current flowing through the primary side 1311 of the compensation transformer 131 to a predetermined ratio to the second compensation transformer 131. It can be guided to the vehicle side 1312.
  • a turn ratio of the first and second secondary sides 1311 and 1312 may be 1:N inj .
  • the self-inductance of the primary side 1311 of the compensation transformer 131 is L inj
  • the secondary side 1312 of the compensation transformer 131 may have a self inductance of N inj 2 ⁇ L inj .
  • the primary side and the secondary side of the compensation transformer 131 may be combined by a coupling coefficient of k inj .
  • the current converted through the compensation transformer 131 may be injected as a compensation current I comp into the first through line 21 and the second through line 22 which are power lines through the compensation capacitor unit 141.
  • the transmission unit 14 may be a means for providing a path through which the current generated by the compensation transformer 131 flows to each of the first through line 21 and the second through line 22, according to an embodiment.
  • the transfer part 14 may include a compensation capacitor part 141.
  • the compensation capacitor unit 141 includes at least two compensation capacitors connecting each of the reference potential (reference potential 1) and the first through line 21 and the second through line 22 of the separate active EMI filter module 1000 can do.
  • Each of the compensation capacitors may include a Y-capacitor (Y-cap).
  • Y-cap Y-capacitor
  • One end of each compensation capacitor shares a node connected to the secondary side 1312 of the compensation transformer 131, and the other end has a node connected to the first through line 21 and the second through line 22, respectively. I can.
  • the compensation capacitor unit 141 may be configured such that a current flowing between the first through line 21 and the second through line 22 through at least two or more compensation capacitors satisfies a first predetermined current condition.
  • the first predetermined current condition may be a condition in which the magnitude of the current is less than the predetermined first threshold magnitude.
  • the compensation capacitor unit 141 is between each of the first through line 21 and the second through line 22 and the reference potential (reference potential 1) of the separate active EMI filter module 1000 through at least two compensation capacitors.
  • the flowing current may be configured to satisfy a second predetermined condition.
  • the second predetermined condition may be a condition in which the magnitude of the current is less than the predetermined second threshold magnitude.
  • the compensation current flowing to each of the first through line 21 and the second through line 22 along the compensation capacitor part 141 cancels the first current on the first through line 21 and the second through line 22
  • the first current and the compensation current may be currents having the same magnitude and opposite phases.
  • the separated active EMI filter module 1000 is provided in each of the first through line 21 and the second through line 22, which are at least two or more high current paths connected to the first device 2.
  • a first current which is a noise current input in the common mode, is actively compensated to suppress a noise current emitted to the first device 2. This can prevent malfunction or damage of the second device 3 and/or other devices connected to the first device 2.
  • the separated active EMI filter module 1000 having the above structure may be implemented on a substrate, and includes a first element group G1 including a noise sensing unit 11 provided to detect electromagnetic noise, and electromagnetic noise.
  • the second device group G2 including the compensation unit 13 provided to generate a compensation signal for is mounted on different substrates, respectively.
  • FIG. 37 and 38 are diagrams illustrating a separate active EMI filter module 1000 according to an embodiment implemented on a substrate, and FIG. 37 is a plan configuration diagram illustrating a first substrate 1001, and FIG. 38 is a first substrate (A side view of the second substrate 1002 to 1001 is shown.
  • a first device group G1 is mounted on a first substrate 1001.
  • a first through line 21 and a second through line 22 may be designed to pass through the first substrate 1001.
  • the first through line 21 and the second through line 22 may be implemented as a thin wiring pattern patterned between the 1-1 pins 241 to 1-4 pins 244.
  • the noise sensing unit 11 of the first device group G1 is installed on the first substrate 1001. Specifically, the first reference winding 1101 and the second reference winding 1102 of the noise sensing unit 11 are electrically connected to the first through line 21 and the second through line 22, respectively. In addition, the sensing winding 1100 may be connected to the wiring thin film patterned on the first substrate 1001 and electrically connected to the first electrical connection part 151 to be described later.
  • a second device group G2 may be mounted on the second substrate 1002, which is an independent substrate separated from the first substrate 1001.
  • the second device group G2 may include an active circuit unit 12, a compensation unit 13, and a transmission unit 14 electrically connected to each other.
  • the second substrate 1002 may be separated from the first substrate 1001 and coupled to the first substrate 1001 in a vertical state.
  • the first device group G1 and the second device group G2 may be electrically connected.
  • an electrical connection 15 is interposed between the first substrate 1001 and the second substrate 1002.
  • a first electrical connection unit 151 may be installed on the first substrate 1001.
  • the first electrical connection part 151 may be a bar-shaped block structure provided in a straight line, and may include a plurality of electrical connection terminals arranged in-line along a straight line. .
  • Electrical connection terminals provided in the first electrical connection unit 151 may include a first connection terminal 1511, a second connection terminal 1512, a third connection terminal 1513, and a fourth connection terminal 1514. .
  • the first connection terminal 1511 may include a pair of connection terminals positioned at one end of the first electrical connection unit 151 and arranged in-line, and may be electrically connected to the external power supply 41.
  • the external power supply 41 may be a DC power supply that provides power to the active circuit unit 12 as shown in FIG. 2.
  • the second connection terminal 1512 may include a pair of connection terminals positioned in-line adjacent to the first connection terminal 1511 and arranged in-line.
  • the second connection terminal 1512 may be electrically connected to the sensing winding 1100 of the sensing transformer 110 constituting the noise sensing unit 11.
  • the third connection terminal 1513 may include a connection terminal positioned at the other end of the first electrical connection part 151 and adjacent in-line to the fourth connection terminal 1514 to be described later.
  • the third connection terminal 1513 is electrically connected to a ground line.
  • the fourth connection terminal 1514 may include a pair of connection terminals positioned adjacent in-line between the second connection terminal 1512 and the third connection terminal 1513 and arranged in-line.
  • the fourth connection terminal 1514 is electrically connected to the first through line 21 and the second through line 22, and the number of connection terminals corresponds to the number of through lines.
  • the fourth connection terminal 1514 since the fourth connection terminal 1514 is electrically connected to the first through line 21 and the second through line 22 serving as power lines, the fourth connection terminal 1514 and between the fourth connection terminals 1514 ( A first distance d1 should be maintained between the 1514) and other adjacent connection terminals (eg, the second connection terminal 1512 and the third connection terminal 1513).
  • the first distance d1 becomes an insulation distance required for safety, and the distance between the first connection terminals 1511, the distance between the second connection terminals 1512, and/or the first connection terminal 1511 and the second connection It is preferable to make it larger than the distance between the terminals 1512. Therefore, the vertical length of the first electrical connection part 151 is set in consideration of the first distance d1.
  • This first gap d1 may also be applied between the first through line 21 and the second through line 22 patterned on the first substrate 1001.
  • connection terminals as described above may be formed in a hole shape in the block structure constituting the first electrical connection part 151.
  • the second substrate 1002 is coupled to the first substrate 1001 adjacent to the first electrical connection 151, and the second electrical connection 152 is provided on the second substrate 1002. It is formed by extending.
  • the second electrical connection part 152 may include a plurality of connection pins, and the connection pins may be inserted into the connection terminals of the first electrical connection part 151. Accordingly, the first electrical connection part 151 It may be electrically connected to each of the connection terminals.
  • the connection pins constituting the second electrical connection part 152 extend in a vertical direction from the surface of the second substrate 1002 and are bent horizontally to the surface of the second substrate 1002. Can have
  • the second electrical connection unit 152 may include two pairs of connection pins electrically connected to the active circuit unit 12. One pair may be inserted into the first connection terminals 1511, and the other pair may be inserted into the second connection terminals 1512.
  • the second electrical connection unit 152 may include a pair of connection pins electrically connected to the transmission unit 14. This pair of connection pins may be inserted into the fourth connection terminals 1514.
  • the second electrical connection part 152 may include a connection pin electrically connected to the compensation part 13. This connection pin can be inserted into the third connection terminal 1513.
  • the second electrical connection part 152 includes a plurality of connection pins arranged inline to correspond to the number and arrangement of connection terminals of the first electrical connection part 151, and the connection pins are the first electrical connection part 151 By being inserted into each of the connection terminals of the first electrical connection portion 151 is electrically connected.
  • the first electrical connection part 151 is illustrated as a block structure including a plurality of connection terminals, but the present invention is not limited thereto.
  • the first electrical connection part 151 may include a via hole formed in the first substrate 1101, and the connection terminals may be terminals conductively patterned in the via hole. Therefore, in this case, the second electrical connection part 152 may be directly inserted and fixed to the connection terminals formed in the via hole to form electrical coupling.
  • the first device group (G1) and the second device group (G2) are installed on separate and separated substrates and are coupled through a simple electrical connection unit 15 to install a separate active EMI filter module 1000.
  • the total area of the substrate and/or the volume of the separated active EMI filter module 1000 can be significantly reduced.
  • the first substrate 1001 and the second substrate 1002 can be easily connected and/or separated, and assembly and maintenance can be made simpler because the component elements are distributed and installed on separate substrates. have.
  • FIG. 39 and 40 illustrate a separate active EMI filter module 1000 according to another embodiment implemented on a substrate
  • FIG. 5 is a plan view showing a first substrate 1001
  • FIG. 6 is 1 shows a side view of a second substrate 1002 bonded to a substrate 1001.
  • a first device group G1 is mounted on a first substrate 1001
  • a second device group G2 is mounted on a second substrate 1002.
  • a first through line 21 and a second through line 22 may be designed to pass through the first substrate 1001.
  • the first through line 21 and the second through line 22 may be implemented as a thin wiring pattern patterned between the 1-1 pins 241 to 1-4 pins 244.
  • the first device group G1 may include a noise sensing unit 11 and a transmission unit 14.
  • the noise sensing unit 11 and the transmission unit 14 are connected to the first substrate 1001 to be electrically connected to the first and second through lines 21 and 22 implemented on the first substrate 1001, respectively. Can be combined.
  • a second device group G2 may be mounted on the second substrate 1002, which is an independent substrate separated from the first substrate 1001.
  • the second device group G2 may include an active circuit unit 12 and a compensation unit 13 electrically connected to each other.
  • the second substrate 1002 may be separated from the first substrate 1001 and coupled to the first substrate 1001 in a vertical state.
  • the first device group G1 and the second device group G2 may be electrically connected.
  • an electrical connection 15 may be interposed between the first substrate 1001 and the second substrate 1002, as described above.
  • the first electrical connection part 151 may be a bar-shaped block structure provided in a straight line, and may include a plurality of electrical connection terminals arranged in-line along a straight line.
  • Electrical connection terminals provided in the first electrical connection unit 151 may include a first connection terminal 1511, a second connection terminal 1512, a third connection terminal 1513 and a fifth connection terminal 1515.
  • the fourth connection terminal electrically connected to the first through line 21 and the second through line 22 is not included. Since the first connection terminals 1511 to 1513 are the same as those in the above-described embodiment, the fifth connection terminal 1515 will be described below.
  • the fifth connection terminal 1515 may include a connection terminal positioned adjacent in-line between the second connection terminal 1512 and the third connection terminal 1513 and arranged in-line.
  • the fifth connection terminal 1515 may be electrically connected to the transfer unit 14 installed on the first substrate 1001.
  • a second distance d2 may be maintained between the fifth connection terminal 1515 and other adjacent connection terminals (eg, the second connection terminal 1512 and/or the third connection terminal 1513 ).
  • the second distance d2 may be an insulation distance required for safety.
  • the distance between the first connection terminals 1511, the distance between the second connection terminals 1512, and/or the first connection terminal 1511 The interval between the second connection terminals 1512 may be larger. Accordingly, it is possible to sufficiently secure an insulation distance from the ground line to the second connection terminal 1512, which is a signal line.
  • the second interval d2 may be less than or equal to the first interval d1 described above.
  • the first gap d1 is an insulation distance between the first through line 21 and the second through line 22, which are power lines, and the second gap d2 is the power line through the transmission unit 14 And/or an insulation distance from the ground wire.
  • first through line 21 and the second through line 22 patterned on the first substrate 1001 may be spaced equal to the first gap.
  • a second electrical connection part 152 is formed to extend on the second substrate 1002.
  • the second electrical connection part 152 may include a plurality of connection pins, and the connection pins may be inserted into the connection terminals of the first electrical connection part 151. Accordingly, the first electrical connection part 151 It may be electrically connected to each of the connection terminals.
  • the second electrical connection unit 152 may include two pairs of connection pins electrically connected to the active circuit unit 12. One pair may be inserted into the first connection terminals 1511, and the other pair may be inserted into the second connection terminals 1512.
  • the second electrical connection part 152 may include a connection pin electrically connected to the compensation part 13. This connection pin may be inserted into the fifth connection terminal 1515.
  • the second electrical connection part 152 includes a plurality of connection pins arranged inline to correspond to the number and arrangement of connection terminals of the first electrical connection part 151, and the connection pins are the first electrical connection part 151 By being inserted into each of the connection terminals of the first electrical connection portion 151 is electrically connected.
  • the first electrical connection part 151 is illustrated as a block structure including a plurality of connection terminals, but the present invention is not limited thereto.
  • the first electrical connection part 151 may include a via hole formed in the first substrate 1101, and the connection terminals may be terminals conductively patterned in the via hole. Therefore, in this case, the second electrical connection part 152 may be directly inserted and fixed to the connection terminals formed in the via hole to form electrical coupling.
  • the transmission unit 14 by installing the transmission unit 14 on the first substrate 1001, the length of the second substrate 1002 can be further reduced, and the first electric connection unit 151 is a power line. Since there is no need to install a connection terminal electrically connected to the through line 21 and the second through line 22, the need for securing an insulation distance due to the power line is reduced, so that the second substrate 1002 can be designed even smaller. . In addition, the arrangement and design of the elements can be freed, which can be more effective in minimizing the overall size.
  • 41 is a plan configuration diagram illustrating a first substrate 1001 of a separate active EMI filter module 1000 according to another exemplary embodiment.
  • a sixth connection terminal 1516 may be further disposed between the fifth connection terminal 1515 and the second connection terminal 1512.
  • the sixth connection terminal 1516 may be a dummy connection terminal, that is, a connection terminal to which no elements are connected. By providing the sixth connection terminal 1516 in this way, the second connection terminal 1512 and/or the first connection terminal 1511 serving as a signal line can be sufficiently separated from the ground line to secure an insulation distance. Accordingly, the sixth connection terminal 1516 does not have to be provided as a pair of connection terminals as illustrated in FIG. 7, and one or more of the sixth connection terminals 1516 may be applied.
  • the sixth A third distance d3 may be formed between the connection terminals 1516 and between the sixth connection terminal 1516 and the second connection terminal 1512.
  • the description of the second interval d2 is the same as the description of the second interval d2 illustrated in FIG. 6 and thus will be omitted.
  • the third interval d3 may be equal to or smaller than the second interval d2.
  • the third distance d3 may be designed in consideration of the number of sixth connection terminals 1516 and the insulating distance to be secured. If the number of the sixth connection terminals 1516 increases, the third distance d3 ) Can also be smaller.
  • At least a portion of the second interval d2, at least a portion of the third interval d3 is the interval between the first connection terminals 1511, and/or
  • the spacing between the second connection terminals 1512 may be the same.
  • the spacing between all the connection terminals may be regularly arranged equal to the spacing between the first connection terminals 1511 and/or the spacing between the second connection terminals 1512. This is because, due to the sixth connection terminal 1516, which is a dummy connection terminal, the second connection terminal 1512 and/or the first connection terminal 1511 serving as a signal line can be sufficiently separated from the ground line to secure an insulation distance. Therefore, it is possible to selectively form the first electrical connection part 151 having the same horizontal length as the embodiment illustrated in FIG. 5.
  • the second substrate 1002 having a minimized size while sufficiently securing an insulation distance between the ground line and the signal line can be implemented.
  • the first electrical connection part 151 has a plurality of connection terminals in the form of a hole
  • the second electrical connection part 152 is provided in the form of a pin and is inserted into the first electrical connection part 151 to make electrical connection. Accomplished.
  • the present invention is not necessarily limited to this form.
  • FIG. 42 is a side view illustrating a second substrate 1002 coupled to a first substrate 1001 according to another exemplary embodiment.
  • the first electrical connection unit 151 may include a slot into which the second substrate 1002 may be fixedly inserted.
  • the above-described connection terminals are installed inside this slot.
  • the second substrate 1002 itself is inserted into the slot of the first electrical connection unit 151.
  • a plurality of connection terminals are provided on the end side of the second substrate, so that when the second substrate 1002 is inserted into the slot of the first electrical connection unit 151, the connection terminals of the second substrate are connected terminals inside the slot. Are electrically connected to the field.
  • a plurality of connection terminals formed on the end side of the second substrate may be the second electrical connection.
  • the second substrate 1002 can be coupled to the first substrate 1001 by simply inserting the second substrate 1002 into the slot of the first electrical connector 151, and at the same time, the first element group G1 ) And the second device group G2 may be electrically connected. Accordingly, the bonding structure of the first substrate 1001 and the second substrate 1002 may be further simplified.
  • FIG 43 is a side view illustrating a second substrate 1002 coupled to a first substrate 1001 according to another exemplary embodiment.
  • the first substrate 1101 may include a groove and/or a via hole into which the second substrate 1002 may be fixedly inserted.
  • the above-described connection terminals are installed in the groove and/or the hole by conductive patterning, and the connection terminals become the first electrical connection part 151.
  • the second substrate 1002 itself is inserted into the groove and/or hole.
  • a plurality of connection terminals are provided on the end side of the second substrate, so that when the second substrate 1002 is inserted into the groove and/or hole of the first substrate 1101, the connection terminals of the second substrate are grooved and /Or are electrically connected to the connection terminals inside the hole.
  • a plurality of connection terminals formed on the end side of the second substrate may be the second electrical connection.
  • the second substrate 1002 can be coupled to the first substrate 1001 by simply inserting the second substrate 1002 into the grooves and/or holes of the first substrate 1001, and at the same time, the first element Electrical connection between the group G1 and the second device group G2 may be possible.
  • the end of the second substrate 1102 may have a protrusion to be inserted into the groove and/or hole, and connection terminals may be designed by conducting conductive patterning on the protrusion. Therefore, even in this embodiment, electrical connection between the first element group G1 and the second element group G2 can be made only by combining the first substrate 1001 and the second substrate 1002, so that the overall structure of the device Can be done simply.
  • FIGS. 37 to 43 In the case of the structures shown in FIGS. 37 to 43 described above, the embodiment shown in FIG. 36 is applied, and the structures shown in FIGS. 37 to 43 are applicable to various circuit configurations to be described below.
  • the embodiment shown in FIG. 44 unlike the embodiment shown in FIG. 36 described above, noise in the 1-1 pin 141 and the 1-3 pin 143 on the first device 2 side, which is the power side
  • the sensing unit 11 is electrically connected.
  • the compensation unit 13 and the transmission unit 14 are electrically connected to the 1-2 pins 142 and 1-4 pins 144 on the side of the second device 3.
  • the embodiment shown in FIG. 10 shows a CSCC active EMI filter of a feedback type, which senses a noise current going out to the first device 2 and compensates with the current at the second device 3 side.
  • the noise sensing unit 11, the active circuit unit 12, the compensation unit 13, and the transfer unit 14 shown in FIG. 44 may each perform the same functions as those of the devices shown in FIG. 2.
  • 45 illustrates a more specific example of a separate active EMI filter module 1000 according to another embodiment.
  • the noise sensing unit 11 may include a sensing capacitor unit 112.
  • the separated active EMI filter module 1000 according to the embodiment shown in FIG. 45 detects a noise voltage using the sensing capacitor unit 112 and converts the current into a current using the compensation capacitor unit 141 of the transmission unit 14. Represents a voltage-sense current-compensation (VSCC) active EMI filter that compensates.
  • VSCC voltage-sense current-compensation
  • a feedforward and a feedback may not be distinguished due to an operating principle. That is, in the separate active EMI filter module 1000 illustrated in FIG. 45, there may be no distinction between input/output units.
  • the separated active EMI filter module 1000 according to the embodiment may also have an isolated structure by using the compensation transformer 131 and the sensing transformer 113.
  • the sensing capacitor unit 112 may sense a noise voltage input to the first through line 21 and the second through line 22 which are power lines.
  • the sensing capacitor unit 112 may include two sensing capacitors, and each sensing capacitor may include a Y-cap. One end of each of the two sensing capacitors may be electrically connected to the first through line 21 and the second through line 22, and the other end may share a node connected to the primary side of the sensing transformer 113. I can.
  • the primary side of the sensing transformer 113 may be electrically connected to the first through line 21 and the second through line 22 which are power lines through the sensing capacitor unit 112.
  • the sensing transformer 113 may include a primary side connected to the power line side and a secondary side connected to the active circuit unit 12 in order to sense noise flowing through the power line.
  • the secondary side of the sensing transformer 113 may be differentially connected to the input terminal of the active circuit unit 12.
  • the sensing transformer 113, the active circuit unit 12, the compensation transformer 131, and the compensation capacitor unit 141 included in the separated active EMI filter module 1000 according to the embodiment shown in FIG. 45 are each implemented as described above. An operation corresponding to the sensing transformer, the active circuit unit 121, the compensation transformer 131, and the compensation capacitor unit 141 may be performed.
  • the active circuit unit 12 further includes a high-pass filter (not shown) between the compensation transformer 131 and is below a frequency band subject to noise reduction. It is possible to block the active circuit unit 12 from operating at a low frequency of.
  • 46 illustrates a configuration of a separate active EMI filter module 1000 according to another embodiment.
  • FIG. 46 is a separate active EMI filter module 1000 having a three-phase three-wire structure unlike the single-phase embodiment shown in FIG. 2.
  • a first through line 21, a second through line 22, and a third through line 23 pass through the substrate, and both ends of the first through line 21 to the first through line 241 to It may be electrically connected to the 1-6th pins 146.
  • the first through line 21 may be an R-phase
  • the second through line 22 may be an S-phase
  • the third through line 23 may be a T-phase.
  • the noise sensing unit 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the third through line 23, respectively. 1101) to the third reference winding 1103, and a sensing winding 1100 formed on the same core as the first reference winding 1101 to the third reference winding 113.
  • the first reference winding 1101 to the third reference winding 1103 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
  • Each of the first to third reference windings 1101 to 1103 may be in the form of a winding wound around a core, but is not limited thereto, and a first reference winding 1101 and a second reference winding At least one of (1102) or the third reference winding 1103 may have a structure passing through the core.
  • the sensing winding 1100 may have a structure in which the first reference winding 1101 to the third reference winding 1103 is wound and/or wound at least one time around a core through which it passes, or a structure passing through the core.
  • the sensing winding 1100 is insulated from the power line as in the above-described embodiment of FIG. 36, and may sense a noise current generated from the second device 3.
  • the primary winding and the secondary winding may be wound in consideration of the direction in which the magnetic flux and/or the magnetic flux density are generated.
  • the sensing winding 1100 supplies the induced current to the active circuit unit 12, and the active circuit unit 12 amplifies it to generate an amplified current.
  • the active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 131 to be described later.
  • the active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP.
  • the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor.
  • BJT bipolar junction transistor
  • the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
  • the amplified current flows to the first through line 21, the second through line 22 and/or the third through line 23 through the compensation unit 13 and the transfer unit 14, and compensates for noise. I can.
  • the compensation unit 13 may include a compensation transformer 131, and a specific configuration and function may be applied in the same manner as the embodiment shown in FIG. 36.
  • the transfer unit 14 may include a compensation capacitor unit 141, wherein each capacitor of the compensation capacitor unit 141 has one end connected to the compensation transformer 131 and the other end of the first through line 21 to the first through line. It is connected to the 3 through line 23, respectively.
  • FIG. 46 is shown in a three-phase, three-wire structure based on the embodiment shown in FIG. 36, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 45.
  • FIG. 47 is a separate active EMI filter module 1000 having a three-phase four-wire structure unlike the single-phase embodiment shown in FIG. 36 and the three-phase three-wire embodiment shown in FIG. 12.
  • a first through line 21, a second through line 22, a third through line 23, and a fourth through line 24 pass through the substrate, and both ends thereof are It may be electrically connected to the 1-1 pins 241 to 1-8 pins 148.
  • the first through line 21 is an R phase
  • the second through line 22 is an S phase
  • the third through line 23 is a T phase
  • the fourth through line 24 is an N-phase. It can be a power line.
  • the noise sensing unit 11 may include a sensing transformer 110 capable of sensing noise, wherein the sensing transformer includes first through lines 21 to 4 respectively connected to the first through lines 24 A reference winding 1101 to a fourth reference winding 1104 and a sensing winding 1100 formed on the same core as the first reference winding 1101 to the fourth reference winding 1104 may be included.
  • the first reference winding 1101 to the fourth reference winding 1104 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
  • Each of the first to fourth reference windings 1101 to 1104 may be in the form of a winding wound around a core, but is not limited thereto, and a first reference winding 1101 and a second reference winding At least one of (1102), the third reference winding 1103, and the fourth reference winding 1104 may have a structure passing through the core.
  • the sensing winding 1100 may have a structure in which the first reference winding 1101 to the fourth reference winding 1104 is wound and/or wound at least one time around a core through which it passes, or a structure that penetrates the core once.
  • the sensing winding 1100 is insulated from the power line as in the above-described embodiments, and may sense a noise current generated from the second device 3.
  • the primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
  • the sensing winding 1100 supplies the induced current to the active circuit unit 12, and the active circuit unit 12 amplifies it to generate an amplified current.
  • the active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 131 to be described later.
  • the active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP.
  • the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor.
  • BJT bipolar junction transistor
  • the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
  • the amplified current is applied to the first through line 21, the second through line 22, the third through line 23 and/or the fourth through line 24 through the compensation part 13 and the transfer part 14. ), and can compensate for noise.
  • the compensation unit 13 may include a compensation transformer 131
  • the transmission unit 14 may include a compensation capacitor unit 141, and specific configurations and functions are described in FIGS. 36 and 46 It can be applied in the same way as the embodiment shown in.
  • One end of each capacitor of the compensation capacitor unit 141 is connected to the compensation transformer 131 and the other end is connected to the first through line 21 to the fourth through line 24, respectively.
  • FIG. 47 is shown in a three-phase, four-wire structure based on the embodiment shown in FIG. 36, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 45.
  • the second device group G2 installed on the second substrate 1002 and the second substrate 1002 is as shown in FIGS. 48 and 49. It is implemented as a sealing structure that is blocked from the outside through the same sealing structure 6, and can be made into a single module.
  • the second device group G2 is installed on the second substrate 1002, and the active circuit unit 102 is installed on one surface of the second substrate 1002. Then, the compensation part 13 is installed on the other surface of the second substrate 1002.
  • the encapsulation structure 6 may include a support 61 and a filling part 63.
  • the support 61 is formed of an insulating material and includes a space located therein.
  • the space portion of the support 61 may be defined by an opening 611 and a bottom 612.
  • the support 61 may be formed of a material capable of heat transfer.
  • a heat dissipation mechanism such as a heat sink may be additionally installed on the support 61, and accordingly, heat dissipation by the support 61 may be smoothly performed.
  • the above-described second substrate 1002 is accommodated in the space portion of the support 61.
  • the second substrate 1002 may be accommodated in the support 61 in a vertically erected form, and at this time, the connection pins of the second electrical connector 152 located at the edge of the second substrate 1002 are opened 611 It may have a structure protruding outward of. Accordingly, both surfaces of the second substrate 1002 may be disposed to face the sidewalls inside the support 61, respectively.
  • the separate active EMI filter module 1000 may include a filling portion 63 provided to fill at least a part of the space portion of the support 61.
  • the second substrate 1002 may be fixed in the support 61 by the filling part 63.
  • the filling part 63 may be provided with a heat-resistant and/or insulating resin material.
  • the filling part 63 may include an epoxy resin, and may further include a curing agent.
  • the detachable active EMI filter module 1000 having the above structure may have a box structure in which the second electrical connector 152 protrudes in-line.
  • the detachable active EMI filter module 1000 can be simply installed in various devices and has a structure independent from external devices, in particular, the second device group G2 can be protected from external stimuli and/or shock, The detachable active EMI filter module 1000 itself may be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the separate active EMI filter module 1000. In addition, it is possible to protect the second device group G2 from contaminated environments such as external dust. In addition, when the support 61 and/or the filling part 63 contains a heat dissipating material, the second element group G2 is prevented from deteriorating because the heat emitted from the second element group G2 can be radiated to the outside. Can be prevented.
  • FIGS. 48 and 49 represent the embodiment shown in FIG. 41, but the present invention is not limited thereto, and the second substrate 1002 and the second device group according to other embodiments ( It goes without saying that G2) can be sealed in the same way.
  • the second substrate 1002 is disposed perpendicularly to the first substrate 1001 and is coupled to the first substrate 1001, but the present invention is not limited thereto. .
  • the second substrate 1002 may be disposed in a horizontal state with respect to the first substrate 1001 to be coupled to the first substrate 1001. have.
  • the second electrical connection part 152 installed on the second substrate 1002 may have a structure capable of horizontally coupling the second substrate 1002 to the first substrate 1001.
  • the second electrical connection part 152 may have a structure that is not bent and extends in a vertical direction from the surface of the second substrate 1002.
  • the surface of the second substrate 1002 may be horizontally accommodated on the support of the flat box body, and may be molded with the filling portion 63.
  • the present invention can simply implement the detachable active EMI filter module 1000 provided in a modular form, and by mixing various materials into the filling part during the manufacturing process, the detachable active EMI filter module 1000 implements more improved functions. You can do it. For example, by adding insulation, heat transfer and/or heat dissipation material to the filling part, an additional configuration related to cooling may be implemented.
  • the support provided in the form of a hard case, not only can it provide physical protection for internal devices, but in some cases, a heat sink or other heat dissipation mechanism can be additionally installed on the support. The heat dissipation can be made smoothly.

Abstract

The present invention relates to a stand-alone active EMI filter module and a manufacturing method thereof, wherein the volume of each element constituting the EMI filter module can be reduced , thereby implementing a single module unit with a compact structure and improving EMI noise reduction performance.

Description

분리형 능동 EMI 필터 모듈Isolated active EMI filter module
실시예들은 분리형 능동 EMI 필터 모듈 및 그 제조방법에 관한 것이다.Embodiments relate to a separate active EMI filter module and a method of manufacturing the same.
일반적으로 가전용, 산업용 전기 제품이나 전기자동차와 같은 전기 기기들은 동작하는 동안 노이즈를 방출한다. 가령 전기 기기 내부의 스위칭 동작으로 인해 노이즈가 발생될 수 있다. 이러한 노이즈는 인체에 유해할 뿐만 아니라 연결된 다른 전자 기기의 오동작 또는 고장을 야기한다. In general, electric appliances such as home appliances, industrial electric appliances, and electric vehicles emit noise during operation. For example, noise may be generated due to the switching operation inside the electric device. Such noise is not only harmful to the human body, but also causes malfunction or failure of other connected electronic devices.
전자 기기가 다른 기기에 미치는 전자 장해를, EMI(Electromagnetic Interference)라고 하며, 그 중에서도, 와이어 및 기판 배선을 경유하여 전달되는 노이즈를 전도성 방출(Conducted Emission, CE) 노이즈라고 한다. Electromagnetic interference from an electronic device to other devices is referred to as EMI (Electromagnetic Interference), and among them, noise transmitted through wires and board wiring is referred to as Conducted Emission (CE) noise.
전자 기기가 주변 부품 및 다른 기기에 고장을 일으키지 않고 동작하도록 하기 위해서, 모든 전자 제품에서 EMI 노이즈 방출량을 엄격히 규제하고 있다. 따라서 대부분의 전자 제품들은, 노이즈 방출량에 대한 규제를 만족하기 위해, EMI 노이즈를 저감시키는 EMI 필터와 같은 전자파 노이즈 저감 장치를 필수적으로 포함한다. In order to ensure that electronic devices operate without causing breakdowns in peripheral components and other devices, EMI noise emission levels are strictly regulated in all electronic products. Therefore, most electronic products essentially include an electromagnetic wave noise reduction device such as an EMI filter that reduces EMI noise in order to satisfy the regulation on the amount of noise emission.
예를 들면, 에어컨과 같은 백색가전, 전기차, 항공, 에너지 저장 시스템(Energy Storage System, ESS) 등에서, 전류 보상 장치는 필수적으로 포함된다. 종래의 전류 보상 장치는, 전도성 방출(CE) 노이즈 중 공통 모드(Common Mode, CM) 노이즈를 저감시키기 위해 공통 모드 초크(CM choke)를 이용한다.For example, in white home appliances such as air conditioners, electric vehicles, aviation, energy storage systems (ESS), etc., a current compensation device is essentially included. A conventional current compensating device uses a common mode choke to reduce common mode (CM) noise among conductive emission (CE) noise.
그러나 공통 모드(CM) 초크는, 고전력/고전류 시스템에서, 자기 포화 현상에 의해 노이즈 저감 성능이 급격히 떨어지게 되는 문제가 있고, 노이즈 저감 성능을 유지하기 위해서, 공통 모드 초크의 사이즈를 키우거나 개수를 늘릴 경우, EMI 필터의 크기와 가격이 매우 증가하는 문제점이 발생하였다.However, the common mode (CM) choke has a problem in that the noise reduction performance is rapidly deteriorated due to self-saturation in a high power/high current system, and in order to maintain the noise reduction performance, the size or number of common mode chokes may be increased. In this case, there is a problem that the size and price of the EMI filter are greatly increased.
뿐만 아니라, 종래의 EMI 필터는 전체적으로 부피가 크고 장치들이 외부 환경에 그대로 노출되는 구조를 갖기 때문에, 외부 환경에 놓인 시스템에서 사용될 경우 장치들이 외부 충격이나 환경적 영향으로부터 쉽게 열화될 수 있고, 이는 필터의 특성에도 큰 영향을 미칠 수 있게 된다.In addition, since the conventional EMI filter is bulky as a whole and has a structure in which devices are exposed to the external environment as it is, when used in a system placed in an external environment, devices can be easily deteriorated from external shocks or environmental influences. It can have a great influence on the characteristics of
본 발명의 실시예는, 상기와 같은 문제 및/또는 한계를 해결하기 위한 것으로, 외부 환경으로부터 독립되고, 부피를 줄일 수 있는 독립 능동 EMI 필터 모듈 및 그 제조방법을 제공하는 데에 목적이 있다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.An embodiment of the present invention is to solve the above problems and/or limitations, and an object thereof is to provide an independent active EMI filter module capable of reducing the volume and being independent from an external environment, and a method of manufacturing the same. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
상기와 같은 목적을 달성하기 위하여, 일 실시예는, 서로 대향된 제1 면 및 제2 면을 포함하는 기판과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹과, 상기 기판, 제1 소자 그룹 및 제2 소자 그룹을 외부로부터 분리시키도록 구비된 봉지 구조체와, 상기 봉지 구조체의 외측으로 노출되고 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 제1 핀 그룹과, 상기 봉지 구조체의 외측으로 노출되고 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 제2 핀 그룹을 포함하는 독립 능동 EMI 필터 모듈을 제공할 수 있다.In order to achieve the above object, an embodiment is provided on a substrate including a first surface and a second surface facing each other, and installed on at least one surface of the first surface or the second surface, and detects electromagnetic noise. A first device group provided so as to be provided, a second device group provided on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic wave noise, the substrate, and the first device group And an encapsulation structure provided to separate the second device group from the outside, a first pin group exposed to the outside of the encapsulation structure and electrically connected to at least a portion of the first device group or the second device group, and the encapsulation It is possible to provide an independent active EMI filter module including a second pin group exposed to the outside of the structure and electrically connected to at least a portion of the first device group or the second device group.
상기 봉지 구조체는, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하고, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하도록 구비된 서포트와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부를 포함할 수 있다.The encapsulation structure includes a space part located therein and an opening connected to the space part, a support provided to receive at least one of the substrate, a first device group, and a second device group in the space part, and the space It may include a filling portion provided to fill at least a portion of the portion.
상기 제1 핀 그룹 또는 제2 핀 그룹 중 적어도 일부는 상기 개구를 통해 상기 서포트 외측으로 노출되도록 구비될 수 있다.At least a portion of the first pin group or the second pin group may be provided to be exposed to the outside of the support through the opening.
상기 충진부는 상기 개구를 폐쇄하도록 구비될 수 있다.The filling part may be provided to close the opening.
상기 충진부는, 상기 제1 면에 대향된 제1 충진부와, 상기 제2 면에 대향된 제2 충진부를 포함할 수 있다.The filling unit may include a first filling portion facing the first surface and a second filling portion facing the second surface.
상기 목적을 달성하기 위하여, 다른 일 실시예에 따르면, 서로 대향된 제1 면 및 제2 면을 포함하는 기판의 상기 제1 면 또는 제2 면 중 적어도 일 면에, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹을 설치하는 단계와, 상기 제1 면 또는 제2 면 중 적어도 일 면에, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹을 설치하는 단계와, 상기 기판, 제1 소자 그룹 및 제2 소자 그룹을 외부로부터 분리시키고, 상기 제1 소자 그룹과 전기적으로 연결된 제1 핀 그룹 및 상기 제2 소자 그룹과 전기적으로 연결된 제2 핀 그룹이 각각 외측으로 노출되도록 구비된 봉지 구조체를 형성하는 단계를 포함하는 독립 능동 EMI 필터 모듈의 제조 방법을 제공할 수 있다.In order to achieve the above object, according to another embodiment, provided to detect electromagnetic wave noise on at least one of the first or second surfaces of the substrate including the first and second surfaces facing each other. Installing a first device group; installing a second device group provided to generate a compensation signal for the electromagnetic wave noise on at least one of the first surface or the second surface; and the substrate; The first device group and the second device group are separated from the outside, and a first pin group electrically connected to the first device group and a second pin group electrically connected to the second device group are exposed to the outside. It is possible to provide a method for manufacturing an independent active EMI filter module including forming a structure.
상기 봉지 구조체를 형성하는 단계는, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하는 서포트를 준비하는 단계와, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하는 단계와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부를 형성하는 단계를 포함할 수 있다.The forming of the encapsulation structure may include preparing a support including a space part located therein and an opening connected to the space part, and at least one of the substrate, a first device group, or a second device group in the space part. And forming a filling portion provided to fill at least a portion of the space portion.
상기 봉지 구조체를 형성하는 단계는, 상기 제1 핀 그룹 또는 제2 핀 그룹 중 적어도 일부는 상기 개구를 통해 상기 서포트 외측으로 노출되도록 하는 단계를 더 포함할 수 있다.The forming of the encapsulation structure may further include exposing at least a portion of the first fin group or the second fin group to the outside of the support through the opening.
상기 충진부를 형성하는 단계는, 상기 충진부를 이용해 상기 개구를 폐쇄하는 단계를 더 포함할 수 있다.The forming of the filling part may further include closing the opening using the filling part.
상기 충진부를 형성하는 단계는, 상기 제1 면에 대향된 제1 충진부를 형성하는 단계와, 상기 제2 면에 대향된 제2 충진부를 형성하는 단계를 포함할 수 있다.The forming of the filling portion may include forming a first filling portion opposite to the first surface, and forming a second filling portion facing the second surface.
일 실시예는, 서로 대향된 제1 면 및 제2 면을 포함하는 기판과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹과, 상기 기판, 제1 소자 그룹 및 제2 소자 그룹을 외부로부터 분리시키도록 구비된 봉지 구조체와, 상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부와, 상기 연결부에 위치하고, 상기 봉지 구조체와 연결된 연결체와, 상기 봉지 구조체의 외측으로 노출되고 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 핀 그룹을 포함하는 독립 능동 EMI 필터 모듈을 제공할 수 있다.In an embodiment, a substrate including a first surface and a second surface facing each other, a first device group installed on at least one of the first surface or the second surface and provided to detect electromagnetic noise, Separation of a second device group, the substrate, the first device group, and the second device group from the outside, provided on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic noise An encapsulation structure provided so as to be formed, and a connection part provided to connect with the first and second surfaces, and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part, the An independent active EMI filter module including a connector connected to the encapsulation structure and a pin group exposed to the outside of the encapsulation structure and electrically connected to at least a portion of the first device group or the second device group may be provided.
상기 연결체는 상기 봉지 구조체의 적어도 일부와 결합될 수 있다.The connector may be combined with at least a portion of the encapsulation structure.
상기 봉지 구조체는, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하고, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하도록 구비된 서포트와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부를 포함할 수 있다.The encapsulation structure includes a space part located therein and an opening connected to the space part, a support provided to receive at least one of the substrate, a first device group, and a second device group in the space part, and the space It may include a filling portion provided to fill at least a portion of the portion.
상기 충진부는, 상기 제1 면에 대향된 제1 충진부와, 상기 제2 면에 대향된 제2 충진부를 포함하고, 상기 연결체는 상기 제1 충진부 및 제2 충진부를 연결하도록 구비될 수 있다.The filling portion may include a first filling portion facing the first surface and a second filling portion facing the second surface, and the connector may be provided to connect the first filling portion and the second filling portion. have.
또 다른 일 실시예에 따르면, 서로 대향된 제1 면 및 제2 면을 포함하는 기판의 상기 제1 면 또는 제2 면 중 적어도 일 면에, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹을 설치하는 단계와, 상기 제1 면 또는 제2 면 중 적어도 일 면에, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹을 설치하는 단계와, 상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부를 형성하는 단계와, 상기 기판, 제1 소자 그룹 및 제2 소자 그룹을 외부로부터 분리시키고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 핀 그룹이 외측으로 노출되도록 구비된 봉지 구조체를 형성하는 단계와, 상기 연결부에 위치하고, 상기 봉지 구조체와 연결된 연결체를 형성하는 단계를 포함하는 독립 능동 EMI 필터 모듈의 제조 방법을 제공할 수 있다.According to another embodiment, a first element group provided to detect electromagnetic wave noise is installed on at least one of the first or second surfaces of the substrate including the first and second surfaces opposite to each other And installing a second element group provided to generate a compensation signal for the electromagnetic wave noise on at least one of the first and second surfaces, and connecting the first and second surfaces Forming a connection part provided to prevent interference with at least one of the first device group or the second device group, and separating the substrate, the first device group, and the second device group from the outside, and Forming an encapsulation structure provided so that a pin group electrically connected to at least a portion of the first device group or the second device group is exposed to the outside, and forming a connector located at the connection portion and connected to the encapsulation structure It is possible to provide a method of manufacturing an independent active EMI filter module.
상기 연결체를 형성하는 단계는, 상기 연결체가 상기 봉지 구조체의 적어도 일부와 결합되도록 하는 단계를 포함할 수 있다.The step of forming the connector may include causing the connector to be coupled to at least a portion of the encapsulation structure.
상기 봉지 구조체를 형성하는 단계는, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하는 서포트를 준비하는 단계와, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하는 단계와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부를 형성하는 단계를 포함할 수 있다.The forming of the encapsulation structure may include preparing a support including a space part located therein and an opening connected to the space part, and at least one of the substrate, a first device group, or a second device group in the space part. And forming a filling portion provided to fill at least a portion of the space portion.
상기 충진부를 형성하는 단계는, 상기 제1 면에 대향된 제1 충진부를 형성하는 단계와, 상기 제2 면에 대향된 제2 충진부를 형성하는 단계를 포함하고, 상기 연결체를 형성하는 단계는, 상기 연결체는 상기 제1 충진부 및 제2 충진부를 연결하도록 하는 단계를 포함할 수 있다.The forming of the filling part includes forming a first filling part opposite to the first surface, and forming a second filling part opposite to the second surface, and forming the connector , The connector may include connecting the first filling part and the second filling part.
일 실시예는, 서로 대향된 제1 면 및 제2 면을 포함하는 기판과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹과, 상기 제1 면 또는 제2 면 중 적어도 일 면에 설치되고, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹과, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하고, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하도록 구비된 서포트와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부와, 상기 서포트와 연결된 접합부를 포함하는 독립 능동 EMI 필터 모듈을 제공할 수 있다.In an embodiment, a substrate including a first surface and a second surface facing each other, a first device group installed on at least one of the first surface or the second surface and provided to detect electromagnetic noise, A second element group installed on at least one of the first or second surfaces and provided to generate a compensation signal for the electromagnetic wave noise, a space located therein, and an opening connected to the space, Independent including a support provided to accommodate at least one of the substrate, a first device group, or a second device group in the space part, a filling part provided to fill at least a part of the space part, and a junction part connected to the support Active EMI filter module can be provided.
상기 충진부의 외측으로 노출되고 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 핀 그룹을 포함할 수 있다.It may include a pin group exposed to the outside of the filling part and electrically connected to at least a portion of the first device group or the second device group.
상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부와, 상기 연결부에 위치하고, 상기 충진부와 연결된 연결체를 더 포함할 수 있다.A connection unit provided to connect to the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and a connector located on the connection unit and connected to the filling unit. Can include.
상기 충진부는, 상기 제1 면에 대향된 제1 충진부와, 상기 제2 면에 대향된 제2 충진부를 포함할 수 있다.The filling unit may include a first filling portion facing the first surface and a second filling portion facing the second surface.
상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부와, 상기 연결부에 위치하고, 상기 충진부와 연결된 연결체를 더 포함하고, 상기 연결체는 상기 제1 충진부 및 제2 충진부를 연결하도록 구비될 수 있다.A connection unit provided to connect to the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and a connector located on the connection unit and connected to the filling unit. Including, and the connector may be provided to connect the first filling portion and the second filling portion.
또 다른 일 실시예에 따르면, 서로 대향된 제1 면 및 제2 면을 포함하는 기판의 상기 제1 면 또는 제2 면 중 적어도 일 면에, 전자파 노이즈를 감지하도록 구비된 제1 소자 그룹을 설치하는 단계와, 상기 제1 면 또는 제2 면 중 적어도 일 면에, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 제2 소자 그룹을 설치하는 단계와, 상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부를 형성하는 단계와, 내부에 위치한 공간부 및 상기 공간부와 연결된 개구를 포함하는 서포트를 준비하는 단계와, 상기 공간부에 상기 기판, 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나를 수용하는 단계와, 상기 공간부의 적어도 일부를 충진하도록 구비된 충진부를 형성하는 단계와, 상기 서포트와 연결된 접합부를 형성하는 단계를 포함하는 독립 능동 EMI 필터 모듈의 제조 방법을 제공할 수 있다.According to another embodiment, a first element group provided to detect electromagnetic wave noise is installed on at least one of the first or second surfaces of the substrate including the first and second surfaces opposite to each other And installing a second element group provided to generate a compensation signal for the electromagnetic wave noise on at least one of the first and second surfaces, and connecting the first and second surfaces Forming a connection part provided to prevent interference with at least one of the first device group or the second device group, and preparing a support including a space part located inside and an opening connected to the space part And, accommodating at least one of the substrate, a first device group, or a second device group in the space part, forming a filling part provided to fill at least a part of the space part, and a junction part connected to the support It is possible to provide a method of manufacturing an independent active EMI filter module including forming.
상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 일부와 전기적으로 연결된 핀 그룹을 상기 충진부의 외측으로 노출되도록 하는 단계를 포함할 수 있다.And exposing a pin group electrically connected to at least a portion of the first device group or the second device group to the outside of the filling unit.
상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부를 형성하는 단계와, 상기 연결부에 위치하고, 상기 충진부와 연결된 연결체를 형성하는 단계를 더 포함할 수 있다.Forming a connection part provided to connect with the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part and connected to the filling part. It may further include forming a connector.
상기 충진부를 형성하는 단계는, 상기 제1 면에 대향된 제1 충진부를 형성하는 단계와, 상기 제2 면에 대향된 제2 충진부를 형성하는 단계를 포함할 수 있다.The forming of the filling portion may include forming a first filling portion opposite to the first surface, and forming a second filling portion facing the second surface.
상기 제1 면 및 제2 면과 연결하도록 구비되고, 상기 제1 소자 그룹 또는 제2 소자 그룹 중 적어도 하나와 간섭되지 않도록 구비된 연결부를 형성하는 단계와, 상기 연결부에 위치하고, 상기 충진부와 연결된 연결체를 형성하는 단계를 더 포함하고, 상기 연결체를 형성하는 단계는, 상기 연결체는 상기 제1 충진부 및 제2 충진부를 연결하도록 하는 단계를 포함할 수 있다.Forming a connection part provided to connect with the first and second surfaces and provided so as not to interfere with at least one of the first device group or the second device group, and located at the connection part and connected to the filling part. The step of forming a connector may be further included, and the step of forming the connector may include connecting the first filling part and the second filling part to the connector.
일 실시예는, 전자파 노이즈를 감지하도록 구비된 노이즈 센싱부를 포함하는 제1 소자 그룹과, 상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 보상부를 포함하는 제2 소자 그룹을 포함하고, 상기 제1 그룹과 상기 제2 그룹은 서로 다른 기판에 각각 장착되도록 구비된 분리형 능동 EMI 필터 모듈을 제공할 수 있다.An embodiment includes a first device group including a noise sensing unit configured to detect electromagnetic noise, and a second device group including a compensation unit configured to generate a compensation signal for the electromagnetic noise, and the first The group and the second group may provide a separate active EMI filter module provided to be mounted on different substrates, respectively.
상기 제1 소자 그룹이 장착되는 제1 기판과, 상기 제2 소자 그룹이 장착되는 제2 기판과, 상기 제1 기판과 제2 기판의 사이에 개재되어 상기 제1 기판의 적어도 일부와 상기 제2 기판의 적어도 일부를 전기적으로 연결하는 제1 전기 연결부를 포함할 수 있다.A first substrate on which the first device group is mounted, a second substrate on which the second device group is mounted, and at least a portion of the first substrate and the second substrate are interposed between the first and second substrates. It may include a first electrical connection for electrically connecting at least a portion of the substrate.
상기 제2 기판에 결합되고 상기 제1 전기 연결부와 결합되도록 구비된 제2 전기 연결부를 포함할 수 있다.It may include a second electrical connection portion coupled to the second substrate and provided to be coupled to the first electrical connection portion.
상기 제2 전기 연결부는, 상기 제2 기판의 가장자리를 따라 인라인 상으로 구비될 수 있다.The second electrical connector may be provided in-line along an edge of the second substrate.
상기 제2 기판, 및 제2 소자 그룹을 외부로부터 분리시키도록 구비된 봉지 구조체를 더 포함할 수 있다.It may further include an encapsulation structure provided to separate the second substrate and the second device group from the outside.
상기한 바와 같은 본 발명의 실시예들에 따르면, EMI 필터 모듈을 구성하는 각 소자들의 부피를 줄일 수 있고, 이에 따라 콤팩트한 구조의 단일 모듈화를 구현할 수 있고, EMI 노이즈 저감 성능을 향상시킬 수 있다.According to the embodiments of the present invention as described above, it is possible to reduce the volume of each element constituting the EMI filter module, thereby implementing a single modularization of a compact structure, and improving the EMI noise reduction performance. .
또한, 봉지 구조체에 의해 외부 환경으로부터 분리된 독립 구조를 이룰 수 있고, 이에 따라 내구성을 더욱 향상시킬 수 있다. In addition, it is possible to achieve an independent structure separated from the external environment by the encapsulation structure, thereby further improving the durability.
단일 모듈화를 구현함에 따라 시스템 및/또는 다른 장치에 설치할 때에도 용이하게 조립 및 분해할 수 있고, 유지 보수에도 매우 뛰어난 성능을 나타낼 수 있다.By implementing a single modularization, it can be easily assembled and disassembled even when installed in a system and/or other device, and can exhibit very excellent performance in maintenance.
선택적으로 방열 기능을 부가할 수 있어, 소자 특성이 열화되는 것을 방지할 수 있고, 내구성을 향상시킬 수 있다.It is possible to selectively add a heat dissipation function, it is possible to prevent the device characteristics from deteriorating and improve durability.
부피가 큰 CM 초크를 사용하지 않거나 개수를 줄이도록 할 수 있어, 비용을 저감할 수 있다.It is possible to reduce the cost by not using bulky CM chokes or reducing the number.
봉지 구조체를 더욱 견고히 고정시킬 수 있으며, 봉지 구조체의 내구성을 향상시킬 수 있다.The sealing structure can be more firmly fixed, and the durability of the sealing structure can be improved.
접합부에 의해 기판이 보다 견고히 고정될 수 있고, 이에 따라 모듈의 내구성을 더욱 향상시킬 수 있다.The substrate can be more firmly fixed by the bonding portion, and thus the durability of the module can be further improved.
도 1은 일 실시예에 따른 독립 능동 EMI 필터 모듈의 구성도이다.1 is a block diagram of an independent active EMI filter module according to an embodiment.
도 2는 도 1의 독립 능동 EMI 필터 모듈의 일 실시예에 따른 단면을 개략적으로 나타낸 것이다.2 is a schematic cross-sectional view of the independent active EMI filter module of FIG. 1 according to an embodiment.
도 3은 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.3 is a diagram showing a more detailed configuration of an independent active EMI filter module according to an embodiment.
도 4는 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.4 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
도 5는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.5 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
도 6은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.6 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 7은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.7 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 8a 및 도 8b는 제1 핀 그룹 및 제2 핀 그룹의 배치 상태에 대한 서로 다른 실시예를 나타내는 저면도이다.8A and 8B are bottom views illustrating different embodiments of arrangement states of a first pin group and a second pin group.
도 9는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.9 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
도 10은 도 9에 도시된 실시예의 제1 핀 그룹 및 제2 핀 그룹의 배치 상태의 일 예를 나타내는 저면도이다.10 is a bottom view illustrating an example of an arrangement state of a first pin group and a second pin group according to the embodiment illustrated in FIG. 9.
도 11은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.11 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
도 12는 도 11에 도시된 실시예의 제1 핀 그룹 및 제2 핀 그룹의 배치 상태의 일 예를 나타내는 저면도이다.12 is a bottom view illustrating an example of an arrangement state of a first pin group and a second pin group according to the embodiment shown in FIG. 11.
도 13 내지 도 17은 실시예들에 따른 독립 능동 EMI 필터 모듈의 제조 과정을 나타내는 도면들이다.13 to 17 are diagrams illustrating a manufacturing process of an independent active EMI filter module according to embodiments.
도 18은 도 1의 독립 능동 EMI 필터 모듈의 다른 일 실시예에 따른 단면을 개략적으로 나타낸 것이다.18 is a schematic cross-sectional view of the independent active EMI filter module of FIG. 1 according to another embodiment.
도 19는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.19 is a diagram showing a more detailed configuration of an independent active EMI filter module according to another embodiment.
도 20은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.20 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 21은 도 20의 연결부 및 연결체의 일 실시예를 도시한 단면도이다.21 is a cross-sectional view illustrating an embodiment of the connection part and the connector of FIG. 20.
도 22는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.22 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 23a 및 도 23b는 제1 핀 그룹 및 제2 핀 그룹의 배치 상태에 대한 서로 다른 실시예를 나타내는 저면도이다.23A and 23B are bottom views illustrating different embodiments of arrangement states of a first pin group and a second pin group.
도 24는 도 9에 도시된 실시예의 또 다른 핀의 배치 상태의 예를 나타내는 저면도이다.FIG. 24 is a bottom view showing another example of the arrangement of pins according to the embodiment shown in FIG. 9.
도 25는 도 11에 도시된 실시예의 또 다른 핀의 배치 상태의 예를 나타내는 저면도이다.FIG. 25 is a bottom view showing another example of the arrangement of pins according to the embodiment shown in FIG. 11.
도 26 내지 도 27은 또 다른 실시예들에 따른 독립 능동 EMI 필터 모듈의 제조 과정을 나타내는 도면들이다.26 to 27 are diagrams illustrating a manufacturing process of an independent active EMI filter module according to still other embodiments.
도 28는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 제조 과정의 일부를 나타내는 도면이다.28 is a diagram illustrating a part of a manufacturing process of an independent active EMI filter module according to another embodiment.
도 29은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.29 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 30는 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.30 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 31는 일 실시예에 따른 독립 능동 EMI 필터 모듈의 저면도이다.31 is a bottom view of an independent active EMI filter module according to an embodiment.
도 32은 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 저면도이다.32 is a bottom view of an independent active EMI filter module according to another embodiment.
도 33은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.33 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 34은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈의 단면도이다.34 is a cross-sectional view of an independent active EMI filter module according to another embodiment.
도 35는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 구성도이다.35 is a configuration diagram of a separate active EMI filter module according to another embodiment.
도 36은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 보다 구체적인 구성을 도시한 도면이다.36 is a view showing a more detailed configuration of a separate active EMI filter module according to another embodiment.
도 37은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 제1 기판을 나타내는 평면 구성도이다. 37 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
도 38는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈에서, 제1 기판에 제2 기판이 결합된 측면도이다.38 is a side view illustrating a second substrate coupled to a first substrate in a separate active EMI filter module according to another exemplary embodiment.
도 39은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 제1 기판을 나타내는 평면 구성도이다. 39 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
도 40는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈에서, 제1 기판에 제2 기판이 결합된 측면도이다.40 is a side view illustrating a second substrate coupled to a first substrate in a separate active EMI filter module according to another embodiment.
도 41은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 제1 기판을 나타내는 평면 구성도이다.41 is a plan configuration diagram illustrating a first substrate of a separate active EMI filter module according to another embodiment.
도 42은 또 다른 일 실시예에 따라 제1 기판에 제2 기판이 결합된 측면도이다.42 is a side view illustrating a second substrate coupled to a first substrate according to another exemplary embodiment.
도 43은 또 다른 일 실시예에 따라 제1 기판에 제2 기판이 결합된 측면도이다.43 is a side view illustrating a second substrate coupled to a first substrate according to another embodiment.
도 44은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 보다 구체적인 예를 도시한 것이다.44 shows a more specific example of a separate active EMI filter module according to another embodiment.
도 45은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 보다 구체적인 예를 도시한 것이다.45 illustrates a more specific example of a separate active EMI filter module according to another embodiment.
도 46는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 보다 구체적인 예를 도시한 것이다.46 illustrates a more specific example of a separate active EMI filter module according to another embodiment.
도 47은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 보다 구체적인 예를 도시한 것이다.47 illustrates a more specific example of a separate active EMI filter module according to another embodiment.
도 48은 일 실시예에 따른 분리형 능동 EMI 필터 모듈의 일부 단면도이다.48 is a partial cross-sectional view of a separate active EMI filter module according to an embodiment.
도 49는 도 48에 도시된 실시예에 따른 분리형 능동 EMI 필터 모듈의 일부 사시도이다.49 is a partial perspective view of a detachable active EMI filter module according to the embodiment shown in FIG. 48.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. Since the present invention can apply various transformations and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. Effects and features of the present invention, and a method of achieving them will be apparent with reference to the embodiments described later in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when describing with reference to the drawings, the same or corresponding components are assigned the same reference numerals, and redundant descriptions thereof will be omitted .
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular expression includes the plural expression unless the context clearly indicates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as include or have means that the features or elements described in the specification are present, and do not preclude the possibility of adding one or more other features or elements in advance.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a part such as a film, a region, or a component is on or on another part, not only the case directly above the other part, but also another film, region, component, etc. are interposed therebetween This includes cases where there is.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다. When a certain embodiment can be implemented differently, a specific process order may be performed differently from the described order. For example, two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to the described order.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the following embodiments are not necessarily limited to those shown.
도 1은 일 실시예에 따른 EMI 필터 모듈의 구성도이다.1 is a block diagram of an EMI filter module according to an embodiment.
일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은, 기판(10)과, 기판(10)에 설치된 제1 소자 그룹(11), 제2 소자 그룹(12), 핀 그룹을 포함할 수 있다.The independent active EMI filter module 1 according to an embodiment may include a substrate 10, a first element group 11, a second element group 12, and a pin group installed on the substrate 10. .
상기 기판(10)은 적어도 일 면에 도전 패턴이 형성된 절연 및/또는 도전성 기판일 수 있는 데, 일 실시예에 따르면 평판상으로 구비된 인쇄회로기판일 수 있다. 상기 기판(10)은 리지드한 또는 플렉시블한 인쇄회로기판일 수 있다.The substrate 10 may be an insulating and/or conductive substrate having a conductive pattern formed on at least one surface thereof. According to an embodiment, the substrate 10 may be a printed circuit board provided in a flat plate shape. The substrate 10 may be a rigid or flexible printed circuit board.
이러한 기판(10)에는 제1 관통선(21) 및 제2 관통선(22)이 지나간다. 상기 제1 관통선(21) 및 제2 관통선(22)은 전력선과 전기적으로 연결될 수 있는 데, 제1 관통선(21)은 라이브선(Live line, L)과 제2 관통선(22)은 중성선(Neutral line, N)과 각각 전기적으로 연결될 수 있다.A first through line 21 and a second through line 22 pass through the substrate 10. The first through line 21 and the second through line 22 may be electrically connected to a power line, and the first through line 21 is a live line (L) and a second through line 22 Silver may be electrically connected to a neutral line (N), respectively.
일 실시예에 따르면, 상기 제1 관통선(21) 및 제2 관통선(22)은 각각 상기 기판(10)을 일단에서 타단으로 전기적으로 통과하도록 형성된 도전 패턴일 수 있다. 상기 도전 패턴은 반드시 직선상으로 연장되는 것에 한정되는 것은 아니고, 복합적인 경로로 연장될 수 있다.According to an embodiment, each of the first through line 21 and the second through line 22 may be a conductive pattern formed to electrically pass through the substrate 10 from one end to the other end. The conductive pattern is not necessarily limited to extending in a straight line, and may be extended in a complex path.
상기와 같은 전력선인 제1 관통선(21) 및 제2 관통선(22)은 핀 그룹과 전기적으로 연결될 수 있는 데, 구체적으로, 제1 핀 그룹(14)과 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제1 핀 그룹(14)은 제1-1 핀(141) 내지 제1-4 핀(144)을 포함할 수 있다.The first through line 21 and the second through line 22, which are power lines as described above, may be electrically connected to the pin group, and specifically, may be electrically connected to the first pin group 14. According to an embodiment, the first pin group 14 may include the 1-1th pins 141 to 1-4th pins 144.
상기 제1-1 핀(141)은 제1 관통선(21)의 일단과 전기적으로 연결되고, 상기 제1-2 핀(142)은 제1 관통선(21)의 타단과 전기적으로 연결될 수 있다.The 1-1 pin 141 may be electrically connected to one end of the first through line 21, and the 1-2 pin 142 may be electrically connected to the other end of the first through line 21. .
상기 제1-3 핀(143)은 제2 관통선(22)의 일단과 전기적으로 연결되고, 상기 제1-4 핀(144)은 제2 관통선(22)의 타단과 전기적으로 연결될 수 있다.The 1-3th pin 143 may be electrically connected to one end of the second through line 22, and the 1-4 pin 144 may be electrically connected to the other end of the second through line 22. .
일 실시예에 따르면, 상기 제1-1 핀(141) 및 제1-3 핀(143)은 독립 능동 EMI 필터 모듈(1)의 외측에 위치하는 제1 장치(2)에 전기적으로 연결될 수 있다.According to an embodiment, the 1-1 pin 141 and the 1-3 pin 143 may be electrically connected to the first device 2 positioned outside the independent active EMI filter module 1. .
상기 제1 장치(2)는 독립 능동 EMI 필터 모듈(1)에 전원을 전류 및/또는 전압의 형태로 공급하기 위한 다양한 형태의 장치일 수 있다. 가령 제1 장치(2)는 전원을 생산하여 공급하는 장치일 수도 있고, 다른 장치에 의해 생성된 전원을 공급하는 장치(예컨대 전기 자동차 충전 장치)일 수도 있다. 물론 제1 장치(2)는 저장된 에너지를 공급하는 장치일 수도 있다. 다만 이는 예시적인 것으로, 본 발명의 사상이 이에 한정되는 것은 아니다.The first device 2 may be various types of devices for supplying power to the independent active EMI filter module 1 in the form of current and/or voltage. For example, the first device 2 may be a device that produces and supplies power, or may be a device that supplies power generated by another device (for example, an electric vehicle charging device). Of course, the first device 2 may be a device that supplies stored energy. However, this is exemplary, and the spirit of the present invention is not limited thereto.
일 실시예에 따르면, 상기 제1-2 핀(142) 및 제1-4 핀(144)은 독립 능동 EMI 필터 모듈(1) 외측에 위치하는 제2 장치(3)에 전기적으로 연결될 수 있다.According to an embodiment, the 1-2 pins 142 and 1-4 pins 144 may be electrically connected to the second device 3 located outside the independent active EMI filter module 1.
상기 제2 장치(3)는 상기 제1 장치(2)가 공급하는 전원을 사용하는 다양한 형태의 장치 및/또는 부하일 수 있다. 상기 제2 장치(3)는 제1 장치(2)가 공급하는 전원을 이용하여 구동되는 부하일 수 있다. 상기 제2 장치(3)는 제1 장치(2)가 공급하는 전원을 이용하여 에너지를 저장하고, 저장된 에너지를 이용하여 구동되는 부하(예컨대 전기 자동차의 적어도 일 구성)일 수 있다. 다만 이는 예시적인 것으로, 본 발명의 사상이 이에 한정되는 것은 아니다.The second device 3 may be various types of devices and/or loads using power supplied by the first device 2. The second device 3 may be a load driven by using power supplied by the first device 2. The second device 3 may be a load (eg, at least one component of an electric vehicle) that stores energy using power supplied by the first device 2 and is driven using the stored energy. However, this is exemplary, and the spirit of the present invention is not limited thereto.
상기 제1 관통선(21) 및 제2 관통선(22) 각각은 제2 장치(3)에서 발생한 전자파 노이즈가 제1 장치(2)로 전달되는 경로일 수 있다. 이 때, 상기 전자파 노이즈는 상기 제1 관통선(21) 및 제2 관통선(22) 각각에 대해 공통 모드로 입력될 수 있다.Each of the first through line 21 and the second through line 22 may be a path through which electromagnetic noise generated by the second device 3 is transmitted to the first device 2. In this case, the electromagnetic wave noise may be input to each of the first and second through lines 21 and 22 in a common mode.
상기 제1 소자 그룹(11)은 상기 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결된 적어도 하나의 소자를 포함하는 것일 수 있다. 일 실시예에 따르면, 상기 제1 소자 그룹(11)은 제2 장치(3)로부터 발생되는 전자파 노이즈를 감지하도록 구비된 소자를 포함할 수 있다.The first device group 11 may include at least one device electrically connected to the first through line 21 and the second through line 22. According to an embodiment, the first device group 11 may include a device provided to detect electromagnetic wave noise generated from the second device 3.
상기 제2 소자 그룹(12)은 상기 제1 소자 그룹(11), 상기 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결된 적어도 하나의 소자를 포함하는 것일 수 있다. The second device group 12 may include at least one device electrically connected to the first device group 11, the first through line 21 and the second through line 22.
일 실시예에 따르면, 상기 제2 소자 그룹(12)은 능동 회로부(121) 및 보상부(122)를 포함할 수 있다.According to an embodiment, the second device group 12 may include an active circuit unit 121 and a compensation unit 122.
일 실시예에 따르면, 상기 능동 회로부(121)는 증폭기 역할을 수행할 수 있는 데, 제1 소자 그룹(11)을 통해 감지된 전자파 노이즈에 대응되는 전류를 일정 비율로 증폭시킬 수 있다. According to an embodiment, the active circuit unit 121 may serve as an amplifier, and may amplify a current corresponding to electromagnetic wave noise sensed through the first element group 11 at a predetermined ratio.
일 실시예에 따르면, 상기 능동 회로부(121)는 전자파 노이즈에 대응하는 전류와 크기가 동일하고 위상이 반대인 증폭 전류를 생성하고, 이를 보상부(122)를 통해 제1 관통선(141) 및/또는 제2 관통선(142)으로 흘려 노이즈를 보상할 수 있다.According to an embodiment, the active circuit unit 121 generates an amplified current having the same magnitude as the current corresponding to the electromagnetic wave noise and opposite to the phase, and this through the compensation unit 122, the first through line 141 and the / Or it may flow through the second through line 142 to compensate for noise.
즉, 능동 회로부(121)를 통해 증폭된 전류는 보상부(122)로 흐르며, 보상부(122)에서 보상 전류를 제1 관통선(141) 및/또는 제2 관통선(142)으로 흐르도록 한다. That is, the current amplified through the active circuit unit 121 flows to the compensation unit 122, and the compensation current flows from the compensation unit 122 to the first through line 141 and/or the second through line 142. do.
능동 회로부(121) 및 보상부(122)를 구성하는 보다 구체적인 실시예는 후술한다.More specific embodiments of configuring the active circuit unit 121 and the compensation unit 122 will be described later.
한편, 상기 제1 소자 그룹(11) 및/또는 제2 소자 그룹(12)은 제3 장치(4)와 전기적으로 연결될 수 있다Meanwhile, the first device group 11 and/or the second device group 12 may be electrically connected to the third device 4.
상기 제3 장치(4)는 기판(10)의 외측으로 돌출되는 핀 그룹과 전기적으로 연결될 수 있다. 구체적으로 상기 제3 장치(4)는 제2 핀 그룹(15)을 통해 제1 소자 그룹(11) 및/또는 제2 소자 그룹(12)에 전기적으로 연결될 수 있다. The third device 4 may be electrically connected to a pin group protruding out of the substrate 10. Specifically, the third device 4 may be electrically connected to the first device group 11 and/or the second device group 12 through the second pin group 15.
일 실시예에 따르면, 이러한 제3 장치(4)는 상기 능동 회로부(121)에 전원을 제공하는 장치를 포함할 수 있다. 예컨대, 상기 제3 장치(4)는 능동 회로부(121)의 입력 전원을 생성하는 장치를 포함할 수 있으며, 상기 입력 전원은 DC 전원을 포함할 수 있다.According to one embodiment, this third device 4 may include a device that provides power to the active circuit unit 121. For example, the third device 4 may include a device that generates input power of the active circuit unit 121, and the input power may include DC power.
상기 제2 핀 그룹(15)은 전력선인 제1 관통선(141) 및/또는 제2 관통선(142)에 직접적으로 연결되지 않은 핀들을 포함할 수 있는 데, 전술한 바와 같이 제3 장치(4)와 전기적으로 연결되고, 및/또는 접지의 용도로 사용되는 핀들을 포함할 수 있다. 구체적인 예는 후술한다.The second pin group 15 may include pins that are not directly connected to the first through line 141 and/or the second through line 142, which is a power line. As described above, the third device ( 4) and electrically connected to, and/or may include pins used for grounding purposes. A specific example will be described later.
도 2는 상기와 같은 구성의 독립 능동 EMI 필터 모듈(1)의 일 실시예에 따른 단면을 개략적으로 나타낸 것이다.2 schematically shows a cross-section according to an embodiment of the independent active EMI filter module 1 having the above configuration.
도 2에 도시된 바와 같은 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 서로 대향된 제1 면(101) 및 제2 면(102)을 갖는 기판(10)을 포함할 수 있다. 상기 제1 면(101) 및 제2 면(102)은 도전성 패턴을 포함할 수 있으며, 제1 면(101) 및 제2 면(102)의 도전성 패턴들은 적어도 일부 서로 전기적으로 연결된 것일 수 있다.The independent active EMI filter module 1 according to the exemplary embodiment as shown in FIG. 2 may include a substrate 10 having a first surface 101 and a second surface 102 facing each other. The first surface 101 and the second surface 102 may include a conductive pattern, and at least some of the conductive patterns of the first surface 101 and the second surface 102 may be electrically connected to each other.
이러한 기판(10)의 제1 면(101)에는 제3 소자 그룹(103)이 설치될 수 있고, 대향되는 제2 면(102)에는 제4 소자 그룹(104)이 설치될 수 있다. 상기 제3 소자 그룹(103)과 제4 소자 그룹(104)은 각각 적어도 하나의 소자들을 포함할 수 있는 데, 적어도 일부끼리 서로 전기적으로 연결될 수 있다.The third device group 103 may be installed on the first surface 101 of the substrate 10, and the fourth device group 104 may be installed on the opposite second surface 102. Each of the third device group 103 and the fourth device group 104 may include at least one device, and at least some of them may be electrically connected to each other.
일 실시예에 따르면, 상기 제3 소자 그룹(103)에 속하는 소자들의 적어도 일부는 상기 제4 소자 그룹(104)에 속하는 소자들의 적어도 일부보다 부피가 큰 것일 수 있다. 상기 제3 소자 그룹(103)은 전체적으로 상기 제4 소자 그룹(104)보다 부피가 클 수 있다. 이에 따라 모듈 설계에 안정성을 줄 수 있고, 특히 부피가 큰 제3 소자 그룹(103)의 봉지 구조체(13)에 의한 절연 특성을 더욱 높일 수 있다.According to an embodiment, at least some of the devices belonging to the third device group 103 may be bulkier than at least some of the devices belonging to the fourth device group 104. The third device group 103 may have a larger volume than the fourth device group 104 as a whole. Accordingly, it is possible to provide stability to the module design, and in particular, the insulating characteristics of the encapsulating structure 13 of the third device group 103 having a large volume can be further improved.
일 실시예에 따르면, 상기 제3 소자 그룹(103)은 도 1에 도시된 제1 소자 그룹(11) 및/또는 보상부(122)를 포함할 수 있다. According to an embodiment, the third device group 103 may include the first device group 11 and/or the compensation unit 122 illustrated in FIG. 1.
다른 일 실시예에 따르면, 상기 제4 소자 그룹(104)은 도 1에 도시된 능동 회로부(121)를 포함할 수 있다.According to another embodiment, the fourth device group 104 may include the active circuit unit 121 shown in FIG. 1.
전술한 제1 핀 그룹(14) 및 제2 핀 그룹(15)은 기판(10)의 일 면에 수직한 방향으로 돌출되도록 설치될 수 있는 데, 일 실시예에 따르면, 기판(10)의 제2 면(102)에 돌출 설치될 수 있다. 상기 제1 핀 그룹(14) 및 제2 핀 그룹(15)은 부피가 상대적으로 작은 제4 소자 그룹(104)이 설치된 면에 설치되는 것이 바람직하며, 이에 따라 각 핀들의 돌출 길이를 작게 가져갈 수 있다.The first pin group 14 and the second pin group 15 described above may be installed to protrude in a direction perpendicular to one surface of the substrate 10. According to an embodiment, the first pin group 14 and the second pin group 15 It may be installed protruding on the two sides (102). The first pin group 14 and the second pin group 15 are preferably installed on the surface on which the fourth element group 104 having a relatively small volume is installed, and accordingly, the protruding length of each pin can be reduced. have.
일 실시예에 따르면, 상기 기판(10), 제3 소자 그룹(103) 또는 제4 소자 그룹(104) 중 적어도 하나는 봉지 구조체(13)에 의해 외부로부터 분리될 수 있다. 상기 봉지 구조체(13)는 기판(10), 제3 소자 그룹(103) 또는 제4 소자 그룹 중 적어도 하나를 외부와 분리시킬 수 있는 다양한 절연 봉지 구조를 포함할 수 있으며, 절연성 소재에 의해 형성될 수 있다.According to an embodiment, at least one of the substrate 10, the third device group 103, or the fourth device group 104 may be separated from the outside by the encapsulation structure 13. The encapsulation structure 13 may include various insulating encapsulation structures capable of separating at least one of the substrate 10, the third device group 103, or the fourth device group from the outside, and may be formed of an insulating material. I can.
도 2에서 상기 봉지 구조체(13)는 기판(10), 제3 소자 그룹(103) 및 제4 소자 그룹(104)을 모두 봉지하도록 구비되어 있으나, 본 발명이 반드시 이에 한정되는 것은 아니고, 제3 소자 그룹(103)과 기판(10)의 일부 또는 제4 소자 그룹(104)과 기판(10)의 일부를 봉지하는 구조를 각각 포함할 수 있다.In FIG. 2, the encapsulation structure 13 is provided to encapsulate all of the substrate 10, the third device group 103, and the fourth device group 104, but the present invention is not limited thereto, and the third A structure for encapsulating the device group 103 and a part of the substrate 10 or the fourth device group 104 and a part of the substrate 10 may be included, respectively.
상기 제1 핀 그룹(14) 및 제2 핀 그룹(15)은 그 단부가 각각 상기 봉지 구조체(13)의 외측으로 노출되도록 돌출 형성될 수 있다. 도 2에 도시된 바와 같이 제1 핀 그룹(14) 및 제2 핀 그룹(15)이 직접 돌출될 수도 있으나, 반드시 이에 한정되는 것은 아니고 제1 핀 그룹(14) 및 제2 핀 그룹(15)과 각각 전기적으로 연결된 별도의 터미널이 노출되도록 구비될 수 있다.The first fin group 14 and the second fin group 15 may be formed to protrude so that their ends are exposed to the outside of the encapsulation structure 13, respectively. As shown in FIG. 2, the first pin group 14 and the second pin group 15 may directly protrude, but are not limited thereto, and the first pin group 14 and the second pin group 15 Separate terminals electrically connected to and may be provided so as to be exposed.
도 3은 일 실시예에 따른 상기 제1 소자 그룹(11) 및 제2 소자 그룹(12)의 보다 구체적인 예를 도시한 것이다.3 illustrates a more specific example of the first device group 11 and the second device group 12 according to an embodiment.
일 실시예에 따르면, 기판(10)을 관통하도록 제1 관통선(21) 및 제2 관통선(22)이 지나가도록 설계될 수 있다. According to an embodiment, the first through line 21 and the second through line 22 may be designed to pass through the substrate 10.
제1 관통선(21)의 양단은 제1-1 핀(141) 및 제1-2 핀(142)에 연결된다. 그리고 제2 관통선(22)의 양단은 제1-3 핀(143) 및 제1-4 핀(144)에 연결된다.Both ends of the first through line 21 are connected to the 1-1 pin 141 and the 1-2 pin 142. In addition, both ends of the second through line 22 are connected to the 1-3th pins 143 and the 1-4th pins 144.
일 실시예에 따르면, 상기 제1 소자 그룹(11)은, 노이즈를 센싱할 수 있는 센싱 변압기를 포함할 수 있다.According to an embodiment, the first element group 11 may include a sensing transformer capable of sensing noise.
상기 센싱 변압기는, 전력선인 제1 관통선(21) 및 제2 관통선(22)에 연결된 각각 전기적으로 연결된 제1 기준 권선(111) 및 제2 기준 권선(112)과, 상기 제1,2 기준 권선(111)(112)과 동일한 코어에 형성된 센싱 권선(110)을 포함할 수 있다.The sensing transformer includes a first reference winding 111 and a second reference winding 112 electrically connected to a first through line 21 and a second through line 22, which are power lines, respectively, and the first and second reference windings. It may include a sensing winding 110 formed on the same core as the reference windings 111 and 112.
상기 제1 기준 권선(111) 및 제2 기준 권선(112)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(110)은 2차 권선이 될 수 있다. The first reference winding 111 and the second reference winding 112 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
상기 제1 기준 권선(111) 및 제2 기준 권선(112)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(111) 또는 제2 기준 권선(112) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. The first reference winding 111 and the second reference winding 112 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 or the second reference winding At least one of 112 may have a structure passing through the core.
센싱 권선(110)은 제1 기준 권선(111) 및 제2 기준 권선(112)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조일 수 있다.The sensing winding 110 may have a structure in which the first and second reference windings 111 and 112 are wound and/or wound around a core at least once or more.
이러한 센싱 권선(110)은 전력선인 1차 권선과 전기적으로 절연되며, 제2 장치(3)로부터 발생된 노이즈 전류가 감지되고, 노이즈 전류로부터 일정 비율로 변환된 전류가 유도될 수 있다.The sensing winding 110 is electrically insulated from the primary winding, which is a power line, a noise current generated from the second device 3 is sensed, and a current converted from the noise current at a predetermined ratio may be induced.
상기 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
예컨대 제1 기준 권선(111)에 노이즈인 제1 전류가 입력 됨에 따라 코어에는 제1 자속 밀도가 유도될 수 있다. 이와 유사하게, 제2 기준 권선(112)에 제1 전류가 입력 됨에 따라 코어에는 제2 자속 밀도가 유도될 수 있다. For example, as a first current, which is noise, is input to the first reference winding 111, a first magnetic flux density may be induced in the core. Similarly, as the first current is input to the second reference winding 112, a second magnetic flux density may be induced in the core.
유도된 제1,2 자속 밀도에 의해 제2 차측인 센싱 권선(110)에는 제1 유도 전류가 유도될 수 있다.A first induced current may be induced in the sensing winding 110 that is the second secondary side by the induced first and second magnetic flux densities.
이 때 센싱 변압기는 제1 전류에 의해 유도되는 제1 자속 밀도와 제2 자속 밀도가 서로 중첩될 수 있게(또는 서로 보강할 수 있게) 구성되어, 제1 관통선(21) 및 제2 관통선(22)과 절연된 제2 차 측, 즉, 센싱 권선(110)에서 제1 전류와 대응되는 제1 유도 전류를 생성할 수 있다.At this time, the sensing transformer is configured so that the first magnetic flux density and the second magnetic flux density induced by the first current may overlap (or reinforce each other), and the first through line 21 and the second through line A first induced current corresponding to the first current may be generated in the second secondary side insulated from 22, that is, the sensing winding 110.
한편 제1 기준 권선(111), 제2 기준 권선(112) 및 센싱 권선(110)이 코어에 권취되는 수는, 독립 능동 EMI 필터 모듈(1)이 사용되는 시스템의 요구 조건에 따라 적절히 결정될 수 있다. Meanwhile, the number of the first reference winding 111, the second reference winding 112, and the sensing winding 110 wound around the core may be appropriately determined according to the requirements of the system in which the independent active EMI filter module 1 is used. have.
예를 들어, 제1 기준 권선(111) 및 제2 기준 권선(112)인 1차 권선과 센싱 권선(110)인 2차 권선의 권선비가 1:Nsen일 수 있다. 또한 센싱 변압기의 1차 권선의 셀프 인덕턴스가 Lsen이라고 하면, 2차 권선은, Nsen 2·Lsen의 셀프 인덕턴스를 가질 수 있다. 센싱 변압기(120)의 1차 권선과 2차 권선은, ksen의 결합 계수(coupling coefficient)로 결합될 수 있다.For example, the first and second reference windings 111 and 112 of the primary winding and the sensing winding 110 may have a winding ratio of 1:N sen . In addition, if the self-inductance of the primary winding of the sensing transformer is L sen , the secondary winding can have a self inductance of N sen 2 ·L sen . The primary and secondary windings of the sensing transformer 120 may be combined with a coupling coefficient of k sen .
한편 전술한 센싱 변압기는 제1 관통선(21) 및 제2 관통선(22) 각각에 흐르는 통상 전류인 제2 전류에 의해 유도되는 자속 밀도가 소정의 자속 밀도 조건을 만족하도록 구성될 수 있다.Meanwhile, the above-described sensing transformer may be configured such that a magnetic flux density induced by a second current, which is a normal current flowing through each of the first through line 21 and the second through line 22, satisfies a predetermined magnetic flux density condition.
즉, 제1 기준 권선(111) 및 제2 기준 권선(112)에 흐르는 제2 전류에 의해 코어에는 제3 자속 밀도 및 제4 자속 밀도가 각각 유도될 수 있다. 이 때, 제3 자속 밀도와 제4 자속 밀도는 서로 상쇄되는 조건일 수 있다.That is, the third magnetic flux density and the fourth magnetic flux density may be induced in the core by the second current flowing through the first and second reference windings 111 and 112, respectively. In this case, the third magnetic flux density and the fourth magnetic flux density may be conditions that cancel each other.
바꾸어 말하면, 센싱 변압기는 제1 관통선(21) 및 제2 관통선(22) 각각에 흐르는 통상 전류인 제2 전류에 의해 2차측인 센싱 권선(120)에 유도되는 제2 유도 전류를 소정의 임계 크기 미만이 되도록 할 수 있고, 이에 따라 센싱 변압기는 제2 전류에 의해 유도되는 자속 밀도들이 서로 상쇄될 수 있게 구성되어, 전술한 제1 전류만이 감지되도록 할 수 있다.In other words, the sensing transformer reduces the second induced current induced to the sensing winding 120, which is the secondary side, by a second current, which is a normal current flowing through each of the first through line 21 and the second through line 22. It may be set to be less than the threshold size, and accordingly, the sensing transformer may be configured such that the magnetic flux densities induced by the second current cancel each other, so that only the above-described first current may be sensed.
센싱 변압기는 제1 주파수 대역(예를 들어 150KHz 내지 30MHz의 범위를 갖는 대역)의 노이즈 전류인 제1 전류에 의해 유도되는 제1,2 자속 밀도의 크기가 제2 주파수 대역(예를 들어 50Hz 내지 60Hz의 범위를 갖는 대역)의 통상 전류인 제2 전류에 의해 유도되는 제3,4 자속 밀도의 크기보다 크도록 구성될 수 있다. In the sensing transformer, the magnitude of the first and second magnetic flux density induced by the first current, which is a noise current in the first frequency band (for example, a band having a range of 150 KHz to 30 MHz), is in the second frequency band (for example, 50 Hz to 30 MHz). It may be configured to be larger than the magnitude of the third and fourth magnetic flux densities induced by the second current, which is a typical current of a band having a range of 60 Hz).
본 발명에서 A 구성요소가 B 하도록 구성된다는 것은, A 구성요소의 디자인 파라미터가 B 하기에 적절하도록 설정되는 것을 의미할 수 있다. 가령 센싱 변압기가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 크도록 구성된다는 것은, 센싱 변압기의 크기, 코어의 직경, 권취 수, 인덕턴스의 크기, 및 상호 인덕턴스의 크기와 같은 파라미터가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 강하게 되도록 적절하게 설정된 것을 의미할 수 있다.In the present invention, that the component A is configured to be B may mean that the design parameter of the component A is set to be appropriate for B. For example, the fact that the sensing transformer is configured to have a large magnetic flux induced by the current in a specific frequency band means that parameters such as the size of the sensing transformer, the diameter of the core, the number of turns, the size of the inductance, and the magnitude of the mutual inductance are It may mean that it is appropriately set so that the magnitude of the magnetic flux induced by the current in the band becomes strong.
센싱 변압기의 제2차 측인 센싱 권선(110)은 제1 유도 전류를 능동 회로부(121)에 공급하기 위해, 도 3에 도시된 바와 같이 능동 회로부(121)의 입력단과 능동 회로부(121)의 기준전위를 연결하는 경로상에 배치될 수 있다.The sensing winding 110, which is the secondary side of the sensing transformer, supplies the first induced current to the active circuit unit 121, as shown in FIG. 3, the input terminal of the active circuit unit 121 and the reference of the active circuit unit 121 It can be placed on the path connecting the electric potential.
일 실시예에 따르면, 상기 능동 회로부(121)는 센싱 변압기에 의해 생성된 제1 유도 전류를 증폭하여 증폭 전류를 생성하기 위한 수단일 수 있다.According to an embodiment, the active circuit unit 121 may be a means for generating an amplified current by amplifying the first induced current generated by the sensing transformer.
일 실시예에 따르면, 상기 센싱 권선(110)은 능동 회로부(121)의 입력단과 차동(Differential)으로 연결될 수 있다.According to an embodiment, the sensing winding 110 may be differentially connected to an input terminal of the active circuit unit 121.
본 발명에서 능동 회로부(121)에 의한 증폭은 증폭 대상의 크기 및/또는 위상을 조절하는 것을 의미할 수 있다. 가령 능동 회로부(121)는 제1 유도 전류의 위상을 180도 변경하고, 크기를 k배(k>=1)만큼 증가시켜 증폭 전류를 생성할 수 있다.In the present invention, the amplification by the active circuit unit 121 may mean adjusting the size and/or phase of the amplification target. For example, the active circuit unit 121 may generate an amplified current by changing the phase of the first induced current by 180 degrees and increasing the magnitude by k times (k>=1).
능동 회로부(121)는 전술한 센싱 변압기의 변압 비율 및 후술하는 보상 변압기(1221)의 변압 비율을 고려하여 증폭 전류를 생성할 수 있도록 설계될 수 있다. 가령 제1 소자 그룹(11)의 센싱 변압기가, 노이즈 전류인 제1 전류에 대해, 크기가 1/F1 배인 제1 유도 전류로 변환하고, 보상 변압기(1221)가 증폭 전류에 대해, 크기가 1/F2 배가 되도록 보상 전류로 변환하는 경우, 능동 회로부(121)는 제1 유도 전류의 크기의 F1xF2배인 증폭 전류를 생성할 수 있다. The active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later. For example, the sensing transformer of the first element group 11 converts a first current, which is a noise current, into a first induced current whose magnitude is 1/F1 times, and the compensation transformer 1221 converts the magnitude of the amplified current to 1 When converting the compensation current to be multiplied by /F2, the active circuit unit 121 may generate an amplified current that is F1xF2 times the magnitude of the first induced current.
이때 능동 회로부(121)는 증폭 전류의 위상이 제1 유도 전류의 위상과 반대가 되도록 증폭 전류를 생성할 수 있다.At this time, the active circuit unit 121 may generate the amplified current so that the phase of the amplified current is opposite to the phase of the first induced current.
능동 회로부(121)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(121)는 OP AMP를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(121)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(121)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 증폭을 위한 수단은 본 발명의 능동 회로부(121)로 제한 없이 사용될 수 있다.The active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 121 of the present invention.
능동 회로부(121)는 제1 장치(2) 및/또는 제2 장치(3)와 구분되는 별도의 제3 장치(4)로부터 전원을 공급받아 제1 유도 전류를 증폭하여 증폭 전류를 생성할 수 있다. 이때 제3 장치(4)는 제1 장치(2) 및 제2 장치(3)와 무관한 전원으로부터 전원을 공급 받아 능동 회로부(121)의 입력 전원을 생성하는 장치일 수 있다. 또한 제3 장치(4)는 제1 장치(2) 및 제2 장치(3) 중 어느 하나의 장치로부터 전원을 공급 받아 능동 회로부(121)의 입력 전원을 생성하는 장치일 수도 있다. 능동 회로부(121)는 기판(10)에 결합되는 제2-1 핀(151)을 통해 제3 장치(4)와 전기적으로 연결될 수 있다.The active circuit unit 121 may generate an amplified current by amplifying the first induced current by receiving power from the third device 4 that is separate from the first device 2 and/or the second device 3. have. In this case, the third device 4 may be a device that receives power from a power source independent of the first device 2 and the second device 3 and generates input power to the active circuit unit 121. Also, the third device 4 may be a device that receives power from any one of the first device 2 and the second device 3 and generates input power to the active circuit unit 121. The active circuit unit 121 may be electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
상기 증폭 전류는, 보상부(122)를 통해 제1 관통선(141) 및/또는 제2 관통선(142)으로 흘러, 노이즈를 보상할 수 있다.The amplified current flows through the compensation unit 122 to the first through line 141 and/or the second through line 142 to compensate for noise.
일 실시예에 따르면, 상기 보상부(122)는, 보상 변압기(1221) 및 보상 커패시터부(1222)를 포함할 수 있다.According to an embodiment, the compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222.
상기 보상 변압기(1221)는, 능동 회로부(121)의 출력부에 위치한 1차 권선 및 보상 커패시터부(1222)와 전기적으로 연결된 2차 권선을 포함할 수 있다. 보상 변압기(1221)의 2차 권선은 보상 커패시터부(1222)를 개재한 상태로 전력선인 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결된다. 따라서, 능동 회로부(121)는 전력선으로부터 전기적으로 절연될 수 있고, 이에 따라 능동 회로부(121)를 보호할 수 있다.The compensation transformer 1221 may include a primary winding positioned at an output portion of the active circuit unit 121 and a secondary winding electrically connected to the compensation capacitor unit 1222. The secondary winding of the compensation transformer 1221 is electrically connected to the first through line 21 and the second through line 22 as power lines with the compensation capacitor unit 1222 interposed therebetween. Accordingly, the active circuit unit 121 may be electrically insulated from the power line, thereby protecting the active circuit unit 121.
보상 변압기(1221)는 전술한 제1 관통선(21) 및 제2 관통선(22)과 절연된 및/또는 독립된(isolated) 상태에서, 증폭 전류에 기초하여 제1 관통선(21) 및 제2 관통선(22) 측에(또는 후술하는 제2차 측에) 보상 전류를 생성하기 위한 수단일 수 있다.The compensation transformer 1221 is insulated from the first through line 21 and the second through line 22 and/or is isolated from the above-described first through line 21 and the second through line 22 based on the amplified current. 2 It may be a means for generating a compensating current on the side of the through line 22 (or on the secondary side to be described later).
보다 구체적으로, 보상 변압기(1221)는 능동 회로부(121)의 출력단과 능동 회로부(121)의 기준전위를 연결하는 경로 상에 배치되는 1 차 측에서, 능동 회로부(121)가 생성한 증폭 전류에 의해 유도되는 자속 밀도에 기초하여 2 차 측에 보상 전류를 생성할 수 있다. 상기 능동 회로부(121)의 기준전위(기준전위 2)는 제2-2 핀(152)을 통해 접지될 수 있다.More specifically, the compensation transformer 1221 is on the primary side disposed on the path connecting the output terminal of the active circuit unit 121 and the reference potential of the active circuit unit 121 to the amplified current generated by the active circuit unit 121 It is possible to generate a compensating current on the secondary side based on the magnetic flux density induced by it. The reference potential (reference potential 2) of the active circuit unit 121 may be grounded through the 2-2 pin 152.
이때 2 차측은 후술하는 보상 커패시터부(1222)와 독립 능동 EMI 필터 모듈(1)의 기준전위를 연결하는 경로상에 배치될 수 있다. 독립 능동 EMI 필터 모듈(1)의 기준전위(기준전위 1)는 제2-3 핀(153)을 통해 접지될 수 있다.In this case, the secondary side may be disposed on a path connecting the compensation capacitor unit 1222 to be described later and the reference potential of the independent active EMI filter module 1. The reference potential (reference potential 1) of the independent active EMI filter module 1 may be grounded through the 2-3rd pins 153.
이와 같이 보상 변압기(1221)는 능동 회로부(121)에 의해 생성된 증폭 전류를 제1 관통선(21) 및 제2 관통선(22)과 절연된 및/또는 독립된(isolated) 상태에서 제1 관통선(21) 및 제2 관통선(22) 측에 전달할 수 있다.In this way, the compensation transformer 1221 transmits the amplified current generated by the active circuit unit 121 to the first through line 21 and the second through line 22 in an insulated and/or isolated state. It can be transmitted to the line 21 and the second through line 22 side.
한편, 다른 일 실시예에 따르면, 상기 보상 변압기(1221)의 1 차측, 능동 회로부(121) 및 센싱 권선(110)은 독립 능동 EMI 필터 모듈(1)의 나머지 구성요소들과 구분되는 기준전위(기준전위 2)와 연결될 수 있다. 즉, 전술한 능동 회로부(121)의 기준전위(기준전위 2)와 독립 능동 EMI 필터 모듈(1)의 기준전위(기준전위 1)는 서로 구분되는 전위일 수 있다. On the other hand, according to another embodiment, the primary side of the compensation transformer 1221, the active circuit unit 121 and the sensing winding 110 are separated from the remaining components of the independent active EMI filter module 1 ( It can be connected to the reference potential 2). That is, the reference potential (reference potential 2) of the active circuit unit 121 and the reference potential (reference potential 1) of the independent active EMI filter module 1 may be different potentials.
이와 같이 본 발명의 일 실시예에 따르면, 보상 전류를 생성하는 구성요소에 대해서 나머지 구성요소와 상이한 기준전위를 사용하고, 별도의 전원을 사용함으로써 보상 전류를 생성하는 구성요소가 절연된 상태에서 동작하도록 할 수 있으며, 이로써 독립 능동 EMI 필터 모듈(1)의 신뢰도를 향상시킬 수 있다.As described above, according to an embodiment of the present invention, a component that generates a compensation current is operated in an insulated state by using a reference potential that is different from the other components, and by using a separate power source. In this way, the reliability of the independent active EMI filter module 1 can be improved.
전술한 바와 같이, 보상 변압기(1221)는, 능동 회로부(121)에 의해 증폭되어 보상 변압기(1221)의 1차측에 흐르는 전류를 일정 비율로 변환하여 보상 변압기(1221)의 2차측에 유도시킬 수 있다. As described above, the compensation transformer 1221 is amplified by the active circuit unit 121 and converts the current flowing through the primary side of the compensation transformer 1221 to a predetermined ratio and induces it to the secondary side of the compensation transformer 1221. have.
예를 들어, 보상 변압기(1221)에서, 1차측과 2차측의 권선비가 1:Ninj일 수 있다. 또한 보상 변압기(1221)의 1차측의 셀프 인덕턴스가 Linj이라고 하면, 보상 변압기의 2차측은, Ninj 2·Linj의 셀프 인덕턴스를 가질 수 있다. 보상 변압기(1221)의 1차 측과 2차측은, kinj의 결합 계수(coupling coefficient)로 결합될 수 있다. 보상 변압기(1221)를 통해 변환된 전류는, 보상 커패시터부(1222)를 통해 전력선인 제1 관통선(21) 및 제2 관통선(22)에 보상 전류(Icomp)로써 주입될 수 있다.For example, in the compensation transformer 1221, a turns ratio of a primary side and a secondary side may be 1:N inj . In addition, if the self-inductance of the primary side of the compensation transformer 1221 is L inj , the secondary side of the compensation transformer can have a self inductance of N inj 2 ·L inj . The primary side and the secondary side of the compensation transformer 1221 may be combined with a coupling coefficient of k inj . The current converted through the compensation transformer 1221 may be injected as a compensation current I comp into the first through line 21 and the second through line 22 which are power lines through the compensation capacitor unit 1222.
보상 커패시터부(1222)는 보상 변압기(1221)에 의해 생성된 전류가 제1 관통선(21) 및 제2 관통선(22) 각각으로 흐르는 경로를 제공하는 수단일 수 있다.The compensation capacitor unit 1222 may be a means for providing a path through which the current generated by the compensation transformer 1221 flows to each of the first and second through lines 21 and 22.
보상 커패시터부(1222)는 독립 능동 EMI 필터 모듈(1)의 기준전위(기준전위 1)와 제1 관통선(21) 및 제2 관통선(22) 각각을 연결하는 적어도 둘 이상의 보상 커패시터를 포함할 수 있다. 상기 각 보상 커패시터는 Y-커패시터(Y-capacitor, Y-cap)를 포함할 수 있다. 각 보상 커패시터의 일단은 보상 변압기(1221)의 2차측과 연결되는 노드를 공유하며, 타단은 각각 제1 관통선(21) 및 제2 관통선(22)과 연결되는 노드를 가질 수 있다.The compensation capacitor unit 1222 includes at least two compensation capacitors connecting each of the reference potential (reference potential 1) and the first through line 21 and the second through line 22 of the independent active EMI filter module 1 can do. Each of the compensation capacitors may include a Y-capacitor (Y-cap). One end of each compensation capacitor may share a node connected to the secondary side of the compensation transformer 1221, and the other end may have a node connected to the first through line 21 and the second through line 22, respectively.
보상 커패시터부(1222)는 적어도 둘 이상의 보상 커패시터를 통해 제1 관통선(21) 및 제2 관통선(22) 사이에 흐르는 전류가 소정의 제1 조건을 만족하도록 구성될 수 있다. 이때 소정의 제1 조건은 전류의 크기가 소정의 제1 임계 크기 미만인 조건일 수 있다.The compensation capacitor unit 1222 may be configured such that a current flowing between the first through line 21 and the second through line 22 through at least two compensation capacitors satisfies a first predetermined condition. In this case, the first predetermined condition may be a condition in which the magnitude of the current is less than the predetermined first threshold magnitude.
또한 보상 커패시터부(1222)는 적어도 둘 이상의 보상 커패시터를 통해 제1 관통선(21) 및 제2 관통선(22) 각각과 독립 능동 EMI 필터 모듈(1)의 기준전위(기준전위 1) 사이에 흐르는 전류가 소정의 제2 조건을 만족하도록 구성될 수 있다. 이때 소정의 제2 조건은 전류의 크기가 소정의 제2 임계 크기 미만인 조건일 수 있다.In addition, the compensation capacitor unit 1222 is between each of the first through line 21 and the second through line 22 and the reference potential (reference potential 1) of the independent active EMI filter module 1 through at least two compensation capacitors. The flowing current may be configured to satisfy a second predetermined condition. In this case, the second predetermined condition may be a condition in which the magnitude of the current is less than the predetermined second threshold magnitude.
보상 커패시터부(1222)를 따라 제1 관통선(21) 및 제2 관통선(22) 각각으로 흐르는 보상 전류는 제1 관통선(21) 및 제2 관통선(22) 상의 제1 전류를 상쇄시켜, 제1 전류가 전술한 제2 장치(2)로 전달되는 것을 방지할 수 있다. 이때 제1 전류와 보상 전류는 동일한 크기에 위상이 서로 반대인 전류일 수 있다.The compensation current flowing to each of the first through line 21 and the second through line 22 along the compensation capacitor part 1222 cancels out the first current on the first through line 21 and the second through line 22 Thus, it is possible to prevent the first current from being transmitted to the second device 2 described above. In this case, the first current and the compensation current may be currents having the same magnitude and opposite phases.
이로써 본 발명의 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 제1 장치(2)와 연결되는 적어도 둘 이상의 대전류 경로인 제1 관통선(21) 및 제2 관통선(22) 각각에 공통 모드로 입력되는 노이즈 전류인 제1 전류를 능동적으로 보상하여, 제1 장치(2)로 방출되는 노이즈 전류를 억제한다. 이를 통해 제2 장치(3) 및/또는 제1 장치(2)와 연결되는 다른 장치들의 오동작이나 파손을 방지할 수 있다.Accordingly, the independent active EMI filter module 1 according to an embodiment of the present invention is provided in each of the first through line 21 and the second through line 22, which are at least two high current paths connected to the first device 2. The first current, which is a noise current input in the common mode, is actively compensated to suppress the noise current emitted to the first device 2. This can prevent malfunction or damage of the second device 3 and/or other devices connected to the first device 2.
상기와 같은 구조에서 제2 핀 그룹(15)은 제2-1 핀(151), 제2-2 핀(152) 및 제2-3 핀(153)을 포함할 수 있다. 상기 제2-1 핀(151)은 능동 회로부(121)를 제3 장치(4)와 전기적으로 연결시킬 수 있다. 상기 제2-2 핀(152)은 상기 능동 회로부(121)의 기준전위(기준전위 2)와 전기적으로 연결될 수 있고, 상기 제2-3 핀(153)은 상기 독립 능동 EMI 필터 모듈(1)의 기준 전위(기준전위 1)와 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제2-2 핀(152) 및 제2-3 핀(153)은 접지될 수 있다.In the above structure, the second fin group 15 may include a 2-1 pin 151, a 2 -2 pin 152 and a 2-3 th pin 153. The 2-1 pin 151 may electrically connect the active circuit unit 121 to the third device 4. The 2-2 pin 152 may be electrically connected to the reference potential (reference potential 2) of the active circuit part 121, and the 2-3 pin 153 is the independent active EMI filter module (1) It can be electrically connected to the reference potential of (reference potential 1). According to an embodiment, the 2-2 pin 152 and the 2-3 pin 153 may be grounded.
도 3에 도시된 독립 능동 EMI 필터 모듈(1)은, 전류를 감지하여 전류를 보상하는, 전류-센싱 전류-보상(Current-sense Current-Compensation, CSCC) 독립 능동 EMI 필터 모듈을 나타낸다. 특히, 도 3의 독립 능동 EMI 필터 모듈(1)는, 제2 장치(3)로부터 입력되는 노이즈를, 전원 측인 앞 단에서 보상하는, 피드포워드(Feedforward) 타입의 보상 필터일 수 있다. 즉, 독립 능동 EMI 필터 모듈(1)에서, 센싱 변압기인 제1 소자 그룹(11)이 EMI 소스 측에 배치되고, 보상 커패시터부(1222)가 전원 측에 배치될 수 있다. 또한, 독립 능동 EMI 필터 모듈(1)은, 보상 커패시터부(1222)를 이용하여 전류로 보상함에도 불구하고 보상 변압기(1221)를 이용함으로써, 및/또는 센싱 변압기인 제1 소자 그룹(11)을 이용함으로써, 절연형(isolated) 구조를 실현할 수 있다. 즉, 본 발명의 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은, 절연형 피드포워드 CSCC 구조를 가질 수 있다. The independent active EMI filter module 1 shown in FIG. 3 represents a current-sense current-compensation (CSCC) independent active EMI filter module that senses current to compensate for the current. In particular, the independent active EMI filter module 1 of FIG. 3 may be a feedforward type compensation filter that compensates noise input from the second device 3 at the front end, which is the power side. That is, in the independent active EMI filter module 1, the first element group 11, which is a sensing transformer, may be disposed on the EMI source side, and the compensation capacitor unit 1222 may be disposed on the power side. In addition, the independent active EMI filter module 1 uses the compensation transformer 1221 despite compensating with current using the compensation capacitor unit 1222, and/or the first element group 11 as a sensing transformer. By using it, an isolated structure can be realized. That is, the independent active EMI filter module 1 according to an embodiment of the present invention may have an insulated feedforward CSCC structure.
전술한 바와 같이, 독립 능동 EMI 필터 모듈(1)에서 보상 전류(Icomp)는 노이즈 전류(In)와 크기가 같고 위상이 반대일 수 있다. 즉, 독립 능동 EMI 필터 모듈(1)에 입력되는 노이즈 전류(In) 대비 보상 전류(Icomp)를 나타내는 전류이득비가 -1이 되도록, 능동 회로부(121), 제1 소자 그룹(11), 및 보상 변압기(1221)가 설계될 수 있다. 이를 통해, EMI 소스로부터 발생된 노이즈 전류(In)를 상쇄시킴으로써 EMI 노이즈를 저감시킬 수 있는, 독립 능동 EMI 필터 모듈(1)을 제공할 수 있다. As described above, in the independent active EMI filter module 1, the compensation current I comp may have the same magnitude as the noise current I n and may have the opposite phase. That is, the active circuit unit 121, the first element group 11, so that the current gain ratio representing the compensation current I comp to the noise current I n input to the independent active EMI filter module 1 is -1, And a compensation transformer 1221 may be designed. Through this, it is possible to provide an independent active EMI filter module 1 capable of reducing EMI noise by canceling out the noise current I n generated from the EMI source.
본 발명의 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은, 공통 모드(Common Mode, CM) 초크(choke)를 포함하지 않을 수 있다. CM 초크는 수동 필터의 기능을 하므로, 노이즈 전류가 새어나가는 것을 막기 위해 매우 큰 인덕턴스를 가져야 한다. 따라서, CM 초크는 권선 횟수도 많아지고, 코어의 크기도 매우 크다. 이러한 CM 초크와 달리, 본 발명의 실시예에 따른 독립 능동 EMI 필터 모듈(1)에 포함되는 센싱 변압기인 제1 소자 그룹(11)은, 노이즈 전류를 센싱하려는 목적이므로, 큰 임피던스를 가질 필요가 없다. 센싱 변압기는, CM 초크의 임피던스의 천분의 일 내지 백분의 일의 임피던스를 가질 수 있다. 따라서 센싱 변압기의 크기는, CM 초크의 크기보다 훨씬 작아질 수 있다. 본 발명의 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 CM 초크에 기생하지 않고 독립적으로 동작할 수 있다. 이에 따라 기판(10)의 크기에 대응되는 모듈 형태로 크기 및 무게를 줄여 제조할 수 있으며, 이를 통해 봉지 구조체(13)에 의한 봉지가 간단하게 이뤄지도록 할 수 있다.The independent active EMI filter module 1 according to another embodiment of the present invention may not include a common mode (CM) choke. Since the CM choke functions as a passive filter, it must have a very large inductance to prevent leakage of noise current. Accordingly, the CM choke has a large number of windings and a very large core size. Unlike such a CM choke, the first element group 11, which is a sensing transformer included in the independent active EMI filter module 1 according to an embodiment of the present invention, is for sensing a noise current, so it is necessary to have a large impedance. none. The sensing transformer may have an impedance of one thousandth to one hundredth of the impedance of the CM choke. Therefore, the size of the sensing transformer can be much smaller than that of the CM choke. The independent active EMI filter module 1 according to the embodiment of the present invention can operate independently without parasitic to the CM choke. Accordingly, it can be manufactured by reducing the size and weight in a module shape corresponding to the size of the substrate 10, and through this, the sealing by the sealing structure 13 can be made simply.
본 발명이 반드시 이에 한정되는 것은 아니고, 또 다른 실시예들에 따라 독립 능동 EMI 필터 모듈(1)이, 독립된 외부의 별도의 CM 초크와 결합하여 동작할 수 있는 것은 물론이다. The present invention is not necessarily limited thereto, and it goes without saying that the independent active EMI filter module 1 may operate in combination with an independent external CM choke according to still other embodiments.
도 4는 다른 일 실시예에 따른 상기 제1 소자 그룹(11) 및 제2 소자 그룹(12)의 보다 구체적인 예를 도시한 것이다.4 illustrates a more specific example of the first device group 11 and the second device group 12 according to another embodiment.
도 4를 참조하면, 상기 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 기판(10)을 제1 관통선(21) 및 제2 관통선(22)이 지나가고, 기판(10)에 설치된 제1 소자 그룹(11), 제2 소자 그룹(12)을 포함할 수 있다.Referring to FIG. 4, in the independent active EMI filter module 1 according to another embodiment, a first through line 21 and a second through line 22 pass through a substrate 10, and The installed first device group 11 and the second device group 12 may be included.
도 4에 도시된 실시예는 전술한 도 3에 도시된 실시예와 달리, 제1 소자 그룹(11)이 전원 측인 제1 장치(2) 쪽의 제1-1 핀(141) 및 제1-3 핀(143)에 전기적으로 연결된다. 그리고 제2 소자 그룹(12)은 제2 장치(3) 쪽의 제1-2 핀(142) 및 제1-4 핀(144)에 전기적으로 연결된다. 따라서, 도 4에 도시된 실시예는, 제1 장치(2) 측으로 나가는 노이즈 전류를 감지하여 제2 장치(3) 측에서 전류로 보상하는, 피드백(Feedback) 타입의 CSCC 능동 EMI 필터를 나타낸다.In the embodiment shown in FIG. 4, unlike the embodiment shown in FIG. 3 described above, the first element group 11 is the first pin 141 and the first device 2 side of the power supply side. 3 is electrically connected to pin 143. In addition, the second element group 12 is electrically connected to the 1-2 pins 142 and the pins 1-4 144 on the side of the second device 3. Accordingly, the embodiment shown in FIG. 4 shows a CSCC active EMI filter of a feedback type, which senses a noise current going out to the first device 2 and compensates with the current at the second device 3 side.
도 4에 도시된 센싱 변압기인 제1 소자 그룹(11), 능동 회로부(121), 보상 변압기(1221) 및 보상 커패시터부(1222)는 각각 전술한 도 3에 도시된 소자들과 동일한 기능을 수행할 수 있다. 또한, 도 4에 도시된 독립 능동 EMI 필터 모듈(1)도 절연형(isolated) 구조를 실현할 수 있다.The first element group 11, the active circuit unit 121, the compensation transformer 1221, and the compensation capacitor unit 1222, which are sensing transformers shown in FIG. 4, respectively perform the same functions as the elements shown in FIG. can do. In addition, the independent active EMI filter module 1 shown in FIG. 4 can also implement an isolated structure.
도 5는 또 다른 일 실시예에 따른 상기 제1 소자 그룹(11) 및 제2 소자 그룹(12)의 보다 구체적인 예를 도시한 것이다.5 shows a more specific example of the first device group 11 and the second device group 12 according to another embodiment.
도 5를 참조하면, 상기 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 기판(10)을 제1 관통선(21) 및 제2 관통선(22)이 지나가고, 기판(10)에 설치된 제1 소자 그룹(11), 제2 소자 그룹(12)을 포함할 수 있다.Referring to FIG. 5, in the independent active EMI filter module 1 according to another embodiment, a first through line 21 and a second through line 22 pass through a substrate 10, and The installed first device group 11 and the second device group 12 may be included.
도 5에 도시된 실시예에 따르면, 제1 소자 그룹(11)은 센싱 커패시터부(116)를 포함할 수 있다. 그리고 제2 소자 그룹(12)은 능동 회로부(121) 및 보상 커패시터부(1222)를 포함할 수 있다. 따라서, 도 5에 도시된 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 센싱 커패시터부(116)를 이용하여 노이즈 전압을 감지하고, 보상 커패시터부(1222)를 이용하여 전류로 보상하는 전압-센싱 전류-보상(Voltage-sense Current-Compensation, VSCC) 능동 EMI 필터를 나타낸다. 이러한 실시예에 따른 능동 EMI 필터(1)와 같은 VSCC 구조에서는, 피드포워드(feedforward)와 피드백(feedback)이 동작 원리상 구분되지 않을 수 있다. 즉 도 5에 도시된 독립 능동 EMI 필터 모듈(1)에서, 입/출력부의 구분이 없을 수 있다. 또한, 실시예에 따른 독립 능동 EMI 필터 모듈(1)도, 보상 변압기(1221) 및 센싱 변압기(115)를 이용함으로써 독립된(isolated) 구조를 가질 수 있다.According to the embodiment illustrated in FIG. 5, the first device group 11 may include a sensing capacitor unit 116. In addition, the second device group 12 may include an active circuit unit 121 and a compensation capacitor unit 1222. Accordingly, the independent active EMI filter module 1 according to the embodiment shown in FIG. 5 senses the noise voltage using the sensing capacitor unit 116 and compensates with current using the compensation capacitor unit 1222- Represents a voltage-sense current-compensation (VSCC) active EMI filter. In a VSCC structure such as the active EMI filter 1 according to this embodiment, a feedforward and a feedback may not be distinguished due to an operating principle. That is, in the independent active EMI filter module 1 shown in FIG. 5, there may be no distinction between input/output units. In addition, the independent active EMI filter module 1 according to the embodiment may also have an isolated structure by using the compensation transformer 1221 and the sensing transformer 115.
센싱 커패시터부(116)는, 전력선인 제1 관통선(21) 및 제2 관통선(22)으로 입력되는 노이즈 전압을 감지할 수 있다. 센싱 커패시터부(116)는, 두 개의 센싱 커패시터를 포함할 수 있는 데, 각 센싱 커패시터는 Y-cap을 포함할 수 있다. 상기 두 개의 센싱 커패시터 각각의 일 단은, 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결될 수 있고, 타단은 센싱 변압기(115)의 1차측과 연결되는 노드를 공유할 수 있다. 센싱 변압기(115)의 1차측은, 센싱 커패시터부(116)를 거쳐 전력선인 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결될 수 있다. 센싱 변압기(115)의 1차측 권선은 기판(10)에 결합되는 제2 핀 그룹(15)의 제2-4 핀(154)에 전기적으로 연결될 수 있다.The sensing capacitor unit 116 may sense a noise voltage input to the first through line 21 and the second through line 22 which are power lines. The sensing capacitor unit 116 may include two sensing capacitors, and each sensing capacitor may include a Y-cap. One end of each of the two sensing capacitors may be electrically connected to the first through line 21 and the second through line 22, and the other end may share a node connected to the primary side of the sensing transformer 115. I can. The primary side of the sensing transformer 115 may be electrically connected to the first through line 21 and the second through line 22 which are power lines through the sensing capacitor unit 116. The primary winding of the sensing transformer 115 may be electrically connected to the 2-4 pins 154 of the second pin group 15 coupled to the substrate 10.
센싱 변압기(115)는, 전력선에 흐르는 노이즈를 센싱하기 위해, 전력선 측과 연결된 1차측 및 능동 회로부(121)와 연결된 2차측을 포함할 수 있다. 센싱 변압기(115)의 2차측은 능동 회로부(121)의 입력단과 차동(Differential)으로 연결될 수 있다.The sensing transformer 115 may include a primary side connected to the power line side and a secondary side connected to the active circuit unit 121 in order to sense noise flowing through the power line. The secondary side of the sensing transformer 115 may be differentially connected to the input terminal of the active circuit unit 121.
도 5에 도시된 실시예에 따른 독립 능동 EMI 필터 모듈(1)에 포함된 센싱 변압기(115), 능동 회로부(121), 보상 변압기(1221), 및 보상 커패시터부(1222)는 각각 전술한 실시예들의 센싱 변압기, 능동 회로부(121), 보상 변압기(1221), 및 보상 커패시터부(1222)에 대응되는 동작을 수행할 수 있다. The sensing transformer 115, the active circuit unit 121, the compensation transformer 1221, and the compensation capacitor unit 1222 included in the independent active EMI filter module 1 according to the embodiment shown in FIG. 5 are each implemented as described above. An operation corresponding to the sensing transformer, the active circuit unit 121, the compensation transformer 1221, and the compensation capacitor unit 1222 of the examples may be performed.
비록 도면에 도시하지는 않았지만, 이상 설명한 실시예들에서 상기 능동 회로부(121)는 보상 변압기(1221)와의 사이에 하이패스 필터(미도시)를 더 포함해, 노이즈 저감의 대상이 되는 주파수 대역 이하의 저주파에서 능동 회로부(121)가 동작하는 것을 차단할 수 있다. Although not shown in the drawings, in the above-described embodiments, the active circuit unit 121 further includes a high-pass filter (not shown) between the compensation transformer 1221 and is less than or equal to the frequency band subject to noise reduction. It is possible to block the active circuit unit 121 from operating at a low frequency.
이상 설명한 바와 같은 도 3 내지 도 5에 도시된 실시예들의 독립 능동 EMI 필터 모듈(1)은 도6에 도시된 바와 같은 봉지 구조체(13)를 통해 외부와 차단된 밀봉 구조가 구현되고, 단일 모듈화할 수 있다.The independent active EMI filter module 1 of the embodiments shown in FIGS. 3 to 5 as described above has a sealing structure blocked from the outside through the sealing structure 13 as shown in FIG. can do.
도 6에 도시된 일 실시예에 따르면, 기판(10)의 제1 면(101)에는 제3 소자 그룹(103)이 설치되고, 기판(10)의 제2 면(102)에는 제4 소자 그룹(104)이 설치될 수 있다. 일 실시예에 따르면, 상기 제3 소자 그룹(103)은 전술한 도 3 내지 도 5의 다양한 변압기와 커패시터부, 예컨대 Y-cap을 포함할 수 있다. 보다 구체적으로, 상기 제3 소자 그룹(103)은, 제1 소자 그룹(11)인 센싱 변압기, 보상 변압기(1221) 및 보상 커패시터부(1222)를 포함할 수 있다. According to the embodiment shown in FIG. 6, a third device group 103 is installed on the first side 101 of the substrate 10, and the fourth device group 103 is on the second side 102 of the substrate 10. 104 can be installed. According to an embodiment, the third device group 103 may include various transformers and capacitor units, such as Y-cap, of FIGS. 3 to 5 described above. More specifically, the third device group 103 may include a sensing transformer, a compensation transformer 1221, and a compensation capacitor unit 1222 as the first device group 11.
도 5에 도시된 실시예의 경우, 상기 제3 소자 그룹(103)은, 보상 변압기(1221) 및 보상 커패시터부(1222) 외에 제 1 소자 그룹(11)의, 센싱 커패시터부(116) 또는 센싱 변압기(115)의 적어도 하나를 포함할 수 있다. 만일 제3 소자 그룹(103)이 제 1 소자 그룹(11)의 센싱 커패시터부(116) 또는 센싱 변압기(115)를 포함하는 경우, 다른 하나의 소자는 제4 소자 그룹(14)에 포함될 수 있다. In the case of the embodiment shown in FIG. 5, the third element group 103 is a sensing capacitor unit 116 or a sensing transformer of the first element group 11 in addition to the compensation transformer 1221 and the compensation capacitor unit 1222. It may include at least one of (115). If the third device group 103 includes the sensing capacitor unit 116 of the first device group 11 or the sensing transformer 115, the other device may be included in the fourth device group 14. .
상기 제4 소자 그룹(104)은, 능동 회로부(121)를 포함할 수 있다. 따라서 상기 제4 소자 그룹(104)은 제3 소자 그룹(103)에 비해 부피가 작은 것일 수 있다.The fourth device group 104 may include an active circuit unit 121. Accordingly, the fourth device group 104 may have a smaller volume than the third device group 103.
일 실시예에 따르면, 봉지 구조체(13)는, 서포트(131) 및 충진부(132)를 포함할 수 있다.According to an embodiment, the encapsulation structure 13 may include a support 131 and a filling part 132.
상기 서포트(131)는, 절연성 소재로 형성된 것으로, 내부에 위치한 공간부(1310)를 포함한다. 상기 서포트는(131)의 공간부(1310)는 개구(1311) 및 바닥(1312)에 의해 정의될 수 있다. 경우에 따라 상기 서포트(131)는 열전달 가능한 소재로 형성될 수 있다. 이 경우, 서포트(131)에 추가로 히트 싱크 등 방열 기구를 더 설치할 수 있으며, 이에 따라 서포트(131)에 의한 열 방출이 원활하게 이뤄지도록 할 수 있다.The support 131 is formed of an insulating material and includes a space part 1310 located therein. The space part 1310 of the support 131 may be defined by an opening 1311 and a bottom 1312. In some cases, the support 131 may be formed of a material capable of heat transfer. In this case, a heat dissipation mechanism such as a heat sink may be additionally installed on the support 131, and accordingly, heat dissipation by the support 131 may be smoothly performed.
서포트(131)의 공간부(1310)에 전술한 기판(10)이 수용된다. 이 때, 기판(10)의 가장자리는 공간부(1310)의 측면 크기에 대응되도록 형성되며, 이에 따라 기판(10)은 가장자리가 공간부(1310) 측면과 밀착될 수 있다. 따라서 상기 공간부(1310)는 기판(10)을 중심으로 2개의 공간으로 나뉠 수 있다. The above-described substrate 10 is accommodated in the space part 1310 of the support 131. In this case, the edge of the substrate 10 is formed to correspond to the size of the side surface of the space part 1310, and accordingly, the edge of the substrate 10 may be in close contact with the side surface of the space part 1310. Accordingly, the space part 1310 may be divided into two spaces centering on the substrate 10.
상기 기판(10)은 제1 면(101)이 서포트(131)의 바닥(1312)을 향하도록 배치될 수 있고, 제2 면(102)은 서포트(131)의 개구(1311)를 향할 수 있다. 이 때 바닥(1312)과 기판(10)의 제1 면(101) 사이의 제1 거리(t1)는, 바닥(1312)과 개구(1311) 사이의 거리의 절반보다 크게 구비될 수 있다. 일 실시예에 따르면, 바닥(1312)과 기판(10)의 제1 면(101) 사이의 제1 거리(t1)는 개구(1311)와 기판(10)의 제2 면(102) 사이의 제2 거리(t2)보다 크게 구비될 수 있다. 이에 따라 제2 면(102)에서 개구(1311)를 거쳐 서포트(131) 외측으로 노출되는 핀 그룹의 길이를 작게 설계할 수 있고, 이는 독립 능동 EMI 필터 모듈(1)이 설치될 때에 구조적인 안정성을 제공할 수 있다.The substrate 10 may be disposed such that the first surface 101 faces the bottom 1312 of the support 131, and the second surface 102 may face the opening 1311 of the support 131. . In this case, the first distance t1 between the bottom 1312 and the first surface 101 of the substrate 10 may be greater than half of the distance between the bottom 1312 and the opening 1311. According to an embodiment, the first distance t1 between the bottom 1312 and the first surface 101 of the substrate 10 is a first distance t1 between the opening 1311 and the second surface 102 of the substrate 10. It may be provided larger than 2 distance (t2). Accordingly, the length of the pin group exposed to the outside of the support 131 through the opening 1311 from the second surface 102 can be designed to be small, which is structural stability when the independent active EMI filter module 1 is installed. Can provide.
한편, 일 실시예에 따르면, 상기 독립 능동 EMI 필터 모듈(1)은 상기 공간부(1310)의 적어도 일부를 충진하도록 구비된 충진부(132)를 포함할 수 있다.Meanwhile, according to an embodiment, the independent active EMI filter module 1 may include a filling unit 132 provided to fill at least a portion of the space 1310.
상기 충진부(132)는 적어도 기판(10)과 바닥(1312)의 사이에 충진될 수 있고, 충진부(132)에 의해 기판(10)은 서포트(131) 내벽에 고정적으로 접합될 수 있다.The filling part 132 may be filled at least between the substrate 10 and the bottom 1312, and the substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132.
상기 충진부(132)는 내열성 및/또는 절연성 수지재로 구비될 수 있다. 일 실시예에 따르면, 상기 충진부(132)는 에폭시 수지를 포함할 수 있고, 경화제를 더 포함할 수 있다.The filling part 132 may be provided with a heat-resistant and/or insulating resin material. According to an embodiment, the filling part 132 may include an epoxy resin, and may further include a curing agent.
상기와 같은 구조의 독립 능동 EMI 필터 모듈(1)은 핀들(14)이 돌출된 기판(10)의 제2 면(102)이 모듈의 바닥면(133)을 구성할 수 있다. In the independent active EMI filter module 1 having the above structure, the second surface 102 of the substrate 10 from which the pins 14 protrude may constitute the bottom surface 133 of the module.
상기 독립 능동 EMI 필터 모듈(1)은 다양한 장치에 간단하게 설치할 수 있고, 외부 장치와 독립된 구조를 갖기 때문에 특히 제3 소자 그룹(103)이 외부의 자극, 및/또는 충격으로부터 보호될 수 있고, 독립 능동 EMI 필터 모듈(1) 자체의 파손이 방지될 수 있다. 이는 독립 능동 EMI 필터 모듈(1)이 필요한 장비 전체의 내구성을 향상시킬 수 있게 된다. 또한 외부의 먼지 등 오염 환경으로부터 제3 소자 그룹(103)을 보호할 수 있다. 그리고 서포트(131) 및/또는 충진부(132)가 방열 소재를 포함하는 경우 제3 소자 그룹(103)으로부터 방출된 열을 외부로 발산시킬 수 있기 때문에 제3 소자 그룹(103)이 열화되는 것을 방지할 수 있다.Since the independent active EMI filter module 1 can be simply installed in various devices and has a structure independent from external devices, in particular, the third element group 103 can be protected from external stimuli and/or impact, The independent active EMI filter module 1 itself can be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the independent active EMI filter module 1. In addition, it is possible to protect the third device group 103 from contaminated environments such as external dust. In addition, when the support 131 and/or the filling part 132 includes a heat dissipating material, the third element group 103 is prevented from deteriorating because the heat emitted from the third element group 103 can be radiated to the outside. Can be prevented.
도 7은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)로서, 도 6에 도시된 실시예와 달리 충진부(132)가 제1 충진부(1321) 및 제2 충진부(1322)를 포함할 수 있다.7 is an independent active EMI filter module 1 according to another embodiment, and unlike the embodiment shown in FIG. 6, the filling unit 132 includes a first filling unit 1321 and a second filling unit 1322 It may include.
상기 제1 충진부(1321)는 기판(10)의 제1 면(101)을 향하고, 제2 충진부(1322)는 기판(10)의 제2 면(102)을 향할 수 있다. 상기와 같은 제2 충진부(1322)에 의해 개구(1311)는 폐쇄될 수 있는 데, 제2 충진부(1322)가 모듈의 바닥면(133)을 구성할 수 있다. 제2 충진부(1322)는 제4 소자 그룹(104)을 완전히 덮도록 구비되며, 이에 따라 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조가 될 수 있다.The first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10. The opening 1311 may be closed by the second filling portion 1322 as described above, and the second filling portion 1322 may constitute the bottom surface 133 of the module. The second filling part 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling part 1322.
이러한 실시예에 따른 독립 능동 EMI 필터 모듈(1)은, 외부 장치와 독립된 구조를 갖기 때문에, 제3 소자 그룹(103) 및 제4 소자 그룹(104)이 외부의 자극, 및/또는 충격으로부터 보호될 수 있고, 독립 능동 EMI 필터 모듈(1) 자체의 파손이 방지될 수 있다. 이는 독립 능동 EMI 필터 모듈(1)이 필요한 장비 전체의 내구성을 향상시킬 수 있게 된다. 또한 외부의 먼지 등 오염 환경으로부터 제3 소자 그룹(103) 및 제4 소자 그룹(104)을 보호할 수 있다. 그리고 서포트(131) 및/또는 충진부(132)가 방열 소재를 포함하는 경우 제3 소자 그룹(103) 및/또는 제4 소자 그룹(104)으로부터 방출된 열을 외부로 발산시킬 수 있기 때문에 제3 소자 그룹(103) 및/또는 제4 소자 그룹(104)이 열화되는 것을 방지할 수 있다.Since the independent active EMI filter module 1 according to this embodiment has a structure independent from an external device, the third element group 103 and the fourth element group 104 are protected from external stimuli and/or impact. Can be, and the independent active EMI filter module 1 itself can be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the independent active EMI filter module 1. In addition, it is possible to protect the third device group 103 and the fourth device group 104 from contaminated environments such as external dust. In addition, when the support 131 and/or the filling part 132 includes a heat dissipating material, heat emitted from the third device group 103 and/or the fourth device group 104 can be radiated to the outside. It is possible to prevent the third device group 103 and/or the fourth device group 104 from deteriorating.
상기와 같은 독립 능동 EMI 필터 모듈(1)은, 도 8a에서 볼 수 있듯이, 바닥면(133)을 통해 복수의 핀들이 노출된다. 이 때, 전력선에 전기적으로 연결되는 제1 핀 그룹(14)의 제1-1 핀(141), 제1-2 핀(142), 제1-3 핀(143), 및 제1-4 핀(144)은 각각 바닥면(133)의 모서리에 각각 배치시키고, 제2 핀 그룹(15)의 제2-1 핀(151), 제2-2 핀(152) 및 제2-3 핀(153)은 각 모서리의 사이 위치에 배치시킨다. 전력선에 전기적으로 연결되는 제1 핀 그룹(14)의 핀들은 제2 핀 그룹(15)의 핀들보다 비교적 두께가 두껍게 형성될 수 있는 데, 이러한 제1 핀 그룹(14)의 핀들을 바닥면(133)의 모서리에 배치시킴으로써, 독립 능동 EMI 필터 모듈(1)이 다른 장치에 장착되었을 때에 구조적인 안정성을 줄 수 있다. 또한 상기 제1 핀 그룹(14)의 핀들은 주로 부피가 큰 변압기에 전기적으로 연결되므로, 도 6 및 도 7에서 볼 수 있듯이 제3 소자 그룹(103)에서 변압기들(11, 1221)을 가장자리에 배치시켜 모듈 전체의 무게 분산이 이뤄지도록 할 수 있고, 설치되었을 때에 안정성을 줄 수 있다. 이렇게 제3 소자 그룹(103)을 설계하는 구조에서도 제1 핀 그룹(14)의 핀들을 바닥면(133)의 모서리에 배치시킴으로써 설계 마진을 얻을 수 있다. 한편, 제2 핀 그룹(15)의 핀들은 제1 핀 그룹(14)의 핀들을 배치한 후, 비교적 자유롭게 배치할 수 있으므로, 반드시 도 8a에 도시된 실시예에 한정하는 것은 아니고, 제1 핀 그룹(14)의 핀들 사이 영역에 다양하게 설치될 수 있다.In the independent active EMI filter module 1 as described above, a plurality of pins are exposed through the bottom surface 133 as shown in FIG. 8A. At this time, the 1-1 pin 141, the 1-2 pin 142, the 1-3 pin 143, and the 1-4 pin of the first pin group 14 electrically connected to the power line 144 are respectively disposed at the corners of the bottom surface 133, the 2-1 pin 151, the 2-2 pin 152, and the 2-3 pin 153 of the second pin group 15 ) Is placed in the position between each corner. The fins of the first fin group 14 electrically connected to the power line may be formed to be relatively thicker than the fins of the second fin group 15, and the fins of the first fin group 14 may be formed on the bottom surface ( By placing it at the corner of 133), structural stability can be provided when the independent active EMI filter module 1 is mounted on another device. In addition, since the pins of the first pin group 14 are mainly electrically connected to a bulky transformer, the transformers 11 and 1221 are connected to the edge of the third element group 103 as shown in FIGS. 6 and 7. It can be placed so that the weight of the entire module is distributed, and it can give stability when installed. Even in the structure of designing the third device group 103 in this way, a design margin can be obtained by arranging the pins of the first pin group 14 at the corners of the bottom surface 133. On the other hand, the pins of the second pin group 15 may be relatively freely disposed after the pins of the first pin group 14 are arranged, so the pins are not necessarily limited to the embodiment shown in FIG. 8A, and the first pin It may be variously installed in the area between the pins of the group 14.
한편, 상기 제1 핀 그룹(14)의 핀들은 반드시 바닥면(133)의 모서리에 설치되어야 하는 것은 아니며, 도 8b에서 볼 수 있듯이, 제1 핀 그룹(14)의 핀들 중 적어도 일부는 바닥면(133)의 모서리로부터 내측으로 일정 정도 이격된 위치에 설치될 수 있다. 다만, 이 경우에도 모서리로부터 변의 1/4 거리 정도를 넘지 않도록 해, 구조적인 안정성을 확보할 수 있다. 도 8b에 도시된 실시예에 따르면, 제1-1 핀(141) 및 제1-2 핀(142)이 바닥면(133)의 모서리로부터 일정 거리 이격된 위치에 설치되는 데, 이 경우, 제2-3 핀(153)을 바닥면(133)의 일 모서리에 설치할 수 있다. 상기 제2-3 핀(153)은 도 3 내지 도 5에 도시된 실시예에 따르면, 보상 변압기(1221)의 기준전위와 전기적으로 연결되는 선이 되며, 따라서 핀의 두께도 제1 핀 그룹(14)의 핀들만큼 두꺼울 수 있다. 이렇게 두꺼운 제2-3 핀(153)을 바닥면(133)의 모서리에 배치함으로써, 구조적인 안정성을 확보할 수 있다.Meanwhile, the pins of the first pin group 14 do not necessarily have to be installed at the corners of the bottom surface 133, and as shown in FIG. 8B, at least some of the pins of the first pin group 14 are It may be installed at a location spaced from the corner of 133 inward by a certain degree. However, even in this case, structural stability can be ensured by not exceeding about 1/4 of the side distance from the edge. According to the embodiment shown in FIG. 8B, the 1-1 pin 141 and the 1-2 pin 142 are installed at a position spaced apart from the edge of the bottom surface 133 by a predetermined distance. In this case, 2-3 pins 153 may be installed at one corner of the bottom surface 133. According to the embodiment shown in FIGS. 3 to 5, the 2-3 pins 153 are lines electrically connected to the reference potential of the compensation transformer 1221, and thus the thickness of the pins is also the first pin group ( It can be as thick as the pins in 14). By arranging the thick 2-3 pins 153 at the corners of the bottom surface 133, structural stability can be secured.
도 9는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 구성을 도시한 것이다.9 shows a configuration of an independent active EMI filter module 1 according to another embodiment.
도 9에 도시된 실시예는 도 3에 도시된 단상용 실시예와 달리 3상 3선 구조의 독립 능동 EMI 필터 모듈(1)이다.The embodiment shown in FIG. 9 is an independent active EMI filter module 1 having a three-phase, three-wire structure unlike the single-phase embodiment shown in FIG. 3.
도 9를 참조하면, 기판(10)을 제1 관통선(21), 제2 관통선(22) 및 제3 관통선(23)이 통과하는 데, 이들의 양단은 각각 제1-1 핀(141) 내지 제1-6 핀(146)에 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제1 관통선(21)은 R상, 제2 관통선(22)은 S상, 제3 관통선(23)은 T상의 전력선일 수 있다. 9, a first through line 21, a second through line 22, and a third through line 23 pass through the substrate 10, and both ends of the first through line 21, It may be electrically connected to the pins 141 to 1-6 146. According to an embodiment, the first through line 21 may be an R-phase, the second through line 22 may be an S-phase, and the third through line 23 may be a T-phase.
제1 소자 그룹(11)은 노이즈를 센싱할 수 있는 센싱 변압기를 포함할 수 있는 데, 상기 센싱 변압기는, 제1 관통선(21) 내지 제3 관통선(23)에 각각 연결된 제1 기준 권선(111) 내지 제3 기준 권선(113)과, 상기 제1 기준 권선(111) 내지 제3 기준 권선(113)과 동일한 코어에 형성된 센싱 권선(110)을 포함할 수 있다.The first element group 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the third through line 23, respectively (111) to third reference windings 113, and a sensing winding 110 formed on the same core as the first to third reference windings 111 to 113.
상기 제1 기준 권선(111) 내지 제3 기준 권선(113)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(110)은 2차 권선이 될 수 있다. The first reference winding 111 to the third reference winding 113 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
상기 제1 기준 권선(111) 내지 제3 기준 권선(113)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(111), 제2 기준 권선(112) 또는 제3 기준 권선(113) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. The first reference winding 111 to the third reference winding 113 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 and the second reference winding At least one of 112 or the third reference winding 113 may have a structure passing through the core.
센싱 권선(110)은 제1 기준 권선(111) 내지 제3 기준 권선(113)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조일 수 있다.The sensing winding 110 may have a structure in which the first to third reference windings 111 to 113 are wound and/or wound around a core at least once or more.
센싱 권선(110)은 전술한 도 3의 실시예와 동일하게 전력선과는 절연되며, 제2 장치(3)로부터 발생되는 노이즈 전류를 감지할 수 있다. 도 3의 실시예와 마찬가지로 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The sensing winding 110 is insulated from the power line as in the above-described embodiment of FIG. 3, and may sense a noise current generated from the second device 3. Like the embodiment of FIG. 3, the primary and secondary windings may be wound in consideration of the direction in which the magnetic flux and/or magnetic flux density are generated.
센싱 권선(110)은 유도 전류를 능동 회로부(121)로 공급하고, 능동 회로부(121)는 이를 증폭하여 증폭 전류를 생성한다. 능동 회로부(121)는 전술한 센싱 변압기의 변압 비율 및 후술하는 보상 변압기(1221)의 변압 비율을 고려하여 증폭 전류를 생성할 수 있도록 설계될 수 있다. 능동 회로부(121)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(121)는 OP AMP를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(121)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(121)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 '증폭'을 위한 수단은 본 발명의 능동 회로부(121)로 제한 없이 사용될 수 있다. 능동 회로부(121)는 기판(10)에 결합되는 제2-1 핀(151)을 통해 제3 장치(4)와 전기적으로 연결된다.The sensing winding 110 supplies the induced current to the active circuit unit 121, and the active circuit unit 121 amplifies it to generate an amplified current. The active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later. The active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for'amplification' described in the present invention may be used without limitation as the active circuit unit 121 of the present invention. The active circuit unit 121 is electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
상기 증폭 전류는, 보상부(122)를 통해 제1 관통선(21), 제2 관통선(22) 및/또는 제3 관통선(23)으로 흘러, 노이즈를 보상할 수 있다.The amplified current flows to the first through line 21, the second through line 22, and/or the third through line 23 through the compensation unit 122, thereby compensating for noise.
상기 보상부(122)는, 보상 변압기(1221) 및 보상 커패시터부(1222)를 포함할 수 있는 데, 구체적인 구성 및 기능은 전술한 도 3에 도시된 실시예와 동일하게 적용할 수 있다. 보상 커패시터부(1222)의 각 커패시터들은 일단은 보상 변압기(1221)에 연결되고 타단은 제1 관통선(21) 내지 제3 관통선(23)에 각각 연결된다.The compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222, and specific configurations and functions may be applied in the same manner as in the embodiment illustrated in FIG. 3. Each capacitor of the compensation capacitor unit 1222 has one end connected to the compensation transformer 1221 and the other end connected to the first through line 21 to the third through line 23, respectively.
도 9에 도시된 실시예는 도 3에 도시된 실시예를 바탕으로 이를 3상 3선 구조로 나타낸 것이나, 본 발명은 반드시 이에 한정되는 것은 아니고, 도 9에 도시된 실시예는 도 4 및 도 5에 도시된 실시예에도 동일하게 적용될 수 있다.The embodiment shown in FIG. 9 is shown in a three-phase, three-wire structure based on the embodiment shown in FIG. 3, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 5.
이러한 실시예에 있어서, 핀의 배치는 도 10에 도시된 바와 같이 구현될 수 있다. 즉, 제1 핀 그룹(14)의 제1-1 핀(141) 내지 제1-6 핀(146)은 가능한 한 바닥면(133)의 모서리를 포함한 가장자리에 배치시킨다. 그리고 제2 핀 그룹(15)의 제2-1 핀(151) 내지 제2-3 핀(153)은 바닥면(133)의 가장자리의 나머지 영역에 배치시킨다. 이 때, 보상 변압기(1221)에 연결되는 두꺼운 핀인 제2-3 핀(153)과 비교적 가느다란 핀인 제2-1 핀(151) 및 제2-2 핀(152)은 서로 대향되게 위치시켜, 전체적 배치를 고르게 분산시킬 수 있다. 이러한 구조에 따라 핀들은 바닥면(133)의 가장자리를 중심으로 균일하게 배치될 수 있다.In this embodiment, the arrangement of the pins may be implemented as shown in FIG. 10. That is, the 1-1 pins 141 to 1-6 pins 146 of the first pin group 14 are arranged on the edge including the edge of the bottom surface 133 as far as possible. In addition, the 2-1 pins 151 to 2-3 pins 153 of the second pin group 15 are disposed in the remaining area of the edge of the bottom surface 133. At this time, the thick pins 2-3 pins 153, which are thick pins connected to the compensation transformer 1221, and the 2-1 pins 151 and 2-2 pins, which are relatively thin pins, are positioned to face each other, The entire batch can be evenly distributed. According to this structure, the fins may be uniformly disposed around the edge of the bottom surface 133.
도 11은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 구성을 도시한 것이다.11 shows a configuration of an independent active EMI filter module 1 according to another embodiment.
도 11에 도시된 실시예는 도 3에 도시된 단상용 실시예 및 도 9에 도시된 3상 3선 실시예와 달리 3상 4선 구조의 독립 능동 EMI 필터 모듈(1)이다.The embodiment shown in FIG. 11 is an independent active EMI filter module 1 having a three-phase four-wire structure unlike the single-phase embodiment shown in FIG. 3 and the three-phase three-wire embodiment shown in FIG.
도 11을 참조하면, 기판(10)을 제1 관통선(21), 제2 관통선(22), 제3 관통선(23) 및 제4 관통선(24)이 통과하는 데, 이들의 양단은 각각 제1-1 핀(141) 내지 제1-8 핀(148)에 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제1 관통선(21)은 R상, 제2 관통선(22)은 S상, 제3 관통선(23)은 T상, 제4 관통선(24)은 N상의 전력선일 수 있다. Referring to FIG. 11, a first through line 21, a second through line 22, a third through line 23, and a fourth through line 24 pass through the substrate 10, both ends of which May be electrically connected to the 1-1 pins 141 to 1-8 pins 148, respectively. According to an embodiment, the first through line 21 is an R phase, the second through line 22 is an S phase, the third through line 23 is a T phase, and the fourth through line 24 is an N-phase. It can be a power line.
제1 소자 그룹(11)은 노이즈를 센싱할 수 있는 센싱 변압기를 포함할 수 있는 데, 상기 센싱 변압기는, 제1 관통선(21) 내지 제4 관통선(24)에 각각 연결된 제1 기준 권선(111) 내지 제4 기준 권선(114)과, 상기 제1 기준 권선(111) 내지 제4 기준 권선(114)과 동일한 코어에 형성된 센싱 권선(110)을 포함할 수 있다.The first element group 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the fourth through line 24, respectively It may include (111) to fourth reference windings 114, and a sensing winding 110 formed on the same core as the first to fourth reference windings 111 to 114.
상기 제1 기준 권선(111) 내지 제4 기준 권선(114)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(110)은 2차 권선이 될 수 있다. The first to fourth reference windings 111 to 114 may be a primary winding connected to a power line, and the sensing winding 110 may be a secondary winding.
상기 제1 기준 권선(111) 내지 제4 기준 권선(114)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(111), 제2 기준 권선(112), 제3 기준 권선(113) 또는 제4 기준 권선(114) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. The first reference winding 111 to the fourth reference winding 114 may each be in the form of a winding wound around a core, but are not necessarily limited thereto, and the first reference winding 111 and the second reference winding At least one of 112, the third reference winding 113, and the fourth reference winding 114 may have a structure passing through the core.
센싱 권선(110)은 제1 기준 권선(111) 내지 제4 기준 권선(114)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조일 수 있다.The sensing winding 110 may have a structure in which the first to fourth reference windings 111 to 114 are wound and/or wound around a core at least once or more.
센싱 권선(110)은 전술한 도 3 및 도 9의 실시예와 동일하게 전력선과는 절연되며, 제2 장치(3)로부터 발생되는 노이즈 전류를 감지할 수 있다. 도 3 및 도 9의 실시예와 마찬가지로 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The sensing winding 110 is insulated from the power line as in the above-described embodiments of FIGS. 3 and 9, and may sense a noise current generated from the second device 3. Like the embodiments of FIGS. 3 and 9, the primary winding and the secondary winding may be wound in consideration of the direction in which the magnetic flux and/or the magnetic flux density are generated.
센싱 권선(110)은 유도 전류를 능동 회로부(121)로 공급하고, 능동 회로부(121)는 이를 증폭하여 증폭 전류를 생성한다. 능동 회로부(121)는 전술한 센싱 변압기의 변압 비율 및 후술하는 보상 변압기(1221)의 변압 비율을 고려하여 증폭 전류를 생성할 수 있도록 설계될 수 있다. 능동 회로부(121)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(121)는 OP AMP를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(121)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(121)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 소자들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 '증폭'을 위한 수단은 본 발명의 능동 회로부(121)로 제한 없이 사용될 수 있다. 능동 회로부(121)는 기판(10)에 결합되는 제2-1 핀(151)을 통해 제3 장치(4)와 전기적으로 연결된다.The sensing winding 110 supplies the induced current to the active circuit unit 121, and the active circuit unit 121 amplifies it to generate an amplified current. The active circuit unit 121 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 1221 to be described later. The active circuit unit 121 may be implemented by various means. According to an embodiment, the active circuit unit 121 may include an OP AMP. According to another embodiment, the active circuit unit 121 may include a plurality of passive elements such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 121 may include a bipolar junction transistor (BJT) and/or a plurality of passive elements such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for'amplification' described in the present invention may be used without limitation as the active circuit unit 121 of the present invention. The active circuit unit 121 is electrically connected to the third device 4 through the 2-1 pin 151 coupled to the substrate 10.
상기 증폭 전류는, 보상부(122)를 통해 제1 관통선(21), 제2 관통선(22), 제3 관통선(23) 및/또는 제4 관통선(24)으로 흘러, 노이즈를 보상할 수 있다.The amplified current flows to the first through line 21, the second through line 22, the third through line 23 and/or the fourth through line 24 through the compensation unit 122, thereby reducing noise. You can compensate.
상기 보상부(122)는, 보상 변압기(1221) 및 보상 커패시터부(1222)를 포함할 수 있는 데, 구체적인 구성 및 기능은 전술한 도 3 및 도 9에 도시된 실시예와 동일하게 적용할 수 있다. 보상 커패시터부(1222)의 각 커패시터들은 일단은 보상 변압기(1221)에 연결되고 타단은 제1 관통선(21) 내지 제4 관통선(24)에 각각 연결된다.The compensation unit 122 may include a compensation transformer 1221 and a compensation capacitor unit 1222, and specific configurations and functions can be applied in the same manner as the embodiments shown in FIGS. 3 and 9 described above. have. Each capacitor of the compensation capacitor unit 1222 has one end connected to the compensation transformer 1221 and the other end connected to the first through line 21 to the fourth through line 24, respectively.
도 11에 도시된 실시예는 도 3에 도시된 실시예를 바탕으로 이를 3상 4선 구조로 나타낸 것이나, 본 발명은 반드시 이에 한정되는 것은 아니고, 도 11에 도시된 실시예는 도 4 및 도 5에 도시된 실시예에도 동일하게 적용될 수 있다.The embodiment shown in FIG. 11 is shown in a three-phase, four-wire structure based on the embodiment shown in FIG. 3, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 5.
이러한 실시예에 있어서, 핀의 배치는 도 12에 도시된 바와 같이 구현될 수 있다. 즉, 제1 핀 그룹(14)의 제1-1 핀(141) 내지 제1-8 핀(148)은 가능한 한 바닥면(133)의 모서리를 포함한 가장자리에 배치시킨다. 그리고 제2 핀 그룹(15)의 제2-1 핀(151) 내지 제2-3 핀(153)은 바닥면(133)의 가장자리의 나머지 영역에 배치시킨다. 이 때, 보상 변압기(1221)에 연결되는 두꺼운 핀인 제2-3 핀(153)과 비교적 가느다란 핀인 제2-1 핀(151) 및 제2-2 핀(152)은 서로 대향되게 위치시켜, 전체적 배치를 고르게 분산시킬 수 있다. 이러한 구조에 따라 핀들은 바닥면(133)의 가장자리를 중심으로 균일하게 배치될 수 있다.In this embodiment, the arrangement of the pins may be implemented as shown in FIG. 12. That is, the 1-1 pins 141 to 1-8 pins 148 of the first pin group 14 are arranged on the edge including the edge of the bottom surface 133 as far as possible. In addition, the 2-1 pins 151 to 2-3 pins 153 of the second pin group 15 are disposed in the remaining area of the edge of the bottom surface 133. At this time, the thick pins 2-3 pins 153, which are thick pins connected to the compensation transformer 1221, and the 2-1 pins 151 and 2-2 pins, which are relatively thin pins, are positioned to face each other, The entire batch can be evenly distributed. According to this structure, the fins may be uniformly disposed around the edge of the bottom surface 133.
상기와 같은 독립 능동 EMI 필터 모듈(1)은 다음과 같은 방법으로 제조될 수 있다.The independent active EMI filter module 1 as described above may be manufactured by the following method.
먼저, 도 13에서 볼 수 있듯이 서로 대향된 제1 면(101) 및 제2 면(102)을 포함하는 기판(10)을 준비하고, 상기 기판(10)에 제1 소자 그룹(11) 및 제2 소자 그룹(12)을 설치한다. 전술한 바와 같이 상기 제1 소자 그룹(11)은 전자파 노이즈를 감지하도록 구비된 소자 그룹이며, 제2 소자 그룹(12)은 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 소자 그룹이다.First, as shown in FIG. 13, a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12. As described above, the first device group 11 is a device group provided to detect electromagnetic wave noise, and the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise.
이러한 제1 소자 그룹(11)과 제2 소자 그룹(12)은 상기 기판(10)의 제1 면(101) 및/또는 제2 면(102)에 설치되는 데, 각 소자 그룹을 구성하는 소자들의 부피 등을 고려하여 부피가 보다 큰 제3 소자 그룹(103)과 부피가 작은 제4 소자 그룹(104)으로 다시 분류한다.The first device group 11 and the second device group 12 are installed on the first surface 101 and/or the second surface 102 of the substrate 10, and elements constituting each device group In consideration of the volume of the devices, the device is classified into a third device group 103 having a larger volume and a fourth device group 104 having a smaller volume.
일 실시예에 따르면, 상기 제3 소자 그룹(103)은 변압기 소자들과 커패시터부로 구성하는 데, 제1 소자 그룹(11)의 센싱 변압기, 제2 소자 그룹(12)의 보상 변압기(1221) 및 보상 커패시터부(1222)를 포함할 수 있다. 제4 소자 그룹(104)은 능동 회로부(121)를 포함할 수 있다.According to an embodiment, the third element group 103 is composed of transformer elements and a capacitor unit, a sensing transformer of the first element group 11, a compensation transformer 1221 of the second element group 12, and It may include a compensation capacitor unit 1222. The fourth device group 104 may include an active circuit unit 121.
분류된 제3 소자 그룹(103)과 제4 소자 그룹(104)은, 각각 기판(10)의 제1 면(101) 및 제2 면(102)에 설치된다. 이 때, 제3 소자 그룹(103)의 변압기들, 즉, 제1 소자 그룹(11)의 센싱 변압기와, 제2 소자 그룹(12)의 보상 변압기(1221)는 제1 면(101)의 양측 가장자리에 배치하고 센싱 변압기와 보상 변압기(1221)의 사이에 보상 커패시터부(1222)를 배치함으로써, 무게의 균형을 이룰 수 있다.The classified third element group 103 and the fourth element group 104 are provided on the first side 101 and the second side 102 of the substrate 10, respectively. At this time, the transformers of the third element group 103, that is, the sensing transformer of the first element group 11 and the compensation transformer 1221 of the second element group 12 are on both sides of the first surface 101 By arranging at the edge and arranging the compensation capacitor unit 1222 between the sensing transformer and the compensation transformer 1221, the weight can be balanced.
다음으로, 상기와 같이 소자들이 장착된 기판(10)을 봉지한다.Next, the substrate 10 on which the devices are mounted is sealed as described above.
일 실시예에 따르면, 상기 봉지를 위해, 도 14에서 볼 수 있듯이, 서포트(131)를 준비한다.According to one embodiment, for the encapsulation, as shown in FIG. 14, a support 131 is prepared.
상기 서포트(131)는, 절연성 소재로 형성된 것으로, 내부에 위치한 공간부(1310)를 포함한다. 상기 서포트는(131)의 공간부(1310)는 개구(1311) 및 바닥(1312)에 의해 정의될 수 있다. The support 131 is formed of an insulating material and includes a space part 1310 located therein. The space part 1310 of the support 131 may be defined by an opening 1311 and a bottom 1312.
도 15에서 볼 수 있듯이, 이러한 서포트(131)의 개구(1311)를 통해 상기 공간부(1310)에 충진액(133)을 넣는다. 상기 충진액(133)은 액체 상태의 것이 바람직한 데, 액상의 에폭시 수지를 포함할 수 있고, 경화제를 더 포함할 수 있다. 상기 충진액(133)은 기판(10)에 설치된 제3 소자 그룹(103)이 잠길 정도의 양이면 충분하다.As can be seen in FIG. 15, the filling liquid 133 is put into the space 1310 through the opening 1311 of the support 131. The filling liquid 133 is preferably in a liquid state, and may include a liquid epoxy resin, and may further include a curing agent. The filling liquid 133 is sufficient if the amount is sufficient to submerge the third element group 103 installed on the substrate 10.
다음으로, 도 16에서 볼 수 있듯이, 상기 충진액(133)이 수용된 공간부(1310)에 전술한 기판(10)을 수용시킨다. 이 때, 기판(10)의 제1 면(101)이 공간부(1310)의 바닥(1312)을 향하도록 함으로써, 제1 면(101) 상에 장착된 제3 소자 그룹(103)이 충진액(133)에 충분히 잠길 수 있도록 한다. Next, as shown in FIG. 16, the above-described substrate 10 is accommodated in the space 1310 in which the filling liquid 133 is accommodated. At this time, by making the first surface 101 of the substrate 10 face the bottom 1312 of the space 1310, the third element group 103 mounted on the first surface 101 is (133) to be sufficiently immersed.
상기 제3 소자 그룹(103)이 충진액(133)에 잠긴 상태에서 제3 소자 그룹(103)의 상부는 공간부(1310)의 바닥(1312)과 일정 거리 이격된 상태가 될 수 있다. 그리고 이 상태에서 기판(10)의 제2 면(102)은 충진액(133)에 충분히 잠기지 않은 상태가 된다.When the third device group 103 is submerged in the filling liquid 133, the upper portion of the third device group 103 may be spaced apart from the bottom 1312 of the space 1310 by a predetermined distance. And in this state, the second surface 102 of the substrate 10 is not sufficiently immersed in the filling liquid 133.
이 상태에서 충진액(133)을 경화시키면, 도 6에 도시된 바와 같은 독립 능동 EMI 필터 모듈(1)의 충진부(132)가 완성될 수 있다. 이러한 구조의 독립 능동 EMI 필터 모듈(1)은 모든 소자들이 충진부(132)에 의해 봉지되는 것은 아니고, 능동 회로부(121)가 노출되는 구조가 되나, 제3 소자 그룹(103)이 충진부(132)에 의해 봉지되어 충분히 보호될 수 있다. 또한 기판(10)이 금속 PCB일 경우, 기판(10)을 통한 방열도 가능해 지므로, 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 내구성이 더욱 향상될 수 있다.When the filling liquid 133 is cured in this state, the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 6 may be completed. In the independent active EMI filter module 1 of this structure, not all elements are sealed by the filling unit 132, but the active circuit unit 121 is exposed, but the third element group 103 is a filling unit ( 132) can be sufficiently protected. In addition, when the substrate 10 is a metal PCB, heat dissipation through the substrate 10 is also possible, and the independent active EMI filter module 1 according to the embodiment may further improve durability.
다음으로, 도 17에서 볼 수 있듯이, 서포트(131)의 개구(1311)와 기판(10)의 제2 면(102)의 사이에 충진액(133)을 추가로 충진한다. 충진액(133)은 제4 소자 그룹(104)이 완전히 잠기도록 하며, 이 후, 상기 충진액(133)을 경화시켜 충진부(132)를 형성한다. 이 때, 충진부(132)는 기판(10)과 바닥(1312) 사이에 위치하는 제1 충진부(1321)와 기판(10)의 제4 소자 그룹(104)을 덮는 제2 충진부(1322)를 포함하게 된다. 그리고 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조를 갖게 된다. Next, as shown in FIG. 17, a filling liquid 133 is additionally filled between the opening 1311 of the support 131 and the second surface 102 of the substrate 10. The filling liquid 133 allows the fourth element group 104 to be completely immersed, and then, the filling liquid 133 is cured to form the filling part 132. In this case, the filling portion 132 includes a first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and a second filling portion 1322 covering the fourth element group 104 of the substrate 10. ). In addition, the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322.
이렇게 본 발명은 간단하게 모듈형으로 구비된 독립 능동 EMI 필터 모듈(1)을 구현할 수 있고, 제조 과정에서 충진액(133)에 다양한 재료를 혼입함으로써, 독립 능동 EMI 필터 모듈(1)이 보다 향상된 기능을 구현하도록 할 수 있다. 예컨대 상기 충진액(133)에 절연, 열전달 및/또는 방열 소재를 추가함으로써 냉각과 관련한 추가 구성을 구현할 수 있다.In this way, the present invention can simply implement the independent active EMI filter module 1 provided in a modular form, and by mixing various materials in the filling liquid 133 during the manufacturing process, the independent active EMI filter module 1 is more improved. You can have the function implemented. For example, an additional configuration related to cooling may be implemented by adding insulation, heat transfer, and/or heat dissipation material to the filling liquid 133.
또한 하드한 케이스 형태로 구비된 서포트(131)에 의해, 내부 소자들에 대한 물리적인 보호를 제공할 수 있을 뿐 아니라, 경우에 따라 서포트(131)에 추가로 히트 싱크 등 방열 기구를 더 설치할 수 있으며, 이에 따라 서포트(131)에 의한 열 방출이 원활하게 이뤄지도록 할 수 있다.In addition, by the support 131 provided in the form of a hard case, it is possible to provide physical protection for internal elements, and in some cases, a heat dissipation mechanism such as a heat sink can be additionally installed on the support 131. And, accordingly, heat dissipation by the support 131 can be made smoothly.
도 18은 또 다른 일 실시예에 따른 EMI 필터 모듈의 단면도이다. 도 18을 참조하면, 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈은, 도 2에 도시된 실시예에 더하여 연결부(105) 및 연결체(106)를 더 포함할 수 있다.18 is a cross-sectional view of an EMI filter module according to another embodiment. Referring to FIG. 18, the independent active EMI filter module according to another embodiment may further include a connection part 105 and a connection body 106 in addition to the embodiment shown in FIG. 2.
상기 연결부(105)는, 상기 기판(10)의 제1 면(101) 및 제2 면(102)과 연결된 것으로, 일 실시예에 따르면, 상기 기판(10)의 제1 면(101) 및 제2 면(102)을 관통하는 홀의 형태를 포함할 수 있다. 상기 홀의 형태는 평면이 원형, 또는 다각형일 수 있고, 단면으로 통상 구조, 또는 단차를 갖는 구조를 포함할 수 있다. The connection part 105 is connected to the first side 101 and the second side 102 of the substrate 10, and according to an embodiment, the first side 101 and the second side of the substrate 10 It may include a shape of a hole passing through the two sides 102. The shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
상기 연결부(105)는 상기 제1 소자 그룹(11) 또는 제2 소자 그룹(12) 중 적어도 하나와 간섭되지 않도록 위치할 수 있는 데, 상기 연결부(105)가 기판(10)에 형성되는 홀의 형태를 갖는 경우, 상기 연결부(105)는 상기 제3 소자 그룹(103) 및 제4 소자 그룹(104)과 간섭되지 않도록 구비될 수 있다.The connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
일 실시예에 따르면, 상기 연결부(105)는 상기 제3 소자 그룹(103)과 제4 소자 그룹(104)과 간섭되지 않은 복수의 개소에 위치할 수 있다.According to an embodiment, the connection part 105 may be located at a plurality of locations that do not interfere with the third device group 103 and the fourth device group 104.
상기 연결체(106)는 상기 연결부(105)에 위치한 것으로, 상기 봉지 구조체(13)와 연결되도록 구비될 수 있다.The connector 106 is located on the connection part 105 and may be provided to be connected to the encapsulation structure 13.
상기 연결체(106)는 연결부(105)의 홀을 적어도 일부 채울 수 있는 충진체로 구비될 수 있다. 상기 충진체는 상기 제1 면(101) 또는 제2 면(102) 중 적어도 하나로 노출되어 상기 봉지 구조체(13)와 연결될 수 있다.The connection body 106 may be provided as a filler capable of filling at least a part of the hole of the connection part 105. The filler may be exposed to at least one of the first surface 101 or the second surface 102 to be connected to the encapsulation structure 13.
일 실시예에 따르면, 상기 연결체(106)는 봉지 구조체(13)를 형성하는 물질 중 일부와 동일한 물질로 형성될 수 있으며, 선택적으로 봉지 구조체(13)와 일체로 형성될 수 있다. According to an embodiment, the connector 106 may be formed of the same material as some of the materials forming the encapsulation structure 13, and may be selectively formed integrally with the encapsulation structure 13.
상기 봉지 구조체(13)는 상기 연결부(105)를 통해 상기 기판(10)을 가로지르도록 소통할 수 있다. 일 실시예에 따르면, 연결부(105)를 소통하는 봉지 구조체(13)의 적어도 일부가 연결체(106)를 형성할 수 있다. The encapsulation structure 13 may communicate so as to traverse the substrate 10 through the connection part 105. According to an embodiment, at least a part of the encapsulation structure 13 communicating the connection part 105 may form the connection body 106.
그러나 반드시 이에 한정되는 것은 아니고 상기 연결체(105)는 별도의 물질로 형성될 수 있으며, 이에 따라 봉제 구조체(13)와 연결될 수 있다. 선택적으로 일 실시예에 따르면, 상기 연결체(105)는 접착 물질을 포함할 수 있다. 이를 통해 연결체(105)에 인접한 봉지 구조체(13)와 접합되어 봉지 구조체(13)를 고정할 수 있다.However, the present invention is not necessarily limited thereto, and the connector 105 may be formed of a separate material, and thus may be connected to the sewing structure 13. Optionally, according to an embodiment, the connector 105 may include an adhesive material. Through this, it is bonded to the sealing structure 13 adjacent to the connector 105 to fix the sealing structure 13.
도 19는 도 3에 도시된 실시예에 대하여 전술한 실시예와 같이 연결부(105) 및 연결체(106)가 구비된 구조를 나타낸 것이다.19 shows a structure in which the connection part 105 and the connection body 106 are provided as in the above-described embodiment with respect to the embodiment shown in FIG. 3.
도 19에서 볼 수 있듯이, 기판(10)에는 연결부(105) 및 연결체(106)가 복수 개 배치될 수 있는 데, 상기 연결부(105) 중 적어도 일부는 기판(10) 상에 형성된 복수의 수동 소자들 및/또는 능동 소자들과 간섭되지 않는 위치에 형성될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 연결부(105) 및 연결체(106) 중 적어도 일부는 기판(10)의 제1 면 및 제2 면을 연결하는 도전 라인의 기능을 할 수 있으며, 이에 따라 제1 면 및 제2 면에 설치된 일부 소자들을 전기적으로 연결시키는 기능을 할 수 있다.As can be seen in FIG. 19, a plurality of connection parts 105 and a plurality of connectors 106 may be disposed on the substrate 10, and at least some of the connection parts 105 are formed on the substrate 10. It may be formed in a position that does not interfere with the elements and/or active elements. However, the present invention is not necessarily limited thereto, and at least some of the connection part 105 and the connection body 106 may function as a conductive line connecting the first and second surfaces of the substrate 10, and thus the first It may function to electrically connect some elements installed on the surface and the second surface.
연결부(105) 및 연결체(106)에 대한 실시예는 이하 설명되는 본 명세서의 모든 실시예에 동일하게 적용될 수 있음은 물론이다. 즉, 비록 도면으로 도시하지는 않았지만, 도 4, 5 9, 및 11에 도시된 실시예들에 대하여도 각각 도 19와 같은 형태의 연결부(105) 및 연결체(106)의 구조가 적용될 수 있다.It goes without saying that the embodiment of the connection part 105 and the connection body 106 may be equally applied to all the embodiments of the present specification described below. That is, although not shown in the drawings, the structure of the connecting portion 105 and the connecting body 106 having the same shape as in FIG. 19 may be applied to the embodiments shown in FIGS. 4, 5, 9, and 11, respectively.
도 20은 또 다른 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 단면을 나타내는 도면이고, 도 21은 그 부분의 확대 단면도이다.20 is a view showing a cross-section of the independent active EMI filter module 1 according to another embodiment, and FIG. 21 is an enlarged cross-sectional view of the portion.
도 20을 참조하면, 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 충진부(132)는 제1 충진부(1321) 및 제2 충진부(1322)를 포함할 수 있다. 상기 제1 충진부(1321)는 기판(10)의 제1 면(101)을 향하고, 제2 충진부(1322)는 기판(10)의 제2 면(102)을 향할 수 있다. 상기와 같은 제2 충진부(1322)에 의해 개구(1311)는 폐쇄될 수 있는 데, 제2 충진부(1322)가 모듈의 바닥면(133)을 구성할 수 있다. 제2 충진부(1322)는 제4 소자 그룹(104)을 완전히 덮도록 구비되며, 이에 따라 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조가 될 수 있다.Referring to FIG. 20, a filling unit 132 of the independent active EMI filter module 1 according to another embodiment may include a first filling unit 1321 and a second filling unit 1322. The first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10. The opening 1311 may be closed by the second filling portion 1322 as described above, and the second filling portion 1322 may constitute the bottom surface 133 of the module. The second filling part 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling part 1322.
상기 독립 능동 EMI 필터 모듈(1)은 연결부(105) 및 연결체(106)를 포함할 수 있다.The independent active EMI filter module 1 may include a connection part 105 and a connection body 106.
상기 연결부(105)는, 상기 기판(10)의 제1 면(101) 및 제2 면(102)과 연결된 것으로, 일 실시예에 따르면, 도 21에서 볼 수 있듯이, 상기 기판(10)의 제1 면(101) 및 제2 면(102)을 관통하는 홀의 형태를 포함할 수 있다. 상기 홀의 형태는 평면이 원형, 또는 다각형일 수 있고, 단면으로 통상 구조, 또는 단차를 갖는 구조를 포함할 수 있다. The connection part 105 is connected to the first surface 101 and the second surface 102 of the substrate 10, and according to an embodiment, as shown in FIG. 21, the first surface of the substrate 10 It may include a shape of a hole penetrating the first surface 101 and the second surface 102. The shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
상기 연결부(105)는 상기 제1 소자 그룹(11) 또는 제2 소자 그룹(12) 중 적어도 하나와 간섭되지 않도록 위치할 수 있는 데, 상기 연결부(105)가 기판(10)에 형성되는 홀의 형태를 갖는 경우, 상기 연결부(105)는 상기 제3 소자 그룹(103) 및 제4 소자 그룹(104)과 간섭되지 않도록 구비될 수 있다.The connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
일 실시예에 따르면, 상기 연결부(105)는 상기 제3 소자 그룹(103)과 제4 소자 그룹(104)과 간섭되지 않은 복수의 개소에 위치할 수 있다.According to an embodiment, the connection part 105 may be located at a plurality of locations that do not interfere with the third device group 103 and the fourth device group 104.
상기 연결체(106)는 상기 연결부(105) 내에 위치한 것으로, 상기 봉지 구조체(13)와 연결되도록 구비될 수 있다.The connector 106 is located within the connection part 105 and may be provided to be connected to the encapsulation structure 13.
상기 연결체(106)는 연결부(105)의 홀을 적어도 일부 채울 수 있는 충진체로 구비될 수 있다. 상기 충진체는 상기 제1 면(101) 또는 제2 면(102) 중 적어도 하나로 노출되어 상기 봉지 구조체(13)와 연결될 수 있다. The connection body 106 may be provided as a filler capable of filling at least a part of the hole of the connection part 105. The filler may be exposed to at least one of the first surface 101 or the second surface 102 to be connected to the encapsulation structure 13.
일 실시예에 따르면, 상기 연결체(106)는 봉지 구조체(13)를 형성하는 물질 중 일부와 동일한 물질로 형성될 수 있으며, 선택적으로 봉지 구조체(13)와 일체로 형성될 수 있다. According to an embodiment, the connector 106 may be formed of the same material as some of the materials forming the encapsulation structure 13, and may be selectively formed integrally with the encapsulation structure 13.
상기 봉지 구조체(13)는 상기 연결부(105)를 통해 상기 기판(10)을 가로지르도록 소통할 수 있다. 일 실시예에 따르면, 연결부(105)를 소통하는 봉지 구조체(13)의 적어도 일부가 연결체(106)를 형성할 수 있다. The encapsulation structure 13 may communicate so as to traverse the substrate 10 through the connection part 105. According to an embodiment, at least a part of the encapsulation structure 13 communicating the connection part 105 may form the connection body 106.
구체적으로, 도 21에 도시된 바와 같이 상기 연결체(106)는 제1 충진부(1321) 및 제2 충진부(1322)를 서로 연결하도록 구비될 수 있다. 상기 연결체(106)에 의해 제1 충진부(1321)와 제2 충진부(1322)가 서로 연결될 수 있기 때문에, 제1 충진부(1321)와 제2 충진부(1322)가 분리되는 것을 방지하고, 충진부(13) 전체의 구조적인 안정성 및 내구성을 향상시킬 수 있다. 이에 따라 방열에 따른 충진부(13)의 열화에도 제1 충진부(1321)와 제2 충진부(1322)가 서로 분리되는 것을 방지할 수 있다.Specifically, as shown in FIG. 21, the connector 106 may be provided to connect the first filling portion 1321 and the second filling portion 1322 to each other. Since the first filling portion 1321 and the second filling portion 1322 can be connected to each other by the connector 106, the first filling portion 1321 and the second filling portion 1322 are prevented from being separated. And, it is possible to improve the structural stability and durability of the entire filling part 13. Accordingly, even when the filling portion 13 is deteriorated due to heat dissipation, the first filling portion 1321 and the second filling portion 1322 may be prevented from being separated from each other.
일 실시예에 따르면, 상기 연결체(105)는 충진부(13)와 다른 별도의 물질을 더 포함할 수 있으며, 이에 따라 봉제 구조체(13)와 연결될 수 있다. 선택적으로 일 실시예에 따르면, 상기 연결체(105)는 접착 물질을 포함할 수 있다. 이를 통해 연결체(105)에 인접한 제1 충진부(1321) 및 제2 충진부(1322)와 접합되어 충진부(132)를 견고히 고정할 수 있다.According to an embodiment, the connector 105 may further include a separate material different from the filling part 13, and thus may be connected to the sewing structure 13. Optionally, according to an embodiment, the connector 105 may include an adhesive material. Through this, it is bonded to the first filling portion 1321 and the second filling portion 1322 adjacent to the connector 105 to firmly fix the filling portion 132.
도 22는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)로서, 도 20에 도시된 실시예와 달리, 충진부(132)가 적어도 기판(10)과 바닥(1312)의 사이에 충진될 수 있고, 충진부(132)에 의해 기판(10)은 서포트(131) 내벽에 고정적으로 접합될 수 있다. 상기와 같은 구조의 독립 능동 EMI 필터 모듈(1)은 핀들(14)이 돌출된 기판(10)의 제2 면(102)이 모듈의 바닥면(133)을 구성할 수 있다. 22 is an independent active EMI filter module 1 according to another embodiment, and unlike the embodiment shown in FIG. 20, the filling part 132 is at least filled between the substrate 10 and the bottom 1312. The substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132. In the independent active EMI filter module 1 having the above structure, the second surface 102 of the substrate 10 from which the pins 14 protrude may constitute the bottom surface 133 of the module.
일 실시예에 따르면, 상기 연결부(105)에는 핀상의 제2 연결체(107)가 결합될 수 있다. 상기 제2 연결체(107)는 일단이 충진부(132)에 삽입되고, 타단은 외측으로 노출될 수 있다. 상기 제2 연결체(107)는 도전성 재료로 형성될 수 있는 데, 이에 따라 충진부(132) 내부의 열을 배출하는 경로로 사용될 수 있다. 선택적으로, 상기 제2 연결체(107)는 접지 선에 연결되어 상기 독립 능동 EMI 필터 모듈(1)의 전기적 안정성을 향상시킬 수 있다. 도면으로 도시하지는 않았지만, 이러한 제2 연결체(107)는 도 6에 도시된 실시예에도 적용될 수 있다.According to an embodiment, the second connector 107 in the form of a pin may be coupled to the connector 105. One end of the second connector 107 may be inserted into the filling part 132 and the other end may be exposed to the outside. The second connector 107 may be formed of a conductive material, and thus may be used as a path for discharging heat inside the filling part 132. Optionally, the second connector 107 is connected to a ground line to improve electrical stability of the independent active EMI filter module 1. Although not shown in the drawings, the second connector 107 may also be applied to the embodiment shown in FIG. 6.
도 23a 및 도 23b는 각각 도 8a 및 도 8b에 연결부(105) 및/또는 연결체(106)중 적어도 하나가 적용된 것이다. 도 23a 내지 도 23b에서 볼 수 있듯이, 상기 연결부(105) 및/또는 연결체(106)중 적어도 하나는 기판(10)에 형성된 수동소자들 및/또는 능동소자들과 간섭되지 않도록 배치되고, 각종 배선들이 형성되지 않은 위치에 설치될 수 있다. 구체적으로, 상기 연결부(105) 및/또는 연결체(106)는 기판(10)의 대략 중앙부, 기판(10)의 가장자리를 따라 복수 개소에 설치될 수 있다.23A and 23B are at least one of the connecting portion 105 and/or the connecting body 106 applied to FIGS. 8A and 8B, respectively. 23A to 23B, at least one of the connection part 105 and/or the connection body 106 is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10, and various It can be installed in a location where the wires are not formed. Specifically, the connection part 105 and/or the connection body 106 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and an edge of the substrate 10.
마찬가지로 도 9에 도시된 실시예에 있어서, 핀의 배치는 도 24에 도시된 바와 같이 구현될 수 있다. 즉, 도 10에 도시된 실시예에 더하여, 상기 연결부(105) 및/또는 연결체(106)중 적어도 하나는 기판(10)에 형성된 수동소자들 및/또는 능동소자들과 간섭되지 않도록 배치되고, 각종 배선들이 형성되지 않은 위치에 설치될 수 있다. 구체적으로, 상기 연결부(105) 및/또는 연결체(106)는 기판(10)의 대략 중앙부, 기판(10)의 가장자리를 따라 복수 개소에 설치될 수 있다.Similarly, in the embodiment illustrated in FIG. 9, the arrangement of the pins may be implemented as illustrated in FIG. 24. That is, in addition to the embodiment shown in FIG. 10, at least one of the connecting portion 105 and/or the connecting body 106 is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10 , It can be installed in a location where various wires are not formed. Specifically, the connection part 105 and/or the connection body 106 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and an edge of the substrate 10.
도 25에 도시된 실시예는 도 11에 도시된 실시예의 핀 배치를 나타낸 것으로, 도 12에 도시된 실시예에 더하여, 상기 연결부(105) 및/또는 연결체(106)는 기판(10)의 대략 중앙부, 기판(10)의 가장자리를 따라 복수 개소에 설치될 수 있다.The embodiment shown in FIG. 25 shows the pin arrangement of the embodiment shown in FIG. 11, and in addition to the embodiment shown in FIG. 12, the connection part 105 and/or the connector 106 It may be installed at a plurality of locations approximately at the center and along the edge of the substrate 10.
상기와 같은 독립 능동 EMI 필터 모듈(1)은 다음과 같은 방법으로 제조될 수 있다.The independent active EMI filter module 1 as described above may be manufactured by the following method.
먼저, 도 26에서 볼 수 있듯이 서로 대향된 제1 면(101) 및 제2 면(102)을 포함하는 기판(10)을 준비하고, 상기 기판(10)에 제1 소자 그룹(11) 및 제2 소자 그룹(12)을 설치한다. 전술한 바와 같이 상기 제1 소자 그룹(11)은 전자파 노이즈를 감지하도록 구비된 소자 그룹이며, 제2 소자 그룹(12)은 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 소자 그룹이다. 이하에서는 전술한 도 13 내지 17에 도시된 실시예와 중복되는 설명은 생략한다.First, as shown in FIG. 26, a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12. As described above, the first device group 11 is a device group provided to detect electromagnetic wave noise, and the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise. Hereinafter, descriptions overlapping with the embodiments illustrated in FIGS. 13 to 17 will be omitted.
상기 기판(10)에는 적어도 하나 이상의 연결부(105)를 형성할 수 있다. 상기 연결부(105)는 기판(10)을 관통하는 홀 형상으로 형성될 수 있는 데, 기판(10)에 형성된 수동소자들 및/또는 능동소자들과 간섭되지 않도록 배치되고, 각종 배선들이 형성되지 않은 위치에 설치될 수 있다. 구체적으로, 상기 연결부(105)는 기판(10)의 대략 중앙부, 및/또는 기판(10)의 가장자리를 따라 복수 개소에 설치될 수 있다.At least one connection part 105 may be formed on the substrate 10. The connection part 105 may be formed in a shape of a hole penetrating the substrate 10, and is disposed so as not to interfere with passive elements and/or active elements formed on the substrate 10, and various wires are not formed. Can be installed on site. Specifically, the connection part 105 may be installed at a plurality of locations along an approximately central portion of the substrate 10 and/or an edge of the substrate 10.
도면에 도시하지는 않았지만, 다른 일 실시예에 따르면, 상기 연결부(105) 중 적어도 하나에는 연결체(106)가 미리 형성되어 있을 수 있다. 상기 연결체(106)는 방열 소재, 열전달 소재 및/또는 접착 소재를 포함할 수 있으며, 필요한 기능에 따라 선택할 수 있다.Although not shown in the drawings, according to another embodiment, at least one of the connection parts 105 may have a connection body 106 formed in advance. The connector 106 may include a heat dissipation material, a heat transfer material, and/or an adhesive material, and may be selected according to a required function.
다음으로, 상기와 같이 소자들이 장착된 기판(10)을 봉지한다.Next, the substrate 10 on which the devices are mounted is sealed as described above.
일 실시예에 따르면, 상기 봉지를 위해, 도 14에서 볼 수 있는 서포트(131)를 준비하고, 도 15에서 볼 수 있듯이, 이러한 서포트(131)의 개구(1311)를 통해 상기 공간부(1310)에 충진액(133)을 넣는다. According to an embodiment, for the sealing, a support 131 as seen in FIG. 14 is prepared, and as shown in FIG. 15, the space part 1310 through the opening 1311 of the support 131 Put the filling liquid 133 in.
다음으로, 도 27에서 볼 수 있듯이, 상기 충진액(133)이 수용된 공간부(1310)에 전술한 기판(10)을 수용시킨다. 이 때, 기판(10)의 제1 면(101)이 공간부(1310)의 바닥(1312)을 향하도록 함으로써, 제1 면(101) 상에 장착된 제3 소자 그룹(103)이 충진액(133)에 충분히 잠길 수 있도록 한다. Next, as shown in FIG. 27, the above-described substrate 10 is accommodated in the space 1310 in which the filling liquid 133 is accommodated. At this time, by making the first surface 101 of the substrate 10 face the bottom 1312 of the space 1310, the third element group 103 mounted on the first surface 101 is (133) to be sufficiently immersed.
상기 제3 소자 그룹(103)이 충진액(133)에 잠긴 상태에서 제3 소자 그룹(103)의 상부는 공간부(1310)의 바닥(1312)과 일정 거리 이격된 상태가 될 수 있다. When the third device group 103 is submerged in the filling liquid 133, the upper portion of the third device group 103 may be spaced apart from the bottom 1312 of the space 1310 by a predetermined distance.
이 때, 기판(10)의 적어도 일 영역에는 연결부(105)가 형성되어 있기 때문에, 이 연결부(105)를 통해 충진액(133)은 기판(10)의 제1 면(101)으로부터 제2 면(102)의 방향으로 통과할 수 있다. 따라서 연결부(105)를 관통한 충진액(133)은 기판(10)의 제2 면(102) 상에 설치된 제4 소자 그룹(104)이 충진액(133)에 완전히 잠기도록 할 수 있다. 이 후, 상기 충진액(133)을 경화시켜 충진부(132)를 형성한다. 일 실시예에 따르면, 상기 연결부(105)를 관통한 충진액(133)이 연결체(106)를 형성할 수 있다.At this time, since the connection portion 105 is formed in at least one region of the substrate 10, the filling liquid 133 through the connection portion 105 is transferred from the first surface 101 to the second surface of the substrate 10. Can pass in the direction of (102). Accordingly, the filling liquid 133 penetrating the connection part 105 may completely immerse the fourth element group 104 installed on the second surface 102 of the substrate 10 in the filling liquid 133. Thereafter, the filling part 132 is formed by curing the filling liquid 133. According to an embodiment, the filling liquid 133 passing through the connection part 105 may form the connection body 106.
충진부(132)는 기판(10)과 바닥(1312) 사이에 위치하는 제1 충진부(1321)와 기판(10)의 제4 소자 그룹(104)을 덮는 제2 충진부(1322)를 포함하게 된다. 그리고 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조를 갖게 된다.The filling portion 132 includes a first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and a second filling portion 1322 covering the fourth element group 104 of the substrate 10 Is done. In addition, the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322.
이러한 구조에서 상기 연결부(105)에 위치하는 연결체(106)에 의해 제1 충진부(1321)와 제2 충진부(1322)가 서로 연결될 수 있고, 이에 따라 충진부(132)의 결합 구조가 더욱 견고해질 수 있다.In this structure, the first filling portion 1321 and the second filling portion 1322 may be connected to each other by the connecting body 106 positioned at the connecting portion 105, and thus the coupling structure of the filling portion 132 is It can be more solid.
도 28는 또 다른 일 실시예에 따른 제조방법을 도시한 것으로, 도 15에서 서포트(131)의 공간부(1310)에 충진된 충진액(133)에 기판(10)을 침지한다.FIG. 28 illustrates a manufacturing method according to another exemplary embodiment. In FIG. 15, the substrate 10 is immersed in the filling liquid 133 filled in the space 1310 of the support 131.
기판(10)에는 복수의 개소에 연결부(105)가 형성된 상태이며, 이 중 적어도 일부에 제2 연결체(107)가 결합될 수 있다. 상기 충진액(133)은 기판(10)에 설치된 제3 소자 그룹(103)이 잠길 정도의 양이면 충분하다.The substrate 10 is in a state in which the connection portions 105 are formed at a plurality of locations, and the second connector 107 may be coupled to at least some of them. The filling liquid 133 is sufficient if the amount is sufficient to submerge the third element group 103 installed on the substrate 10.
이 때 기판(10)을 침지하면 기판(10)의 제2 면(102)은 충진액(133)에 충분히 잠기지 않은 상태가 된다. 이 상태에서 충진액(133)을 경화시키면, 도 22에 도시된 바와 같은 독립 능동 EMI 필터 모듈(1)의 충진부(132)가 완성될 수 있다. 이러한 구조의 독립 능동 EMI 필터 모듈(1)은 모든 소자들이 충진부(132)에 의해 봉지되는 것은 아니고, 능동 회로부(121)가 노출되는 구조가 되나, 제3 소자 그룹(103)이 충진부(132)에 의해 봉지되어 충분히 보호될 수 있다. 또한 기판(10)이 금속 PCB일 경우, 기판(10)을 통한 방열도 가능해 지므로, 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 내구성이 더욱 향상될 수 있다.At this time, when the substrate 10 is immersed, the second surface 102 of the substrate 10 is not sufficiently immersed in the filling liquid 133. When the filling liquid 133 is cured in this state, the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 22 may be completed. In the independent active EMI filter module 1 of this structure, not all elements are sealed by the filling unit 132, but the active circuit unit 121 is exposed, but the third element group 103 is a filling unit ( 132) can be sufficiently protected. In addition, when the substrate 10 is a metal PCB, heat dissipation through the substrate 10 is also possible, and the independent active EMI filter module 1 according to the embodiment may further improve durability.
도면으로 도시하지는 않았지만, 상기 구조에서 연결부(105)의 일부에 제2 연결체(107)가 결합되지 않을 수 있으며, 따라서 충진액이 연결부(105) 중 제2 연결체(107)와 결합되지 않은 곳을 통해 기판(10)을 관통해 제4 소자 그룹(104)을 봉지할 수 있다.Although not shown in the drawings, the second connector 107 may not be coupled to a part of the connection portion 105 in the above structure, and thus the filling liquid is not coupled to the second connector 107 of the connection portion 105. The fourth device group 104 may be encapsulated by penetrating the substrate 10 therethrough.
도 29은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 봉지 구조체(13)를 도시한 것이다.29 shows an encapsulation structure 13 of the independent active EMI filter module 1 according to another embodiment.
도 29에 도시된 일 실시예에 따르면, 상기 독립 능동 EMI 필터 모듈(1)은 상기 공간부(1310)의 적어도 일부를 충진하도록 구비된 충진부(132)를 포함할 수 있다. 상기 충진부(132)는 적어도 기판(10)과 바닥(1312)의 사이에 충진될 수 있고, 충진부(132)에 의해 기판(10)은 서포트(131) 내벽에 고정적으로 접합될 수 있다.According to the exemplary embodiment illustrated in FIG. 29, the independent active EMI filter module 1 may include a filling part 132 provided to fill at least a part of the space 1310. The filling part 132 may be filled at least between the substrate 10 and the bottom 1312, and the substrate 10 may be fixedly bonded to the inner wall of the support 131 by the filling part 132.
상기 독립 능동 EMI 필터 모듈(1)은 적어도 서포트(131)와 연결된 적어도 하나의 접합부(134)를 포함할 수 있는 데, 도 31에 도시된 실시예에 따르면, 상기 접합부(134)는 기판(10)의 제2 면(102) 및 서포트(131)의 내측면과 접합될 수 있다. 상기 기판(10)의 제2 면(102)이 개구(1311)으로부터 이격된 제2 거리(t2)는 상기 접합부(134)가 설치되기에 충분한 거리가 되도록 할 수 있다. 상기 제2 거리(t2)는 접합부(134)가 설치될 수 있도록 하는 마진으로 정의될 수 있다. 상기 접합부(134)에 의해 기판(10)은 상기 서포트(131)에 보다 견고하게 접합될 수 있으며, 접합부(134)는 기판(10)이 서포트(131)로부터 분리되는 것을 방지할 수 있다. 이러한 접합부(134)는 기판(10) 및 서포트(131)와 접하지 않은 다른 부분은 경사면을 갖도록 구비될 수 있는 데, 이에 따라 접합부(134)가 존재하는 공간을 최소화하고, 접합부(134)가 다른 부재와 간섭되는 것을 최소화할 수 있다.The independent active EMI filter module 1 may include at least one bonding portion 134 connected to at least a support 131. According to the embodiment shown in FIG. 31, the bonding portion 134 is a substrate 10 ) May be bonded to the second side 102 and the inner side of the support 131. The second distance t2 of the second surface 102 of the substrate 10 spaced apart from the opening 1311 may be a distance sufficient for the bonding portion 134 to be installed. The second distance t2 may be defined as a margin through which the junction 134 can be installed. By the bonding portion 134, the substrate 10 may be more firmly bonded to the support 131, and the bonding portion 134 may prevent the substrate 10 from being separated from the support 131. The bonding portion 134 may be provided so that other portions not in contact with the substrate 10 and the support 131 have an inclined surface, thereby minimizing the space in which the bonding portion 134 exists, and the bonding portion 134 It is possible to minimize interference with other members.
상기 접합부(134)는, 상기 충진부(132)와 동일한 재질로 형성될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 상기 접합부(134)는 충진부(132)와 다른 재질을 포함할 수 있다.The bonding part 134 may be formed of the same material as the filling part 132. However, the present invention is not necessarily limited thereto, and the bonding portion 134 may include a material different from the filling portion 132.
일 실시예에 따르면, 상기 기판(10)은 가장자리의 적어도 일부에 상기 서포트(131)와 이격된 간격을 가질 수 있고, 이 간격에 의해 상기 충진부(132)의 일부는 기판(10)의 제2 면(102)의 방향으로 돌출될 수 있다. 돌출된 충진부(132)의 일부는 간격 외측으로 퍼져 접합부(134)를 형성할 수 있다. 이 경우, 상기 접합부(134)는 충진부(132)와도 연결될 수 있고, 이에 따라 기판(10)을 더욱 견고하게 고정할 수 있다.According to an embodiment, the substrate 10 may have a gap spaced apart from the support 131 at at least a part of the edge, and by this gap, a part of the filling part 132 may be formed of the substrate 10. It may protrude in the direction of the two sides 102. A portion of the protruding filling part 132 may spread outwardly to form the junction part 134. In this case, the bonding part 134 may be connected to the filling part 132 as well, and thus the substrate 10 may be more firmly fixed.
도 30는 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)로서, 도 31에 도시된 실시예와 달리 충진부(132)가 제1 충진부(1321) 및 제2 충진부(1322)를 포함할 수 있다. 상기 제1 충진부(1321)는 기판(10)의 제1 면(101)을 향하고, 제2 충진부(1322)는 기판(10)의 제2 면(102)을 향할 수 있다. 상기 제2 충진부(1322)는 제4 소자 그룹(104)을 완전히 덮도록 구비되며, 이에 따라 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조가 될 수 있다. 도 32에 도시된 일 실시예에 따르면, 상기 독립 능동 EMI 필터 모듈(1)은 적어도 서포트(131)와 연결된 적어도 하나의 접합부(134)를 포함할 수 있다. 상기 접합부(134)는 제2 충진부(1322) 및 서포트(131)의 내측면과 접합될 수 있다. FIG. 30 is an independent active EMI filter module 1 according to another embodiment, and unlike the embodiment shown in FIG. 31, a filling unit 132 includes a first filling unit 1321 and a second filling unit 1322 It may include. The first filling portion 1321 may face the first surface 101 of the substrate 10, and the second filling portion 1322 may face the second surface 102 of the substrate 10. The second filling portion 1322 is provided to completely cover the fourth element group 104, and thus the pins 14 may have a structure protruding outward of the module through the second filling portion 1322. . According to the exemplary embodiment illustrated in FIG. 32, the independent active EMI filter module 1 may include at least one junction 134 connected to the support 131. The bonding portion 134 may be bonded to the inner side of the second filling portion 1322 and the support 131.
상기 기판(10)의 제2 면(102)이 개구(1311)으로부터 이격된 제2 거리(t2)는 상기 기판(10)의 제2 면(102)으로부터 제2 충진부(1322)의 바닥면(133)까지의 제3 거리(t3)보다 클 수 있다. 따라서, 상기 제2 거리(t2)는 상기 제3 거리(t3)의 확보 및 상기 접합부(134)가 설치되기에 충분한 거리가 되도록 할 수 있다. 상기 제2 거리(t2)는 제2 충진부(1322) 및 접합부(134)가 설치될 수 있도록 하는 마진으로 정의될 수 있다. 따라서, 제2 충진부(1322)가 개구(1311)를 넘어 돌출되게 형성되는 것을 방지할 수 있다.The second distance t2 of the second surface 102 of the substrate 10 separated from the opening 1311 is the bottom surface of the second filling part 1322 from the second surface 102 of the substrate 10 It may be greater than the third distance t3 to (133). Accordingly, the second distance t2 may be a distance sufficient to secure the third distance t3 and to install the junction part 134. The second distance t2 may be defined as a margin through which the second filling part 1322 and the junction part 134 can be installed. Accordingly, it is possible to prevent the second filling part 1322 from protruding beyond the opening 1311.
상기 접합부(134)의 단부는 도 30에서 볼 수 있듯이 상기 개구(1311)에 접하도록 구비될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 상기 개구(1311)로부터 기판(10)의 방향으로 이격되게 위치할 수 있다. 접합부(134)의 단부가 개구(1311)와 이격되게 위치하는 경우, 접합부(134)의 크기를 충분하게 형성할 수 있으며, 접합부(134)가 제2 충진부(1322)와 일체로 형성된 경우 제2 충진부(1322)가 개구(1311)를 넘어 돌출 형성되는 것을 충분히 방지할 수 있다.The end of the junction 134 may be provided to contact the opening 1311 as shown in FIG. 30, but is not limited thereto, and is spaced apart from the opening 1311 in the direction of the substrate 10 Can be located. When the end of the junction 134 is positioned to be spaced apart from the opening 1311, the size of the junction 134 can be sufficiently formed, and when the junction 134 is integrally formed with the second filling part 1322 2 It is possible to sufficiently prevent the filling part 1322 from protruding beyond the opening 1311.
상기와 같은 접합부(134)에 의해 기판(10)은 상기 서포트(131)에 보다 견고하게 접합될 수 있으며, 접합부(134)는 기판(10)이 서포트(131)로부터 분리되는 것을 방지할 수 있다. 이러한 접합부(134)는 제2 충진부(1322) 및 서포트(131)와 접하지 않은 다른 부분은 경사면을 갖도록 구비될 수 있는 데, 이에 따라 접합부(134)가 존재하는 공간을 최소화하고, 접합부(134)가 다른 부재와 간섭되는 것을 최소화할 수 있다.The substrate 10 may be more firmly bonded to the support 131 by the bonding portion 134 as described above, and the bonding portion 134 may prevent the substrate 10 from being separated from the support 131. . The bonding portion 134 may be provided so that the second filling portion 1322 and other portions not in contact with the support 131 have an inclined surface, thereby minimizing the space in which the bonding portion 134 exists, and the bonding portion ( 134) can minimize interference with other members.
상기 접합부(134)는, 적어도 상기 제2 충진부(1322)와 동일한 재질로 형성될 수 있다. 일 실시예에 따르면, 상기 접합부(134)는 제2 충진부(1322)로부터 표면 장력에 의해 서포트(131)의 내측벽으로 연장 돌출된 부분을 포함할 수 있다. 상기 접합부(134)는 바닥면(133)을 형성하는 부재와의 간섭 없이 바닥면(133)과 일체로 형성될 수 있다. The junction part 134 may be formed of at least the same material as the second filling part 1322. According to an embodiment, the bonding portion 134 may include a protruding portion extending from the second filling portion 1322 to the inner wall of the support 131 due to surface tension. The bonding portion 134 may be integrally formed with the bottom surface 133 without interference with a member forming the bottom surface 133.
도 31는 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 저면을 나타낸 것으로, 도 31에서 볼 수 있듯이, 상기와 같은 접합부(134)는 서포트(131)의 모서리에 대향되게 위치해, 서포트(131)의 각 모서리에 접합할 수 있다. 31 is a view showing the bottom of the independent active EMI filter module 1 according to an embodiment. As can be seen in FIG. 31, the junction 134 is positioned opposite to the edge of the support 131, and the support ( 131) can be joined to each corner.
이러한 구조에 따르면, 접합부(134)가 바닥면(133)으로 노출되는 부재들과의 위치 간섭이 최소화되는 상태에서 기판(10)의 서포트(131)에의 고정력을 확보할 수 있다.According to this structure, it is possible to secure a fixing force of the substrate 10 to the support 131 in a state in which positional interference with members exposed to the bottom surface 133 is minimized.
도 32은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)의 저면을 나타낸 것으로, 도 34에서 볼 수 있는 접합부(134)의 실시예는 폐루프를 이루도록 형성되며, 서포트(131)의 모서리 및 각 변에 대향되게 위치해, 서포트(131)의 내측면 전체에 접합할 수 있다. FIG. 32 shows the bottom of the independent active EMI filter module 1 according to another embodiment. The embodiment of the junction 134 shown in FIG. 34 is formed to form a closed loop, and the support 131 It is located opposite to the edge and each side, and can be bonded to the entire inner surface of the support 131.
이러한 구조에 따르면, 접합부(134)가 기판(10)의 서포트(131)에의 고정력을 더욱 높일 수 있다. 도 31 및 도 32에 도시된 실시예는 본 명세서의 다른 실시예들에도 동일하게 적용될 수 있음은 물론이다.According to this structure, the fixing force of the bonding portion 134 to the support 131 of the substrate 10 can be further increased. It goes without saying that the embodiments shown in FIGS. 31 and 32 may be equally applied to other embodiments of the present specification.
도 33은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)을 나타내는 단면도이다. 도 33에 도시된 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 도 30에 도시된 실시예에 더하여 연결부(105) 및 연결체(106)를 더 포함할 수 있다. 도 30에 도시된 실시예와 중복되는 부분은 설명을 생략한다.33 is a cross-sectional view illustrating an independent active EMI filter module 1 according to another embodiment. The independent active EMI filter module 1 according to the embodiment shown in FIG. 33 may further include a connector 105 and a connector 106 in addition to the embodiment shown in FIG. 30. Descriptions of parts that overlap with the embodiment shown in FIG. 30 will be omitted.
상기 연결부(105)는, 상기 기판(10)의 제1 면(101) 및 제2 면(102)과 연결된 것으로, 상기 기판(10)의 제1 면(101) 및 제2 면(102)을 관통하는 홀의 형태를 포함할 수 있다. 상기 홀의 형태는 평면이 원형, 또는 다각형일 수 있고, 단면으로 통상 구조, 또는 단차를 갖는 구조를 포함할 수 있다.The connection part 105 is connected to the first side 101 and the second side 102 of the substrate 10, and connects the first side 101 and the second side 102 of the substrate 10 to each other. It may include a shape of a hole passing through. The shape of the hole may be a circular or polygonal plane, and may include a structure having a normal structure or a step difference in cross section.
상기 연결부(105)는 상기 제1 소자 그룹(11) 또는 제2 소자 그룹(12) 중 적어도 하나와 간섭되지 않도록 위치할 수 있는 데, 상기 연결부(105)가 기판(10)에 형성되는 홀의 형태를 갖는 경우, 상기 연결부(105)는 상기 제3 소자 그룹(103) 및 제4 소자 그룹(104)과 간섭되지 않도록 구비될 수 있다.The connection part 105 may be positioned so as not to interfere with at least one of the first device group 11 or the second device group 12, wherein the connection part 105 is formed in the form of a hole in the substrate 10 In the case of having a, the connection part 105 may be provided so as not to interfere with the third device group 103 and the fourth device group 104.
도 34은 또 다른 일 실시예에 따른 독립 능동 EMI 필터 모듈(1)로서, 도 34에 도시된 실시예에 따른 독립 능동 EMI 필터 모듈(1)은 도 31에 도시된 실시예에 더하여 연결부(105) 및 제2 연결체(107)를 더 포함할 수 있다. 도 29에 도시된 실시예와 중복되는 부분은 설명을 생략한다. 이러한 실시예에서 접합부(134)는 제2 연결체(107)와의 위치 간섭이 없도록 형성될 수 있다.FIG. 34 is an independent active EMI filter module 1 according to another embodiment, and the independent active EMI filter module 1 according to the embodiment shown in FIG. 34 is a connection part 105 in addition to the embodiment shown in FIG. 31. ) And a second connector 107 may be further included. Descriptions of parts that overlap with the embodiment shown in FIG. 29 will be omitted. In this embodiment, the junction part 134 may be formed so that there is no positional interference with the second connector 107.
상기와 같은 독립 능동 EMI 필터 모듈(1)은 다음과 같은 방법으로 제조될 수 있다.The independent active EMI filter module 1 as described above may be manufactured by the following method.
먼저, 도 13에서 볼 수 있듯이 서로 대향된 제1 면(101) 및 제2 면(102)을 포함하는 기판(10)을 준비하고, 상기 기판(10)에 제1 소자 그룹(11) 및 제2 소자 그룹(12)을 설치한다. 전술한 바와 같이 상기 제1 소자 그룹(11)은 전자파 노이즈를 감지하도록 구비된 소자 그룹이며, 제2 소자 그룹(12)은 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 소자 그룹이다.First, as shown in FIG. 13, a substrate 10 including a first surface 101 and a second surface 102 facing each other is prepared, and the first element group 11 and the first element group 11 2 Install the element group 12. As described above, the first device group 11 is a device group provided to detect electromagnetic wave noise, and the second device group 12 is a device group provided to generate a compensation signal for electromagnetic wave noise.
다음으로, 상기와 같이 소자들이 장착된 기판(10)을 봉지한다.Next, the substrate 10 on which the devices are mounted is sealed as described above.
일 실시예에 따르면, 상기 봉지를 위해, 도 14에서 볼 수 있듯이, 서포트(131)를 준비하고, 도 15에서 볼 수 있듯이, 이러한 서포트(131)의 개구(1311)를 통해 상기 공간부(1310)에 충진액(130)을 넣는다. According to an embodiment, for the encapsulation, as shown in FIG. 14, a support 131 is prepared, and as shown in FIG. 15, the space portion 1310 through the opening 1311 of the support 131 Put the filling solution 130 in ).
다음으로, 상기 충진액(130)이 수용된 공간부(1310)에 전술한 기판(10)을 수용시킨다. 이 때, 기판(10)의 제1 면(101)이 공간부(1310)의 바닥(1312)을 향하도록 함으로써, 제1 면(101) 상에 장착된 제3 소자 그룹(103)이 충진액(130)에 충분히 잠길 수 있도록 한다. Next, the above-described substrate 10 is accommodated in the space portion 1310 in which the filling liquid 130 is accommodated. At this time, by making the first surface 101 of the substrate 10 face the bottom 1312 of the space 1310, the third element group 103 mounted on the first surface 101 is Make sure to be sufficiently immersed in (130).
상기 충진액(130)을 경화시키면, 도 29에 도시된 바와 같은 독립 능동 EMI 필터 모듈(1)의 충진부(132)가 완성될 수 있다. 일 실시예에 따르면, 상기 접합부(134)를 형성할 수 있다. 상기 접합부(134)는 충진액(130)과 동일한 물질에 의해 기판(10)의 제2 면(102)과 서포트(131)의 내측벽 사이에 도포하여 이를 경화시킴으로써 형성할 수 있다. 일 실시예에 따르면, 상기 기판(10)은 가장자리의 적어도 일부에 상기 서포트(131)와 이격된 간격을 가질 수 있고, 이 간격에 의해 상기 충진액(130)의 일부는 기판(10)의 제2 면(102)의 방향으로 돌출될 수 있다. 돌출된 충진부(132)의 일부는 간격 외측으로 퍼지고, 충진액(130)의 경화에 의해 접합부(134)를 형성할 수 있다. 상기 접합부(134)의 경화는 반드시 충진부(132)의 형성과 동시에 이루어지는 것은 아니며, 충진부(132) 형성 후에 이루어질 수도 있다. 또한 상기 접합부(134)는 충진부(132)와 동일 재료로 형성하는 것에 한정되는 것은 아니며, 별도의 재질로 기판(10)의 제2 면(102)과 서포트(131)의 내측벽 사이에 형성될 수 있다.When the filling liquid 130 is cured, the filling portion 132 of the independent active EMI filter module 1 as shown in FIG. 29 may be completed. According to an embodiment, the junction part 134 may be formed. The bonding portion 134 may be formed by applying the same material as the filling solution 130 between the second surface 102 of the substrate 10 and the inner wall of the support 131 and curing the same. According to an embodiment, the substrate 10 may have a gap spaced apart from the support 131 at at least a part of the edge, and by this gap, a part of the filling liquid 130 is It may protrude in the direction of the two sides 102. A portion of the protruding filling portion 132 may spread outside the gap, and the bonding portion 134 may be formed by curing the filling liquid 130. The curing of the bonding portion 134 is not necessarily performed simultaneously with the formation of the filling portion 132, but may be performed after the filling portion 132 is formed. In addition, the bonding portion 134 is not limited to being formed of the same material as the filling portion 132, and is formed between the second surface 102 of the substrate 10 and the inner wall of the support 131 as a separate material. Can be.
또 다른 일 실시예에 따르면, 서포트(131)의 개구(1311)와 기판(10)의 제2 면(102)의 사이에 충진액(130)을 추가로 충진한 후 경화시킬 수 있다. 충진액(130)은 제4 소자 그룹(104)이 완전히 잠기도록 하며, 이 후, 상기 충진액(130)을 경화시켜 충진부(132)를 형성한다. 이에 따라 도 30에서 볼 수 있듯이, 충진부(132)는 기판(10)과 바닥(1312) 사이에 위치하는 제1 충진부(1321)와 기판(10)의 제4 소자 그룹(104)을 덮는 제2 충진부(1322)를 포함하게 된다. 그리고 핀들(14)은 제2 충진부(1322)를 거쳐 모듈의 외측으로 돌출되는 구조를 갖게 된다. 그리고 상기 접합부(134)는 제2 충진부(1322) 및 서포트(131)의 내측면과 접합될 수 있다.According to another embodiment, the filling liquid 130 may be additionally filled between the opening 1311 of the support 131 and the second surface 102 of the substrate 10 and then cured. The filling liquid 130 allows the fourth element group 104 to be completely immersed, and then, the filling portion 132 is formed by curing the filling liquid 130. Accordingly, as shown in FIG. 30, the filling portion 132 covers the first filling portion 1321 positioned between the substrate 10 and the bottom 1312 and the fourth element group 104 of the substrate 10. A second filling part 1322 is included. In addition, the pins 14 have a structure that protrudes to the outside of the module through the second filling part 1322. In addition, the bonding portion 134 may be bonded to the inner side of the second filling portion 1322 and the support 131.
상기 접합부(134)가 충진부(132)와 동일한 물질로 형성되는 경우, 상기 접합부(134)는 제2 충진부(1322)의 경화 시 동시에 경화될 수 있다.When the bonding portion 134 is formed of the same material as the filling portion 132, the bonding portion 134 may be cured simultaneously when the second filling portion 1322 is cured.
도 33과 같이 연결부(105)를 갖는 구조의 경우, 기판(10)을 충진액(130)에 담글 경우, 기판(10)의 적어도 일 영역에는 연결부(105)가 형성되어 있기 때문에, 이 연결부(105)를 통해 충진액(130)은 기판(10)의 제1 면(101)으로부터 제2 면(102)의 방향으로 통과할 수 있다. 따라서 연결부(105)를 관통한 충진액(130)은 기판(10)의 제2 면(102) 상에 설치된 제4 소자 그룹(104)이 충진액(130)에 완전히 잠기도록 할 수 있다. 이 후, 상기 충진액(130)을 경화시켜 도 33에서 볼 수 있듯이 충진부(132)를 형성한다. 일 실시예에 따르면, 상기 연결부(105)를 관통한 충진액(133)이 연결체(106)를 형성할 수 있다. 그리고 충진액(130)에 의해 접합부(134)가 형성될 수 있고, 접합부(134)는 충진액(130)의 경화 시에 경화될 수 있다.In the case of the structure having the connection portion 105 as shown in FIG. 33, when the substrate 10 is immersed in the filling liquid 130, the connection portion 105 is formed in at least one area of the substrate 10, so that the connection portion ( The filling solution 130 may pass through 105 in the direction of the second surface 102 from the first surface 101 of the substrate 10. Accordingly, the filling liquid 130 passing through the connection part 105 may cause the fourth element group 104 installed on the second surface 102 of the substrate 10 to be completely immersed in the filling liquid 130. Thereafter, the filling liquid 130 is cured to form the filling portion 132 as shown in FIG. 33. According to an embodiment, the filling liquid 133 passing through the connection part 105 may form the connection body 106. In addition, the bonding portion 134 may be formed by the filling solution 130, and the bonding portion 134 may be cured when the filling solution 130 is cured.
이러한 제조방법은 도 34에 도시된 바와 같이 연결부(105)의 일부에 제2 연결체(107)가 결합된 구조에도 동일하게 적용될 수 있다.This manufacturing method can be equally applied to a structure in which the second connector 107 is coupled to a part of the connector 105 as shown in FIG. 34.
도 35는 또 다른 일 실시예에 따른 분리형 EMI 필터 모듈의 구성도이다.35 is a configuration diagram of a separate EMI filter module according to another embodiment.
일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은, 제1 관통선(21) 및 제2 관통선(22)의 사이에 개재될 수 있다. 상기 제1 관통선(21) 및 제2 관통선(22)은 전력선과 전기적으로 연결될 수 있는 데, 제1 관통선(21)은 라이브선(Live line)과 제2 관통선(22)은 중성선(Neutral line)과 각각 전기적으로 연결될 수 있다.The detachable active EMI filter module 1000 according to an exemplary embodiment may be interposed between the first through line 21 and the second through line 22. The first through line 21 and the second through line 22 may be electrically connected to a power line, and the first through line 21 is a live line and the second through line 22 is a neutral line. (Neutral line) and each can be electrically connected.
일 실시예에 따르면, 상기 제1 관통선(21) 및 제2 관통선(22)은 각각 상기 분리형 능동 EMI 필터 모듈(1000)의 PCB 기판을 일단에서 타단으로 전기적으로 통과하도록 형성된 도전 패턴일 수 있다. 상기 도전 패턴은 반드시 직선상으로 연장되는 것에 한정되는 것은 아니고, 복합적인 경로로 연장될 수 있다.According to an embodiment, each of the first through line 21 and the second through line 22 may be a conductive pattern formed to electrically pass through the PCB substrate of the separated active EMI filter module 1000 from one end to the other end. have. The conductive pattern is not necessarily limited to extending in a straight line, and may be extended in a complex path.
일 실시예에 따르면, 상기 분리형 능동 EMI 필터 모듈(1000)은 외측에 위치하는 제1 장치(2) 및 제2 장치(3)에 전기적으로 연결될 수 있다.According to an embodiment, the detachable active EMI filter module 1000 may be electrically connected to the first device 2 and the second device 3 located outside.
상기 제1 장치(2)는 분리형 능동 EMI 필터 모듈(1000)에 전원을 전류 및/또는 전압의 형태로 공급하기 위한 다양한 형태의 장치일 수 있다. 가령 제1 장치(2)는 전원을 생산하여 공급하는 장치일 수도 있고, 다른 장치에 의해 생성된 전원을 공급하는 장치(예컨대 전기 자동차 충전 장치)일 수도 있다. 물론 제1 장치(2)는 저장된 에너지를 공급하는 장치일 수도 있다. 다만 이는 예시적인 것으로, 본 발명의 사상이 이에 한정되는 것은 아니다.The first device 2 may be various types of devices for supplying power to the separate active EMI filter module 1000 in the form of current and/or voltage. For example, the first device 2 may be a device that produces and supplies power, or may be a device that supplies power generated by another device (for example, an electric vehicle charging device). Of course, the first device 2 may be a device that supplies stored energy. However, this is exemplary, and the spirit of the present invention is not limited thereto.
상기 제2 장치(3)는 상기 제1 장치(2)가 공급하는 전원을 사용하는 다양한 형태의 장치 및/또는 부하일 수 있다. 상기 제2 장치(3)는 제1 장치(2)가 공급하는 전원을 이용하여 구동되는 부하일 수 있다. 상기 제2 장치(3)는 제1 장치(2)가 공급하는 전원을 이용하여 에너지를 저장하고, 저장된 에너지를 이용하여 구동되는 부하(예컨대 전기 자동차의 적어도 일 구성)일 수 있다. 다만 이는 예시적인 것으로, 본 발명의 사상이 이에 한정되는 것은 아니다.The second device 3 may be various types of devices and/or loads using power supplied by the first device 2. The second device 3 may be a load driven by using power supplied by the first device 2. The second device 3 may be a load (eg, at least one component of an electric vehicle) that stores energy using power supplied by the first device 2 and is driven using the stored energy. However, this is exemplary, and the spirit of the present invention is not limited thereto.
상기 제1 관통선(21) 및 제2 관통선(22) 각각은 제2 장치(3)에서 발생한 전자파 노이즈가 제1 장치(2)로 전달되는 경로일 수 있다. 이 때, 상기 전자파 노이즈는 상기 제1 관통선(21) 및 제2 관통선(22) 각각에 대해 공통 모드로 입력될 수 있다.Each of the first through line 21 and the second through line 22 may be a path through which electromagnetic noise generated by the second device 3 is transmitted to the first device 2. In this case, the electromagnetic wave noise may be input to each of the first and second through lines 21 and 22 in a common mode.
일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은, 노이즈 센싱부(11), 능동 회로부(12), 보상부(13) 및 전달부(14)를 포함할 수 있다.The separate active EMI filter module 1000 according to an exemplary embodiment may include a noise sensing unit 11, an active circuit unit 12, a compensation unit 13, and a transmission unit 14.
상기 노이즈 센싱부(11)는 상기 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결된 적어도 하나의 소자를 포함하는 것일 수 있다. 일 실시예에 따르면, 상기 노이즈 센싱부(11)는 제2 장치(3)로부터 발생되는 전자파 노이즈를 감지하도록 구비된 소자를 포함할 수 있다.The noise sensing unit 11 may include at least one element electrically connected to the first through line 21 and the second through line 22. According to an embodiment, the noise sensing unit 11 may include an element provided to detect electromagnetic noise generated from the second device 3.
상기 능동 회로부(12)는 증폭기 역할을 수행할 수 있는 데, 노이즈 센싱부(11)를 통해 감지된 전자파 노이즈에 대응되는 전류를 일정 비율로 증폭시킬 수 있다. 일 실시예에 따르면, 상기 능동 회로부(121)는 전자파 노이즈에 대응하는 전류와 크기가 동일하고 위상이 반대인 증폭 전류를 생성할 수 있다.The active circuit unit 12 may serve as an amplifier and may amplify a current corresponding to electromagnetic wave noise sensed through the noise sensing unit 11 at a predetermined ratio. According to an exemplary embodiment, the active circuit unit 121 may generate an amplified current having the same magnitude as a current corresponding to electromagnetic wave noise and opposite in phase.
상기 증폭 전류는 보상부(13) 및 전달부(14)를 거쳐 제1 관통선(21) 및/또는 제2 관통선(22)으로 흘려 노이즈를 보상할 수 있다.The amplified current may flow through the compensation unit 13 and the transfer unit 14 to the first through line 21 and/or the second through line 22 to compensate for noise.
상기 보상부(13)는 상기 증폭 전류에 기초하여 보상 신호를 생성할 수 있다.The compensation unit 13 may generate a compensation signal based on the amplified current.
상기 전달부(14)는 상기 보상 신호가 제1 관통선(21) 및/또는 제2 관통선(22)로 흐르는 경로를 제공할 수 있다.The transmission unit 14 may provide a path through which the compensation signal flows through the first through line 21 and/or the second through line 22.
한편, 상기 분리형 능동 EMI 필터 모듈(1000)의 적어도 일부는 제3 장치(4)와 전기적으로 연결될 수 있다Meanwhile, at least a part of the detachable active EMI filter module 1000 may be electrically connected to the third device 4.
일 실시예에 따르면, 이러한 제3 장치(4)는 상기 능동 회로부(12)에 전원을 제공하는 장치를 포함할 수 있다. 예컨대, 상기 제3 장치(4)는 능동 회로부(12)의 입력 전원을 생성하는 DC 전원부를 포함할 수 있다.According to an embodiment, this third device 4 may include a device that provides power to the active circuit unit 12. For example, the third device 4 may include a DC power supply unit that generates input power from the active circuit unit 12.
도 36은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 보다 구체적인 예를 도시한 것이다.36 shows a more specific example of a separate active EMI filter module 1000 according to another embodiment.
일 실시예에 따르면, 분리형 능동 EMI 필터 모듈(1000)을 관통하도록 제1 관통선(21) 및 제2 관통선(22)이 설계될 수 있다. According to an embodiment, the first through line 21 and the second through line 22 may be designed to pass through the separate active EMI filter module 1000.
제1 관통선(21)의 양단은 제1-1 핀(241) 및 제1-2 핀(242)에 연결된다. 그리고 제2 관통선(22)의 양단은 제1-3 핀(243) 및 제1-4 핀(244)에 연결된다. Both ends of the first through line 21 are connected to the 1-1 pin 241 and the 1-2 pin 242. In addition, both ends of the second through line 22 are connected to the 1-3th pin 243 and the 1-4th pin 244.
전술한 바와 같이, 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은, 노이즈 센싱부(11), 능동 회로부(12), 보상부(13) 및 전달부(14)를 포함할 수 있다.As described above, the separate active EMI filter module 1000 according to an exemplary embodiment may include a noise sensing unit 11, an active circuit unit 12, a compensation unit 13, and a transmission unit 14.
일 실시예에 따르면, 상기 노이즈 센싱부(11)는 센싱 변압기(110)를 포함할 수 있다. According to an embodiment, the noise sensing unit 11 may include a sensing transformer 110.
센싱 변압기(110)는 전력선인 제1 관통선(21) 및 제2 관통선(22)에 각각 전기적으로 연결된 제1 기준 권선(1101) 및 제2 기준 권선(1102)과, 상기 제1,2 기준 권선(1101)(1102)과 동일한 코어에 형성된 센싱 권선(1100)을 포함할 수 있다.The sensing transformer 110 includes a first reference winding 1101 and a second reference winding 1102 electrically connected to the first through line 21 and the second through line 22, respectively, and the first and second power lines. A sensing winding 1100 formed on the same core as the reference windings 1101 and 1102 may be included.
상기 제1 기준 권선(1101) 및 제2 기준 권선(1102)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(1100)은 2차 권선이 될 수 있다. The first reference winding 1101 and the second reference winding 1102 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
상기 제1 기준 권선(1101) 및 제2 기준 권선(1102)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(1101) 또는 제2 기준 권선(1102) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. The first reference winding 1101 and the second reference winding 1102 may each be in the form of a winding wound around a core, but is not necessarily limited thereto, and the first reference winding 1101 or the second reference winding At least one of 1102 may have a structure passing through the core.
센싱 권선(1100)은 제1 기준 권선(1101) 및 제2 기준 권선(1102)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조일 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 상기 센싱 권선(1100)은 상기 코어를 관통하는 구조로 형성될 수 있다.The sensing winding 1100 may have a structure in which the first reference winding 1101 and the second reference winding 1102 are wound and/or wound around a core at least once or more. However, the present invention is not necessarily limited thereto, and the sensing winding 1100 may be formed to penetrate the core.
이러한 센싱 권선(1100)은 1차 권선과 전기적으로 절연되며, 제2 장치(3)로부터 발생된 노이즈 전류가 감지되고, 노이즈 전류로부터 일정 비율로 변환된 전류가 유도될 수 있다.The sensing winding 1100 is electrically insulated from the primary winding, a noise current generated from the second device 3 is sensed, and a current converted from the noise current at a predetermined ratio may be induced.
상기 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
예컨대 제1 기준 권선(1101)에 노이즈인 제1 전류가 입력 됨에 따라 코어에는 제1 자속 밀도가 유도될 수 있다. 이와 유사하게, 제2 기준 권선(1102)에 노이즈인 제1 전류가 입력 됨에 따라 코어에는 제2 자속 밀도가 유도될 수 있다. For example, as a first current, which is noise, is input to the first reference winding 1101, a first magnetic flux density may be induced in the core. Similarly, as the first current, which is noise, is input to the second reference winding 1102, a second magnetic flux density may be induced in the core.
유도된 제1,2 자속 밀도에 의해 제2 차측인 센싱 권선(1100)에는 제1 유도 전류가 유도될 수 있다.A first induced current may be induced in the sensing winding 1100 that is the second secondary side by the induced first and second magnetic flux densities.
이 때 센싱 변압기는 제1 전류에 의해 유도되는 제1 자속 밀도와 제2 자속 밀도가 서로 중첩될 수 있게(또는 서로 보강할 수 있게) 구성되어, 제1 관통선(21) 및 제2 관통선(22)과 절연된 제2 차 측, 즉, 센싱 권선(1100)에서 제1 전류와 대응되는 제1 유도 전류를 생성할 수 있다.At this time, the sensing transformer is configured so that the first magnetic flux density and the second magnetic flux density induced by the first current may overlap (or reinforce each other), and the first through line 21 and the second through line A first induced current corresponding to the first current may be generated in the second secondary side insulated from 22, that is, the sensing winding 1100.
한편 제1 기준 권선(1101), 제2 기준 권선(1102) 및 센싱 권선(1100)이 코어에 권취되는 수는, 분리형 능동 EMI 필터 모듈(1000)이 사용되는 시스템의 요구 조건에 따라 적절히 결정될 수 있다. Meanwhile, the number of the first reference winding 1101, the second reference winding 1102, and the sensing winding 1100 wound around the core may be appropriately determined according to the requirements of the system in which the separate active EMI filter module 1000 is used. have.
예를 들어, 제1 기준 권선(1101) 및 제2 기준 권선(1102)인 1차 권선과 센싱 권선(1100)인 2차 권선의 권선비가 1:Nsen일 수 있다. 또한 센싱 변압기의 1차 권선의 셀프 인덕턴스가 Lsen이라고 하면, 2차 권선은, Nsen Lsen의 셀프 인덕턴스를 가질 수 있다. 센싱 변압기(120)의 1차 권선과 2차 권선은, ksen의 결합 계수(coupling coefficient)로 결합될 수 있다.For example, a turns ratio of a primary winding, which is the first reference winding 1101 and the second reference winding 1102, and a secondary winding of the sensing winding 1100, may be 1:N sen . In addition, if the self-inductance of the primary winding of the sensing transformer is L sen , the secondary winding can have a self inductance of N sen L sen . The primary and secondary windings of the sensing transformer 120 may be combined with a coupling coefficient of k sen .
한편 전술한 센싱 변압기(110)는 제1 관통선(21) 및 제2 관통선(22) 각각에 흐르는 통상 전류인 제2 전류에 의해 유도되는 자속 밀도가 소정의 자속 밀도 조건을 만족하도록 구성될 수 있다.Meanwhile, the above-described sensing transformer 110 may be configured such that the magnetic flux density induced by the second current, which is a normal current flowing through each of the first through line 21 and the second through line 22, satisfies a predetermined magnetic flux density condition. I can.
즉, 제1 기준 권선(1101) 및 제2 기준 권선(1102)에 흐르는 제2 전류에 의해 코어에는 제3 자속 밀도 및 제4 자속 밀도가 각각 유도될 수 있다. 이 때, 제3 자속 밀도와 제4 자속 밀도는 서로 상쇄되는 조건일 수 있다.That is, the third magnetic flux density and the fourth magnetic flux density may be induced in the core by the second current flowing through the first and second reference windings 1101 and 1102, respectively. In this case, the third magnetic flux density and the fourth magnetic flux density may be conditions that cancel each other.
바꾸어 말하면, 센싱 변압기(110)는 제1 관통선(21) 및 제2 관통선(22) 각각에 흐르는 통상 전류인 제2 전류에 의해 2차측인 센싱 권선(1100)에 유도되는 제2 유도 전류를 소정의 임계 크기 미만이 되도록 할 수 있고, 이에 따라 센싱 변압기는 제2 전류에 의해 유도되는 자속 밀도들이 서로 상쇄될 수 있게 구성되어, 전술한 제1 전류만이 감지되도록 할 수 있다.In other words, the sensing transformer 110 is a second induced current induced in the secondary sensing winding 1100 by the second current, which is a normal current flowing through each of the first through line 21 and the second through line 22. May be less than a predetermined threshold size, and accordingly, the sensing transformer may be configured such that magnetic flux densities induced by the second current cancel each other, so that only the aforementioned first current may be sensed.
센싱 변압기(110)는 제1 주파수 대역(예를 들어 150KHz 내지 30MHz의 범위를 갖는 대역)의 노이즈 전류인 제1 전류에 의해 유도되는 제1,2 자속 밀도의 크기가 제2 주파수 대역(예를 들어 50Hz 내지 60Hz의 범위를 갖는 대역)의 통상 전류인 제2 전류에 의해 유도되는 제3,4 자속 밀도의 크기보다 크도록 구성될 수 있다. The sensing transformer 110 has the magnitude of the first and second magnetic flux density induced by the first current, which is a noise current in a first frequency band (for example, a band having a range of 150 KHz to 30 MHz), in a second frequency band (for example, For example, a band having a range of 50Hz to 60Hz) may be configured to be larger than the magnitude of the third and fourth magnetic flux densities induced by the second current, which is a typical current.
본 발명에서 A 구성요소가 B 하도록 구성된다는 것은, A 구성요소의 디자인 파라미터가 B 하기에 적절하도록 설정되는 것을 의미할 수 있다. 가령 센싱 변압기가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 크도록 구성된다는 것은, 센싱 변압기의 크기, 코어의 직경, 권취 수, 인덕턴스의 크기, 및 상호 인덕턴스의 크기와 같은 파라미터가 특정 주파수 대역의 전류에 의해 유도되는 자속의 크기가 강하게 되도록 적절하게 설정된 것을 의미할 수 있다.In the present invention, that the component A is configured to be B may mean that the design parameter of the component A is set to be appropriate for B. For example, the fact that the sensing transformer is configured to have a large magnetic flux induced by the current in a specific frequency band means that parameters such as the size of the sensing transformer, the diameter of the core, the number of turns, the size of the inductance, and the magnitude of the mutual inductance are It may mean that it is appropriately set so that the magnitude of the magnetic flux induced by the current in the band becomes strong.
센싱 변압기(110)의 제2차 측인 센싱 권선(1100)은 제1 유도 전류를 능동 회로부(12)에 공급하기 위해, 도 36에 도시된 바와 같이 능동 회로부(12)의 입력단과 능동 회로부(12)의 기준전위를 연결하는 경로상에 배치될 수 있다.The sensing winding 1100, which is the secondary side of the sensing transformer 110, supplies the first induced current to the active circuit unit 12. As shown in FIG. 36, the input terminal of the active circuit unit 12 and the active circuit unit 12 ) Can be placed on the path connecting the reference potential.
일 실시예에 따르면, 상기 능동 회로부(12)는 센싱 변압기에 의해 생성된 제1 유도 전류를 증폭하여 증폭 전류를 생성하기 위한 수단일 수 있다.According to an embodiment, the active circuit unit 12 may be a means for generating an amplified current by amplifying the first induced current generated by the sensing transformer.
일 실시예에 따르면, 상기 센싱 권선(1100)은 능동 회로부(12)의 입력단과 차동(Differential)으로 연결될 수 있다.According to an embodiment, the sensing winding 1100 may be differentially connected to the input terminal of the active circuit unit 12.
본 발명에서 능동 회로부(12)에 의한 증폭은 증폭 대상의 크기 및/또는 위상을 조절하는 것을 의미할 수 있다. 가령 능동 회로부(12)는 제1 유도 전류의 위상을 180도 변경하고, 크기를 k배(k>=1)만큼 증가시켜 증폭 전류를 생성할 수 있다.In the present invention, amplification by the active circuit unit 12 may mean adjusting the size and/or phase of the amplification target. For example, the active circuit unit 12 may generate an amplified current by changing the phase of the first induced current by 180 degrees and increasing the magnitude by k times (k>=1).
능동 회로부(12)는 전술한 센싱 변압기(110)의 변압 비율 및 후술하는 보상 변압기(131)의 변압 비율을 고려하여 증폭 전류를 생성하도록 설계될 수 있다. 가령 센싱 변압기(110)가, 노이즈 전류인 제1 전류에 대해, 크기가 1/F1 배인 제1 유도 전류로 변환하고, 보상 변압기(131)가 증폭 전류에 대해, 크기가 1/F2 배가 되도록 보상 전류로 변환하는 경우, 능동 회로부(12)는 제1 유도 전류의 크기의 F1xF2배인 증폭 전류를 생성할 수 있다. The active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the sensing transformer 110 described above and the transformation ratio of the compensation transformer 131 to be described later. For example, the sensing transformer 110 converts a first current, which is a noise current, into a first induced current whose magnitude is 1/F1 times, and the compensation transformer 131 compensates for the amplified current, so that the magnitude becomes 1/F2 times. In the case of converting to current, the active circuit unit 12 may generate an amplified current that is F1xF2 times the magnitude of the first induced current.
이때 능동 회로부(12)는 증폭 전류의 위상이 제1 유도 전류의 위상과 반대가 되도록 증폭 전류를 생성할 수 있다.In this case, the active circuit unit 12 may generate the amplified current so that the phase of the amplified current is opposite to the phase of the first induced current.
능동 회로부(12)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(12)는 OP AMP(121)를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(12)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(12)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 증폭을 위한 수단은 본 발명의 능동 회로부(12)로 제한 없이 사용될 수 있다.The active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
능동 회로부(12)는 제1 장치(2) 및/또는 제2 장치(3)와 구분되는 별도의 제3 장치(4, 도 35 참조)로부터 전원을 공급받아 제1 유도 전류를 증폭하여 증폭 전류를 생성할 수 있다. 이때 제3 장치(4)는 제1 장치(2) 및 제2 장치(3)와 무관한 전원으로부터 전원을 공급 받아 능동 회로부(12)의 입력 전원을 생성하는 장치일 수 있다. 또한 제3 장치(4)는 제1 장치(2) 및 제2 장치(3) 중 어느 하나의 장치로부터 전원을 공급 받아 능동 회로부(12)의 입력 전원을 생성하는 장치일 수도 있다.The active circuit unit 12 amplifies the first induced current by amplifying the first induced current by receiving power from a separate third device 4 (refer to FIG. 35) that is separated from the first device 2 and/or the second device 3 Can be created. In this case, the third device 4 may be a device that receives power from a power source independent of the first device 2 and the second device 3 and generates input power to the active circuit unit 12. In addition, the third device 4 may be a device that receives power from any one of the first device 2 and the second device 3 and generates input power to the active circuit unit 12.
상기 보상부(13)는 증폭된 출력 신호에 기초하여 보상 신호를 생성할 수 있다. The compensation unit 13 may generate a compensation signal based on the amplified output signal.
일 실시예에 따르면, 상기 보상부(13)는 보상 변압기(131)를 포함할 수 있다. 이 때 보상 변압기(131)는 제1 관통선(21) 및 제2 관통선(22)과 절연된 및/또는 독립된(isolated) 상태에서 증폭 전류에 기초하여 제1 관통선(21) 및 제2 관통선(22) 측에 또는 제2차 측(1312)에 보상 전류를 생성하기 위한 수단일 수 있다.According to an embodiment, the compensation unit 13 may include a compensation transformer 131. In this case, the compensation transformer 131 is insulated from the first through line 21 and the second through line 22 and/or is isolated from the first through line 21 and the second through line based on the amplified current. It may be a means for generating a compensation current on the side of the through line 22 or on the second side 1312.
보다 구체적으로, 보상 변압기(131)는 능동 회로부(12)의 출력단과 차동으로 연결되는 제1차 측(1311)에서, 능동 회로부(12)가 생성한 증폭 전류에 의해 유도되는 제3 자속 밀도에 기초하여 제2차 측(1312)에 보상 전류를 생성할 수 있다. 이 때 제2차 측(1312)은 후술하는 전달부(14)와 분리형 능동 EMI 필터 모듈(1000)의 기준전위(기준전위 1)로 접지될 수 있다.More specifically, the compensation transformer 131 is applied to the third magnetic flux density induced by the amplified current generated by the active circuit unit 12 on the primary side 1311 differentially connected to the output terminal of the active circuit unit 12. Based on the compensation current may be generated in the secondary side 1312. In this case, the secondary side 1312 may be grounded with a reference potential (reference potential 1) of the transmission unit 14 and the separate active EMI filter module 1000 to be described later.
상기 보상 변압기(131)의 제2차측(1312)은 전달부(14)를 개재한 상태로 전력선인 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결된다. 따라서, 능동 회로부(12)는 전력선으로부터 절연될 수 있고, 이에 따라 능동 회로부(12)를 보호할 수 있다.The secondary side 1312 of the compensation transformer 131 is electrically connected to the first through line 21 and the second through line 22 as power lines with the transmission unit 14 interposed therebetween. Accordingly, the active circuit unit 12 may be insulated from the power line, thereby protecting the active circuit unit 12.
한편, 다른 일 실시예에 따르면, 상기 보상 변압기(131)의 제1 차측(1311), 능동 회로부(12) 및 센싱 권선(1100)은 분리형 능동 EMI 필터 모듈(1000)의 나머지 구성요소들과 구분되는 기준전위(기준전위 2)로 접지될 수 있다. 즉, 전술한 능동 회로부(12)의 기준전위(기준전위 2)와 분리형 능동 EMI 필터 모듈(1000)의 기준전위(기준전위 1)는 서로 구분되는 전위일 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 기준전위 1과 기준전위 2는 서로 동일한 전위가 될 수 있다.Meanwhile, according to another embodiment, the primary side 1311 of the compensation transformer 131, the active circuit unit 12, and the sensing winding 1100 are separated from the remaining components of the separate active EMI filter module 1000. It can be grounded with the reference potential (reference potential 2). That is, the reference potential (reference potential 2) of the above-described active circuit unit 12 and the reference potential (reference potential 1) of the separate active EMI filter module 1000 may be different potentials. However, it is not necessarily limited thereto, and the reference potential 1 and the reference potential 2 may be the same potential.
이와 같이 본 발명의 일 실시예에 따르면, 보상 전류를 생성하는 구성요소에 대해서 나머지 구성요소와 상이한 기준전위를 사용하고, 별도의 전원을 사용함으로써 보상 전류를 생성하는 구성요소가 절연된 상태에서 동작하도록 할 수 있으며, 이로써 분리형 능동 EMI 필터 모듈(1000)의 신뢰도를 향상시킬 수 있다.As described above, according to an embodiment of the present invention, a component that generates a compensation current is operated in an insulated state by using a reference potential that is different from the other components, and by using a separate power source. In this way, reliability of the separate active EMI filter module 1000 may be improved.
전술한 바와 같이, 보상 변압기(131)는, 능동 회로부(12)에 의해 증폭되어 보상 변압기(131)의 제1차측(1311)에 흐르는 전류를 일정 비율로 변환하여 보상 변압기(131)의 제2차측(1312)에 유도시킬 수 있다. As described above, the compensation transformer 131 is amplified by the active circuit unit 12 and converts the current flowing through the primary side 1311 of the compensation transformer 131 to a predetermined ratio to the second compensation transformer 131. It can be guided to the vehicle side 1312.
예를 들어, 보상 변압기(131)에서, 제1차측(1311)과 제2차측(1312)의 권선비가 1:Ninj일 수 있다. 또한 보상 변압기(131)의 제1차측(1311)의 셀프 인덕턴스가 Linj이라고 하면, 보상 변압기(131)의 제2차측(1312)은, Ninj 2·Linj의 셀프 인덕턴스를 가질 수 있다. 보상 변압기(131)의 제1차 측과 제2차측은, kinj의 결합 계수(coupling coefficient)로 결합될 수 있다. 보상 변압기(131)를 통해 변환된 전류는, 보상 커패시터부(141)를 통해 전력선인 제1 관통선(21) 및 제2 관통선(22)에 보상 전류(Icomp)로서 주입될 수 있다.For example, in the compensation transformer 131, a turn ratio of the first and second secondary sides 1311 and 1312 may be 1:N inj . In addition, if the self-inductance of the primary side 1311 of the compensation transformer 131 is L inj , the secondary side 1312 of the compensation transformer 131 may have a self inductance of N inj 2 ·L inj . The primary side and the secondary side of the compensation transformer 131 may be combined by a coupling coefficient of k inj . The current converted through the compensation transformer 131 may be injected as a compensation current I comp into the first through line 21 and the second through line 22 which are power lines through the compensation capacitor unit 141.
전달부(14)는 보상 변압기(131)에 의해 생성된 전류가 제1 관통선(21) 및 제2 관통선(22) 각각으로 흐르는 경로를 제공하는 수단일 수 있는 데, 일 실시예에 따르면, 상기 전달부(14)는 보상 커패시터부(141)를 포함할 수 있다.The transmission unit 14 may be a means for providing a path through which the current generated by the compensation transformer 131 flows to each of the first through line 21 and the second through line 22, according to an embodiment. , The transfer part 14 may include a compensation capacitor part 141.
보상 커패시터부(141)는 분리형 능동 EMI 필터 모듈(1000)의 기준전위(기준전위 1)와 제1 관통선(21) 및 제2 관통선(22) 각각을 연결하는 적어도 둘 이상의 보상 커패시터를 포함할 수 있다. 상기 각 보상 커패시터는 Y-커패시터(Y-capacitor, Y-cap)를 포함할 수 있다. 각 보상 커패시터의 일단은 보상 변압기(131)의 제2차측(1312)과 연결되는 노드를 공유하며, 타단은 각각 제1 관통선(21) 및 제2 관통선(22)과 연결되는 노드를 가질 수 있다.The compensation capacitor unit 141 includes at least two compensation capacitors connecting each of the reference potential (reference potential 1) and the first through line 21 and the second through line 22 of the separate active EMI filter module 1000 can do. Each of the compensation capacitors may include a Y-capacitor (Y-cap). One end of each compensation capacitor shares a node connected to the secondary side 1312 of the compensation transformer 131, and the other end has a node connected to the first through line 21 and the second through line 22, respectively. I can.
보상 커패시터부(141)는 적어도 둘 이상의 보상 커패시터를 통해 제1 관통선(21) 및 제2 관통선(22) 사이에 흐르는 전류가 소정의 제1 전류 조건을 만족하도록 구성될 수 있다. 이때 소정의 제1 전류 조건은 전류의 크기가 소정의 제1 임계 크기 미만인 조건일 수 있다.The compensation capacitor unit 141 may be configured such that a current flowing between the first through line 21 and the second through line 22 through at least two or more compensation capacitors satisfies a first predetermined current condition. In this case, the first predetermined current condition may be a condition in which the magnitude of the current is less than the predetermined first threshold magnitude.
또한 보상 커패시터부(141)는 적어도 둘 이상의 보상 커패시터를 통해 제1 관통선(21) 및 제2 관통선(22) 각각과 분리형 능동 EMI 필터 모듈(1000)의 기준전위(기준전위 1) 사이에 흐르는 전류가 소정의 제2 조건을 만족하도록 구성될 수 있다. 이때 소정의 제2 조건은 전류의 크기가 소정의 제2 임계 크기 미만인 조건일 수 있다.In addition, the compensation capacitor unit 141 is between each of the first through line 21 and the second through line 22 and the reference potential (reference potential 1) of the separate active EMI filter module 1000 through at least two compensation capacitors. The flowing current may be configured to satisfy a second predetermined condition. In this case, the second predetermined condition may be a condition in which the magnitude of the current is less than the predetermined second threshold magnitude.
보상 커패시터부(141)를 따라 제1 관통선(21) 및 제2 관통선(22) 각각으로 흐르는 보상 전류는 제1 관통선(21) 및 제2 관통선(22) 상의 제1 전류를 상쇄시켜, 제1 전류가 전술한 제2 장치(2)로 전달되는 것을 방지할 수 있다. 이때 제1 전류와 보상 전류는 동일한 크기에 위상이 서로 반대인 전류일 수 있다.The compensation current flowing to each of the first through line 21 and the second through line 22 along the compensation capacitor part 141 cancels the first current on the first through line 21 and the second through line 22 Thus, it is possible to prevent the first current from being transmitted to the second device 2 described above. In this case, the first current and the compensation current may be currents having the same magnitude and opposite phases.
이로써 본 발명의 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은 제1 장치(2)와 연결되는 적어도 둘 이상의 대전류 경로인 제1 관통선(21) 및 제2 관통선(22) 각각에 공통 모드로 입력되는 노이즈 전류인 제1 전류를 능동적으로 보상하여, 제1 장치(2)로 방출되는 노이즈 전류를 억제한다. 이를 통해 제2 장치(3) 및/또는 제1 장치(2)와 연결되는 다른 장치들의 오동작이나 파손을 방지할 수 있다.Accordingly, the separated active EMI filter module 1000 according to an embodiment of the present invention is provided in each of the first through line 21 and the second through line 22, which are at least two or more high current paths connected to the first device 2. A first current, which is a noise current input in the common mode, is actively compensated to suppress a noise current emitted to the first device 2. This can prevent malfunction or damage of the second device 3 and/or other devices connected to the first device 2.
상기와 같은 구조의 분리형 능동 EMI 필터 모듈(1000)은 기판 상에 구현될 수 있는 데, 전자파 노이즈를 감지하도록 구비된 노이즈 센싱부(11)를 포함하는 제1 소자 그룹(G1)과, 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 보상부(13)를 포함하는 제2 소자 그룹(G2)이 서로 다른 기판에 각각 장착되도록 구비될 수 있다.The separated active EMI filter module 1000 having the above structure may be implemented on a substrate, and includes a first element group G1 including a noise sensing unit 11 provided to detect electromagnetic noise, and electromagnetic noise. The second device group G2 including the compensation unit 13 provided to generate a compensation signal for is mounted on different substrates, respectively.
도 37 및 도 38는 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)이 기판에 구현된 것을 나타내는 것으로, 도 37은 제1 기판(1001)을 나타내는 평면 구성도이고, 도 38는 제1 기판(1001에 제2 기판(1002)이 결합된 측면도를 나타낸다.37 and 38 are diagrams illustrating a separate active EMI filter module 1000 according to an embodiment implemented on a substrate, and FIG. 37 is a plan configuration diagram illustrating a first substrate 1001, and FIG. 38 is a first substrate (A side view of the second substrate 1002 to 1001 is shown.
도 37 및 도 38를 참조하면, 제1 기판(1001)에 제1 소자 그룹(G1)이 장착된다. 상기 제1 기판(1001)에는 제1 관통선(21) 및 제2 관통선(22)이 관통하도록 설계될 수 있다. 제1 관통선(21) 및 제2 관통선(22)은 제1-1 핀(241) 내지 제1-4 핀(244)의 사이에서 패터닝된 배선 박막으로 구현될 수 있다. 37 and 38, a first device group G1 is mounted on a first substrate 1001. A first through line 21 and a second through line 22 may be designed to pass through the first substrate 1001. The first through line 21 and the second through line 22 may be implemented as a thin wiring pattern patterned between the 1-1 pins 241 to 1-4 pins 244.
제1 기판(1001)에는 제1 소자 그룹(G1)의 노이즈 센싱부(11)가 설치된다. 구체적으로 노이즈 센싱부(11)의 제1 기준 권선(1101) 및 제2 기준 권선(1102)은 각각 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결된다. 그리고 센싱 권선(1100)은 제1 기판(1001)에 패터닝된 배선 박막과 연결되어 후술하는 제1 전기 연결부(151)에 전기적으로 연결될 수 있다.The noise sensing unit 11 of the first device group G1 is installed on the first substrate 1001. Specifically, the first reference winding 1101 and the second reference winding 1102 of the noise sensing unit 11 are electrically connected to the first through line 21 and the second through line 22, respectively. In addition, the sensing winding 1100 may be connected to the wiring thin film patterned on the first substrate 1001 and electrically connected to the first electrical connection part 151 to be described later.
이러한 제1 기판(1001)과 분리되어 있는 독립된 기판인 제2 기판(1002)에는, 제2 소자 그룹(G2)이 장착될 수 있다.A second device group G2 may be mounted on the second substrate 1002, which is an independent substrate separated from the first substrate 1001.
제2 소자 그룹(G2)에는 서로 전기적으로 연결된 능동 회로부(12), 보상부(13) 및 전달부(14)가 포함될 수 있다.The second device group G2 may include an active circuit unit 12, a compensation unit 13, and a transmission unit 14 electrically connected to each other.
일 실시예에 따르면, 도 38에서 볼 수 있듯이, 상기 제2 기판(1002)은 제1 기판(1001)과는 분리되어 제1 기판(1001)에 수직한 상태로 결합될 수 있다. 그리고 제1 소자 그룹(G1)과 제2 소자 그룹(G2)은 전기적으로 연결될 수 있다.According to an embodiment, as shown in FIG. 38, the second substrate 1002 may be separated from the first substrate 1001 and coupled to the first substrate 1001 in a vertical state. In addition, the first device group G1 and the second device group G2 may be electrically connected.
제1 소자 그룹(G1)과 제2 소자 그룹(G2)의 전기적 연결을 위해, 제1 기판(1001)과 제2 기판(1002)의 사이에는 전기 연결부(15)가 개재된다.In order to electrically connect the first device group G1 and the second device group G2, an electrical connection 15 is interposed between the first substrate 1001 and the second substrate 1002.
제1 기판(1001)에는 제1 전기 연결부(151)가 설치될 수 있다. 일 실시예에 따르면, 상기 제1 전기 연결부(151)는 직선 상으로 구비된 바아 형태의 블록 구조체일 수 있는 데, 직선 라인을 따라 인 라인상으로 배열된 복수의 전기 접속 단자들을 포함할 수 있다.A first electrical connection unit 151 may be installed on the first substrate 1001. According to an embodiment, the first electrical connection part 151 may be a bar-shaped block structure provided in a straight line, and may include a plurality of electrical connection terminals arranged in-line along a straight line. .
제1 전기 연결부(151)에 구비된 전기 접속 단자들은 제1 접속 단자(1511), 제2 접속 단자(1512), 제3 접속 단자(1513) 및 제4 접속 단자(1514)를 포함할 수 있다.Electrical connection terminals provided in the first electrical connection unit 151 may include a first connection terminal 1511, a second connection terminal 1512, a third connection terminal 1513, and a fourth connection terminal 1514. .
상기 제1 접속 단자(1511)는 제1 전기 연결부(151)의 일 단에 위치하고 인라인 상으로 배열된 한 쌍의 접속 단자를 포함할 수 있는 데, 외부 전원 장치(41)에 전기적으로 연결될 수 있다. 상기 외부 전원 장치(41)는 도 2에서 볼 수 있듯이 능동 회로부(12)에 전력을 제공하는 DC 전원일 수 있다.The first connection terminal 1511 may include a pair of connection terminals positioned at one end of the first electrical connection unit 151 and arranged in-line, and may be electrically connected to the external power supply 41. . The external power supply 41 may be a DC power supply that provides power to the active circuit unit 12 as shown in FIG. 2.
제2 접속 단자(1512)는 제1 접속 단자(1511)에 인 라인상으로 인접하게 위치하고 인 라인상으로 배열된 한 쌍의 접속 단자를 포함할 수 있다. 제2 접속 단자(1512)는 노이즈 센싱부(11)를 구성하는 센싱 변압기(110)의 센싱 권선(1100)에 전기적으로 연결될 수 있다.The second connection terminal 1512 may include a pair of connection terminals positioned in-line adjacent to the first connection terminal 1511 and arranged in-line. The second connection terminal 1512 may be electrically connected to the sensing winding 1100 of the sensing transformer 110 constituting the noise sensing unit 11.
제3 접속 단자(1513)는 제1 전기 연결부(151)의 타 단에 위치하고 후술하는 제4 접속 단자(1514)에 인 라인상으로 인접하게 위치한 접속 단자를 포함할 수 있다. 제3 접속 단자(1513)는 접지 선이 전기적으로 연결된다.The third connection terminal 1513 may include a connection terminal positioned at the other end of the first electrical connection part 151 and adjacent in-line to the fourth connection terminal 1514 to be described later. The third connection terminal 1513 is electrically connected to a ground line.
제4 접속 단자(1514)는 제2 접속 단자(1512)와 제3 접속 단자(1513)의 사이에 인 라인상으로 인접하게 위치하고 인 라인 상으로 배열된 한 쌍의 접속 단자를 포함할 수 있다. 제4 접속 단자(1514)는 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결되며, 접속 단자의 숫자는 관통선의 숫자에 대응한다.The fourth connection terminal 1514 may include a pair of connection terminals positioned adjacent in-line between the second connection terminal 1512 and the third connection terminal 1513 and arranged in-line. The fourth connection terminal 1514 is electrically connected to the first through line 21 and the second through line 22, and the number of connection terminals corresponds to the number of through lines.
한편, 제4 접속 단자(1514)는 전력선이 되는 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결되므로, 각 제4 접속 단자(1514)의 사이 및 제4 접속 단자(1514)와 인접한 다른 접속 단자(예컨대 제2 접속 단자(1512) 및 제3 접속 단자(1513))와의 사이는 제1 간격(d1)을 유지해야 한다. 이 제1 간격(d1)은 안전상 필요한 절연 거리가 되며, 제1 접속 단자(1511)들 사이 간격, 제2 접속 단자(1512)들 사이 간격 및/또는 제1 접속 단자(1511)와 제2 접속 단자(1512) 사이 간격보다 크게 하는 것이 바람직하다. 따라서 이러한 제1 간격(d1)을 고려하여 제1 전기 연결부(151)의 세로 길이를 설정한다. On the other hand, since the fourth connection terminal 1514 is electrically connected to the first through line 21 and the second through line 22 serving as power lines, the fourth connection terminal 1514 and between the fourth connection terminals 1514 ( A first distance d1 should be maintained between the 1514) and other adjacent connection terminals (eg, the second connection terminal 1512 and the third connection terminal 1513). The first distance d1 becomes an insulation distance required for safety, and the distance between the first connection terminals 1511, the distance between the second connection terminals 1512, and/or the first connection terminal 1511 and the second connection It is preferable to make it larger than the distance between the terminals 1512. Therefore, the vertical length of the first electrical connection part 151 is set in consideration of the first distance d1.
이러한 제1 간격(d1)은 제1 기판(1001)에 패터닝된 제1 관통선(21) 및 제2 관통선(22)의 사이에도 적용할 수 있다.This first gap d1 may also be applied between the first through line 21 and the second through line 22 patterned on the first substrate 1001.
이상 설명한 바와 같은 접속 단자들은 제1 전기 연결부(151)를 구성하는 블록 구조체에 홀 형태로 형성될 수 있다.The connection terminals as described above may be formed in a hole shape in the block structure constituting the first electrical connection part 151.
제2 기판(1002)은 도 38에서 볼 수 있듯이, 제1 전기 연결부(151)에 인접하게 제1 기판(1001)에 결합되는 데, 제2 기판(1002)에는 제2 전기 연결부(152)가 연장되어 형성된다. 제2 전기 연결부(152)는 복수의 접속 핀을 포함할 수 있는 데, 상기 접속 핀들은 제1 전기 연결부(151)의 접속 단자들에 삽입될 수 있고, 이에 따라 제1 전기 연결부(151)의 각 접속 단자들과 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제2 전기 연결부(152)를 구성하는 접속 핀들은 제2 기판(1002)의 표면으로부터 수직 방향으로 연장되어 제2 기판(1002)의 표면에 수평하게 절곡된 절곡 핀 구조를 가질 수 있다.As can be seen in FIG. 38, the second substrate 1002 is coupled to the first substrate 1001 adjacent to the first electrical connection 151, and the second electrical connection 152 is provided on the second substrate 1002. It is formed by extending. The second electrical connection part 152 may include a plurality of connection pins, and the connection pins may be inserted into the connection terminals of the first electrical connection part 151. Accordingly, the first electrical connection part 151 It may be electrically connected to each of the connection terminals. According to an embodiment, the connection pins constituting the second electrical connection part 152 extend in a vertical direction from the surface of the second substrate 1002 and are bent horizontally to the surface of the second substrate 1002. Can have
구체적인 일 실시예에 따르면, 제2 전기 연결부(152)는, 능동 회로부(12)에 전기적으로 연결된 2쌍의 접속 핀을 포함할 수 있다. 한 쌍은 제1 접속 단자들(1511)에 삽입되고, 다른 한 쌍은 제2 접속 단자들(1512)에 삽입될 수 있다.According to a specific embodiment, the second electrical connection unit 152 may include two pairs of connection pins electrically connected to the active circuit unit 12. One pair may be inserted into the first connection terminals 1511, and the other pair may be inserted into the second connection terminals 1512.
제2 전기 연결부(152)는, 전달부(14)에 전기적으로 연결된 한 쌍의 접속 핀을 포함할 수 있다. 이 한 쌍의 접속 핀은 제4 접속 단자들(1514)에 삽입될 수 있다.The second electrical connection unit 152 may include a pair of connection pins electrically connected to the transmission unit 14. This pair of connection pins may be inserted into the fourth connection terminals 1514.
제2 전기 연결부(152)는 보상부(13)에 전기적으로 연결된 접속 핀을 포함할 수 있다. 이 접속 핀은 제3 접속 단자(1513)에 삽입될 수 있다.The second electrical connection part 152 may include a connection pin electrically connected to the compensation part 13. This connection pin can be inserted into the third connection terminal 1513.
이처럼 제2 전기 연결부(152)는 제1 전기 연결부(151)의 접속 단자들의 개수 및 배열에 대응되게 인라인상으로 배열된 복수의 접속 핀을 포함하고, 이 접속 핀들이 제1 전기 연결부(151)의 접속 단자들에 각각 삽입됨으로써 제1 전기 연결부(151)에 전기적으로 연결된다.As such, the second electrical connection part 152 includes a plurality of connection pins arranged inline to correspond to the number and arrangement of connection terminals of the first electrical connection part 151, and the connection pins are the first electrical connection part 151 By being inserted into each of the connection terminals of the first electrical connection portion 151 is electrically connected.
한편, 도 38에는 상기 제1 전기 연결부(151)가 복수의 접속 단자들을 포함하는 블록 구조체로 도시되었으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 선택적으로 다른 일 실시예에 따르면, 상기 제1 전기 연결부(151)는 제1 기판(1101)에 형성되는 비아 홀을 포함하고, 상기 접속 단자들은 비아 홀에 도전 패터닝된 단자들일 수 있다. 따라서 이 경우 제2 전기 연결부(152)는 비아 홀에 형성된 접속 단자들에 바로 삽입 및 고정되어 전기적 결합을 이룰 수 있다.Meanwhile, in FIG. 38, the first electrical connection part 151 is illustrated as a block structure including a plurality of connection terminals, but the present invention is not limited thereto. Optionally, according to another embodiment, the first electrical connection part 151 may include a via hole formed in the first substrate 1101, and the connection terminals may be terminals conductively patterned in the via hole. Therefore, in this case, the second electrical connection part 152 may be directly inserted and fixed to the connection terminals formed in the via hole to form electrical coupling.
본 발명은 이처럼, 제1 소자 그룹(G1)과 제2 소자 그룹(G2)을 별도의 분리된 기판에 설치하여 간단한 전기 연결부(15)를 통해 결합시킴으로써 분리형 능동 EMI 필터 모듈(1000)을 설치하게 되는 기판의 전체 면적 및/또는 분리형 능동 EMI 필터 모듈(1000)의 부피를 현격히 줄일 수 있다. 뿐만 아니라, 제1 기판(1001)과 제2 기판(1002)을 간단하게 접속 및/또는 분리시킬 수 있고, 부품 소자들이 분리된 기판에 분산 설치되어 있기 때문에 조립 및 유지보수가 더욱 간단해 질 수 있다.In this way, the first device group (G1) and the second device group (G2) are installed on separate and separated substrates and are coupled through a simple electrical connection unit 15 to install a separate active EMI filter module 1000. The total area of the substrate and/or the volume of the separated active EMI filter module 1000 can be significantly reduced. In addition, the first substrate 1001 and the second substrate 1002 can be easily connected and/or separated, and assembly and maintenance can be made simpler because the component elements are distributed and installed on separate substrates. have.
도 39 및 도 40는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)이 기판에 구현된 것을 나타내는 것으로, 도 5는 제1 기판(1001)을 나타내는 평면 구성도이고, 도 6은 제1 기판(1001에 제2 기판(1002)이 결합된 측면도를 나타낸다.39 and 40 illustrate a separate active EMI filter module 1000 according to another embodiment implemented on a substrate, and FIG. 5 is a plan view showing a first substrate 1001, and FIG. 6 is 1 shows a side view of a second substrate 1002 bonded to a substrate 1001.
도 39 및 도 40를 참조하면, 제1 기판(1001)에 제1 소자 그룹(G1)이 장착되고, 제2 기판(1002)에는 제2 소자 그룹(G2)이 장착된다.39 and 40, a first device group G1 is mounted on a first substrate 1001, and a second device group G2 is mounted on a second substrate 1002.
상기 제1 기판(1001)에는 제1 관통선(21) 및 제2 관통선(22)이 관통하도록 설계될 수 있다. 제1 관통선(21) 및 제2 관통선(22)은 제1-1 핀(241) 내지 제1-4 핀(244)의 사이에서 패터닝된 배선 박막으로 구현될 수 있다. A first through line 21 and a second through line 22 may be designed to pass through the first substrate 1001. The first through line 21 and the second through line 22 may be implemented as a thin wiring pattern patterned between the 1-1 pins 241 to 1-4 pins 244.
도 39 및 도 40에 도시된 실시예에 따르면, 제1 소자 그룹(G1)은 노이즈 센싱부(11) 및 전달부(14)를 포함할 수 있다. 노이즈 센싱부(11) 및 전달부(14)는 각각 제1 기판(1001)에 구현된 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결되도록 제1 기판(1001)에 결합될 수 있다.39 and 40, the first device group G1 may include a noise sensing unit 11 and a transmission unit 14. The noise sensing unit 11 and the transmission unit 14 are connected to the first substrate 1001 to be electrically connected to the first and second through lines 21 and 22 implemented on the first substrate 1001, respectively. Can be combined.
이러한 제1 기판(1001)과 분리되어 있는 독립된 기판인 제2 기판(1002)에는, 제2 소자 그룹(G2)이 장착될 수 있다.A second device group G2 may be mounted on the second substrate 1002, which is an independent substrate separated from the first substrate 1001.
제2 소자 그룹(G2)에는 서로 전기적으로 연결된 능동 회로부(12), 및 보상부(13)가 포함될 수 있다.The second device group G2 may include an active circuit unit 12 and a compensation unit 13 electrically connected to each other.
일 실시예에 따르면, 도 40에서 볼 수 있듯이, 상기 제2 기판(1002)은 제1 기판(1001)과는 분리되어 제1 기판(1001)에 수직한 상태로 결합될 수 있다. 그리고 제1 소자 그룹(G1)과 제2 소자 그룹(G2)은 전기적으로 연결될 수 있다.According to an embodiment, as shown in FIG. 40, the second substrate 1002 may be separated from the first substrate 1001 and coupled to the first substrate 1001 in a vertical state. In addition, the first device group G1 and the second device group G2 may be electrically connected.
제1 소자 그룹(G1)과 제2 소자 그룹(G2)의 전기적 연결을 위해, 제1 기판(1001)과 제2 기판(1002)의 사이에는 전기 연결부(15)가 개재될 수 있는 데, 전술한 실시예와 마찬가지로 상기 제1 전기 연결부(151)는 직선 상으로 구비된 바아 형태의 블록 구조체일 수 있고, 직선 라인을 따라 인 라인상으로 배열된 복수의 전기 접속 단자들을 포함할 수 있다.For the electrical connection between the first device group G1 and the second device group G2, an electrical connection 15 may be interposed between the first substrate 1001 and the second substrate 1002, as described above. As in one embodiment, the first electrical connection part 151 may be a bar-shaped block structure provided in a straight line, and may include a plurality of electrical connection terminals arranged in-line along a straight line.
제1 전기 연결부(151)에 구비된 전기 접속 단자들은 제1 접속 단자(1511), 제2 접속 단자(1512), 제3 접속 단자(1513) 및 제5 접속 단자(1515)를 포함할 수 있다. 본 실시예의 경우 전술한 실시예와 달리 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결된 제4 접속 단자는 포함되지 않는다. 제1 접속 단자(1511) 내지 제3 접속 단자(1513)는 전술한 실시예와 동일하므로 이하에서는 제5 접속 단자(1515)를 중심으로 설명한다.Electrical connection terminals provided in the first electrical connection unit 151 may include a first connection terminal 1511, a second connection terminal 1512, a third connection terminal 1513 and a fifth connection terminal 1515. . In the case of the present embodiment, unlike the above-described embodiment, the fourth connection terminal electrically connected to the first through line 21 and the second through line 22 is not included. Since the first connection terminals 1511 to 1513 are the same as those in the above-described embodiment, the fifth connection terminal 1515 will be described below.
제5 접속 단자(1515)는 제2 접속 단자(1512)와 제3 접속 단자(1513)의 사이에 인 라인상으로 인접하게 위치하고 인 라인 상으로 배열된 접속 단자를 포함할 수 있다. 제5 접속 단자(1515)는 제1 기판(1001)에 설치된 전달부(14)에 전기적으로 연결될 수 있다.The fifth connection terminal 1515 may include a connection terminal positioned adjacent in-line between the second connection terminal 1512 and the third connection terminal 1513 and arranged in-line. The fifth connection terminal 1515 may be electrically connected to the transfer unit 14 installed on the first substrate 1001.
선택적으로 제5 접속 단자(1515)와 인접한 다른 접속 단자(예컨대 제2 접속 단자(1512) 및/또는 제3 접속 단자(1513))와의 사이는 제2 간격(d2)을 유지할 수 있다. 상기 제2 간격(d2)은 안전상 필요한 절연 거리가 될 수 있는 데, 제1 접속 단자(1511)들 사이 간격, 제2 접속 단자(1512)들 사이 간격 및/또는 제1 접속 단자(1511)와 제2 접속 단자(1512) 사이 간격보다 크게 할 수 있다. 이에 따라 접지선으로부터 신호선인 제2 접속 단자(1512)까지의 절연 거리를 충분히 확보할 수 있다.Optionally, a second distance d2 may be maintained between the fifth connection terminal 1515 and other adjacent connection terminals (eg, the second connection terminal 1512 and/or the third connection terminal 1513 ). The second distance d2 may be an insulation distance required for safety. The distance between the first connection terminals 1511, the distance between the second connection terminals 1512, and/or the first connection terminal 1511 The interval between the second connection terminals 1512 may be larger. Accordingly, it is possible to sufficiently secure an insulation distance from the ground line to the second connection terminal 1512, which is a signal line.
일 실시예에 따르면, 제2 간격(d2)은 전술한 제1 간격(d1)보다 작거나 같게 할 수 있다. 제1 간격(d1)은 전력선이 되는 제1 관통선(21)과 제2 관통선(22)에 의한 절연 거리가 되는 데, 상기 제2 간격(d2)은 전달부(14)를 개재한 전력선 및/또는 접지선 과의 절연 거리가 되기 때문이다.According to an embodiment, the second interval d2 may be less than or equal to the first interval d1 described above. The first gap d1 is an insulation distance between the first through line 21 and the second through line 22, which are power lines, and the second gap d2 is the power line through the transmission unit 14 And/or an insulation distance from the ground wire.
한편, 제1 기판(1001)에 패터닝된 제1 관통선(21) 및 제2 관통선(22)의 사이는 전술한 바와 같이 제1 간격과 동일하게 이격시킬 수 있다.Meanwhile, as described above, between the first through line 21 and the second through line 22 patterned on the first substrate 1001 may be spaced equal to the first gap.
제2 기판(1002)에는 제2 전기 연결부(152)가 연장되어 형성된다. 제2 전기 연결부(152)는 복수의 접속 핀을 포함할 수 있는 데, 상기 접속 핀들은 제1 전기 연결부(151)의 접속 단자들에 삽입될 수 있고, 이에 따라 제1 전기 연결부(151)의 각 접속 단자들과 전기적으로 연결될 수 있다.A second electrical connection part 152 is formed to extend on the second substrate 1002. The second electrical connection part 152 may include a plurality of connection pins, and the connection pins may be inserted into the connection terminals of the first electrical connection part 151. Accordingly, the first electrical connection part 151 It may be electrically connected to each of the connection terminals.
구체적인 일 실시예에 따르면, 제2 전기 연결부(152)는, 능동 회로부(12)에 전기적으로 연결된 2쌍의 접속 핀을 포함할 수 있다. 한 쌍은 제1 접속 단자들(1511)에 삽입되고, 다른 한 쌍은 제2 접속 단자들(1512)에 삽입될 수 있다.According to a specific embodiment, the second electrical connection unit 152 may include two pairs of connection pins electrically connected to the active circuit unit 12. One pair may be inserted into the first connection terminals 1511, and the other pair may be inserted into the second connection terminals 1512.
제2 전기 연결부(152)는, 보상부(13)에 전기적으로 연결된 접속 핀을 포함할 수 있다. 이 접속 핀은 제5 접속 단자(1515)에 삽입될 수 있다.The second electrical connection part 152 may include a connection pin electrically connected to the compensation part 13. This connection pin may be inserted into the fifth connection terminal 1515.
이처럼 제2 전기 연결부(152)는 제1 전기 연결부(151)의 접속 단자들의 개수 및 배열에 대응되게 인라인상으로 배열된 복수의 접속 핀을 포함하고, 이 접속 핀들이 제1 전기 연결부(151)의 접속 단자들에 각각 삽입됨으로써 제1 전기 연결부(151)에 전기적으로 연결된다.As such, the second electrical connection part 152 includes a plurality of connection pins arranged inline to correspond to the number and arrangement of connection terminals of the first electrical connection part 151, and the connection pins are the first electrical connection part 151 By being inserted into each of the connection terminals of the first electrical connection portion 151 is electrically connected.
한편, 전술한 바와 마찬가지로, 도 40에는 상기 제1 전기 연결부(151)가 복수의 접속 단자들을 포함하는 블록 구조체로 도시되었으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 선택적으로 다른 일 실시예에 따르면, 상기 제1 전기 연결부(151)는 제1 기판(1101)에 형성되는 비아 홀을 포함하고, 상기 접속 단자들은 비아 홀에 도전 패터닝된 단자들일 수 있다. 따라서 이 경우 제2 전기 연결부(152)는 비아 홀에 형성된 접속 단자들에 바로 삽입 및 고정되어 전기적 결합을 이룰 수 있다.Meanwhile, as described above, in FIG. 40, the first electrical connection part 151 is illustrated as a block structure including a plurality of connection terminals, but the present invention is not limited thereto. Optionally, according to another embodiment, the first electrical connection part 151 may include a via hole formed in the first substrate 1101, and the connection terminals may be terminals conductively patterned in the via hole. Therefore, in this case, the second electrical connection part 152 may be directly inserted and fixed to the connection terminals formed in the via hole to form electrical coupling.
상기와 같은 실시예에 따르면, 전달부(14)를 제1 기판(1001)에 설치함으로써, 제2 기판(1002)의 길이를 더욱 줄일 수 있고, 제1 전기 연결부(151)에 전력선인 제1 관통선(21) 및 제2 관통선(22)에 전기적으로 연결되는 접속 단자를 설치할 필요가 없어 전력선으로 인한 절연 거리 확보의 필요가 줄어들기 때문에 제2 기판(1002)을 더욱 작게 설계할 수 있다. 뿐만 아니라, 소자들의 배치 설계가 자유로워져, 전체적인 사이즈 최소화에 더욱 효과적일 수 있다.According to the above embodiment, by installing the transmission unit 14 on the first substrate 1001, the length of the second substrate 1002 can be further reduced, and the first electric connection unit 151 is a power line. Since there is no need to install a connection terminal electrically connected to the through line 21 and the second through line 22, the need for securing an insulation distance due to the power line is reduced, so that the second substrate 1002 can be designed even smaller. . In addition, the arrangement and design of the elements can be freed, which can be more effective in minimizing the overall size.
도 41는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 제1 기판(1001)을 나타내는 평면 구성도이다.41 is a plan configuration diagram illustrating a first substrate 1001 of a separate active EMI filter module 1000 according to another exemplary embodiment.
도 41에 도시된 실시예는 도 39에 도시된 실시예와 달리 제5 접속 단자(1515)와 제2 접속 단자(1512)와의 사이에 제6 접속 단자(1516)를 더 배치할 수 있다.In the embodiment shown in FIG. 41, unlike the embodiment shown in FIG. 39, a sixth connection terminal 1516 may be further disposed between the fifth connection terminal 1515 and the second connection terminal 1512.
상기 제6 접속 단자(1516)는 더미 접속 단자가 될 수 있는 데, 즉, 아무런 소자들이 연결되지 않은 접속 단자가 될 수 있다. 이렇게 제6 접속 단자(1516)를 설치함으로써 신호선이 되는 제2 접속 단자(1512) 및/또는 제1 접속 단자(1511)를 접지선으로부터 충분히 이격시켜 절연 거리를 확보할 수 있다. 따라서 상기 제6 접속 단자(1516)는 도 7에 도시된 바와 같이 한 쌍의 접속 단자로 구비되어야 하는 것은 아니며, 하나 이상 복수 개가 적용될 수 있다.The sixth connection terminal 1516 may be a dummy connection terminal, that is, a connection terminal to which no elements are connected. By providing the sixth connection terminal 1516 in this way, the second connection terminal 1512 and/or the first connection terminal 1511 serving as a signal line can be sufficiently separated from the ground line to secure an insulation distance. Accordingly, the sixth connection terminal 1516 does not have to be provided as a pair of connection terminals as illustrated in FIG. 7, and one or more of the sixth connection terminals 1516 may be applied.
도 41에서 제3 접속 단자(1513)와 제5 접속 단자(1515) 사이, 및 제5 접속 단자(1515)와 제6 접속 단자(1516)의 사이는 제2 간격(d2)을 갖고, 제6 접속 단자(1516)들 사이, 및 제6 접속 단자(1516)와 제2 접속 단자(1512) 사이 는 제3 간격(d3)을 가질 수 있다. 상기 제2 간격(d2)에 대한 설명은 도 6에 도시된 제2 간격(d2)에 대한 설명과 동일하므로 생략한다. 상기 제3 간격(d3)은 제2 간격(d2)과 같거나 작을 수 있다. 상기 제3 간격(d3)은 제6 접속 단자(1516)의 개수와 확보해야 하는 절연 거리 등을 고려하여 설계될 수 있는 데, 제6 접속 단자(1516)의 개수가 많아지면 제3 간격(d3)도 작아질 수 있다. 도면으로 도시하지는 않았지만, 선택적으로 또 다른 일 실시예에 따르면, 제2 간격(d2) 중 적어도 일부, 제3 간격(d3) 중 적어도 일부는 제1 접속 단자(1511)들 사이 간격, 및/또는 제2 접속 단자(1512)들 사이 간격과 동일하게 할 수 있다. 선택적으로, 모든 접속 단자들 사이 간격을 제1 접속 단자(1511)들 사이 간격, 및/또는 제2 접속 단자(1512)들 사이 간격과 동일하게 규칙적으로 배치할 수 있다. 이는 더미 접속 단자인 제6 접속 단자(1516)로 인해 신호선이 되는 제2 접속 단자(1512) 및/또는 제1 접속 단자(1511)를 접지선으로부터 충분히 이격시켜 절연 거리를 확보할 수 있기 때문이다. 따라서 선택적으로 도 5에 도시된 실시예와 동일한 가로 길이의 제1 전기 연결부(151)를 형성할 수 있다.In FIG. 41, between the third connection terminal 1513 and the fifth connection terminal 1515, and between the fifth connection terminal 1515 and the sixth connection terminal 1516 have a second distance d2, the sixth A third distance d3 may be formed between the connection terminals 1516 and between the sixth connection terminal 1516 and the second connection terminal 1512. The description of the second interval d2 is the same as the description of the second interval d2 illustrated in FIG. 6 and thus will be omitted. The third interval d3 may be equal to or smaller than the second interval d2. The third distance d3 may be designed in consideration of the number of sixth connection terminals 1516 and the insulating distance to be secured. If the number of the sixth connection terminals 1516 increases, the third distance d3 ) Can also be smaller. Although not shown in the drawings, optionally according to another embodiment, at least a portion of the second interval d2, at least a portion of the third interval d3 is the interval between the first connection terminals 1511, and/or The spacing between the second connection terminals 1512 may be the same. Optionally, the spacing between all the connection terminals may be regularly arranged equal to the spacing between the first connection terminals 1511 and/or the spacing between the second connection terminals 1512. This is because, due to the sixth connection terminal 1516, which is a dummy connection terminal, the second connection terminal 1512 and/or the first connection terminal 1511 serving as a signal line can be sufficiently separated from the ground line to secure an insulation distance. Therefore, it is possible to selectively form the first electrical connection part 151 having the same horizontal length as the embodiment illustrated in FIG. 5.
상기와 같은 실시예에 따르면, 접지선과 신호선 사이의 절연 거리를 충분히 확보하면서도 최소화한 크기의 제2 기판(1002)을 구현할 수 있다.According to the above-described embodiment, the second substrate 1002 having a minimized size while sufficiently securing an insulation distance between the ground line and the signal line can be implemented.
전술한 실시예들에서 제1 전기 연결부(151)는 홀 형태의 복수의 접속 단자들을 갖고, 제2 전기 연결부(152)는 핀 형태로 구비되어 제1 전기 연결부(151)에 삽입함으로써 전기적 연결을 이루었다. 그러나 본 발명은 반드시 이러한 형태에 한정하는 것은 아니다.In the above-described embodiments, the first electrical connection part 151 has a plurality of connection terminals in the form of a hole, and the second electrical connection part 152 is provided in the form of a pin and is inserted into the first electrical connection part 151 to make electrical connection. Accomplished. However, the present invention is not necessarily limited to this form.
도 42은 또 다른 일 실시예에 따라 제1 기판(1001)에 제2 기판(1002)이 결합된 측면도를 나타낸다.FIG. 42 is a side view illustrating a second substrate 1002 coupled to a first substrate 1001 according to another exemplary embodiment.
도 42에 도시된 실시예에 따르면, 제1 전기 연결부(151)는 제2 기판(1002)이 고정적으로 삽입될 수 있는 슬롯을 포함할 수 있다. 이 슬롯의 내측에 전술한 접속 단자들이 설치된다. 그리고 제2 기판(1002) 자체가 제1 전기 연결부(151)의 슬롯에 삽입된다. 이 때, 제2 기판의 단부 측면에는 복수의 접속 단자들이 설치되어, 제2 기판(1002)이 제1 전기 연결부(151)의 슬롯에 삽입될 때에 제2 기판의 접속 단자들이 슬롯 내측의 접속 단자들에 전기적으로 연결된다. 제2 기판의 단부 측면에 형성되는 복수의 접속 단자들이 제2 전기 연결부가 될 수 있다. 이 경우, 제2 기판(1002)을 제1 전기 연결부(151)의 슬롯에 삽입하는 것 만으로 제2 기판(1002)을 제1 기판(1001)에 결합시킬 수 있고, 동시에 제1 소자 그룹(G1)과 제2 소자 그룹(G2)의 전기적 연결이 가능하게 될 수 있다. 따라서 제1 기판(1001)과 제2 기판(1002)의 결합 구조가 더욱 간단해질 수 있다.According to the embodiment illustrated in FIG. 42, the first electrical connection unit 151 may include a slot into which the second substrate 1002 may be fixedly inserted. The above-described connection terminals are installed inside this slot. In addition, the second substrate 1002 itself is inserted into the slot of the first electrical connection unit 151. In this case, a plurality of connection terminals are provided on the end side of the second substrate, so that when the second substrate 1002 is inserted into the slot of the first electrical connection unit 151, the connection terminals of the second substrate are connected terminals inside the slot. Are electrically connected to the field. A plurality of connection terminals formed on the end side of the second substrate may be the second electrical connection. In this case, the second substrate 1002 can be coupled to the first substrate 1001 by simply inserting the second substrate 1002 into the slot of the first electrical connector 151, and at the same time, the first element group G1 ) And the second device group G2 may be electrically connected. Accordingly, the bonding structure of the first substrate 1001 and the second substrate 1002 may be further simplified.
도 43은 또 다른 일 실시예에 따라 제1 기판(1001에 제2 기판(1002)이 결합된 측면도를 나타낸다.43 is a side view illustrating a second substrate 1002 coupled to a first substrate 1001 according to another exemplary embodiment.
도 43에 도시된 실시예에 따르면, 제1 기판(1101)은 제2 기판(1002)이 고정적으로 삽입될 수 있는 홈 및/또는 비아 홀을 포함할 수 있다. 이 홈 및/또는 홀의 내측에 도전성 패터닝에 따라 전술한 접속 단자들이 설치되고, 이 접속 단자들이 제1 전기 연결부(151)가 된다. 그리고 제2 기판(1002) 자체가 상기 홈 및/또는 홀에 삽입된다. 이 때, 제2 기판의 단부 측면에는 복수의 접속 단자들이 설치되어, 제2 기판(1002)이 제1 기판(1101)의 홈 및/또는 홀에 삽입될 때에 제2 기판의 접속 단자들이 홈 및/또는 홀 내측의 접속 단자들에 전기적으로 연결된다. 제2 기판의 단부 측면에 형성되는 복수의 접속 단자들이 제2 전기 연결부가 될 수 있다. 이 경우, 제2 기판(1002)을 제1 기판(1001)의 홈 및/또는 홀 에 삽입하는 것 만으로 제2 기판(1002)을 제1 기판(1001)에 결합시킬 수 있고, 동시에 제1 소자 그룹(G1)과 제2 소자 그룹(G2)의 전기적 연결이 가능하게 될 수 있다. 제2 기판(1102)의 단부는 상기 홈 및/또는 홀 에 삽입되도록 돌기를 형성할 수도 있고, 이 돌기에 도전성 패터닝을 함으로써 접속 단자들을 설계할 수도 있다. 따라서 이 실시예의 경우에도 제1 기판(1001)과 제2 기판(1002)의 결합만으로 제1 소자 그룹(G1)과 제2 소자 그룹(G2)의 전기적 연결이 가능하게 할 수 있어, 장치 전체 구조를 간단하게 할 수 있다.According to the embodiment illustrated in FIG. 43, the first substrate 1101 may include a groove and/or a via hole into which the second substrate 1002 may be fixedly inserted. The above-described connection terminals are installed in the groove and/or the hole by conductive patterning, and the connection terminals become the first electrical connection part 151. Then, the second substrate 1002 itself is inserted into the groove and/or hole. At this time, a plurality of connection terminals are provided on the end side of the second substrate, so that when the second substrate 1002 is inserted into the groove and/or hole of the first substrate 1101, the connection terminals of the second substrate are grooved and /Or are electrically connected to the connection terminals inside the hole. A plurality of connection terminals formed on the end side of the second substrate may be the second electrical connection. In this case, the second substrate 1002 can be coupled to the first substrate 1001 by simply inserting the second substrate 1002 into the grooves and/or holes of the first substrate 1001, and at the same time, the first element Electrical connection between the group G1 and the second device group G2 may be possible. The end of the second substrate 1102 may have a protrusion to be inserted into the groove and/or hole, and connection terminals may be designed by conducting conductive patterning on the protrusion. Therefore, even in this embodiment, electrical connection between the first element group G1 and the second element group G2 can be made only by combining the first substrate 1001 and the second substrate 1002, so that the overall structure of the device Can be done simply.
이상 설명한 도 37 내지 도 43에 도시된 구조들의 경우, 도 36에 도시된 실시예를 적용한 것인 데, 도 37 내지 도 43에 도시된 구조들은 이하 설명할 다양한 회로 구성에 적용 가능하다.In the case of the structures shown in FIGS. 37 to 43 described above, the embodiment shown in FIG. 36 is applied, and the structures shown in FIGS. 37 to 43 are applicable to various circuit configurations to be described below.
도 44은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 보다 구체적인 예를 도시한 것이다.44 shows a more specific example of a separate active EMI filter module 1000 according to another embodiment.
도 44에 도시된 실시예는, 전술한 도 36에 도시된 실시예와 달리, 전원 측인 제1 장치(2) 쪽의 제1-1 핀(141) 및 제1-3 핀(143)에 노이즈 센싱부(11)가 전기적으로 연결된다. 그리고 제2 장치(3) 쪽의 제1-2 핀(142) 및 제1-4 핀(144)에 보상부(13) 및 전달부(14)가 전기적으로 연결된다. 따라서, 도 10에 도시된 실시예는, 제1 장치(2) 측으로 나가는 노이즈 전류를 감지하여 제2 장치(3) 측에서 전류로 보상하는, 피드백(Feedback) 타입의 CSCC 능동 EMI 필터를 나타낸다. 도 44에 도시된 노이즈 센싱부(11), 능동 회로부(12), 보상부(13) 및 전달부(14)는 각각 전술한 도 2에 도시된 소자들과 동일한 기능을 수행할 수 있다. In the embodiment shown in FIG. 44, unlike the embodiment shown in FIG. 36 described above, noise in the 1-1 pin 141 and the 1-3 pin 143 on the first device 2 side, which is the power side The sensing unit 11 is electrically connected. In addition, the compensation unit 13 and the transmission unit 14 are electrically connected to the 1-2 pins 142 and 1-4 pins 144 on the side of the second device 3. Accordingly, the embodiment shown in FIG. 10 shows a CSCC active EMI filter of a feedback type, which senses a noise current going out to the first device 2 and compensates with the current at the second device 3 side. The noise sensing unit 11, the active circuit unit 12, the compensation unit 13, and the transfer unit 14 shown in FIG. 44 may each perform the same functions as those of the devices shown in FIG. 2.
도 45는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 보다 구체적인 예를 도시한 것이다.45 illustrates a more specific example of a separate active EMI filter module 1000 according to another embodiment.
도 45를 참조하면, 상기 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은, 노이즈 센싱부(11)가 센싱 커패시터부(112)를 포함할 수 있다. 도 45에 도시된 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)은 센싱 커패시터부(112)를 이용하여 노이즈 전압을 감지하고, 전달부(14)의 보상 커패시터부(141)를 이용하여 전류로 보상하는 전압-센싱 전류-보상(Voltage-sense Current-Compensation, VSCC) 능동 EMI 필터를 나타낸다. 이러한 실시예에 따른 능동 EMI 필터(1)와 같은 VSCC 구조에서는, 피드포워드(feedforward)와 피드백(feedback)이 동작 원리상 구분되지 않을 수 있다. 즉 도 45에 도시된 분리형 능동 EMI 필터 모듈(1000)에서, 입/출력부의 구분이 없을 수 있다. 또한, 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)도, 보상 변압기(131) 및 센싱 변압기(113)를 이용함으로써 독립된(isolated) 구조를 가질 수 있다.Referring to FIG. 45, in the separate active EMI filter module 1000 according to another embodiment, the noise sensing unit 11 may include a sensing capacitor unit 112. The separated active EMI filter module 1000 according to the embodiment shown in FIG. 45 detects a noise voltage using the sensing capacitor unit 112 and converts the current into a current using the compensation capacitor unit 141 of the transmission unit 14. Represents a voltage-sense current-compensation (VSCC) active EMI filter that compensates. In a VSCC structure such as the active EMI filter 1 according to this embodiment, a feedforward and a feedback may not be distinguished due to an operating principle. That is, in the separate active EMI filter module 1000 illustrated in FIG. 45, there may be no distinction between input/output units. In addition, the separated active EMI filter module 1000 according to the embodiment may also have an isolated structure by using the compensation transformer 131 and the sensing transformer 113.
센싱 커패시터부(112)는, 전력선인 제1 관통선(21) 및 제2 관통선(22)으로 입력되는 노이즈 전압을 감지할 수 있다. 센싱 커패시터부(112)는, 두 개의 센싱 커패시터를 포함할 수 있는 데, 각 센싱 커패시터는 Y-cap을 포함할 수 있다. 상기 두 개의 센싱 커패시터 각각의 일 단은, 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결될 수 있고, 타단은 센싱 변압기(113)의 1차측과 연결되는 노드를 공유할 수 있다. 센싱 변압기(113)의 1차측은, 센싱 커패시터부(112)를 거쳐 전력선인 제1 관통선(21) 및 제2 관통선(22)과 전기적으로 연결될 수 있다.The sensing capacitor unit 112 may sense a noise voltage input to the first through line 21 and the second through line 22 which are power lines. The sensing capacitor unit 112 may include two sensing capacitors, and each sensing capacitor may include a Y-cap. One end of each of the two sensing capacitors may be electrically connected to the first through line 21 and the second through line 22, and the other end may share a node connected to the primary side of the sensing transformer 113. I can. The primary side of the sensing transformer 113 may be electrically connected to the first through line 21 and the second through line 22 which are power lines through the sensing capacitor unit 112.
센싱 변압기(113)는, 전력선에 흐르는 노이즈를 센싱하기 위해, 전력선 측과 연결된 1차측 및 능동 회로부(12)와 연결된 2차측을 포함할 수 있다. 센싱 변압기(113)의 2차측은 능동 회로부(12)의 입력단과 차동(Differential)으로 연결될 수 있다.The sensing transformer 113 may include a primary side connected to the power line side and a secondary side connected to the active circuit unit 12 in order to sense noise flowing through the power line. The secondary side of the sensing transformer 113 may be differentially connected to the input terminal of the active circuit unit 12.
도 45에 도시된 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)에 포함된 센싱 변압기(113), 능동 회로부(12), 보상 변압기(131), 및 보상 커패시터부(141)는 각각 전술한 실시예들의 센싱 변압기, 능동 회로부(121), 보상 변압기(131), 및 보상 커패시터부(141)에 대응되는 동작을 수행할 수 있다. The sensing transformer 113, the active circuit unit 12, the compensation transformer 131, and the compensation capacitor unit 141 included in the separated active EMI filter module 1000 according to the embodiment shown in FIG. 45 are each implemented as described above. An operation corresponding to the sensing transformer, the active circuit unit 121, the compensation transformer 131, and the compensation capacitor unit 141 may be performed.
비록 도면에 도시하지는 않았지만, 이상 설명한 실시예들에서, 상기 능동 회로부(12)는 보상 변압기(131)와의 사이에 하이패스 필터(미도시)를 더 포함해, 노이즈 저감의 대상이 되는 주파수 대역 이하의 저주파에서 능동 회로부(12)가 동작하는 것을 차단할 수 있다. Although not shown in the drawings, in the above-described embodiments, the active circuit unit 12 further includes a high-pass filter (not shown) between the compensation transformer 131 and is below a frequency band subject to noise reduction. It is possible to block the active circuit unit 12 from operating at a low frequency of.
도 46는 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 구성을 도시한 것이다.46 illustrates a configuration of a separate active EMI filter module 1000 according to another embodiment.
도 46에 도시된 실시예는 도 2에 도시된 단상용 실시예와 달리 3상 3선 구조의 분리형 능동 EMI 필터 모듈(1000)이다.The embodiment shown in FIG. 46 is a separate active EMI filter module 1000 having a three-phase three-wire structure unlike the single-phase embodiment shown in FIG. 2.
도 46를 참조하면, 기판을 제1 관통선(21), 제2 관통선(22) 및 제3 관통선(23)이 통과하는 데, 이들의 양단은 각각 제1-1 핀(241) 내지 제1-6 핀(146)에 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제1 관통선(21)은 R상, 제2 관통선(22)은 S상, 제3 관통선(23)은 T상의 전력선일 수 있다. Referring to FIG. 46, a first through line 21, a second through line 22, and a third through line 23 pass through the substrate, and both ends of the first through line 21 to the first through line 241 to It may be electrically connected to the 1-6th pins 146. According to an embodiment, the first through line 21 may be an R-phase, the second through line 22 may be an S-phase, and the third through line 23 may be a T-phase.
노이즈 센싱부(11)는 노이즈를 센싱할 수 있는 센싱 변압기를 포함할 수 있는 데, 상기 센싱 변압기는, 제1 관통선(21) 내지 제3 관통선(23)에 각각 연결된 제1 기준 권선(1101) 내지 제3 기준 권선(1103)과, 상기 제1 기준 권선(1101) 내지 제3 기준 권선(113)과 동일한 코어에 형성된 센싱 권선(1100)을 포함할 수 있다.The noise sensing unit 11 may include a sensing transformer capable of sensing noise, wherein the sensing transformer includes a first reference winding connected to the first through line 21 to the third through line 23, respectively. 1101) to the third reference winding 1103, and a sensing winding 1100 formed on the same core as the first reference winding 1101 to the third reference winding 113.
상기 제1 기준 권선(1101) 내지 제3 기준 권선(1103)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(1100)은 2차 권선이 될 수 있다. The first reference winding 1101 to the third reference winding 1103 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
상기 제1 기준 권선(1101) 내지 제3 기준 권선(1103)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(1101), 제2 기준 권선(1102) 또는 제3 기준 권선(1103) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. Each of the first to third reference windings 1101 to 1103 may be in the form of a winding wound around a core, but is not limited thereto, and a first reference winding 1101 and a second reference winding At least one of (1102) or the third reference winding 1103 may have a structure passing through the core.
센싱 권선(1100)은 제1 기준 권선(1101) 내지 제3 기준 권선(1103)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조이거나 코어를 통과하는 구조일 수 있다.The sensing winding 1100 may have a structure in which the first reference winding 1101 to the third reference winding 1103 is wound and/or wound at least one time around a core through which it passes, or a structure passing through the core.
센싱 권선(1100)은 전술한 도 36의 실시예와 동일하게 전력선과는 절연(isolated)되며, 제2 장치(3)로부터 발생되는 노이즈 전류를 감지할 수 있다. 도 2의 실시예와 마찬가지로 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The sensing winding 1100 is insulated from the power line as in the above-described embodiment of FIG. 36, and may sense a noise current generated from the second device 3. Like the embodiment of FIG. 2, the primary winding and the secondary winding may be wound in consideration of the direction in which the magnetic flux and/or the magnetic flux density are generated.
센싱 권선(1100)은 유도 전류를 능동 회로부(12)로 공급하고, 능동 회로부(12)는 이를 증폭하여 증폭 전류를 생성한다. 능동 회로부(12)는 전술한 센싱 변압기의 변압 비율 및 후술하는 보상 변압기(131)의 변압 비율을 고려하여 증폭 전류를 생성하도록 설계될 수 있다. 능동 회로부(12)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(12)는 OP AMP(121)를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(12)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(12)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 증폭을 위한 수단은 본 발명의 능동 회로부(12)로 제한 없이 사용될 수 있다. The sensing winding 1100 supplies the induced current to the active circuit unit 12, and the active circuit unit 12 amplifies it to generate an amplified current. The active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 131 to be described later. The active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
상기 증폭 전류는, 보상부(13) 및 전달부(14)를 거쳐 제1 관통선(21), 제2 관통선(22) 및/또는 제3 관통선(23)으로 흘러, 노이즈를 보상할 수 있다.The amplified current flows to the first through line 21, the second through line 22 and/or the third through line 23 through the compensation unit 13 and the transfer unit 14, and compensates for noise. I can.
상기 보상부(13)는, 보상 변압기(131)를 포함할 수 있는 데, 구체적인 구성 및 기능은 전술한 도 36에 도시된 실시예와 동일하게 적용할 수 있다. The compensation unit 13 may include a compensation transformer 131, and a specific configuration and function may be applied in the same manner as the embodiment shown in FIG. 36.
전달부(14)는 보상 커패시터부(141)를 포함할 수 있는 데, 보상 커패시터부(141)의 각 커패시터들은 일단은 보상 변압기(131)에 연결되고 타단은 제1 관통선(21) 내지 제3 관통선(23)에 각각 연결된다.The transfer unit 14 may include a compensation capacitor unit 141, wherein each capacitor of the compensation capacitor unit 141 has one end connected to the compensation transformer 131 and the other end of the first through line 21 to the first through line. It is connected to the 3 through line 23, respectively.
도 46에 도시된 실시예는 도 36에 도시된 실시예를 바탕으로 이를 3상 3선 구조로 나타낸 것이나, 본 발명은 반드시 이에 한정되는 것은 아니고, 도 12에 도시된 실시예는 도 44 및 도 45에 도시된 실시예에도 동일하게 적용될 수 있다.The embodiment shown in FIG. 46 is shown in a three-phase, three-wire structure based on the embodiment shown in FIG. 36, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 45.
도 47은 또 다른 일 실시예에 따른 분리형 능동 EMI 필터 모듈(1000)의 구성을 도시한 것이다.47 illustrates a configuration of a separate active EMI filter module 1000 according to another embodiment.
도 47에 도시된 실시예는 도 36에 도시된 단상용 실시예 및 도 12에 도시된 3상 3선 실시예와 달리 3상 4선 구조의 분리형 능동 EMI 필터 모듈(1000)이다.The embodiment shown in FIG. 47 is a separate active EMI filter module 1000 having a three-phase four-wire structure unlike the single-phase embodiment shown in FIG. 36 and the three-phase three-wire embodiment shown in FIG. 12.
도 47을 참조하면, 기판을 제1 관통선(21), 제2 관통선(22), 제3 관통선(23) 및 제4 관통선(24)이 통과하는 데, 이들의 양단은 각각 제1-1 핀(241) 내지 제1-8 핀(148)에 전기적으로 연결될 수 있다. 일 실시예에 따르면, 상기 제1 관통선(21)은 R상, 제2 관통선(22)은 S상, 제3 관통선(23)은 T상, 제4 관통선(24)은 N상의 전력선일 수 있다. Referring to FIG. 47, a first through line 21, a second through line 22, a third through line 23, and a fourth through line 24 pass through the substrate, and both ends thereof are It may be electrically connected to the 1-1 pins 241 to 1-8 pins 148. According to an embodiment, the first through line 21 is an R phase, the second through line 22 is an S phase, the third through line 23 is a T phase, and the fourth through line 24 is an N-phase. It can be a power line.
노이즈 센싱부(11)는 노이즈를 센싱할 수 있는 센싱 변압기(110)를 포함할 수 있는 데, 상기 센싱 변압기는, 제1 관통선(21) 내지 제4 관통선(24)에 각각 연결된 제1 기준 권선(1101) 내지 제4 기준 권선(1104)과, 상기 제1 기준 권선(1101) 내지 제4 기준 권선(1104)과 동일한 코어에 형성된 센싱 권선(1100)을 포함할 수 있다.The noise sensing unit 11 may include a sensing transformer 110 capable of sensing noise, wherein the sensing transformer includes first through lines 21 to 4 respectively connected to the first through lines 24 A reference winding 1101 to a fourth reference winding 1104 and a sensing winding 1100 formed on the same core as the first reference winding 1101 to the fourth reference winding 1104 may be included.
상기 제1 기준 권선(1101) 내지 제4 기준 권선(1104)은 전력선에 연결된 1차 권선이 될 수 있고, 센싱 권선(1100)은 2차 권선이 될 수 있다. The first reference winding 1101 to the fourth reference winding 1104 may be a primary winding connected to a power line, and the sensing winding 1100 may be a secondary winding.
상기 제1 기준 권선(1101) 내지 제4 기준 권선(1104)은 각각 코어에 감겨 있는 권선의 형태가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 제1 기준 권선(1101), 제2 기준 권선(1102), 제3 기준 권선(1103) 또는 제4 기준 권선(1104) 중 적어도 하나는 코어를 통과하는 구조일 수 있다. Each of the first to fourth reference windings 1101 to 1104 may be in the form of a winding wound around a core, but is not limited thereto, and a first reference winding 1101 and a second reference winding At least one of (1102), the third reference winding 1103, and the fourth reference winding 1104 may have a structure passing through the core.
센싱 권선(1100)은 제1 기준 권선(1101) 내지 제4 기준 권선(1104)이 감겨 있는 및/또는 통과하는 코어에 적어도 1회 이상 권취된 구조이거나 코어를 1회 관통하는 구조일 수 있다.The sensing winding 1100 may have a structure in which the first reference winding 1101 to the fourth reference winding 1104 is wound and/or wound at least one time around a core through which it passes, or a structure that penetrates the core once.
센싱 권선(1100)은 전술한 실시예들와 동일하게 전력선과는 절연(isolated)되며, 제2 장치(3)로부터 발생되는 노이즈 전류를 감지할 수 있다. 도 36의 실시예와 마찬가지로 1차 권선과 2차 권선은 자속 및/또는 자속 밀도의 생성 방향을 고려하여 권취될 수 있다.The sensing winding 1100 is insulated from the power line as in the above-described embodiments, and may sense a noise current generated from the second device 3. Like the embodiment of FIG. 36, the primary and secondary windings may be wound in consideration of the direction of generation of magnetic flux and/or magnetic flux density.
센싱 권선(1100)은 유도 전류를 능동 회로부(12)로 공급하고, 능동 회로부(12)는 이를 증폭하여 증폭 전류를 생성한다. 능동 회로부(12)는 전술한 센싱 변압기의 변압 비율 및 후술하는 보상 변압기(131)의 변압 비율을 고려하여 증폭 전류를 생성할 수 있도록 설계될 수 있다. 능동 회로부(12)는 다양한 수단으로 구현될 수 있는 데, 일 실시예에 따르면, 능동 회로부(12)는 OP AMP(121)를 포함할 수 있다. 다른 실시예에 따르면, 상기 능동 회로부(12)는 OP AMP 이외에 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 또 다른 실시예에 따르면, 상기 능동 회로부(12)는 BJT(Bipolar Junction Transistor) 및/또는 저항과 커패시터 등 복수의 수동 장치들을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 본 발명에서 설명하는 증폭을 위한 수단은 본 발명의 능동 회로부(12)로 제한 없이 사용될 수 있다. The sensing winding 1100 supplies the induced current to the active circuit unit 12, and the active circuit unit 12 amplifies it to generate an amplified current. The active circuit unit 12 may be designed to generate an amplified current in consideration of the transformation ratio of the above-described sensing transformer and the transformation ratio of the compensation transformer 131 to be described later. The active circuit unit 12 may be implemented by various means. According to an embodiment, the active circuit unit 12 may include an OP AMP 121. According to another embodiment, the active circuit unit 12 may include a plurality of passive devices such as a resistor and a capacitor in addition to the OP AMP. According to another embodiment, the active circuit unit 12 may include a bipolar junction transistor (BJT) and/or a plurality of passive devices such as a resistor and a capacitor. However, it is not necessarily limited thereto, and the means for amplification described in the present invention may be used without limitation as the active circuit unit 12 of the present invention.
상기 증폭 전류는, 보상부(13) 및 전달부(14)를 통해 제1 관통선(21), 제2 관통선(22), 제3 관통선(23) 및/또는 제4 관통선(24)으로 흘러, 노이즈를 보상할 수 있다.The amplified current is applied to the first through line 21, the second through line 22, the third through line 23 and/or the fourth through line 24 through the compensation part 13 and the transfer part 14. ), and can compensate for noise.
상기 보상부(13)는, 보상 변압기(131)를 포함할 수 있고, 전달부(14)는 보상 캐패시터부(141)를 포함할 수 있는 데, 구체적인 구성 및 기능은 전술한 도 36 및 도 46에 도시된 실시예와 동일하게 적용할 수 있다. 보상 커패시터부(141)의 각 커패시터들의 일단은 보상 변압기(131)에 연결되고 타단은 제1 관통선(21) 내지 제4 관통선(24)에 각각 연결된다.The compensation unit 13 may include a compensation transformer 131, and the transmission unit 14 may include a compensation capacitor unit 141, and specific configurations and functions are described in FIGS. 36 and 46 It can be applied in the same way as the embodiment shown in. One end of each capacitor of the compensation capacitor unit 141 is connected to the compensation transformer 131 and the other end is connected to the first through line 21 to the fourth through line 24, respectively.
도 47에 도시된 실시예는 도 36에 도시된 실시예를 바탕으로 이를 3상 4선 구조로 나타낸 것이나, 본 발명은 반드시 이에 한정되는 것은 아니고, 도 47에 도시된 실시예는 도 44 및 도 45에 도시된 실시예에도 동일하게 적용될 수 있다.The embodiment shown in FIG. 47 is shown in a three-phase, four-wire structure based on the embodiment shown in FIG. 36, but the present invention is not necessarily limited thereto, and the embodiment shown in FIG. The same can be applied to the embodiment shown in 45.
이상 설명한 바와 같은 실시예들의 분리형 능동 EMI 필터 모듈(1000)에 있어서, 제2 기판(1002) 및 제2 기판(1002)에 설치된 제2 소자 그룹(G2)은 도 48 및 도 49에 도시된 바와 같은 봉지 구조체(6)를 통해 외부와 차단된 밀봉 구조로 구현되고, 단일 모듈화할 수 있다.In the separated active EMI filter module 1000 of the embodiments as described above, the second device group G2 installed on the second substrate 1002 and the second substrate 1002 is as shown in FIGS. 48 and 49. It is implemented as a sealing structure that is blocked from the outside through the same sealing structure 6, and can be made into a single module.
도 48 및 도 49에 도시된 일 실시예에 따르면, 제2 기판(1002)에는 제2 소자 그룹(G2)이 설치되는 데, 제2 기판(1002)의 일 면에는 능동 회로부(102)가 설치되고, 제2 기판(1002)의 타면에는 보상부(13)가 설치된다. 48 and 49, the second device group G2 is installed on the second substrate 1002, and the active circuit unit 102 is installed on one surface of the second substrate 1002. Then, the compensation part 13 is installed on the other surface of the second substrate 1002.
일 실시예에 따르면, 봉지 구조체(6)는, 서포트(61) 및 충진부(63)를 포함할 수 있다.According to an embodiment, the encapsulation structure 6 may include a support 61 and a filling part 63.
상기 서포트(61)는, 절연성 소재로 형성된 것으로, 내부에 위치한 공간부를 포함한다. 상기 서포트는(61)의 공간부는 개구(611) 및 바닥(612)에 의해 정의될 수 있다. 경우에 따라 상기 서포트(61)는 열전달 가능한 소재로 형성될 수 있다. 이 경우, 서포트(61)에 추가로 히트 싱크 등 방열 기구를 더 설치할 수 있으며, 이에 따라 서포트(61)에 의한 열 방출이 원활하게 이뤄지도록 할 수 있다.The support 61 is formed of an insulating material and includes a space located therein. The space portion of the support 61 may be defined by an opening 611 and a bottom 612. In some cases, the support 61 may be formed of a material capable of heat transfer. In this case, a heat dissipation mechanism such as a heat sink may be additionally installed on the support 61, and accordingly, heat dissipation by the support 61 may be smoothly performed.
서포트(61)의 공간부에 전술한 제2 기판(1002)이 수용된다. 제2 기판(1002)은 수직으로 세워진 형태로 서포트(61)에 수용될 수 있으며, 이 때, 제2 기판(1002)의 가장자리에 위치한 제2 전기 연결부(152)의 접속 핀들이 개구(611)의 외측으로 돌출된 구조를 가질 수 있다. 따라서 제2 기판(1002)의 양 면이 각각 서포트(61) 내부의 측벽을 향하도록 배치될 수 있다.The above-described second substrate 1002 is accommodated in the space portion of the support 61. The second substrate 1002 may be accommodated in the support 61 in a vertically erected form, and at this time, the connection pins of the second electrical connector 152 located at the edge of the second substrate 1002 are opened 611 It may have a structure protruding outward of. Accordingly, both surfaces of the second substrate 1002 may be disposed to face the sidewalls inside the support 61, respectively.
한편, 일 실시예에 따르면, 상기 분리형 능동 EMI 필터 모듈(1000)은 상기 서포트(61)의 공간부의 적어도 일부를 충진하도록 구비된 충진부(63)를 포함할 수 있다.Meanwhile, according to an embodiment, the separate active EMI filter module 1000 may include a filling portion 63 provided to fill at least a part of the space portion of the support 61.
상기 충진부(63)에 의해 제2 기판(1002)은 서포트(61) 내에 고정될 수 있다.The second substrate 1002 may be fixed in the support 61 by the filling part 63.
상기 충진부(63)는 내열성 및/또는 절연성 수지재로 구비될 수 있다. 일 실시예에 따르면, 상기 충진부(63)는 에폭시 수지를 포함할 수 있고, 경화제를 더 포함할 수 있다.The filling part 63 may be provided with a heat-resistant and/or insulating resin material. According to an embodiment, the filling part 63 may include an epoxy resin, and may further include a curing agent.
상기와 같은 구조의 분리형 능동 EMI 필터 모듈(1000)은, 제2 전기 연결부(152)가 인 라인상으로 돌출되어 있는 상자 구조를 가질 수 있다.The detachable active EMI filter module 1000 having the above structure may have a box structure in which the second electrical connector 152 protrudes in-line.
상기 분리형 능동 EMI 필터 모듈(1000)은 다양한 장치에 간단하게 설치할 수 있고, 외부 장치와 독립된 구조를 갖기 때문에 특히 제2 소자 그룹(G2)이 외부의 자극, 및/또는 충격으로부터 보호될 수 있고, 분리형 능동 EMI 필터 모듈(1000) 자체의 파손이 방지될 수 있다. 이는 분리형 능동 EMI 필터 모듈(1000)이 필요한 장비 전체의 내구성을 향상시킬 수 있게 된다. 또한 외부의 먼지 등 오염 환경으로부터 제2 소자 그룹(G2)을 보호할 수 있다. 그리고 서포트(61) 및/또는 충진부(63)가 방열 소재를 포함하는 경우 제2 소자 그룹(G2)으로부터 방출된 열을 외부로 발산시킬 수 있기 때문에 제2 소자 그룹(G2)이 열화되는 것을 방지할 수 있다.Since the detachable active EMI filter module 1000 can be simply installed in various devices and has a structure independent from external devices, in particular, the second device group G2 can be protected from external stimuli and/or shock, The detachable active EMI filter module 1000 itself may be prevented from being damaged. This makes it possible to improve the durability of the entire equipment requiring the separate active EMI filter module 1000. In addition, it is possible to protect the second device group G2 from contaminated environments such as external dust. In addition, when the support 61 and/or the filling part 63 contains a heat dissipating material, the second element group G2 is prevented from deteriorating because the heat emitted from the second element group G2 can be radiated to the outside. Can be prevented.
도 48 및 도 49에 도시된 실시예는 도 41에 도시된 실시예를 나타내나, 본 발명은 반드시 이에 한정되는 것은 아니며, 다른 실시예들에 따른 제2 기판(1002) 및 제2 소자 그룹(G2)도 동일하게 밀봉될 수 있음은 물론이다.The embodiments shown in FIGS. 48 and 49 represent the embodiment shown in FIG. 41, but the present invention is not limited thereto, and the second substrate 1002 and the second device group according to other embodiments ( It goes without saying that G2) can be sealed in the same way.
한편, 전술한 실시예에서, 제2 기판(1002)은 제1 기판(1001)에 대해 수직으로 배치되어 제1 기판(1001)에 결합되는 것으로 설명하였는 데, 본 발명은 반드시 이에 한정되는 것은 아니다.Meanwhile, in the above-described embodiment, it has been described that the second substrate 1002 is disposed perpendicularly to the first substrate 1001 and is coupled to the first substrate 1001, but the present invention is not limited thereto. .
즉, 제1 기판(1001)으로부터 돌출 높이가 제한을 받는 설계 구조에서, 제2 기판(1002)은 제1 기판(1001)에 대해 수평한 상태로 배치되어 제1 기판(1001)에 결합될 수 있다. 이 경우에는 제2 기판(1002)에 설치되는 제2 전기 연결부(152)가 제2 기판(1002)을 수평하게 제1 기판(1001)에 결합시킬 수 있는 구조를 가질 수 있다. 예컨대, 도 14에 도시된 실시예에서 제2 전기 연결부(152)는 절곡되지 않고 제2 기판(1002)의 표면으로부터 수직방향으로 연장된 구조가 될 수 있다. 이 때에는 편평한 상자체의 서포트에 제2 기판(1002)을 표면이 수평하게 수납하고, 충진부(63)로 몰딩할 수 있다.That is, in a design structure in which the protrusion height from the first substrate 1001 is limited, the second substrate 1002 may be disposed in a horizontal state with respect to the first substrate 1001 to be coupled to the first substrate 1001. have. In this case, the second electrical connection part 152 installed on the second substrate 1002 may have a structure capable of horizontally coupling the second substrate 1002 to the first substrate 1001. For example, in the embodiment illustrated in FIG. 14, the second electrical connection part 152 may have a structure that is not bent and extends in a vertical direction from the surface of the second substrate 1002. In this case, the surface of the second substrate 1002 may be horizontally accommodated on the support of the flat box body, and may be molded with the filling portion 63.
이렇게 본 발명은 간단하게 모듈형으로 구비된 분리형 능동 EMI 필터 모듈(1000)을 구현할 수 있고, 제조 과정에서 충진부에 다양한 재료를 혼입함으로써, 분리형 능동 EMI 필터 모듈(1000)이 보다 향상된 기능을 구현하도록 할 수 있다. 예컨대 상기 충진부에 절연, 열전달 및/또는 방열 소재를 추가함으로써 냉각과 관련한 추가 구성을 구현할 수 있다.In this way, the present invention can simply implement the detachable active EMI filter module 1000 provided in a modular form, and by mixing various materials into the filling part during the manufacturing process, the detachable active EMI filter module 1000 implements more improved functions. You can do it. For example, by adding insulation, heat transfer and/or heat dissipation material to the filling part, an additional configuration related to cooling may be implemented.
또한 하드한 케이스 형태로 구비된 서포트에 의해, 내부 장치들에 대한 물리적인 보호를 제공할 수 있을 뿐 아니라, 경우에 따라 서포트에 추가로 히트 싱크 등 방열 기구를 더 설치할 수 있으며, 이에 따라 서포트에 의한 열 방출이 원활하게 이뤄지도록 할 수 있다.In addition, by the support provided in the form of a hard case, not only can it provide physical protection for internal devices, but in some cases, a heat sink or other heat dissipation mechanism can be additionally installed on the support. The heat dissipation can be made smoothly.
본 명세서에 기재된 모든 실시예들은 서로 복합적으로 적용될 수 있다.All embodiments described in the present specification may be applied in combination with each other.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.The present invention has been described with reference to one embodiment shown in the accompanying drawings, but this is only illustrative, and those of ordinary skill in the art will understand that various modifications and other equivalent embodiments are possible therefrom. I will be able to. Therefore, the true scope of protection of the present invention should be determined only by the appended claims.

Claims (5)

  1. 전자파 노이즈를 감지하도록 구비된 노이즈 센싱부를 포함하는 제1 소자 그룹; 및A first device group including a noise sensing unit provided to detect electromagnetic noise; And
    상기 전자파 노이즈에 대한 보상 신호를 생성하도록 구비된 보상부를 포함하는 제2 소자 그룹;을 포함하고,Including; a second device group including a compensation unit provided to generate a compensation signal for the electromagnetic noise,
    상기 제1 그룹과 상기 제2 그룹은 서로 다른 기판에 각각 장착되도록 구비된 분리형 능동 EMI 필터 모듈.The first group and the second group are separate active EMI filter modules provided to be mounted on different substrates, respectively.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 소자 그룹이 장착되는 제1 기판; A first substrate on which the first device group is mounted;
    상기 제2 소자 그룹이 장착되는 제2 기판; 및A second substrate on which the second device group is mounted; And
    상기 제1 기판과 제2 기판의 사이에 개재되어 상기 제1 기판의 적어도 일부와 상기 제2 기판의 적어도 일부를 전기적으로 연결하는 제1 전기 연결부;를 포함하는 분리형 능동 EMI 필터 모듈.And a first electrical connection part interposed between the first substrate and the second substrate to electrically connect at least a portion of the first substrate and at least a portion of the second substrate.
  3. 제2항에 있어서,The method of claim 2,
    상기 제2 기판에 결합되고 상기 제1 전기 연결부와 결합되도록 구비된 제2 전기 연결부를 포함하는, 분리형 능동 EMI 필터 모듈.A detachable active EMI filter module comprising a second electrical connection coupled to the second substrate and provided to be coupled to the first electrical connection.
  4. 제3항에 있어서,The method of claim 3,
    상기 제2 전기 연결부는, 상기 제2 기판의 가장자리를 따라 인라인 상으로 구비된, 분리형 능동 EMI 필터 모듈.The second electrical connection part is provided in-line along the edge of the second substrate, a separate active EMI filter module.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4,
    상기 제2 기판, 및 제2 소자 그룹을 외부로부터 분리시키도록 구비된 봉지 구조체를 더 포함하는, 분리형 능동 EMI 필터 모듈.Separate active EMI filter module further comprising an encapsulation structure provided to separate the second substrate and the second device group from the outside.
PCT/KR2020/004247 2019-03-28 2020-03-27 Stand-alone active emi filter module WO2020197334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/449,038 US11949393B2 (en) 2019-03-28 2021-09-27 Divided active electromagnetic interference filter module and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0036221 2019-03-28
KR1020190036221A KR102258199B1 (en) 2019-03-28 2019-03-28 Isolated active EMI filter module and manufacturing method thereof
KR10-2019-0045137 2019-04-17
KR1020190045137A KR20200122190A (en) 2019-04-17 2019-04-17 Isolated active EMI filter module and manufacturing method thereof
KR10-2019-0060808 2019-05-23
KR1020190060808A KR102345290B1 (en) 2019-05-23 2019-05-23 Isolated active EMI filter module and manufacturing method thereof
KR10-2019-0115476 2019-09-19
KR1020190115476A KR102326924B1 (en) 2019-09-19 2019-09-19 Divided active EMI filter module and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/449,038 Continuation-In-Part US11949393B2 (en) 2019-03-28 2021-09-27 Divided active electromagnetic interference filter module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020197334A1 true WO2020197334A1 (en) 2020-10-01

Family

ID=72610625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004247 WO2020197334A1 (en) 2019-03-28 2020-03-27 Stand-alone active emi filter module

Country Status (1)

Country Link
WO (1) WO2020197334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162396A (en) * 2021-04-06 2021-07-23 西安交通大学 Asymmetric cascade type active EMI filter based on VSCC and CSCC
CN113904526A (en) * 2021-08-30 2022-01-07 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power supply converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105555A (en) * 2007-10-22 2009-05-14 Toshiba Corp Emi filter and electronic device
JP2015076580A (en) * 2013-10-11 2015-04-20 新電元工業株式会社 Method for manufacturing electrical apparatus and electrical apparatus
KR101889729B1 (en) * 2017-05-24 2018-08-20 한온시스템 주식회사 Arrangement for actively suppressing interference signals
KR101945463B1 (en) * 2018-05-02 2019-02-07 울산과학기술원 A Transformer-Isolated Common-Mode Active EMI Filter without Additional Components on Power Line, and Method for reducing EMI noise using it
KR20190029420A (en) * 2017-09-11 2019-03-20 한온시스템 주식회사 Emc-filter for suppressing noise signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105555A (en) * 2007-10-22 2009-05-14 Toshiba Corp Emi filter and electronic device
JP2015076580A (en) * 2013-10-11 2015-04-20 新電元工業株式会社 Method for manufacturing electrical apparatus and electrical apparatus
KR101889729B1 (en) * 2017-05-24 2018-08-20 한온시스템 주식회사 Arrangement for actively suppressing interference signals
KR20190029420A (en) * 2017-09-11 2019-03-20 한온시스템 주식회사 Emc-filter for suppressing noise signals
KR101945463B1 (en) * 2018-05-02 2019-02-07 울산과학기술원 A Transformer-Isolated Common-Mode Active EMI Filter without Additional Components on Power Line, and Method for reducing EMI noise using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162396A (en) * 2021-04-06 2021-07-23 西安交通大学 Asymmetric cascade type active EMI filter based on VSCC and CSCC
CN113162396B (en) * 2021-04-06 2024-05-07 西安交通大学 Asymmetric cascading type active EMI filter based on VSCC and CSCC
CN113904526A (en) * 2021-08-30 2022-01-07 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power supply converter
CN113904526B (en) * 2021-08-30 2024-03-15 北京精密机电控制设备研究所 Small-sized pulse plasma space electric propulsion high-voltage power converter

Similar Documents

Publication Publication Date Title
WO2013141658A1 (en) Antenna assembly and method for manufacturing same
WO2020197334A1 (en) Stand-alone active emi filter module
WO2020153560A1 (en) Inverter device and inverter panel including same
WO2021157873A1 (en) Cooling plate and manufacturing method therefor
WO2020213997A1 (en) Device for compensating for voltage or current
EP3488514A1 (en) Case for electric motor
WO2019066233A1 (en) Controller and motor assembly comprising same
WO2011002151A2 (en) Image-capturing apparatus with a function for compensating for shaking
WO2021215577A1 (en) Stator for motor
WO2018101802A2 (en) Heating assembly
WO2022139083A1 (en) Active current compensation apparatus capable of detecting malfunction
WO2021230515A1 (en) Movable core unit and direct current relay including same
WO2023191288A1 (en) Mold for mold transformer, and method for manufacturing mold transformer by using same
WO2023200054A1 (en) Active voltage compensation device
WO2020153559A1 (en) Inverter apparatus and power conversion apparatus comprising same
WO2023167423A1 (en) Vibration reduction unit and transformer comprising same
WO2020204270A1 (en) Motor part and electromotive compressor comprising same
WO2023120916A1 (en) Duct module and power conversion module comprising same
WO2023167409A1 (en) Vibration reducing unit and transformer comprising same
WO2023120915A1 (en) Power conversion module and power supply device comprising same
WO2021141320A1 (en) Electromagnetic contactor
WO2023171907A1 (en) Fluid channel module and power device including same
WO2024080404A1 (en) Stator of rotating electric machine and method for manufacturing same
WO2022240032A1 (en) Arc extinguishing unit, interruption unit, and air circuit breaker comprising same
WO2023090700A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778118

Country of ref document: EP

Kind code of ref document: A1