WO2020178058A1 - Cell for a hybrid electrical energy storage device, method for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell - Google Patents

Cell for a hybrid electrical energy storage device, method for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell Download PDF

Info

Publication number
WO2020178058A1
WO2020178058A1 PCT/EP2020/054775 EP2020054775W WO2020178058A1 WO 2020178058 A1 WO2020178058 A1 WO 2020178058A1 EP 2020054775 W EP2020054775 W EP 2020054775W WO 2020178058 A1 WO2020178058 A1 WO 2020178058A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
doping
electrode
negative
layer
Prior art date
Application number
PCT/EP2020/054775
Other languages
French (fr)
Inventor
Olivier Caumont
Thierry Drezen
Erwan Vigneras
Original Assignee
Blue Solutions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1902144A external-priority patent/FR3093375A1/en
Priority claimed from FR1905153A external-priority patent/FR3096171A3/en
Application filed by Blue Solutions filed Critical Blue Solutions
Publication of WO2020178058A1 publication Critical patent/WO2020178058A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrical energy storage cell for a hybrid electrical energy storage device, such as a hybrid supercapacitor. It also relates to a method of obtaining such a storage cell, and a hybrid supercapacitor comprising at least one such cell.
  • the field of the invention is the field of hybrid supercapacitors, in particular the field of hybrid supercapacitors using metal ions, for example lithium.
  • the negative electrode, or anode, of a hybrid supercapacitor is the electrode from which electrons exit.
  • the negative electrode of a hybrid supercapacitor is generally produced by a collector, for example made of copper, arranged between two layers of active material, generally graphite, and pre-doped / impregnated with metal ions.
  • a collector for example made of copper
  • active material generally graphite
  • metal ions for example, in the case of a Lithium-Ion supercapacitor (“LIC” for “Lithium-Ion Capacitor”)
  • LIC Lithium-Ion supercapacitor
  • each negative electrode is pre-doped with lithium ions.
  • a sheet of lithium metal is deposited on the two faces of each negative electrode.
  • This pre-doping technique imposes too great an electrode thickness, because of the minimum thickness that can be obtained by current techniques for a lithium sheet.
  • a second technique proposes to use a sheet of lithium metal, common to several negative electrodes, and which
  • SUBSTITUTE SHEET (RULE 26) is not in contact with these negative electrodes.
  • the collectors of the negative and positive electrodes are drilled to allow the lithium foil to dope each negative electrode.
  • This technique has the drawback of a very long lithiation time and a limited thickness in the number of electrodes in a supercapacitor.
  • An aim of the present invention is to remedy these drawbacks.
  • Another aim of the invention is to provide a solution exhibiting a better compromise between the thickness of the doping layer in metal ions, the thickness of the negative electrodes, and the doping time.
  • Another aim of the invention is to provide a solution making it possible, for a given thickness of the doping layer of metal ions, to reduce the thickness of the negative electrodes and the doping time.
  • the invention makes it possible to achieve at least one of these goals by a cell, for a hybrid device for storing electrical energy, such as a hybrid supercapacitor, said cell comprising at least two storage elements and a separator between two adjacent storage elements;
  • each storage element comprising a negative electrode separated from a positive electrode by a separator, each electrode comprising a collector;
  • said cell is doped with metal ions by at least one doping layer, in particular lithium, the or all of the doping layer (s) being placed in direct contact with a single negative electrode , called a doping electrode, within said cell.
  • the invention provides a cell, comprising several negative electrodes, and which are doped with metal ions by one or more doping layers which are all in direct contact with a single negative electrode, called a doping electrode, from among said negative electrodes. of said cell.
  • a doping electrode a single negative electrode, called a doping electrode, from among said negative electrodes. of said cell.
  • the other negative electrodes of the cell are not in contact with a doping layer.
  • the metallic doping layer is in direct contact with a negative electrode within the cell, which decreases the doping time, in particular lithiation, compared to the indirect contact technique described above.
  • the cell according to the invention uses one (or more) doping layer (s) common to several negative electrodes, which makes it possible, for a given thickness of the doping layer, to reduce the thickness negative electrodes of the cell.
  • electrode in the present invention, by electrode is meant a complex formed by a collector comprising on each of its two opposite faces, a layer of active material.
  • the cell according to the invention can comprise a doping layer in contact with each face of the negative doping electrode.
  • a doping layer is located on either side of the negative doping electrode.
  • a metal ion doping of the negative electrodes of the cell located on either side of the negative doping electrode, without necessarily piercing the collector of the negative doping electrode.
  • This embodiment makes it possible to avoid a decrease in the capacity of the cell according to the invention, due to a piercing of the collector of the doping negative electrode.
  • the cell according to the invention can comprise a single doping layer in contact with a single face of the negative doping electrode.
  • a single doping layer is used for the whole of the cell according to the invention.
  • This single doping layer is in contact with one of the faces of the negative doping electrode.
  • the use of a single doping layer, for the whole of the cell, makes it possible to use a greater thickness for the doping layer.
  • the doping negative electrode may be located at one end of the cell, in the direction of stacking of the storage elements within said cell.
  • the cell according to the invention comprises a single doping layer
  • said single doping layer can be placed in contact with the external face of the negative doping electrode.
  • said single doping layer can be placed in contact with the internal face of the doping electrode.
  • the doping negative electrode may not be located at one end of said cell, in the direction of stacking of the storage elements within said cell.
  • the collector of at least one electrode located between a doping layer and a negative electrode can be perforated so as to allow the metal ions coming from said doping layer to pass to said negative electrode.
  • the collector of the doping electrode may be perforated, in order to allow metal ions to pass from one face of said doping electrode to the other face of said doping electrode.
  • the cell according to the invention comprises a single and unique metal layer, placed in contact with a face of the negative doping electrode, the fact of drilling the collector of said negative doping electrode allows the ions to pass. metallic towards the other side and towards all negative electrodes being on the other side of the doping negative electrode.
  • the choice of whether or not to pierce the collector of a particular electrode within the cell can depend on the composition of the cell, and / or on the position of the negative doping electrode within the cell, and / or or of the composition of the hybrid electric energy storage device implementing the cell according to the invention. This choice is within the reach of those skilled in the art, with the aim of allowing the doping with metal ions of each negative electrode within the cell.
  • At least one doping layer may be in the form of an independent doping sheet.
  • the doping sheet can be produced independently and deposited on one side either of the negative doping electrode or of a separator adjacent to the negative doping electrode.
  • the separator can be a separator of the cell according to the invention, or a separator separating said cell from another cell, identical or different.
  • At least one doping layer may be a layer integral with, or formed on one face of, the doping electrode.
  • the doping layer can be deposited beforehand on one face of said negative doping electrode.
  • At least one doping layer is a layer integral with, or formed on one face, a separator adjacent to the negative doping electrode.
  • the doping layer can be deposited beforehand on one face of said separator.
  • the separator can be a separator of said cell, for example a separator separating the doping electrode from another electrode.
  • the separator can also be a separator separating the cell according to the invention from another cell, adjacent, identical or different.
  • at least one doping layer can:
  • - be formed by a grid or by lamellae.
  • At least one doping layer can be made of lithium, or of sodium, or of potassium, or of magnesium.
  • the method according to the invention comprises an assembly of at least two negative electrodes and at least two positive electrodes, by alternating the negative and positive electrodes and by inserting a separator between two adjacent electrodes.
  • the method according to the invention is characterized in that it further comprises an addition of at least one doping layer of said cell with metal ions, in particular lithium, in direct contact with a single negative electrode, said negative doping electrode, within said cell.
  • said at least one doping layer is placed at the same electric potential as all the negative electrodes of the cell.
  • the method according to the invention can comprise any combination of at least one of the characteristics described above, with reference to the cell according to the invention, and which are not repeated here for the sake of brevity.
  • a hybrid device for storing electrical energy in particular a hybrid supercapacitor, comprising at least one storage cell according to the invention.
  • the device according to the invention can be obtained by winding, on itself, the at least one cell.
  • the direction of winding may preferably be parallel to the plane formed by each electrode, and / or perpendicular to the direction of stacking of the electrodes within the cell.
  • the device according to the invention comprises several cells, then said cells can be stacked one on top of the other, in a stacking direction.
  • the stacking direction may preferably be perpendicular to the plane formed by each electrode.
  • the assembly formed by said cells can then be wound on itself, around a direction of winding.
  • the direction of winding may preferably be parallel to the plane formed by each electrode, and / or perpendicular to the direction of stacking.
  • the device according to the invention comprises several cells, two adjacent cells are separated by a separator.
  • At least two cells of the device according to the invention can comprise the same number of storage elements.
  • At least two storage cells can have different numbers of storage elements.
  • FIGURES 1 to 4 are schematic representations of four non-limiting exemplary embodiments of an electrical energy storage cell according to the invention.
  • FIGURE 5 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy according to the invention.
  • FIGURE 6 is a schematic representation of another nonlimiting exemplary embodiment of a hybrid device for storing electrical energy according to the invention.
  • variants of the invention comprising only a selection of characteristics described below, isolated from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • This selection comprises at least one preferably functional characteristic without structural detail, or with only a part of the structural details if this part is only sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • FIGURE 1 is a schematic representation of a non-limiting exemplary embodiment of a hybrid electric energy storage cell.
  • the cell 100 shown in FIGURE 1, can be used to produce a hybrid device for storing electrical energy, and in particular a hybrid supercapacitor.
  • Cell 100 includes two storage elements 102i and 1022 separated by a separator 104i.
  • the number of storage elements is not limited to 2, and can be greater than or equal to 2.
  • the separator 104i is electrically insulating and porous to ions.
  • Each storage element 102 comprises a negative electrode 106i and a positive electrode 108i separated by a separator 110i.
  • the storage element 102i comprises a negative electrode 106i and a positive electrode 108i separated by a separator 110i
  • the storage element 1022 comprises a negative electrode IO62 and a positive electrode IO82 separated by a separator IIO2.
  • Each negative electrode 106i is formed by a metal collector 112i between two layers of active material 114, and 116i, for example activated carbon.
  • the negative electrode IO61 is formed by a metal collector 112i between two layers of active material 114i and II61. And so on.
  • All of the negative electrodes 106i are connected together so that they are at the same electric potential.
  • Each positive electrode 108i is formed by a metal collector 118i between two layers of active material 120i and 122 ,, for example activated carbon.
  • the positive electrode IO81 is formed by a metal collector II81 between two layers of active material 120i and 122i. And so on.
  • All of the positive electrodes 108i are connected together so that they are at the same electrical potential.
  • Cell 100 further comprises a single metal ion doping layer 124i, such as for example a layer of lithium.
  • a single metal ion doping layer 124i such as for example a layer of lithium.
  • the doping layer 124i is put at the same potential as all the negative electrodes 106i.
  • the doping layer 124i is placed in direct contact with one of the faces of the negative electrode IO61.
  • the doping layer 124i is placed in direct contact with the external face of the negative electrode IO61, that is to say the face located on the external side of the cell 100.
  • the doping layer 124 is deposited. on the negative electrode IO61 by one of the methods known to those skilled in the art, for example by evaporation, extrusion or spraying. Under these conditions, the doping layer 124i dopes, by direct contact, the layer of active material 114i of the negative electrode 106i.
  • the collector 112i of the negative electrode 106i is perforated so that the metal ions coming from the doping layer 124i can pass through said collector 112i and come to dope the layer of active material 116i of the negative electrode 106i.
  • the collector 118i of the positive electrode 108i is also perforated so that the metal ions coming from the doping layer 124i can pass through the positive electrode 108i, and come to dope the layer of active material 1142 of the negative electrode IO62.
  • the collector 1122 of the negative electrode IO62 also comprises holes allowing the metal ions, coming from the doping layer 124i, to pass through it and come to dope the layer of active material II62 of the negative electrode IO62.
  • the negative electrode IO61 is doped by direct contact, at least partially. This electrode is called a negative doping electrode.
  • the negative electrode IO62 is doped indirectly, with ions coming from the layer 124i which is in contact with the negative doping electrode IO61.
  • FIGURE 2 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
  • Cell 200 shown in FIGURE 2, includes all of the elements of cell 100 of FIGURE 1.
  • the cell 200 of FIGURE 2 further comprises a second doping layer 1242 located in direct contact with the other face of the negative doping electrode IO61.
  • the second doping layer 1242 dopes, by direct contact, the layer of active material I I61 of the negative electrode IO61, and indirectly the negative electrode IO62.
  • the collector 112i of the negative doping electrode 106i may be holed, as shown in FIGURE 2.
  • the collector 112i of the negative doping electrode 106i may not be holed, because the second doping layer 1242 already doping the negative electrode IO62.
  • FIGURE 3 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
  • Cell 300 shown in FIGURE 3, includes all of the elements of cell 100 of FIGURE 1.
  • doping layer 124i is in direct contact with one of the faces of negative electrode IO62, that is, say the negative electrode located between the positive electrodes IO81 and IO82. More particularly, the doping layer 124i is placed in direct contact with the face of the negative electrode IO62 located on the side of the positive electrode IO81.
  • the doping layer 124i dopes, by direct contact, the active material layer 1142 of the negative doping electrode IO62.
  • the collector 1122 of the doping electrode IO62 is perforated so that the metal ions coming from the doping layer 124i can pass through said collector 1122 and come to dope the layer of active material II62 of the negative electrode IO62.
  • the collector II81 of the positive electrode IO81 is also perforated so that the metal ions coming from the doping layer 124i pass through the positive electrode IO81, and come to dope the layer of active material II61 of the negative electrode IO61 .
  • the collector 112i of the negative electrode IO61 also includes holes allowing the metal ions, coming from the layer of doping 124i, to pass through it and to dope the layer of active material 114i of the negative electrode 106i.
  • the negative electrode IO62 is doped by direct contact, at least partially. This electrode is called a negative doping electrode.
  • the negative electrode IO61 is doped indirectly, with ions coming from the layer 124i.
  • the cell comprises, in no way limiting, only two storage elements.
  • FIGURE 4 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
  • the cell 400 shown in FIGURE 4, includes "n" storage elements 102i-102 n, separated by 110i-110n-i separators, with n> 2.
  • Cell 400 includes a single doping layer 124i which is in direct contact with a negative electrode of storage element 102i.
  • cell 400 can include a second doping layer (not shown) in direct contact with this same negative electrode.
  • FIGURE 5 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy, according to the invention
  • the device 500 shown in FIGURE 5, comprises "m” storage cells 502i-502 m , with m3 l.
  • the device 500 comprises several storage cells 502i- 502m, two adjacent storage cells are separated by a separator, respectively 504i-504 mi .
  • Each splitter 504j can be identical to a splitter 110i.
  • Each storage cell can be any storage cell 100, 200, 300, and 400 of FIGURES 1 through 4.
  • FIGURE 6 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy, according to the invention.
  • Device 600 shown in FIGURE 6, includes a single storage cell 502, which can be any storage cell 100, 200, 300, and 400 of FIGURES 1-4.
  • the storage cell 502 is wound on itself around a direction 602 lying in the plane formed by said cell 502.
  • the storage cell 502 is disposed in an outer casing 604, shown in an exploded configuration in FIGURE 6.
  • the doping layer can be pre-deposited on a collector before winding or stacking, the collector serving as a support, which improves the mechanics of the cell.
  • the doping layer can be deposited on the electrode in powder form, with or without a binder between the grains.

Abstract

The invention relates to a cell (100) for a hybrid electrical energy storage device, said cell (100) comprising at least two storage elements (1021, 1022), a splitter (1041) between two adjacent storage elements (1021, 1022); each storage element (1021, 1022) comprising a negative electrode (1061, 1062) separated from a positive electrode (1081, 1082) by a splitter (1101, 1102), each electrode (1061, 1062, 1081, 1082) comprising a collector (1121, 1122, 1181, 1182); characterised in that said cell (100) is doped with metal ions by at least one doping layer (1241), the one or all the doping layers (1241) are disposed in direct contact with a single negative electrode (1061), called doping electrode, within said cell (100).

Description

DESCRIPTION DESCRIPTION
Titre : Cellule pour un dispositif hybride de stockage d'énergie électrique, procédé d'obtention d'une telle cellule, et supercondensateur hybride comprenant au moins une telle cellule. Title: Cell for a hybrid electric energy storage device, process for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell.
La présente invention concerne une cellule de stockage d'énergie électrique pour un dispositif hybride de stockage d'énergie électrique, tel qu'un supercondensateur hybride. Elle concerne également un procédé de d'obtention d'une telle cellule de stockage, et un supercondensateur hybride comprenant au moins une telle cellule. The present invention relates to an electrical energy storage cell for a hybrid electrical energy storage device, such as a hybrid supercapacitor. It also relates to a method of obtaining such a storage cell, and a hybrid supercapacitor comprising at least one such cell.
Le domaine de l'invention est le domaine des supercondensateurs hybrides, en particulier le domaine des supercondensateurs hybrides utilisant des ions métalliques, par exemple de Lithium. The field of the invention is the field of hybrid supercapacitors, in particular the field of hybrid supercapacitors using metal ions, for example lithium.
Etat de la technique State of the art
L'électrode négative, ou l'anode, d'un supercondensateur hybride est l'électrode d'où sortent les électrons. The negative electrode, or anode, of a hybrid supercapacitor is the electrode from which electrons exit.
L'électrode négative d'un supercondensateur hybride est généralement réalisée par un collecteur, par exemple en cuivre, agencé entre deux couches de matière active, généralement du graphite, et pré-dopée/imprégnée en ions métalliques. Par exemple, dans le cas d'un supercondensateur Lithium-Ion (« LIC » pour « Lithium-Ion Capacitor » en anglais), chaque électrode négative est pré-dopée en ions lithium. Il existe de nombreuses techniques pour le pré-dopage, en ions lithium, d'une électrode négative d'un LIC, parmi lesquelles les techniques suivantes. The negative electrode of a hybrid supercapacitor is generally produced by a collector, for example made of copper, arranged between two layers of active material, generally graphite, and pre-doped / impregnated with metal ions. For example, in the case of a Lithium-Ion supercapacitor (“LIC” for “Lithium-Ion Capacitor”), each negative electrode is pre-doped with lithium ions. There are many techniques for pre-doping a negative electrode of an LIC with lithium ions, including the following techniques.
Suivant une première technique, dite par contact direct, une feuille de lithium métal est déposée sur les deux faces de chaque électrode négative. Cette technique de pré-dopage impose une épaisseur d'électrode trop grande, à cause de l'épaisseur minimale pouvant être obtenue par les techniques actuelles pour une feuille de lithium. According to a first technique, called by direct contact, a sheet of lithium metal is deposited on the two faces of each negative electrode. This pre-doping technique imposes too great an electrode thickness, because of the minimum thickness that can be obtained by current techniques for a lithium sheet.
Une deuxième technique, dite par contact indirect, propose d'utiliser une feuille de lithium métal, commune à plusieurs électrodes négatives, et qui A second technique, called by indirect contact, proposes to use a sheet of lithium metal, common to several negative electrodes, and which
FEUILLE DE REMPLACEMENT (RÈGLE 26) n'est pas en contact avec ces électrodes négatives. Les collecteurs des électrodes négatives et positives sont percés pour permettre à la feuille de lithium de doper chaque électrode négative. Cette technique présente l'inconvénient d'un temps lithiation très long et une épaisseur limitée en nombre d'électrodes dans un supercondensateur. SUBSTITUTE SHEET (RULE 26) is not in contact with these negative electrodes. The collectors of the negative and positive electrodes are drilled to allow the lithium foil to dope each negative electrode. This technique has the drawback of a very long lithiation time and a limited thickness in the number of electrodes in a supercapacitor.
Un but de la présente invention est de remédier à ces inconvénients.An aim of the present invention is to remedy these drawbacks.
Un autre but de l'invention est de proposer une solution présentant un meilleur compromis entre épaisseur de couche de dopage en ions métalliques, épaisseur des électrodes négatives, et temps de dopage. Another aim of the invention is to provide a solution exhibiting a better compromise between the thickness of the doping layer in metal ions, the thickness of the negative electrodes, and the doping time.
Un autre but de l'invention est de proposer une solution permettant, pour une épaisseur donnée de couche de dopage en ions métalliques, de diminuer l'épaisseur des électrodes négatives et le temps de dopage. Another aim of the invention is to provide a solution making it possible, for a given thickness of the doping layer of metal ions, to reduce the thickness of the negative electrodes and the doping time.
Exposé de l'invention Disclosure of the invention
L'invention permet d'atteindre au moins l'un de ces buts par une cellule, pour un dispositif hybride de stockage d'énergie électrique, tel qu'un supercondensateur hybride, ladite cellule comprenant au moins deux éléments de stockage et un séparateur entre deux éléments de stockage adjacents ; The invention makes it possible to achieve at least one of these goals by a cell, for a hybrid device for storing electrical energy, such as a hybrid supercapacitor, said cell comprising at least two storage elements and a separator between two adjacent storage elements;
chaque élément de stockage comprenant une électrode négative séparée d'une électrode positive par un séparateur, chaque électrode comprenant un collecteur ; each storage element comprising a negative electrode separated from a positive electrode by a separator, each electrode comprising a collector;
caractérisée en ce que ladite cellule est dopée en ions métalliques par au moins une couche de dopage, en particulier de lithium, la ou toutes les couche(s) de dopage étant disposée(s) au contact direct d'une seule et unique électrode négative, dite électrode dopante, au sein de ladite cellule . characterized in that said cell is doped with metal ions by at least one doping layer, in particular lithium, the or all of the doping layer (s) being placed in direct contact with a single negative electrode , called a doping electrode, within said cell.
Ainsi, l'invention propose une cellule, comprenant plusieurs électrodes négatives, et qui sont dopées en ions métalliques par une ou plusieurs couches de dopage qui sont toutes en contact directe avec une seule et unique électrode négative, dite électrode dopante, parmi lesdites électrodes négatives de ladite cellule. Autrement dit, à part l'électrode négative dopante, les autres électrodes négatives de la cellule ne sont pas au contact d'une couche de dopage. Thus, the invention provides a cell, comprising several negative electrodes, and which are doped with metal ions by one or more doping layers which are all in direct contact with a single negative electrode, called a doping electrode, from among said negative electrodes. of said cell. In other words, apart from the negative doping electrode, the other negative electrodes of the cell are not in contact with a doping layer.
Dans la cellule selon l'invention, la couche de dopage métallique est en contact directe avec une électrode négative au sein de la cellule, ce qui diminue le temps de dopage, en particulier de lithiation, comparée à la technique par contact indirecte décrite plus haut. De plus, la cellule selon l'invention met en œuvre une (ou des) couche(s) de dopage commune(s) à plusieurs électrodes négatives, ce qui permet, pour une épaisseur donnée de couche de dopage, de diminuer l'épaisseur des électrodes négatives de la cellule. In the cell according to the invention, the metallic doping layer is in direct contact with a negative electrode within the cell, which decreases the doping time, in particular lithiation, compared to the indirect contact technique described above. . In addition, the cell according to the invention uses one (or more) doping layer (s) common to several negative electrodes, which makes it possible, for a given thickness of the doping layer, to reduce the thickness negative electrodes of the cell.
Dans la présente invention, par électrode on entend un complexe formé par un collecteur comportant sur chacune de ses deux faces opposées, une couche de matière active. In the present invention, by electrode is meant a complex formed by a collector comprising on each of its two opposite faces, a layer of active material.
Suivant un mode de réalisation, la cellule selon l'invention peut comprendre une couche de dopage au contact de chaque face de l'électrode négative dopante. According to one embodiment, the cell according to the invention can comprise a doping layer in contact with each face of the negative doping electrode.
Dans ce cas, une couche de dopage se trouve de part et d'autre de l'électrode négative dopante. Ainsi, il est possible de réaliser un dopage en ions métalliques des électrodes négatives de la cellule, se trouvant de part et d'autre de l'électrode négative dopante, sans nécessairement percer le collecteur de l'électrode négative dopante. Ce mode de réalisation permet d'éviter une diminution de la capacité de la cellule selon l'invention, due à un percement du collecteur de l'électrode négative dopante. In this case, a doping layer is located on either side of the negative doping electrode. Thus, it is possible to carry out a metal ion doping of the negative electrodes of the cell, located on either side of the negative doping electrode, without necessarily piercing the collector of the negative doping electrode. This embodiment makes it possible to avoid a decrease in the capacity of the cell according to the invention, due to a piercing of the collector of the doping negative electrode.
Suivant un mode réalisation, la cellule selon l'invention peut comprendre une unique couche de dopage au contact d'une seule face de l'électrode négative dopante. According to one embodiment, the cell according to the invention can comprise a single doping layer in contact with a single face of the negative doping electrode.
Dans ce cas, une unique couche de dopage est utilisée pour la totalité de la cellule selon l'invention. Cette unique couche de dopage se trouve au contact de l'une des faces de l'électrode négative dopante. L'utilisation d'une seule et unique couche dopante, pour l'ensemble de la cellule permet d'utiliser une épaisseur plus grande pour la couche de dopage. In this case, a single doping layer is used for the whole of the cell according to the invention. This single doping layer is in contact with one of the faces of the negative doping electrode. The use of a single doping layer, for the whole of the cell, makes it possible to use a greater thickness for the doping layer.
L'électrode négative dopante peut se trouver à une extrémité de la cellule, dans la direction d'empilement des éléments de stockage au sein de ladite cellule. The doping negative electrode may be located at one end of the cell, in the direction of stacking of the storage elements within said cell.
Lorsque la cellule selon l'invention comprend une unique couche de dopage, alors ladite unique couche de dopage peut être disposée au contact de la face externe de l'électrode négative dopante. When the cell according to the invention comprises a single doping layer, then said single doping layer can be placed in contact with the external face of the negative doping electrode.
Alternativement, ladite unique couche de dopage peut être disposée au contact de la face interne de l'électrode dopante. Alternatively, said single doping layer can be placed in contact with the internal face of the doping electrode.
Suivant un mode de réalisation, l'électrode négative dopante peut ne pas se trouver à une extrémité de ladite cellule, dans la direction d'empilement des éléments de stockage au sein de ladite cellule. According to one embodiment, the doping negative electrode may not be located at one end of said cell, in the direction of stacking of the storage elements within said cell.
Autrement dit, dans ce mode de réalisation, il existe au moins une électrode, en particulier positive, de chaque côté de l'électrode négative dopante. In other words, in this embodiment, there is at least one electrode, in particular positive, on each side of the negative doping electrode.
Dans des modes de réalisation, le collecteur d'au moins une électrode se trouvant entre une couche de dopage et une électrode négative peut être troué de sorte à laisser passer les ions métalliques en provenance de ladite couche de dopage vers ladite électrode négative. In some embodiments, the collector of at least one electrode located between a doping layer and a negative electrode can be perforated so as to allow the metal ions coming from said doping layer to pass to said negative electrode.
Le collecteur de l'électrode dopante peut être troué, pour laisser passer les ions métalliques d'une face de ladite électrode dopante vers l'autre face de ladite électrode dopante. The collector of the doping electrode may be perforated, in order to allow metal ions to pass from one face of said doping electrode to the other face of said doping electrode.
En particulier, lorsque la cellule selon l'invention comprend une seule et unique couche de métal, disposée au contact d'une face de l'électrode négative dopante, le fait de trouer le collecteur de ladite électrode négative dopante permet de laisser passer les ions métalliques vers l'autre face et vers toutes les électrodes négatives se trouvant du côté de l'autre face de l'électrode négative dopante. In particular, when the cell according to the invention comprises a single and unique metal layer, placed in contact with a face of the negative doping electrode, the fact of drilling the collector of said negative doping electrode allows the ions to pass. metallic towards the other side and towards all negative electrodes being on the other side of the doping negative electrode.
Plus généralement, le choix de percer ou non le collecteur de telle ou telle électrode au sein de la cellule peut dépendre de la composition de la cellule, et/ou de la position de l'électrode négative dopante au sein de la cellule, et/ou de la composition du dispositif hybride de stockage d'énergie électrique mettant en œuvre la cellule selon l'invention. Ce choix est à la portée de l'homme du métier, avec pour objectif de permettre le dopage en ions métalliques de chaque électrode négative au sein de la cellule. More generally, the choice of whether or not to pierce the collector of a particular electrode within the cell can depend on the composition of the cell, and / or on the position of the negative doping electrode within the cell, and / or or of the composition of the hybrid electric energy storage device implementing the cell according to the invention. This choice is within the reach of those skilled in the art, with the aim of allowing the doping with metal ions of each negative electrode within the cell.
Suivant un exemple de réalisation, au moins une couche de dopage peut se présenter sous la forme d'une feuille de dopage indépendante. According to an exemplary embodiment, at least one doping layer may be in the form of an independent doping sheet.
Dans ce cas, la feuille de dopage peut être produite indépendamment et déposée sur une face soit de l'électrode négative dopante, soit d'un séparateur adjacent à l'électrode négative dopante. In this case, the doping sheet can be produced independently and deposited on one side either of the negative doping electrode or of a separator adjacent to the negative doping electrode.
Le séparateur peut être un séparateur de la cellule selon l'invention, ou un séparateur séparant ladite cellule d'une autre cellule, identique ou différent. The separator can be a separator of the cell according to the invention, or a separator separating said cell from another cell, identical or different.
Alternativement, ou en plus, au moins une couche de dopage peut être une couche solidaire de, ou formée sur une face de, l'électrode dopante. Alternatively, or in addition, at least one doping layer may be a layer integral with, or formed on one face of, the doping electrode.
Dans ce cas, la couche de dopage peut être préalablement déposée sur une face de ladite électrode négative dopante. In this case, the doping layer can be deposited beforehand on one face of said negative doping electrode.
Alternativement, ou en plus, au moins une couche de dopage est une couche solidaire, ou formée sur une face, d'un séparateur adjacent à l'électrode négative dopante. Alternatively, or in addition, at least one doping layer is a layer integral with, or formed on one face, a separator adjacent to the negative doping electrode.
Dans ce cas, la couche de dopage peut être préalablement déposée sur une face dudit séparateur. In this case, the doping layer can be deposited beforehand on one face of said separator.
Le séparateur peut être un séparateur de ladite cellule, par exemple un séparateur séparant l'électrode dopante d'une autre électrode. The separator can be a separator of said cell, for example a separator separating the doping electrode from another electrode.
Le séparateur peut aussi être un séparateur séparant la cellule selon l'invention d'une autre cellule, adjacente, identique ou différente. Suivant des exemples de réalisation, au moins une couche de dopage peut : The separator can also be a separator separating the cell according to the invention from another cell, adjacent, identical or different. According to exemplary embodiments, at least one doping layer can:
- être pleine, ou - be full, or
- être réduite en laize, - be reduced in width,
- comporter des trous, - have holes,
- être formée par un quadrillage ou par des lamelles. - be formed by a grid or by lamellae.
Suivant des exemples de réalisation, au moins une couche de dopage peut être réalisée en lithium, ou en sodium, ou en potassium, ou en magnésium. According to exemplary embodiments, at least one doping layer can be made of lithium, or of sodium, or of potassium, or of magnesium.
Suivant un autre aspect de l'invention, il est proposé un procédé d'obtention d'une cellule pour un dispositif de stockage d'énergie hybride, tel qu'un supercondensateur hybride, selon l'invention According to another aspect of the invention, there is proposed a method for obtaining a cell for a hybrid energy storage device, such as a hybrid supercapacitor, according to the invention.
Le procédé selon l'invention comprend un assemblage d'au moins deux électrodes négatives et d'au moins deux électrodes positives, en alternant les électrodes négative et positive et en insérant un séparateur entre deux électrodes adjacentes. The method according to the invention comprises an assembly of at least two negative electrodes and at least two positive electrodes, by alternating the negative and positive electrodes and by inserting a separator between two adjacent electrodes.
Le procédé selon l'invention est caractérisé en ce qu'il comporte en outre un ajout d'au moins une couche de dopage de ladite cellule en ions métalliques, en particulier de lithium, au contact direct d'une seule et unique électrode négative, dite électrode négative dopante, au sein de ladite cellule. The method according to the invention is characterized in that it further comprises an addition of at least one doping layer of said cell with metal ions, in particular lithium, in direct contact with a single negative electrode, said negative doping electrode, within said cell.
Bien entendu, ladite au moins une couche de dopage est mise au même potentiel électrique que toutes les électrodes négatives de la cellule. Of course, said at least one doping layer is placed at the same electric potential as all the negative electrodes of the cell.
Plus généralement, le procédé selon l'invention peut comporter une combinaison quelconque d'au moins une des caractéristiques décrites précédemment, en référence à la cellule selon l'invention, et qui ne sont pas reprises ici par soucis concision. Suivant un autre aspect de l'invention, il est proposé un dispositif hybride de stockage d'énergie électrique, en particulier un supercondensateur hybride, comprenant au moins une cellule de stockage selon l'invention. More generally, the method according to the invention can comprise any combination of at least one of the characteristics described above, with reference to the cell according to the invention, and which are not repeated here for the sake of brevity. According to another aspect of the invention, there is proposed a hybrid device for storing electrical energy, in particular a hybrid supercapacitor, comprising at least one storage cell according to the invention.
En particulier, le dispositif selon l'invention peut être obtenu par enroulement, sur elle-même, de l'au moins une cellule. In particular, the device according to the invention can be obtained by winding, on itself, the at least one cell.
La direction d'enroulement peut, de préférence, être parallèle au plan formé par chaque électrode, et/ou perpendiculaire à la direction d'empilement des électrodes au sein de la cellule. The direction of winding may preferably be parallel to the plane formed by each electrode, and / or perpendicular to the direction of stacking of the electrodes within the cell.
Lorsque le dispositif selon l'invention comprend plusieurs cellules, alors lesdites cellules peuvent être empilées les unes sur les autres, dans une direction d'empilement. La direction d'empilement peut, de préférence être perpendiculaire au plan formé par chaque électrode. When the device according to the invention comprises several cells, then said cells can be stacked one on top of the other, in a stacking direction. The stacking direction may preferably be perpendicular to the plane formed by each electrode.
L'ensemble formé par lesdites cellules peut alors être enroulé sur lui- même, autour d'une direction d'enroulement. La direction d'enroulement peut, de préférence, être parallèle au plan formé par chaque électrode, et/ou perpendiculaire à la direction d'empilement. The assembly formed by said cells can then be wound on itself, around a direction of winding. The direction of winding may preferably be parallel to the plane formed by each electrode, and / or perpendicular to the direction of stacking.
Lorsque le dispositif selon l'invention comprend plusieurs cellules, deux cellules adjacentes sont séparées par un séparateur. When the device according to the invention comprises several cells, two adjacent cells are separated by a separator.
Au moins deux cellules du dispositif selon l'invention peuvent comprendre un même nombre d'éléments de stockage. At least two cells of the device according to the invention can comprise the same number of storage elements.
Alternativement, ou en plus, au moins deux cellules de stockage peuvent des nombres différents d'éléments de stockage. Alternatively, or in addition, at least two storage cells can have different numbers of storage elements.
Description des figures et modes de réalisation D'autres avantages et caractéristiques apparaîtront à l'examen de la description détaillée de modes de réalisation nullement limitatifs, et des dessins annexés sur lesquels : - les FIGURES 1 à 4 sont des représentations schématiques de quatre exemples de réalisation non limitatifs d'une cellule de stockage d'énergie électrique selon l'invention ; Description of the figures and embodiments Other advantages and characteristics will emerge on examination of the detailed description of embodiments which are in no way limiting, and of the appended drawings in which: FIGURES 1 to 4 are schematic representations of four non-limiting exemplary embodiments of an electrical energy storage cell according to the invention;
- la FIGURE 5 est une représentation schématique d'un exemple de réalisation non limitatif d'un dispositif hybride de stockage d'énergie électrique selon l'invention ; et FIGURE 5 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy according to the invention; and
- la FIGURE 6 est une représentation schématique d'un autre exemple de réalisation non limitatif d'un dispositif hybride de stockage d'énergie électrique selon l'invention. FIGURE 6 is a schematic representation of another nonlimiting exemplary embodiment of a hybrid device for storing electrical energy according to the invention.
Il est bien entendu que les modes de réalisation qui seront décrits dans la suite ne sont nullement limitatifs. On pourra notamment imaginer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure. Cette sélection comprend au moins une caractéristique de préférence fonctionnelle sans détail structurel, ou avec seulement une partie des détails structurels si cette partie est uniquement suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure. It is understood that the embodiments which will be described below are in no way limiting. It is in particular possible to imagine variants of the invention comprising only a selection of characteristics described below, isolated from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art. This selection comprises at least one preferably functional characteristic without structural detail, or with only a part of the structural details if this part is only sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
Sur les figures, les éléments communs à plusieurs figures conservent la même référence. In the figures, the elements common to several figures retain the same reference.
La FIGURE 1 est une représentation schématique d'un exemple de réalisation non limitatif d'une cellule hybride de stockage d'énergie électrique. FIGURE 1 is a schematic representation of a non-limiting exemplary embodiment of a hybrid electric energy storage cell.
La cellule 100, représentée sur la FIGURE 1, peut être utilisée pour réaliser un dispositif hybride de stockage d'énergie électrique, et en particulier un supercondensateur hybride. The cell 100, shown in FIGURE 1, can be used to produce a hybrid device for storing electrical energy, and in particular a hybrid supercapacitor.
La cellule 100 comprend deux éléments de stockages 102i et 1022 séparé par un séparateur 104i. Le nombre d'éléments de stockage n'est pas limité à 2, et peut être supérieure ou égal à 2. Le séparateur 104i est électriquement isolant et poreux aux ions. Chaque élément de stockage 102, comprend une électrode négative 106i et une électrode positive 108i séparées par un séparateur 110i. Ainsi, l'élément de stockage 102i comprend une électrode négative 106i et une électrode positive 108i séparées par un séparateur 110i, et l'élément de stockage 1022 comprend une électrode négative IO62 et une électrode positive IO82 séparées par un séparateur IIO2. Cell 100 includes two storage elements 102i and 1022 separated by a separator 104i. The number of storage elements is not limited to 2, and can be greater than or equal to 2. The separator 104i is electrically insulating and porous to ions. Each storage element 102 comprises a negative electrode 106i and a positive electrode 108i separated by a separator 110i. Thus, the storage element 102i comprises a negative electrode 106i and a positive electrode 108i separated by a separator 110i, and the storage element 1022 comprises a negative electrode IO62 and a positive electrode IO82 separated by a separator IIO2.
Chaque électrode négative 106i est formée par un collecteur métallique 112i entre deux couches de matière active 114, et 116i, par exemple du charbon actif. Ainsi, par exemple l'électrode négative IO61 est formée par un collecteur métallique 112i entre deux couches de matière active 114i et II61. Ainsi de suite. Each negative electrode 106i is formed by a metal collector 112i between two layers of active material 114, and 116i, for example activated carbon. Thus, for example the negative electrode IO61 is formed by a metal collector 112i between two layers of active material 114i and II61. And so on.
Toutes les électrodes négatives 106i sont reliées ensemble de sorte qu'elles sont au même potentiel électrique. All of the negative electrodes 106i are connected together so that they are at the same electric potential.
Chaque électrode positive 108i est formée par un collecteur métallique 118i entre deux couches de matière active 120i et 122,, par exemple du charbon actif. Ainsi, par exemple l'électrode positive IO81 est formée par un collecteur métallique II81 entre deux couches de matière active 120i et 122i. Ainsi de suite. Each positive electrode 108i is formed by a metal collector 118i between two layers of active material 120i and 122 ,, for example activated carbon. Thus, for example the positive electrode IO81 is formed by a metal collector II81 between two layers of active material 120i and 122i. And so on.
Toutes les électrodes positives 108i sont reliées ensemble de sorte qu'elles sont au même potentiel électrique. All of the positive electrodes 108i are connected together so that they are at the same electrical potential.
La cellule 100 comprend en outre une unique couche de dopage en ions métalliques 124i, telle que par exemple une couche de lithium. Cell 100 further comprises a single metal ion doping layer 124i, such as for example a layer of lithium.
La couche de dopage 124i est mise au même potentiel que toutes les électrodes négatives 106i. The doping layer 124i is put at the same potential as all the negative electrodes 106i.
La couche de dopage 124i est disposée au contact direct de l'une des faces de l'électrode négative IO61. En particulier, la couche de dopage 124i est disposée au contact direct de la face externe de l'électrode négative IO61, c'est-à-dire la face se trouvant du côté externe à la cellule 100. La couche de dopage 124 est déposé sur l'électrode négative IO61 par l'une des méthodes connues de l'homme du métier, par exemple par évaporation, extrusion ou pulvérisation. Dans ces conditions, la couche de dopage 124i vient doper, par contact direct, la couche de matière active 114i de l'électrode négative 106i. De plus, le collecteur 112i de l'électrode négative 106i est troué de sorte que les ions métalliques provenant de la couche de dopage 124i peuvent traverser ledit collecteur 112i et venir doper la couche de matière active 116i de l'électrode négative 106i. The doping layer 124i is placed in direct contact with one of the faces of the negative electrode IO61. In particular, the doping layer 124i is placed in direct contact with the external face of the negative electrode IO61, that is to say the face located on the external side of the cell 100. The doping layer 124 is deposited. on the negative electrode IO61 by one of the methods known to those skilled in the art, for example by evaporation, extrusion or spraying. Under these conditions, the doping layer 124i dopes, by direct contact, the layer of active material 114i of the negative electrode 106i. In addition, the collector 112i of the negative electrode 106i is perforated so that the metal ions coming from the doping layer 124i can pass through said collector 112i and come to dope the layer of active material 116i of the negative electrode 106i.
En outre, le collecteur 118i de l'électrode positive 108i est également troué de sorte que les ions métalliques provenant de la couche de dopage 124i peuvent traverser l'électrode positive 108i, et viennent doper la couche de matière active 1142 de l'électrode négative IO62. In addition, the collector 118i of the positive electrode 108i is also perforated so that the metal ions coming from the doping layer 124i can pass through the positive electrode 108i, and come to dope the layer of active material 1142 of the negative electrode IO62.
Par ailleurs, le collecteur 1122 de l'électrode négative IO62 comporte aussi des trous permettant aux ions métalliques, provenant de la couche de dopage 124i, de le traverser et venir doper la couche de matière active II62 de l'électrode négative IO62. Moreover, the collector 1122 of the negative electrode IO62 also comprises holes allowing the metal ions, coming from the doping layer 124i, to pass through it and come to dope the layer of active material II62 of the negative electrode IO62.
Ainsi, dans la cellule 100 de la FIGURE 1, l'électrode négative IO61 est dopée par contact direct, au moins partiellement. Cette électrode est appelée électrode négative dopante. Thus, in cell 100 of FIGURE 1, the negative electrode IO61 is doped by direct contact, at least partially. This electrode is called a negative doping electrode.
L'électrode négative IO62 est dopée de manière indirecte, par des ions provenant de la couche 124i qui se trouve au contact de l'électrode négative dopante IO61. The negative electrode IO62 is doped indirectly, with ions coming from the layer 124i which is in contact with the negative doping electrode IO61.
La FIGURE 2 est une représentation schématique d'un autre exemple de réalisation non limitatif d'une cellule de stockage d'énergie électrique. FIGURE 2 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
La cellule 200, représentée sur la FIGURE 2, comprend tous les éléments de la cellule 100 de la FIGURE 1. Cell 200, shown in FIGURE 2, includes all of the elements of cell 100 of FIGURE 1.
La cellule 200 de la FIGURE 2 comprend en plus une deuxième couche de dopage 1242 se trouvant au contact direct de l'autre face de l'électrode négative dopante IO61. The cell 200 of FIGURE 2 further comprises a second doping layer 1242 located in direct contact with the other face of the negative doping electrode IO61.
La deuxième couche de dopage 1242 vient doper, par contact direct, la couche de matière active I I61 de l'électrode négative IO61, et de manière indirect l'électrode négative IO62. Dans la cellule 200, le collecteur 112i de l'électrode négative dopante 106i peut être troué, comme représenté sur la FIGURE 2. Alternativement, le collecteur 112i de l'électrode négative dopante 106i peut ne pas être troué, car la deuxième couche dopante 1242 vient déjà doper l'électrode négative IO62. The second doping layer 1242 dopes, by direct contact, the layer of active material I I61 of the negative electrode IO61, and indirectly the negative electrode IO62. In cell 200, the collector 112i of the negative doping electrode 106i may be holed, as shown in FIGURE 2. Alternatively, the collector 112i of the negative doping electrode 106i may not be holed, because the second doping layer 1242 already doping the negative electrode IO62.
Bien entendu, il est possible de prévoir un mode de réalisation sur la base de la cellule 200 de la FIGURE 2 qui ne comprend que la couche de dopage 1242 et ne comprend pas la couche de dopage 124i. Of course, it is possible to provide an embodiment on the basis of the cell 200 of FIGURE 2 which only comprises the doping layer 1242 and does not include the doping layer 124i.
La FIGURE 3 est une représentation schématique d'un autre exemple de réalisation non limitatif d'une cellule de stockage d'énergie électrique. FIGURE 3 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
La cellule 300, représentée sur la FIGURE 3, comprend tous les éléments de la cellule 100 de la FIGURE 1. Cell 300, shown in FIGURE 3, includes all of the elements of cell 100 of FIGURE 1.
A la différence de la cellule 100 de la FIGURE 1, dans la cellule 300 de la FIGURE 3, la couche de dopage 124i se trouve au contact direct de l'une des faces de l'électrode négative IO62, c'est-à-dire de l'électrode négative se trouvant entre les électrodes positives IO81 et IO82. Plus particulièrement, la couche de dopage 124i est disposée au contact direct de la face de l'électrode négative IO62 se trouvant du côté de l'électrode positive IO81. Unlike cell 100 of FIGURE 1, in cell 300 of FIGURE 3, doping layer 124i is in direct contact with one of the faces of negative electrode IO62, that is, say the negative electrode located between the positive electrodes IO81 and IO82. More particularly, the doping layer 124i is placed in direct contact with the face of the negative electrode IO62 located on the side of the positive electrode IO81.
Dans cette configuration, la couche de dopage 124i vient doper, par contact direct, la couche de matière active 1142 de l'électrode négative dopante IO62. Le collecteur 1122 de l'électrode dopante IO62 est troué de sorte que les ions métalliques provenant de la couche de dopage 124i peuvent travers ledit collecteur 1122 et venir doper la couche de matière active II62 de l'électrode négative IO62. In this configuration, the doping layer 124i dopes, by direct contact, the active material layer 1142 of the negative doping electrode IO62. The collector 1122 of the doping electrode IO62 is perforated so that the metal ions coming from the doping layer 124i can pass through said collector 1122 and come to dope the layer of active material II62 of the negative electrode IO62.
En outre, le collecteur II81 de l'électrode positive IO81 est également troué de sorte que les ions métalliques provenant de la couche de dopage 124i traversent l'électrode positive IO81, et viennent doper la couche de matière active II61 de l'électrode négative IO61. In addition, the collector II81 of the positive electrode IO81 is also perforated so that the metal ions coming from the doping layer 124i pass through the positive electrode IO81, and come to dope the layer of active material II61 of the negative electrode IO61 .
Par ailleurs, le collecteur 112i de l'électrode négative IO61 comporte aussi des trous permettant aux ions métalliques, provenant de la couche de dopage 124i, de le traverser et venir doper la couche de matière active 114i de l'électrode négative 106i. Furthermore, the collector 112i of the negative electrode IO61 also includes holes allowing the metal ions, coming from the layer of doping 124i, to pass through it and to dope the layer of active material 114i of the negative electrode 106i.
Ainsi, dans la cellule 300 de la FIGURE 3, l'électrode négative IO62 est dopée par contact direct, au moins partiellement. Cette électrode est appelée électrode négative dopante. Thus, in cell 300 of FIGURE 3, the negative electrode IO62 is doped by direct contact, at least partially. This electrode is called a negative doping electrode.
L'électrode négative IO61 est dopée de manière indirecte, par des ions provenant de la couche 124i. The negative electrode IO61 is doped indirectly, with ions coming from the layer 124i.
Bien entendu, il est possible de prévoir un mode de réalisation sur la base de la cellule 300 de la FIGURE 3 qui comprend en outre une deuxième couche de dopage, par exemple 1242, au contact de l'électrode négative IO62 du côté de la matière active II62. Of course, it is possible to provide an embodiment on the basis of the cell 300 of FIGURE 3 which further comprises a second doping layer, for example 1242, in contact with the negative electrode IO62 on the material side. active II62.
Il est possible de prévoir un autre mode de réalisation sur la base de la cellule 300 de la FIGURE 3, et dans lequel, une unique couche de dopage est au contact de l'électrode négative IO62 du côté de la matière active II62. It is possible to provide another embodiment on the basis of the cell 300 of FIGURE 3, and in which, a single doping layer is in contact with the negative electrode IO62 on the side of the active material II62.
Dans les exemples décrits, la cellule comprend, de manière nullement limitative, uniquement deux éléments de stockage. In the examples described, the cell comprises, in no way limiting, only two storage elements.
La FIGURE 4 est une représentation schématique d'un autre exemple de réalisation non limitatif d'une cellule de stockage d'énergie électrique. FIGURE 4 is a schematic representation of another non-limiting exemplary embodiment of an electrical energy storage cell.
La cellule 400, représentée sur la FIGURE 4, comprend « n » éléments de stockage 102i-102n, séparés par des séparateurs 110i-110n-i, avec n>2. The cell 400, shown in FIGURE 4, includes "n" storage elements 102i-102 n, separated by 110i-110n-i separators, with n> 2.
La cellule 400 comprend une unique couche de dopage 124i qui est au contact directe d'une électrode négative de l'élément de stockage 102i. Bien entendu, la cellule 400 peut comprendre une deuxième couche de dopage (non représentée) au contact direct de cette même électrode négative. Cell 400 includes a single doping layer 124i which is in direct contact with a negative electrode of storage element 102i. Of course, cell 400 can include a second doping layer (not shown) in direct contact with this same negative electrode.
Alternativement, la ou les couches de dopage peuvent être au contact direct d'une électrode négative d'un élément de stockage 102, autre que l'élément de stockage 102i. La FIGURE 5 est une représentation schématique d'un exemple de réalisation non limitatif d'un dispositif hybride de stockage d'énergie électrique, selon l'invention Alternatively, the doping layer or layers may be in direct contact with a negative electrode of a storage element 102, other than the storage element 102i. FIGURE 5 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy, according to the invention
Le dispositif 500, représenté sur la FIGURE 5, comprend « m » cellules de stockage 502i-502m, avec m³ l. The device 500, shown in FIGURE 5, comprises "m" storage cells 502i-502 m , with m³ l.
Lorsque le dispositif 500 comprend plusieurs cellules de stockage 502i- 502m, deux cellules de stockage adjacentes sont séparées par un séparateur, respectivement 504i-504m-i. When the device 500 comprises several storage cells 502i- 502m, two adjacent storage cells are separated by a separator, respectively 504i-504 mi .
Chaque séparateur 504j peut être identique à un séparateur 110i. Each splitter 504j can be identical to a splitter 110i.
Chaque cellule de stockage peut être n'importe quelle cellule de stockage 100, 200, 300 et 400 des FIGURES 1 à 4. Each storage cell can be any storage cell 100, 200, 300, and 400 of FIGURES 1 through 4.
La FIGURE 6 est une représentation schématique d'un exemple de réalisation non limitatif d'un dispositif hybride de stockage d'énergie électrique, selon l'invention. FIGURE 6 is a schematic representation of a non-limiting exemplary embodiment of a hybrid device for storing electrical energy, according to the invention.
Le dispositif 600, représenté sur la FIGURE 6, comprend une seule cellule de stockage 502, qui peut être n'importe quelle cellule de stockage 100, 200, 300 et 400 des FIGURES 1 à 4. Device 600, shown in FIGURE 6, includes a single storage cell 502, which can be any storage cell 100, 200, 300, and 400 of FIGURES 1-4.
La cellule de stockage 502 est enroulée sur elle-même autour d'une direction 602 se trouvant dans le plan formé par ladite cellule 502. The storage cell 502 is wound on itself around a direction 602 lying in the plane formed by said cell 502.
Une fois enroulée, la cellule de stockage 502 est disposée dans une enveloppe externe 604, représentée dans une configuration éclatée sur la FIGURE 6. Once rolled up, the storage cell 502 is disposed in an outer casing 604, shown in an exploded configuration in FIGURE 6.
Bien entendu, l'invention n'est pas limitée aux exemples détaillés ci- dessus. Par exemple, la couche de dopage peut être pré-déposée sur un collecteur avant bobinage ou empilement, le collecteur servant de support, ce qui améliore la mécanique de la cellule. Ou encore, la couche de dopage peut être déposée sur l'électrode sous forme de poudre, avec ou sans liant entre les grains. Of course, the invention is not limited to the examples detailed above. For example, the doping layer can be pre-deposited on a collector before winding or stacking, the collector serving as a support, which improves the mechanics of the cell. Or again, the doping layer can be deposited on the electrode in powder form, with or without a binder between the grains.

Claims

REVENDICATIONS
1. Cellule (100;200;300;400), pour un dispositif hybride de stockage d'énergie électrique (500;600), ladite cellule (100;200;300;400) comprenant au moins deux éléments de stockage (102,), un séparateur (104,) entre deux éléments de stockage adjacents (102,) ; 1. Cell (100; 200; 300; 400), for a hybrid electrical energy storage device (500; 600), said cell (100; 200; 300; 400) comprising at least two storage elements (102, ), a separator (104,) between two adjacent storage elements (102,);
chaque élément de stockage (102,) comprenant une électrode négative (106i) séparée d'une électrode positive (108i) par un séparateur (110i), chaque électrode (106i,108i) comprenant un collecteur (112i,118i) ; each storage element (102,) comprising a negative electrode (106i) separated from a positive electrode (108i) by a separator (110i), each electrode (106i, 108i) comprising a collector (112i, 118i);
caractérisée en ce que ladite cellule (100;200;300;400) est dopée en ions métalliques par au moins une couche de dopage (124,), la ou toutes les couche(s) de dopage (124,) étant disposée(s) au contact direct d'une seule et unique électrode négative (106i), dite électrode dopante, au sein de ladite cellule (100;200;300;400). characterized in that said cell (100; 200; 300; 400) is doped with metal ions by at least one doping layer (124,), the or all of the doping layer (s) (124,) being arranged (s) ) in direct contact with a single negative electrode (106i), called a doping electrode, within said cell (100; 200; 300; 400).
2. Cellule (200) selon la revendication précédente, caractérisée en ce qu'elle comprend une couche de dopage (124I,1242) au contact de chaque face de l'électrode négative dopante (106i). 2. Cell (200) according to the preceding claim, characterized in that it comprises a doping layer (124I, 1242) in contact with each face of the negative doping electrode (106i).
3. Cellule (100;300;400) selon la revendication précédente, caractérisé en ce qu'elle comprend une unique couche de dopage (124i) au contact d'une seule face de l'électrode négative dopante (106I; 1062). 3. Cell (100; 300; 400) according to the preceding claim, characterized in that it comprises a single doping layer (124i) in contact with a single face of the negative doping electrode (106I; 1062).
4. Cellule (100;200;400) selon l'une quelconque des revendications précédentes, caractérisée en ce que l'électrode négative dopante (106i) se trouve à une extrémité de ladite cellule (100;200;400), dans la direction d'empilement des éléments de stockage au sein de ladite cellule (100;200;400). 4. Cell (100; 200; 400) according to any one of the preceding claims, characterized in that the doping negative electrode (106i) is located at one end of said cell (100; 200; 400), in the direction stacking storage elements within said cell (100; 200; 400).
5. Cellule (100;400) selon les revendications 3 et 4, caractérisée en ce que l'unique couche de dopage (124i) est disposée au contact de la face externe de l'électrode négative dopante (160i). 5. Cell (100; 400) according to claims 3 and 4, characterized in that the single doping layer (124i) is disposed in contact with the outer face of the negative doping electrode (160i).
6. Cellule (300) selon l'une quelconque des revendications 1 à 3, caractérisée en ce que l'électrode négative dopante (I6O2) ne se trouve pas à une extrémité de ladite cellule (300), dans la direction d'empilement des éléments de stockage au sein de ladite cellule (300). 6. Cell (300) according to any one of claims 1 to 3, characterized in that the negative doping electrode (I6O2) is not at a end of said cell (300), in the direction of stacking of the storage elements within said cell (300).
7. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce que le collecteur (112,, 118i) d'au moins une électrode (106i,108i) se trouvant entre une couche de dopage (124,) et une électrode négative (106i) est troué de sorte à laisser passer les ions métalliques en provenance de ladite couche de dopage (124,) vers ladite électrode négative (106i). 7. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that the collector (112 ,, 118i) of at least one electrode (106i, 108i) located between a layer of doping (124,) and a negative electrode (106i) is holed so as to allow metal ions from said doping layer (124,) to pass to said negative electrode (106i).
8. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce que le collecteur (112,) de l'électrode dopante (106i) est troué de sorte à laisser passer les ions métalliques d'un côté de ladite électrode dopante (106i), vers l'autre côté de ladite électrode dopante8. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that the collector (112,) of the doping electrode (106i) is perforated so as to allow the metal ions to pass through. 'one side of said doping electrode (106i), towards the other side of said doping electrode
(106i). (106i).
9. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de dopage (124,) se présente sous la forme d'une feuille de dopage indépendante. 9. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that at least one doping layer (124,) is in the form of an independent doping sheet.
10. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de dopage (124,) est une couche solidaire de, ou formée sur une face de, l'électrode dopante (106i). 10. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that at least one doping layer (124,) is a layer integral with, or formed on one face of, the doping electrode (106i).
11. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de dopage (124,) est une couche solidaire, ou formée sur une face, d'un séparateur (104i,110i,504j) adjacent à l'électrode dopante (106i). 11. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that at least one doping layer (124,) is a layer integral with, or formed on one face, of a separator (104i, 110i, 504j) adjacent to the doping electrode (106i).
12. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de dopage (124,) : 12. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that at least one doping layer (124,):
- est pleine, ou - is full, or
- est réduite en laize, - is reduced in width,
- comporte des trous, - est formée par un quadrillage ou par des lamelles. - has holes, - is formed by a grid or by lamellae.
13. Cellule (100;200;300;400) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de dopage (124,) est réalisée en lithium, ou en sodium, ou en potassium, ou en magnésium. 13. Cell (100; 200; 300; 400) according to any one of the preceding claims, characterized in that at least one doping layer (124,) is made of lithium, or of sodium, or of potassium, or in magnesium.
14. Procédé d'obtention d'une cellule (100;200;300;400) pour un dispositif de stockage d'énergie hybride (500;600), tel qu'un supercondensateur hybride, ledit procédé comprenant un assemblage d'au moins deux électrodes négatives (106i) et d'au moins deux électrodes positives (108i), en alternant les électrodes négative et positive et en insérant un séparateur (110i) entre deux électrodes adjacentes, caractérisé en ce qu'il comprend en outre un ajout d'au moins une couche de dopage (124,) de ladite cellule (100;200;300;400) en ions métalliques, en particulier de lithium, au contact direct d'une seule et unique électrode négative (106i), dite électrode dopante, au sein de ladite cellule (100;200;300;400), et reliée à un collecteur (112,) de toutes les électrodes négatives (106i). 14. Method for obtaining a cell (100; 200; 300; 400) for a hybrid energy storage device (500; 600), such as a hybrid supercapacitor, said method comprising an assembly of at least two negative electrodes (106i) and at least two positive electrodes (108i), alternating the negative and positive electrodes and inserting a separator (110i) between two adjacent electrodes, characterized in that it further comprises an addition of 'at least one doping layer (124,) of said cell (100; 200; 300; 400) of metal ions, in particular lithium, in direct contact with a single negative electrode (106i), called a doping electrode , within said cell (100; 200; 300; 400), and connected to a collector (112,) of all the negative electrodes (106i).
15. Dispositif (500;600) hybride de stockage d'énergie électrique, en particulier un supercondensateur hybride, comprenant au moins une cellule (50¾) de stockage selon l'une quelconque des revendications 1 à 13. 15. Device (500; 600) for hybrid electric energy storage, in particular a hybrid supercapacitor, comprising at least one storage cell (50¾) according to any one of claims 1 to 13.
PCT/EP2020/054775 2019-03-01 2020-02-24 Cell for a hybrid electrical energy storage device, method for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell WO2020178058A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FRFR1902144 2019-03-01
FR1902144A FR3093375A1 (en) 2019-03-01 2019-03-01 A cell for a hybrid electric energy storage device, a method of obtaining such a cell, and a hybrid supercapacitor comprising at least one such cell.
FRFR1905153 2019-05-16
FR1905153A FR3096171A3 (en) 2019-05-16 2019-05-16 A cell for a hybrid electric energy storage device, a method of obtaining such a cell, and a hybrid supercapacitor comprising at least one such cell.

Publications (1)

Publication Number Publication Date
WO2020178058A1 true WO2020178058A1 (en) 2020-09-10

Family

ID=69714018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/054775 WO2020178058A1 (en) 2019-03-01 2020-02-24 Cell for a hybrid electrical energy storage device, method for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell

Country Status (1)

Country Link
WO (1) WO2020178058A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400996A1 (en) * 2001-06-29 2004-03-24 Kanebo, Limited Organic electrolyte capacitor
EP2105984A1 (en) * 2008-03-28 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Manufacturing method of electrode, electric storage device, and intermediate laminate member
WO2012087698A1 (en) * 2010-12-23 2012-06-28 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
US20180287403A1 (en) * 2015-01-30 2018-10-04 Corning Incorporated Integrated energy and power device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400996A1 (en) * 2001-06-29 2004-03-24 Kanebo, Limited Organic electrolyte capacitor
EP2105984A1 (en) * 2008-03-28 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Manufacturing method of electrode, electric storage device, and intermediate laminate member
WO2012087698A1 (en) * 2010-12-23 2012-06-28 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
US20180287403A1 (en) * 2015-01-30 2018-10-04 Corning Incorporated Integrated energy and power device

Similar Documents

Publication Publication Date Title
CA2622552C (en) Device for storing electric power comprising a protective barrier layer for the collector
EP2583332B1 (en) Current collector having built-in sealing means, and bipolar battery including such a collector
EP2250655B1 (en) Multiple-coil supercapacitor
FR2910721A1 (en) CURRENT COLLECTOR-ELECTRODE ASSEMBLY WITH EXPANSION CAVITES FOR LITHIUM ACCUMULATOR IN THE FORM OF THIN FILMS.
EP2702630A1 (en) Bipolar electrochemical li-ion battery having increased capacity
FR2931298A1 (en) LITHIUM MEDIUM-TO-AIR STORAGE BATTERY
WO2020245521A1 (en) Composite conductive film for producing electrical energy storage batteries, method for producing such a film, and electrical storage battery using such a film
EP3249719B1 (en) Electrochemical cell for rechargeable lithium-ion battery
CA2715064C (en) Multitrack supercapacitor
WO2020178058A1 (en) Cell for a hybrid electrical energy storage device, method for obtaining such a cell, and hybrid supercapacitor comprising at least one such cell
FR3096171A3 (en) A cell for a hybrid electric energy storage device, a method of obtaining such a cell, and a hybrid supercapacitor comprising at least one such cell.
FR3016478A1 (en) ELECTROCHEMICAL BATTERY WITH HOUSING AND ALUMINUM ALLOY OUTPUT TERMINAL, BATTERY PACK AND METHOD OF MAKING THE SAME
FR3093375A1 (en) A cell for a hybrid electric energy storage device, a method of obtaining such a cell, and a hybrid supercapacitor comprising at least one such cell.
EP2941793A1 (en) Method for producing lithium-ion batteries
EP3931892A1 (en) Electrode for rechargeable energy storage device
EP0436436B1 (en) Activated porous carbon massive electrodes, process of making them, and use thereof in an electrical double layer capacitor
EP3676894B1 (en) Electrode with current collection multiple array
EP3462524B1 (en) Battery with hybrid liquid cathode
FR3071967A1 (en) LIQUID CATHODE BATTERY WITH SPECIFIC ARCHITECTURE
EP3327818B1 (en) Metal-ion battery provided with a stack of electrodes and characterized by high capacity and high power
FR3115162A1 (en) Electrode for solid battery cell and method of manufacturing a battery cell using such an electrode.
FR3054366A1 (en) PROCESS FOR THE PREPARATION OF A CYLINDRICAL METAL ALKALINE-ION HYBRID SUPERCONDENSOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20707388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20707388

Country of ref document: EP

Kind code of ref document: A1