WO2020152830A1 - Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system - Google Patents

Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system Download PDF

Info

Publication number
WO2020152830A1
WO2020152830A1 PCT/JP2019/002305 JP2019002305W WO2020152830A1 WO 2020152830 A1 WO2020152830 A1 WO 2020152830A1 JP 2019002305 W JP2019002305 W JP 2019002305W WO 2020152830 A1 WO2020152830 A1 WO 2020152830A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
frequency
limit value
inverter circuit
Prior art date
Application number
PCT/JP2019/002305
Other languages
French (fr)
Japanese (ja)
Inventor
直人 法名
貴信 稲垣
裕 諸井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980089488.0A priority Critical patent/CN113302571B/en
Priority to JP2019536334A priority patent/JP6615421B1/en
Priority to PCT/JP2019/002305 priority patent/WO2020152830A1/en
Publication of WO2020152830A1 publication Critical patent/WO2020152830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a photovoltaic power generation drive system that drives a load by using electric energy obtained by power generation by a solar panel, and a control method of the photovoltaic power generation drive system.
  • the solar power generation drive system that drives the motor, which is the load, adjusts the rotation speed of the motor so that the output power of the solar panel is equal to or higher than the maximum power point of the solar panel in order to drive the motor stably and continuously. , Control the output power of the solar panel.
  • the maximum power point changes due to environmental changes such as changes in the amount of sunlight or temperature changes at the solar panel installation location. If the solar output power falls below the maximum power point, the motor will malfunction.
  • the solar output power is the output power of the solar panel.
  • the output voltage of the solar panel is estimated by estimating the margin up to the maximum power point of the solar output power based on the fluctuation of the output voltage of the solar panel when the rotation speed of the motor is repeatedly changed. It is disclosed that the adjustment is made to be higher than the voltage at the maximum power point. According to the technique of Patent Document 1, the output voltage of the solar panel is higher than the voltage at the maximum power point, and the deviation between the output voltage and the voltage at the maximum power point is maintained within an allowable range, whereby the sunlight The power generation drive system can reduce malfunction of the motor even when the solar output power continuously changes due to environmental changes.
  • the photovoltaic power generation drive system needs to repeatedly change the rotation speed of the motor at a preset timing in order to detect a change in the maximum power point. Therefore, even if the solar output power does not change and adjustment for controlling the solar output power is not necessary, the photovoltaic power generation drive system requires adjustment to repeatedly change the rotation speed at the timing. Therefore, there is a problem that the motor cannot be driven stably.
  • the present invention has been made in view of the above, and provides a photovoltaic power generation drive system capable of shortening the time required for adjustment for controlling the output power of a solar panel and enabling stable driving of a load.
  • the purpose is to get.
  • the photovoltaic power generation drive system is a photovoltaic power generation drive system that drives a load by using the electric power output by the solar panel.
  • the photovoltaic power generation drive system according to the present invention is an inverter circuit unit that converts a DC voltage output from a solar panel into an AC voltage according to a pulse signal and outputs an AC voltage, and a frequency-voltage characteristic of a preset AC voltage and A frequency limit value calculator that calculates the limit value of the output frequency that is the frequency of the AC voltage based on the value of the DC voltage output by the solar panel, and calculates the command value of the output frequency, and based on the command value or the limit value.
  • An output frequency calculation unit that outputs a pulse signal to the inverter circuit unit.
  • the solar power generation drive system according to the present invention has an effect that the time required for adjustment for controlling the output power of the solar panel can be shortened and the load can be stably driven.
  • the figure which shows the solar panel, drive device, and motor which comprise the photovoltaic power generation drive system shown in FIG. The figure explaining the relationship between the direct-current voltage output by the solar panel shown in FIG. 2, and the output frequency of an inverter circuit part.
  • a solar power generation drive system and a method for controlling the solar power generation drive system according to the embodiment of the present invention will be described below in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a photovoltaic power generation drive system 1 according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a solar panel 2, a driving device 5 and a motor 6 which constitute the photovoltaic power generation driving system 1 shown in FIG.
  • the photovoltaic power generation drive system 1 uses the electric power output by the solar panel 2 to drive the motor 6 that is a load.
  • the motor 6 is, for example, an induction motor.
  • the photovoltaic power generation drive system 1 has a drive device 5 that converts a DC voltage supplied by the solar panel 2 into an AC voltage and outputs the AC voltage to a motor 6.
  • the driving device 5 has a capacitor 3 that stores the DC voltage supplied by the solar panel 2, and an inverter circuit unit 4 that converts the DC voltage stored in the capacitor 3 into an AC voltage and outputs the AC voltage. Further, the driving device 5 includes a voltage detecting unit 10 that detects a DC voltage stored in the capacitor 3, a current detecting unit 11 that detects a current on the output side of the inverter circuit unit 4, and a control unit that controls the driving device 5. 20 and. Note that FIG. 2 shows a functional configuration of the control unit 20.
  • the inverter circuit unit 4 converts the DC voltage supplied by the solar panel 2 into an AC voltage having a frequency corresponding to the motor 6 according to the pulse signal output from the control unit 20.
  • the inverter circuit unit 4 applies the converted AC voltage to the motor 6.
  • the inverter circuit unit 4 controls the frequency and voltage level of the AC voltage by VVVF (Variable Voltage Variable Frequency) control.
  • VVVF Very Voltage Variable Frequency
  • the current detection unit 11 detects the U-phase, V-phase, and W-phase currents output by the inverter circuit unit 4.
  • the generic term for the phase current is called the output current.
  • the control unit 20 calculates the command value of the output frequency based on the value of the DC voltage detected by the voltage detection unit 10 and the value of the output current detected by the current detection unit 11.
  • the output frequency is the frequency of the AC voltage output by the inverter circuit unit 4.
  • the control unit 20 outputs a pulse signal based on the calculated command value or a frequency limit value described below to the inverter circuit unit 4.
  • the pulse signal is a signal that has undergone pulse width modulation (Pulse Width Modulation: PWM).
  • the control unit 20 feedback controls the inverter circuit unit 4.
  • the control unit 20 monitors the detection result of the DC voltage by the voltage detection unit 10 and, if there is a drop in the DC voltage, judges whether the drop is an abnormal voltage drop or not. Have.
  • the control unit 20 also includes a frequency limit value calculation unit 13 that calculates a frequency limit value that is a limit value of the output frequency, and an acceleration/deceleration interruption determination unit 14 that determines interruption or resumption of acceleration or deceleration of the rotation of the motor 6. And an output frequency calculation unit 15 that calculates a command value of the output frequency.
  • Each functional unit of the control unit 20 is realized by executing a control program, which is a program for executing the control method of the photovoltaic power generation drive system 1 according to the first embodiment, using hardware.
  • the abnormal voltage drop determination unit 12 detects an abnormal voltage drop based on a change in the value of the DC voltage detected by the voltage detection unit 10. Specifically, the abnormal voltage drop determination unit 12 determines that there is an abnormal voltage drop when the decrease in the value of the DC voltage within the preset time from the start of the voltage drop is the threshold value or more. Determine that Further, the abnormal voltage drop determination unit 12 determines that the DC voltage is normal when the value of the DC voltage equal to or more than the threshold value does not decrease within the set time.
  • the abnormal voltage drop determination unit 12 outputs 1-bit information indicating whether or not there is an abnormal voltage drop.
  • the signal when it is determined that there is an abnormal voltage drop is “1”, and the signal when it is determined to be normal is “0”.
  • the signal output by the abnormal voltage drop determination unit 12 may be any signal that can identify whether or not there is an abnormal voltage drop, and is not limited to “0” and “1”.
  • the frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage detected by the voltage detection unit 10 and the preset V/F characteristic which is the frequency-voltage characteristic of the AC voltage. It can be said that the V/F characteristic is a characteristic in which the output voltage changes with a change in the output frequency.
  • the frequency limit value calculation unit 13 performs subtraction correction of the calculated frequency limit value.
  • the frequency limit value calculation unit 13 does not perform the subtraction correction of the calculated frequency limit value.
  • FIG. 3 is a diagram illustrating the relationship between the DC voltage output by the solar panel 2 shown in FIG. 2 and the output frequency of the inverter circuit unit 4.
  • the vertical axis of the graph shown in the upper part of FIG. 3 represents the DC voltage “V D ”.
  • the vertical axis of the graph shown in the lower part of FIG. 3 represents the frequency limit value “f”.
  • the horizontal axis of these two graphs represents time.
  • the frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage.
  • the abnormal voltage drop determination unit 12 Determines that the voltage drop started at time t1 is an abnormal voltage drop, and outputs "1" indicating the determination result to the frequency limit value calculation unit 13. Since the abnormal voltage drop determining unit 12 outputs “1” to the frequency limit value calculating unit 13, the frequency limit value calculating unit 13 subtracts ⁇ f from the frequency limit value calculated based on the value of the DC voltage. Make a correction.
  • the frequency limit value calculation unit 13 sets the frequency limit value to the value after the subtraction correction until the set time ⁇ t elapses from the time t2.
  • the abnormal voltage drop determination unit 12 determines that the DC voltage at time t3 is normal.
  • the output to the frequency limit value calculation unit 13 is set to "0". Since the output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13 is set to "0", the frequency limit value calculation unit 13 performs the subtraction correction of the frequency limit value calculated based on the value of the DC voltage. Do not do.
  • the photovoltaic power generation drive system 1 can suppress the malfunction of the motor 6 due to the abnormal voltage drop by performing the subtraction correction of the frequency limit value when the abnormal voltage drop occurs.
  • the frequency limit value calculation unit 13 calculates the frequency limit value based on the V/F characteristic that matches the application or load characteristic of the motor 6.
  • the photovoltaic power generation drive system 1 limits the output frequency by a frequency limit value based on the V/F characteristic so that the output voltage of the inverter circuit unit 4 does not exceed the DC voltage stored in the capacitor 3. Thereby, the solar power generation drive system 1 can suppress that the inverter output power, which is the output power of the inverter circuit unit 4, becomes equal to or more than the solar output power, which is the output power of the solar panel 2.
  • the calculation method according to the first example is a method of calculating the frequency limit value when the motor 6 is used for a constant torque load.
  • the frequency limit value calculation unit 13 calculates f L1 which is the frequency limit value for a constant torque load application based on the V/F characteristic represented by the following equation (1).
  • V D is a DC voltage that is the detection result by the voltage detection unit 10
  • f0 is the base frequency of the inverter circuit unit 4
  • V f0 is the base frequency voltage of the inverter circuit unit 4
  • V f is Let S be the output start voltage of the inverter circuit unit 4
  • f S be the output start frequency of the inverter circuit unit 4.
  • the output start voltage is the output voltage of the inverter circuit unit 4 at the start of driving the motor 6, and is the lower limit voltage at which the inverter circuit unit 4 can operate normally when the motor 6 is driven.
  • the output start frequency is the frequency of the output voltage of the inverter circuit unit 4 at the start of driving the motor 6, and is the output frequency at the lower limit voltage.
  • the frequency limit value calculation unit 13 calculates the frequency limit value by substituting each value of the DC voltage, the base frequency, the base frequency voltage, the output start voltage, and the output start frequency into the equation (1).
  • FIG. 4 is a diagram showing an example of the relationship between the frequency limit value calculated by the frequency limit value calculator 13 included in the drive device 5 shown in FIG. 2 and the AC voltage.
  • the vertical axis of the graph shown in FIG. 4 represents the frequency limit value “f L1 ”for a constant torque load application.
  • the horizontal axis of the graph represents the AC voltage " VA ".
  • the relationship between the frequency limit value and the AC voltage is represented by a straight line graph.
  • the graph shown in FIG. 4 represents the V/F characteristics when the motor 6 is used for a constant torque load.
  • the calculation method according to the second example is a calculation method of the frequency limit value when the use of the motor 6 is the reduced torque load use.
  • the frequency limit value calculation unit 13 calculates f L2 , which is the frequency limit value for the reduced torque load application, based on the V/F characteristic represented by the following equation (2).
  • the frequency limit value calculation unit 13 calculates the frequency limit value by substituting each value of the DC voltage, the base frequency, the base frequency voltage, the output start voltage, and the output start frequency into the equation (2).
  • FIG. 5 is a diagram showing another example of the relationship between the frequency limit value calculated by the frequency limit value calculator 13 included in the drive device 5 shown in FIG. 2 and the AC voltage.
  • the vertical axis of the graph shown in FIG. 5 represents the frequency limit value “f L2 ”for reduced torque load applications.
  • the horizontal axis of the graph represents “V A ”, which is an AC voltage.
  • the relationship between the frequency limit value and the AC voltage is represented by a curve graph.
  • the graph shown in FIG. 5 shows the V/F characteristics when the application of the motor 6 is the application of reduced torque load.
  • the frequency limit value calculation unit 13 can change the method of calculating the frequency limit value according to the application or load characteristics of the motor 6.
  • the acceleration/deceleration interruption determination unit 14 determines whether to suspend or restart the acceleration or deceleration of the rotation of the motor 6 based on the solar output power and the inverter output power.
  • the drive device 5 suspends and restarts the acceleration/deceleration according to the determination by the acceleration/deceleration suspension determination unit 14 to suppress the increase in the inverter output power due to the temporary load increase that occurs during the acceleration/deceleration of the motor 6. ..
  • the drive device 5 suppresses the increase in the inverter output power, thereby suppressing the occurrence of the voltage drop of the DC voltage due to the inverter output power being the solar output power or more. Thereby, the drive device 5 can suppress the malfunction of the motor 6 during the acceleration/deceleration of the motor 6.
  • the acceleration/deceleration interruption determination unit 14 can obtain the solar output power by the following formula (3).
  • the acceleration/deceleration interruption determination unit 14 can obtain the inverter output power by the following equation (4).
  • P S is the solar output power
  • P S0 is the solar reference output power.
  • the solar reference output power is the solar output voltage when the output voltage of the inverter circuit unit 4 is the base frequency voltage.
  • P I is the inverter output power
  • I is the output current that is the detection result of the current detection unit 11.
  • the acceleration/deceleration interruption determination unit 14 determines that the acceleration is interrupted when the calculated inverter output power is equal to or higher than the calculated solar output power. Further, the acceleration/deceleration interruption determination unit 14 determines to restart the acceleration when the calculated inverter output power is less than the calculated solar output power.
  • the acceleration/deceleration suspension determination unit 14 outputs 1-bit information indicating the determination result of suspension and restart of acceleration. The signal when it is determined that the acceleration is interrupted is “0”, and the signal when it is determined that the acceleration is restarted is “1”.
  • the signal output by the acceleration/deceleration interruption determination unit 14 is not limited to “0” and “1” as long as it is a signal that can identify the determination result of interruption and resumption of acceleration.
  • the output frequency calculation unit 15 calculates the command value of the output frequency based on the judgment result by the acceleration/deceleration interruption judgment unit 14 and the calculation result of the frequency limit value by the frequency limit value calculation unit 13.
  • the output frequency calculation unit 15 outputs to the inverter circuit unit 4 a pulse signal based on the command value calculated by the output frequency calculation unit 15 or the frequency limit value calculated by the frequency limit value calculation unit 13.
  • FIG. 6 is a flowchart showing an operation procedure by the control unit 20 included in the driving device 5 shown in FIG.
  • the abnormal voltage drop determination unit 12 monitors for an abnormal DC voltage drop.
  • the abnormal voltage drop determination unit 12 determines that there is an abnormal voltage drop when the decrease in the value of the DC voltage within the set time is a threshold value or more.
  • the abnormal voltage drop determination unit 12 determines that the DC voltage is normal when the value of the DC voltage equal to or higher than the threshold value does not decrease within the set time.
  • step S2 the acceleration/deceleration interruption determination unit 14 calculates the inverter output power and the solar output power.
  • the frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage that is the detection result of the voltage detection unit 10.
  • step S4 the frequency limit value calculation unit 13 determines whether or not there is an abnormal voltage drop based on the output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13.
  • step S4 Yes the control unit 20 advances the procedure to step S5.
  • step S4 No the control unit 20 advances the procedure to step S6.
  • step S5 the frequency limit value calculation unit 13 subtracts and corrects the frequency limit value calculated in step S3.
  • step S6 the output frequency calculation unit 15 determines whether the inverter output power is less than the solar output power, based on the output from the acceleration/deceleration interruption determination unit 14 to the output frequency calculation unit 15. When the inverter output power is less than the solar output power (step S6, Yes), the control unit 20 advances the procedure to step S8. On the other hand, when the inverter output power is equal to or higher than the solar output power (step S6, No), the control unit 20 advances the procedure to step S7.
  • step S7 the output frequency calculation unit 15 outputs to the inverter circuit unit 4 a pulse signal based on the command value applied to the previous frequency command.
  • step S8 the output frequency calculation unit 15 determines whether the frequency limit value calculated in step S3 or step S5 is less than the output frequency command value calculated this time. When the frequency limit value is less than the command value (step S8, Yes), the control unit 20 advances the procedure to step S10. On the other hand, when the frequency limit value is equal to or greater than the command value (step S8, No), the control unit 20 advances the procedure to step S9.
  • step S9 the output frequency calculation unit 15 outputs a pulse signal based on the command value of the output frequency calculated this time to the inverter circuit unit 4.
  • step S10 the output frequency calculation unit 15 outputs a pulse signal based on the frequency limit value calculated in step S3 or step S5 to the inverter circuit unit 4.
  • the function of the control unit 20 included in the driving device 5 is realized by using a processing circuit.
  • the processing circuit is dedicated hardware mounted on the drive device 5.
  • the processing circuit may be a processor that executes a program stored in the memory.
  • FIG. 7 is a diagram showing a hardware configuration when the function of the control unit 20 included in the driving device 5 shown in FIG. 2 is realized by using dedicated hardware.
  • the processing circuit 41 that is dedicated hardware is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. It is a combination.
  • FIG. 8 is a diagram showing a hardware configuration when the function of the control unit 20 included in the driving device 5 shown in FIG. 2 is realized by using the processor 42.
  • the processor 42 and the memory 43 are communicably connected to each other.
  • the processor 42 executes the program stored in the memory 43.
  • the processor 42 is a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the function of the control unit 20 is realized by the processor 42, software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 43.
  • the memory 43 is non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). It is a built-in memory such as a semiconductor memory.
  • a part of the function of the control unit 20 may be realized by dedicated hardware, and the other part of the function of the control unit 20 may be realized by software or firmware. As described above, the function of the control unit 20 can be realized by hardware, software, firmware, or a combination thereof.
  • the photovoltaic power generation drive system 1 calculates the limit value of the output frequency based on the V/F characteristic and the value of the DC voltage output by the solar panel 2, and the inverter output power is equal to or higher than the solar output power.
  • the limit value is less than the command value
  • a pulse signal having a frequency based on the limit value is output to the inverter circuit unit 4.
  • the photovoltaic power generation drive system 1 makes it possible to adjust the inverter output power to be less than the solar output power by limiting the output frequency by the limit value based on the V/F characteristics, and reduce the malfunction of the motor 6.
  • the photovoltaic power generation drive system 1 Since the photovoltaic power generation drive system 1 does not need the adjustment of repeatedly changing the rotation speed of the motor 6 to detect the output voltage of the solar panel 2, the time required for the adjustment for controlling the solar output power. Can be shortened. Since the photovoltaic power generation drive system 1 does not need to repeatedly change the rotation speed of the motor 6 at a preset timing, the motor 6 can be stably driven when the solar output power does not change. As a result, the photovoltaic power generation drive system 1 has an effect that the time required for the adjustment for controlling the output power of the solar panel 2 can be shortened and the load can be stably driven.
  • 1 solar power generation drive system 2 solar panel, 3 capacitor, 4 inverter circuit section, 5 drive unit, 6 motor, 10 voltage detection section, 11 current detection section, 12 abnormal voltage drop determination section, 13 frequency limit value calculation section, 14 acceleration/deceleration interruption determination unit, 15 output frequency calculation unit, 20 control unit, 41 processing circuit, 42 processor, 43 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

This photovoltaic power generation drive system (1) comprises: an inverter circuit unit (4) which converts a DC voltage output from a solar panel (2) into an AC voltage according to a pulse signal, and outputs the AC voltage; a frequency limit value calculation unit (13) which calculates a limit value of an output frequency which is the frequency of the AC voltage, on the basis of the preset AC voltage frequency-voltage characteristics and the value of the DC voltage output by the solar panel (2); and an output frequency calculation unit (15) which calculates a command value of the output frequency, and outputs, to the inverter circuit unit (4), a pulse signal based on the command value or the limit value.

Description

太陽光発電駆動システムおよび太陽光発電駆動システムの制御方法Solar power generation drive system and control method for solar power generation drive system
 本発明は、ソーラーパネルでの発電によって得られた電気エネルギーを利用して負荷を駆動する太陽光発電駆動システムおよび太陽光発電駆動システムの制御方法に関する。 The present invention relates to a photovoltaic power generation drive system that drives a load by using electric energy obtained by power generation by a solar panel, and a control method of the photovoltaic power generation drive system.
 負荷であるモータを駆動する太陽光発電駆動システムは、モータを安定して継続駆動するために、ソーラーパネルの出力電力がソーラーパネルの最大電力点以上となるようにモータの回転数を調整して、ソーラーパネルの出力電力を制御する。ソーラーパネルの設置場所における日照量の変化あるいは気温の変化といった環境変化によって、最大電力点は変化する。ソーラー出力電力が最大電力点よりも低くなると、モータは動作不良を生じる。ソーラー出力電力とは、ソーラーパネルの出力電力とする。 The solar power generation drive system that drives the motor, which is the load, adjusts the rotation speed of the motor so that the output power of the solar panel is equal to or higher than the maximum power point of the solar panel in order to drive the motor stably and continuously. , Control the output power of the solar panel. The maximum power point changes due to environmental changes such as changes in the amount of sunlight or temperature changes at the solar panel installation location. If the solar output power falls below the maximum power point, the motor will malfunction. The solar output power is the output power of the solar panel.
 特許文献1には、モータの回転数を反復して変化させたときのソーラーパネルの出力電圧の変動に基づいてソーラー出力電力の最大電力点までのマージンを推定して、ソーラーパネルの出力電圧を最大電力点の電圧よりも高くさせる調整を行うことが開示されている。特許文献1の技術によると、ソーラーパネルの出力電圧が最大電力点の電圧よりも高く、かつ出力電圧と最大電力点の電圧との乖離が許容範囲内である状態を維持することで、太陽光発電駆動システムは、環境変化によってソーラー出力電力が連続して変化する場合でもモータの動作不良を低減できる。 In Patent Document 1, the output voltage of the solar panel is estimated by estimating the margin up to the maximum power point of the solar output power based on the fluctuation of the output voltage of the solar panel when the rotation speed of the motor is repeatedly changed. It is disclosed that the adjustment is made to be higher than the voltage at the maximum power point. According to the technique of Patent Document 1, the output voltage of the solar panel is higher than the voltage at the maximum power point, and the deviation between the output voltage and the voltage at the maximum power point is maintained within an allowable range, whereby the sunlight The power generation drive system can reduce malfunction of the motor even when the solar output power continuously changes due to environmental changes.
特許第6105733号公報Patent No. 6105733
 特許文献1の技術によると、太陽光発電駆動システムは、ソーラーパネルの出力電圧が最大電力点の電圧よりも高く、かつ最大電力点の電圧と出力電圧との乖離が許容範囲内となるまで、モータの回転数を反復して変化させてソーラーパネルの出力電圧を検出するという調整を行う。このため、太陽光発電駆動システムは、ソーラーパネルの出力電圧が適正な値に保たれるまでに時間を要するという問題があった。 According to the technology of Patent Document 1, in the photovoltaic power generation drive system, until the output voltage of the solar panel is higher than the voltage at the maximum power point, and the deviation between the voltage at the maximum power point and the output voltage is within the allowable range, Adjustment is performed by repeatedly changing the rotation speed of the motor to detect the output voltage of the solar panel. Therefore, the photovoltaic power generation drive system has a problem that it takes time until the output voltage of the solar panel is maintained at an appropriate value.
 また、特許文献1の技術によると、太陽光発電駆動システムは、最大電力点の変化を検出するために、あらかじめ設定されたタイミングにおいてモータの回転数を反復して変化させる必要がある。このため、ソーラー出力電力に変化がなくソーラー出力電力の制御のための調整が不要な場合であっても、太陽光発電駆動システムは、当該タイミングにおいて回転数を反復して変化させる調整が必要となることから、モータの安定した駆動ができないという問題があった。 Further, according to the technique of Patent Document 1, the photovoltaic power generation drive system needs to repeatedly change the rotation speed of the motor at a preset timing in order to detect a change in the maximum power point. Therefore, even if the solar output power does not change and adjustment for controlling the solar output power is not necessary, the photovoltaic power generation drive system requires adjustment to repeatedly change the rotation speed at the timing. Therefore, there is a problem that the motor cannot be driven stably.
 本発明は、上記に鑑みてなされたものであって、ソーラーパネルの出力電力を制御するための調整に要する時間を短縮可能とし、かつ負荷の安定した駆動を可能とする太陽光発電駆動システムを得ることを目的とする。 The present invention has been made in view of the above, and provides a photovoltaic power generation drive system capable of shortening the time required for adjustment for controlling the output power of a solar panel and enabling stable driving of a load. The purpose is to get.
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽光発電駆動システムは、ソーラーパネルが出力する電力を利用して負荷を駆動する太陽光発電駆動システムである。本発明にかかる太陽光発電駆動システムは、ソーラーパネルが出力する直流電圧をパルス信号に従い交流電圧へ変換して交流電圧を出力するインバータ回路部と、予め設定された交流電圧の周波数―電圧特性およびソーラーパネルが出力する直流電圧の値を基に交流電圧の周波数である出力周波数の制限値を算出する周波数制限値算出部と、出力周波数の指令値を算出し、指令値または制限値に基づいたパルス信号をインバータ回路部へ出力する出力周波数算出部と、を備える。 In order to solve the above-mentioned problems and achieve the object, the photovoltaic power generation drive system according to the present invention is a photovoltaic power generation drive system that drives a load by using the electric power output by the solar panel. The photovoltaic power generation drive system according to the present invention is an inverter circuit unit that converts a DC voltage output from a solar panel into an AC voltage according to a pulse signal and outputs an AC voltage, and a frequency-voltage characteristic of a preset AC voltage and A frequency limit value calculator that calculates the limit value of the output frequency that is the frequency of the AC voltage based on the value of the DC voltage output by the solar panel, and calculates the command value of the output frequency, and based on the command value or the limit value. An output frequency calculation unit that outputs a pulse signal to the inverter circuit unit.
 本発明にかかる太陽光発電駆動システムは、ソーラーパネルの出力電力を制御するための調整に要する時間を短縮でき、かつ負荷の安定した駆動が可能となるという効果を奏する。 The solar power generation drive system according to the present invention has an effect that the time required for adjustment for controlling the output power of the solar panel can be shortened and the load can be stably driven.
本発明の実施の形態1にかかる太陽光発電駆動システムの概略構成を示す図The figure which shows schematic structure of the photovoltaic power generation drive system concerning Embodiment 1 of this invention. 図1に示す太陽光発電駆動システムを構成するソーラーパネル、駆動装置およびモータを示す図The figure which shows the solar panel, drive device, and motor which comprise the photovoltaic power generation drive system shown in FIG. 図2に示すソーラーパネルにより出力される直流電圧とインバータ回路部の出力周波数との関係について説明する図The figure explaining the relationship between the direct-current voltage output by the solar panel shown in FIG. 2, and the output frequency of an inverter circuit part. 図2に示す駆動装置が有する周波数制限値算出部によって算出される周波数制限値と交流電圧との関係の一例を示す図The figure which shows an example of the relationship between the frequency limit value calculated by the frequency limit value calculation part which the drive apparatus shown in FIG. 2 has, and an alternating voltage. 図2に示す駆動装置が有する周波数制限値算出部によって算出される周波数制限値と交流電圧との関係の他の例を示す図The figure which shows the other example of the relationship of the frequency limit value calculated by the frequency limit value calculation part which the drive device shown in FIG. 2 has, and an alternating voltage. 図2に示す駆動装置が有する制御部による動作の手順を示すフローチャートThe flowchart which shows the procedure of the operation|movement by the control part which the drive device shown in FIG. 2 has. 図2に示す駆動装置が有する制御部の機能が専用のハードウェアを用いて実現される場合のハードウェア構成を示す図The figure which shows the hardware constitutions in case the function of the control part which the drive device shown in FIG. 2 has is implement|achieved using exclusive hardware. 図2に示す駆動装置が有する制御部の機能がプロセッサを用いて実現される場合のハードウェア構成を示す図The figure which shows the hardware constitutions in case the function of the control part which the drive device shown in FIG. 2 has is implement|achieved using a processor.
 以下に、本発明の実施の形態にかかる太陽光発電駆動システムおよび太陽光発電駆動システムの制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 A solar power generation drive system and a method for controlling the solar power generation drive system according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽光発電駆動システム1の概略構成を示す図である。図2は、図1に示す太陽光発電駆動システム1を構成するソーラーパネル2、駆動装置5およびモータ6を示す図である。太陽光発電駆動システム1は、ソーラーパネル2が出力する電力を利用して、負荷であるモータ6を駆動する。モータ6は、例えば誘導電動機である。太陽光発電駆動システム1は、ソーラーパネル2により供給される直流電圧を交流電圧へ変換してモータ6へ交流電圧を出力する駆動装置5を有する。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of a photovoltaic power generation drive system 1 according to a first embodiment of the present invention. FIG. 2 is a diagram showing a solar panel 2, a driving device 5 and a motor 6 which constitute the photovoltaic power generation driving system 1 shown in FIG. The photovoltaic power generation drive system 1 uses the electric power output by the solar panel 2 to drive the motor 6 that is a load. The motor 6 is, for example, an induction motor. The photovoltaic power generation drive system 1 has a drive device 5 that converts a DC voltage supplied by the solar panel 2 into an AC voltage and outputs the AC voltage to a motor 6.
 駆動装置5は、ソーラーパネル2により供給される直流電圧を蓄えるコンデンサ3と、コンデンサ3に蓄えられた直流電圧を交流電圧へ変換して交流電圧を出力するインバータ回路部4とを有する。また、駆動装置5は、コンデンサ3に蓄えられた直流電圧を検出する電圧検出部10と、インバータ回路部4の出力側の電流を検出する電流検出部11と、駆動装置5を制御する制御部20とを有する。なお、図2には、制御部20が有する機能構成を示している。 The driving device 5 has a capacitor 3 that stores the DC voltage supplied by the solar panel 2, and an inverter circuit unit 4 that converts the DC voltage stored in the capacitor 3 into an AC voltage and outputs the AC voltage. Further, the driving device 5 includes a voltage detecting unit 10 that detects a DC voltage stored in the capacitor 3, a current detecting unit 11 that detects a current on the output side of the inverter circuit unit 4, and a control unit that controls the driving device 5. 20 and. Note that FIG. 2 shows a functional configuration of the control unit 20.
 インバータ回路部4は、ソーラーパネル2により供給される直流電圧を、制御部20が出力したパルス信号に従い、モータ6に対応した周波数の交流電圧へ変換する。インバータ回路部4は、変換後の交流電圧をモータ6へ印加する。具体的には、インバータ回路部4は、VVVF(Variable Voltage Variable Frequency:可変電圧可変周波数)制御によって交流電圧の周波数と電圧レベルとを制御する。 The inverter circuit unit 4 converts the DC voltage supplied by the solar panel 2 into an AC voltage having a frequency corresponding to the motor 6 according to the pulse signal output from the control unit 20. The inverter circuit unit 4 applies the converted AC voltage to the motor 6. Specifically, the inverter circuit unit 4 controls the frequency and voltage level of the AC voltage by VVVF (Variable Voltage Variable Frequency) control.
 電流検出部11は、インバータ回路部4が出力するU相、V相およびW相の相電流を検出する。なお、当該相電流の総称を、出力電流と称する。制御部20は、電圧検出部10によって検出された直流電圧の値と電流検出部11によって検出された出力電流の値とに基づいて、出力周波数の指令値を算出する。出力周波数は、インバータ回路部4が出力する交流電圧の周波数である。制御部20は、算出された指令値または後述する周波数制限値に基づいたパルス信号をインバータ回路部4へ出力する。パルス信号は、パルス幅変調(Pulse Width Modulation:PWM)がなされた信号である。 The current detection unit 11 detects the U-phase, V-phase, and W-phase currents output by the inverter circuit unit 4. The generic term for the phase current is called the output current. The control unit 20 calculates the command value of the output frequency based on the value of the DC voltage detected by the voltage detection unit 10 and the value of the output current detected by the current detection unit 11. The output frequency is the frequency of the AC voltage output by the inverter circuit unit 4. The control unit 20 outputs a pulse signal based on the calculated command value or a frequency limit value described below to the inverter circuit unit 4. The pulse signal is a signal that has undergone pulse width modulation (Pulse Width Modulation: PWM).
 制御部20は、インバータ回路部4をフィードバック制御する。制御部20は、電圧検出部10による直流電圧の検出結果を監視して、直流電圧の降下があった場合に当該降下が異常な電圧降下であるか否かを判断する異常電圧降下判断部12を有する。また、制御部20は、出力周波数の制限値である周波数制限値を算出する周波数制限値算出部13と、モータ6の回転の加速または減速について中断と再開とを判断する加減速中断判断部14と、出力周波数の指令値を算出する出力周波数算出部15とを有する。制御部20が有する各機能部は、実施の形態1の太陽光発電駆動システム1の制御方法を実行するためのプログラムである制御プログラムがハードウェアを用いて実行されることによって実現される。 The control unit 20 feedback controls the inverter circuit unit 4. The control unit 20 monitors the detection result of the DC voltage by the voltage detection unit 10 and, if there is a drop in the DC voltage, judges whether the drop is an abnormal voltage drop or not. Have. The control unit 20 also includes a frequency limit value calculation unit 13 that calculates a frequency limit value that is a limit value of the output frequency, and an acceleration/deceleration interruption determination unit 14 that determines interruption or resumption of acceleration or deceleration of the rotation of the motor 6. And an output frequency calculation unit 15 that calculates a command value of the output frequency. Each functional unit of the control unit 20 is realized by executing a control program, which is a program for executing the control method of the photovoltaic power generation drive system 1 according to the first embodiment, using hardware.
 異常電圧降下判断部12は、電圧検出部10によって検出された直流電圧の値の変化に基づいて、電圧降下の異常を検出する。具体的には、異常電圧降下判断部12は、電圧降下の開始時からあらかじめ設定された設定時間内における直流電圧の値の減少が閾値以上の減少であった場合に、異常な電圧降下があったと判断する。また、異常電圧降下判断部12は、設定時間内において閾値以上の直流電圧の値の減少がなかった場合、直流電圧は正常であると判断する。 The abnormal voltage drop determination unit 12 detects an abnormal voltage drop based on a change in the value of the DC voltage detected by the voltage detection unit 10. Specifically, the abnormal voltage drop determination unit 12 determines that there is an abnormal voltage drop when the decrease in the value of the DC voltage within the preset time from the start of the voltage drop is the threshold value or more. Determine that Further, the abnormal voltage drop determination unit 12 determines that the DC voltage is normal when the value of the DC voltage equal to or more than the threshold value does not decrease within the set time.
 異常電圧降下判断部12は、異常な電圧降下があったか否かを示す1ビットの情報を出力する。異常な電圧降下があったと判断された場合の信号は「1」であって、正常と判断された場合の信号は「0」とする。なお、異常電圧降下判断部12によって出力される信号は、異常な電圧降下があったか否かの識別が可能な信号であれば良く、「0」および「1」に限られない。 The abnormal voltage drop determination unit 12 outputs 1-bit information indicating whether or not there is an abnormal voltage drop. The signal when it is determined that there is an abnormal voltage drop is “1”, and the signal when it is determined to be normal is “0”. The signal output by the abnormal voltage drop determination unit 12 may be any signal that can identify whether or not there is an abnormal voltage drop, and is not limited to “0” and “1”.
 周波数制限値算出部13は、電圧検出部10によって検出された直流電圧の値、ならびに予め設定された交流電圧の周波数―電圧特性であるV/F特性に基づいて周波数制限値を算出する。V/F特性は、出力周波数の変化に対して出力電圧が変化する特性ともいえる。また、異常電圧降下判断部12から周波数制限値算出部13へ「1」が出力された場合、周波数制限値算出部13は、算出された周波数制限値の減算補正を行う。異常電圧降下判断部12から周波数制限値算出部13への出力が「0」であった場合、周波数制限値算出部13は、算出された周波数制限値の減算補正を行わない。 The frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage detected by the voltage detection unit 10 and the preset V/F characteristic which is the frequency-voltage characteristic of the AC voltage. It can be said that the V/F characteristic is a characteristic in which the output voltage changes with a change in the output frequency. In addition, when “1” is output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13, the frequency limit value calculation unit 13 performs subtraction correction of the calculated frequency limit value. When the output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13 is “0”, the frequency limit value calculation unit 13 does not perform the subtraction correction of the calculated frequency limit value.
 図3は、図2に示すソーラーパネル2により出力される直流電圧とインバータ回路部4の出力周波数との関係について説明する図である。図3の上段に示すグラフの縦軸は直流電圧「V」を表す。図3の下段に示すグラフの縦軸は周波数制限値「f」を表す。かかる2つのグラフの横軸は時間を表す。 FIG. 3 is a diagram illustrating the relationship between the DC voltage output by the solar panel 2 shown in FIG. 2 and the output frequency of the inverter circuit unit 4. The vertical axis of the graph shown in the upper part of FIG. 3 represents the DC voltage “V D ”. The vertical axis of the graph shown in the lower part of FIG. 3 represents the frequency limit value “f”. The horizontal axis of these two graphs represents time.
 上記のように、周波数制限値算出部13は、直流電圧の値に基づいた周波数制限値を算出する。時刻t1において直流電圧の降下が開始され、時刻t1から設定時間Δtが経過する前の時刻t2において、直流電圧の値の減少が閾値ΔVTH以上の減少となった場合、異常電圧降下判断部12は、時刻t1に開始された電圧降下が異常な電圧降下であると判断し、かかる判断結果を示す「1」を周波数制限値算出部13へ出力する。異常電圧降下判断部12から周波数制限値算出部13へ「1」が出力されたことによって、周波数制限値算出部13は、直流電圧の値に基づいて算出された周波数制限値をΔfだけ差し引く減算補正を行う。時刻t2から設定時間Δtが経過するまで、周波数制限値算出部13は、周波数制限値を減算補正後の値とする。 As described above, the frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage. When the DC voltage starts to drop at time t1 and the decrease in the value of the DC voltage becomes the threshold ΔV TH or more at time t2 before the set time Δt elapses from time t1, the abnormal voltage drop determination unit 12 Determines that the voltage drop started at time t1 is an abnormal voltage drop, and outputs "1" indicating the determination result to the frequency limit value calculation unit 13. Since the abnormal voltage drop determining unit 12 outputs “1” to the frequency limit value calculating unit 13, the frequency limit value calculating unit 13 subtracts Δf from the frequency limit value calculated based on the value of the DC voltage. Make a correction. The frequency limit value calculation unit 13 sets the frequency limit value to the value after the subtraction correction until the set time Δt elapses from the time t2.
 時刻t2以降において、設定時間Δtが経過するまでの間に閾値ΔVTH以上の直流電圧の値の減少がない場合、異常電圧降下判断部12は、時刻t3における直流電圧は正常であると判断し、周波数制限値算出部13への出力を「0」とする。異常電圧降下判断部12から周波数制限値算出部13への出力が「0」とされたことによって、周波数制限値算出部13は、直流電圧の値に基づいて算出された周波数制限値の減算補正を行わない。太陽光発電駆動システム1は、異常な電圧降下があった場合に周波数制限値の減算補正を行うことで、異常な電圧降下によるモータ6の動作不良を抑制することができる。 After time t2, if there is no decrease in the value of the DC voltage that is equal to or greater than the threshold value ΔV TH before the set time Δt elapses, the abnormal voltage drop determination unit 12 determines that the DC voltage at time t3 is normal. The output to the frequency limit value calculation unit 13 is set to "0". Since the output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13 is set to "0", the frequency limit value calculation unit 13 performs the subtraction correction of the frequency limit value calculated based on the value of the DC voltage. Do not do. The photovoltaic power generation drive system 1 can suppress the malfunction of the motor 6 due to the abnormal voltage drop by performing the subtraction correction of the frequency limit value when the abnormal voltage drop occurs.
 ここで、周波数制限値算出部13による周波数制限値の具体的な算出方法について説明する。周波数制限値算出部13は、モータ6の用途または負荷特性に適合したV/F特性に基づいて周波数制限値を算出する。太陽光発電駆動システム1は、インバータ回路部4の出力電圧がコンデンサ3に蓄えられた直流電圧以上の電圧とならないように、V/F特性に基づいた周波数制限値によって出力周波数を制限する。これにより、太陽光発電駆動システム1は、インバータ回路部4の出力電力であるインバータ出力電力が、ソーラーパネル2の出力電力であるソーラー出力電力以上となることを抑制することができる。 Here, a specific method of calculating the frequency limit value by the frequency limit value calculation unit 13 will be described. The frequency limit value calculation unit 13 calculates the frequency limit value based on the V/F characteristic that matches the application or load characteristic of the motor 6. The photovoltaic power generation drive system 1 limits the output frequency by a frequency limit value based on the V/F characteristic so that the output voltage of the inverter circuit unit 4 does not exceed the DC voltage stored in the capacitor 3. Thereby, the solar power generation drive system 1 can suppress that the inverter output power, which is the output power of the inverter circuit unit 4, becomes equal to or more than the solar output power, which is the output power of the solar panel 2.
 以下に、周波数制限値の算出方法の2つの例を説明する。第1の例にかかる算出方法は、モータ6の用途が定トルク負荷用途である場合の周波数制限値の算出方法である。周波数制限値算出部13は、以下の式(1)によって表されるV/F特性に基づいて、定トルク負荷用途の周波数制限値であるfL1を算出する。式(1)および以下に述べる各式において、Vは電圧検出部10による検出結果である直流電圧、f0はインバータ回路部4の基底周波数、Vf0はインバータ回路部4の基底周波数電圧、Vはインバータ回路部4の出力開始電圧、fはインバータ回路部4の出力開始周波数とする。出力開始電圧は、モータ6の駆動開始時におけるインバータ回路部4の出力電圧であって、モータ6の駆動においてインバータ回路部4が正常に動作可能な下限電圧である。出力開始周波数は、モータ6の駆動開始時におけるインバータ回路部4の出力電圧の周波数であって、下限電圧のときの出力周波数である。周波数制限値算出部13は、直流電圧、基底周波数、基底周波数電圧、出力開始電圧および出力開始周波数の各値を式(1)へ代入することによって、周波数制限値を算出する。 Two examples of the method of calculating the frequency limit value will be described below. The calculation method according to the first example is a method of calculating the frequency limit value when the motor 6 is used for a constant torque load. The frequency limit value calculation unit 13 calculates f L1 which is the frequency limit value for a constant torque load application based on the V/F characteristic represented by the following equation (1). In the formula (1) and each formula described below, V D is a DC voltage that is the detection result by the voltage detection unit 10, f0 is the base frequency of the inverter circuit unit 4, V f0 is the base frequency voltage of the inverter circuit unit 4, and V f is Let S be the output start voltage of the inverter circuit unit 4, and f S be the output start frequency of the inverter circuit unit 4. The output start voltage is the output voltage of the inverter circuit unit 4 at the start of driving the motor 6, and is the lower limit voltage at which the inverter circuit unit 4 can operate normally when the motor 6 is driven. The output start frequency is the frequency of the output voltage of the inverter circuit unit 4 at the start of driving the motor 6, and is the output frequency at the lower limit voltage. The frequency limit value calculation unit 13 calculates the frequency limit value by substituting each value of the DC voltage, the base frequency, the base frequency voltage, the output start voltage, and the output start frequency into the equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図4は、図2に示す駆動装置5が有する周波数制限値算出部13によって算出される周波数制限値と交流電圧との関係の一例を示す図である。図4に示すグラフの縦軸は定トルク負荷用途の周波数制限値「fL1」を表す。グラフの横軸は交流電圧「V」を表す。図4において、周波数制限値と交流電圧との関係は、直線グラフにより表される。図4に示すグラフは、モータ6の用途が定トルク負荷用途である場合のV/F特性を表す。 FIG. 4 is a diagram showing an example of the relationship between the frequency limit value calculated by the frequency limit value calculator 13 included in the drive device 5 shown in FIG. 2 and the AC voltage. The vertical axis of the graph shown in FIG. 4 represents the frequency limit value “f L1 ”for a constant torque load application. The horizontal axis of the graph represents the AC voltage " VA ". In FIG. 4, the relationship between the frequency limit value and the AC voltage is represented by a straight line graph. The graph shown in FIG. 4 represents the V/F characteristics when the motor 6 is used for a constant torque load.
 第2の例にかかる算出方法は、モータ6の用途が低減トルク負荷用途である場合の周波数制限値の算出方法である。周波数制限値算出部13は、以下の式(2)によって表されるV/F特性に基づいて、低減トルク負荷用途の周波数制限値であるfL2を算出する。周波数制限値算出部13は、直流電圧、基底周波数、基底周波数電圧、出力開始電圧および出力開始周波数の各値を式(2)へ代入することによって、周波数制限値を算出する。 The calculation method according to the second example is a calculation method of the frequency limit value when the use of the motor 6 is the reduced torque load use. The frequency limit value calculation unit 13 calculates f L2 , which is the frequency limit value for the reduced torque load application, based on the V/F characteristic represented by the following equation (2). The frequency limit value calculation unit 13 calculates the frequency limit value by substituting each value of the DC voltage, the base frequency, the base frequency voltage, the output start voltage, and the output start frequency into the equation (2).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図5は、図2に示す駆動装置5が有する周波数制限値算出部13によって算出される周波数制限値と交流電圧との関係の他の例を示す図である。図5に示すグラフの縦軸は低減トルク負荷用途の周波数制限値「fL2」を表す。グラフの横軸は交流電圧である「V」を表す。図5において、周波数制限値と交流電圧との関係は、曲線グラフにより表される。図5に示すグラフは、モータ6の用途が低減トルク負荷用途である場合のV/F特性を表す。以上のように、周波数制限値算出部13は、モータ6の用途または負荷特性に応じて、周波数制限値の算出方法を変更することができる。 FIG. 5 is a diagram showing another example of the relationship between the frequency limit value calculated by the frequency limit value calculator 13 included in the drive device 5 shown in FIG. 2 and the AC voltage. The vertical axis of the graph shown in FIG. 5 represents the frequency limit value “f L2 ”for reduced torque load applications. The horizontal axis of the graph represents “V A ”, which is an AC voltage. In FIG. 5, the relationship between the frequency limit value and the AC voltage is represented by a curve graph. The graph shown in FIG. 5 shows the V/F characteristics when the application of the motor 6 is the application of reduced torque load. As described above, the frequency limit value calculation unit 13 can change the method of calculating the frequency limit value according to the application or load characteristics of the motor 6.
 加減速中断判断部14は、ソーラー出力電力とインバータ出力電力とに基づいて、モータ6の回転の加速または減速について中断と再開とを判断する。駆動装置5は、加減速中断判断部14による判断に従って加減速を中断および再開することで、モータ6の加減速時に発生する一時的な負荷増加の影響によってインバータ出力電力が増加することを抑制する。駆動装置5は、インバータ出力電力の増加を抑制することで、インバータ出力電力がソーラー出力電力以上となることによる直流電圧の電圧降下の発生を抑制する。これにより、駆動装置5は、モータ6の加減速中におけるモータ6の動作不良を抑制することができる。 The acceleration/deceleration interruption determination unit 14 determines whether to suspend or restart the acceleration or deceleration of the rotation of the motor 6 based on the solar output power and the inverter output power. The drive device 5 suspends and restarts the acceleration/deceleration according to the determination by the acceleration/deceleration suspension determination unit 14 to suppress the increase in the inverter output power due to the temporary load increase that occurs during the acceleration/deceleration of the motor 6. .. The drive device 5 suppresses the increase in the inverter output power, thereby suppressing the occurrence of the voltage drop of the DC voltage due to the inverter output power being the solar output power or more. Thereby, the drive device 5 can suppress the malfunction of the motor 6 during the acceleration/deceleration of the motor 6.
 具体的には、加減速中断判断部14は、以下の式(3)によってソーラー出力電力を求めることができる。加減速中断判断部14は、以下の式(4)によってインバータ出力電力を求めることができる。式(3)において、Pはソーラー出力電力、PS0はソーラー基準出力電力とする。ソーラー基準出力電力は、インバータ回路部4の出力電圧が基底周波数電圧であるときのソーラー出力電圧とする。式(4)において、Pはインバータ出力電力、Iは電流検出部11による検出結果である出力電流とする。 Specifically, the acceleration/deceleration interruption determination unit 14 can obtain the solar output power by the following formula (3). The acceleration/deceleration interruption determination unit 14 can obtain the inverter output power by the following equation (4). In Equation (3), P S is the solar output power and P S0 is the solar reference output power. The solar reference output power is the solar output voltage when the output voltage of the inverter circuit unit 4 is the base frequency voltage. In Equation (4), P I is the inverter output power, and I is the output current that is the detection result of the current detection unit 11.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 加減速中断判断部14は、算出されたインバータ出力電力が、算出されたソーラー出力電力以上であった場合、加速を中断する旨の判断をなす。また、加減速中断判断部14は、算出されたインバータ出力電力が、算出されたソーラー出力電力未満であった場合、加速を再開する旨の判断をなす。加減速中断判断部14は、加速について中断と再開との判断結果を示す1ビットの情報を出力する。加速の中断と判断された場合の信号は「0」であって、加速の再開と判断された場合の信号は「1」とする。なお、加減速中断判断部14によって出力される信号は、加速について中断と再開との判断結果の識別が可能な信号であれば良く、「0」および「1」に限られない。 The acceleration/deceleration interruption determination unit 14 determines that the acceleration is interrupted when the calculated inverter output power is equal to or higher than the calculated solar output power. Further, the acceleration/deceleration interruption determination unit 14 determines to restart the acceleration when the calculated inverter output power is less than the calculated solar output power. The acceleration/deceleration suspension determination unit 14 outputs 1-bit information indicating the determination result of suspension and restart of acceleration. The signal when it is determined that the acceleration is interrupted is “0”, and the signal when it is determined that the acceleration is restarted is “1”. The signal output by the acceleration/deceleration interruption determination unit 14 is not limited to “0” and “1” as long as it is a signal that can identify the determination result of interruption and resumption of acceleration.
 出力周波数算出部15は、加減速中断判断部14による判断結果と、周波数制限値算出部13による周波数制限値の算出結果とを基に、出力周波数の指令値を算出する。出力周波数算出部15は、出力周波数算出部15により算出された指令値または周波数制限値算出部13により算出された周波数制限値に基づいたパルス信号をインバータ回路部4へ出力する。 The output frequency calculation unit 15 calculates the command value of the output frequency based on the judgment result by the acceleration/deceleration interruption judgment unit 14 and the calculation result of the frequency limit value by the frequency limit value calculation unit 13. The output frequency calculation unit 15 outputs to the inverter circuit unit 4 a pulse signal based on the command value calculated by the output frequency calculation unit 15 or the frequency limit value calculated by the frequency limit value calculation unit 13.
 次に、制御部20の具体的な動作について説明する。図6は、図2に示す駆動装置5が有する制御部20による動作の手順を示すフローチャートである。ステップS1において、異常電圧降下判断部12は、直流電圧の異常な降下を監視する。異常電圧降下判断部12は、設定時間内における直流電圧の値の減少が閾値以上の減少であった場合に、異常な電圧降下があったと判断する。異常電圧降下判断部12は、設定時間内において閾値以上の直流電圧の値の減少がなかった場合、直流電圧は正常であると判断する。 Next, a specific operation of the control unit 20 will be described. FIG. 6 is a flowchart showing an operation procedure by the control unit 20 included in the driving device 5 shown in FIG. In step S1, the abnormal voltage drop determination unit 12 monitors for an abnormal DC voltage drop. The abnormal voltage drop determination unit 12 determines that there is an abnormal voltage drop when the decrease in the value of the DC voltage within the set time is a threshold value or more. The abnormal voltage drop determination unit 12 determines that the DC voltage is normal when the value of the DC voltage equal to or higher than the threshold value does not decrease within the set time.
 ステップS2において、加減速中断判断部14は、インバータ出力電力とソーラー出力電力とを算出する。ステップS3において、周波数制限値算出部13は、電圧検出部10による検出結果である直流電圧の値を基に周波数制限値を算出する。 In step S2, the acceleration/deceleration interruption determination unit 14 calculates the inverter output power and the solar output power. In step S3, the frequency limit value calculation unit 13 calculates the frequency limit value based on the value of the DC voltage that is the detection result of the voltage detection unit 10.
 ステップS4において、周波数制限値算出部13は、異常電圧降下判断部12から周波数制限値算出部13への出力を基に、異常な電圧降下があったか否かを判断する。異常な電圧降下があった場合(ステップS4,Yes)、制御部20は、ステップS5へ手順を進める。一方、異常な電圧降下がなかった場合(ステップS4,No)、制御部20は、ステップS6へ手順を進める。 In step S4, the frequency limit value calculation unit 13 determines whether or not there is an abnormal voltage drop based on the output from the abnormal voltage drop determination unit 12 to the frequency limit value calculation unit 13. When there is an abnormal voltage drop (step S4, Yes), the control unit 20 advances the procedure to step S5. On the other hand, if there is no abnormal voltage drop (step S4, No), the control unit 20 advances the procedure to step S6.
 ステップS5において、周波数制限値算出部13は、ステップS3において算出された周波数制限値を減算補正する。ステップS6において、出力周波数算出部15は、加減速中断判断部14から出力周波数算出部15への出力を基に、インバータ出力電力がソーラー出力電力未満であるか否かを判断する。インバータ出力電力がソーラー出力電力未満である場合(ステップS6,Yes)、制御部20は、ステップS8へ手順を進める。一方、インバータ出力電力がソーラー出力電力以上である場合(ステップS6,No)、制御部20は、ステップS7へ手順を進める。 In step S5, the frequency limit value calculation unit 13 subtracts and corrects the frequency limit value calculated in step S3. In step S6, the output frequency calculation unit 15 determines whether the inverter output power is less than the solar output power, based on the output from the acceleration/deceleration interruption determination unit 14 to the output frequency calculation unit 15. When the inverter output power is less than the solar output power (step S6, Yes), the control unit 20 advances the procedure to step S8. On the other hand, when the inverter output power is equal to or higher than the solar output power (step S6, No), the control unit 20 advances the procedure to step S7.
 ステップS7において、出力周波数算出部15は、前回の周波数指令にかかる指令値に基づいたパルス信号をインバータ回路部4へ出力する。ステップS8において、出力周波数算出部15は、ステップS3またはステップS5にて算出された周波数制限値が、今回算出された出力周波数の指令値未満か否かを判断する。周波数制限値が指令値未満である場合(ステップS8,Yes)、制御部20は、ステップS10へ手順を進める。一方、周波数制限値が指令値以上である場合(ステップS8,No)、制御部20は、ステップS9へ手順を進める。 In step S7, the output frequency calculation unit 15 outputs to the inverter circuit unit 4 a pulse signal based on the command value applied to the previous frequency command. In step S8, the output frequency calculation unit 15 determines whether the frequency limit value calculated in step S3 or step S5 is less than the output frequency command value calculated this time. When the frequency limit value is less than the command value (step S8, Yes), the control unit 20 advances the procedure to step S10. On the other hand, when the frequency limit value is equal to or greater than the command value (step S8, No), the control unit 20 advances the procedure to step S9.
 ステップS9において、出力周波数算出部15は、今回算出された出力周波数の指令値に基づいたパルス信号をインバータ回路部4へ出力する。ステップS10において、出力周波数算出部15は、ステップS3またはステップS5にて算出された周波数制限値に基づいたパルス信号をインバータ回路部4へ出力する。これにより、制御部20は、図6に示す手順に従った動作を終了する。 In step S9, the output frequency calculation unit 15 outputs a pulse signal based on the command value of the output frequency calculated this time to the inverter circuit unit 4. In step S10, the output frequency calculation unit 15 outputs a pulse signal based on the frequency limit value calculated in step S3 or step S5 to the inverter circuit unit 4. As a result, the control unit 20 ends the operation according to the procedure shown in FIG.
 駆動装置5が有する制御部20の機能は、処理回路を用いて実現される。処理回路は、駆動装置5に搭載される専用のハードウェアである。処理回路は、メモリに格納されるプログラムを実行するプロセッサであっても良い。 The function of the control unit 20 included in the driving device 5 is realized by using a processing circuit. The processing circuit is dedicated hardware mounted on the drive device 5. The processing circuit may be a processor that executes a program stored in the memory.
 図7は、図2に示す駆動装置5が有する制御部20の機能が専用のハードウェアを用いて実現される場合のハードウェア構成を示す図である。専用のハードウェアである処理回路41は、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらの組み合わせである。 FIG. 7 is a diagram showing a hardware configuration when the function of the control unit 20 included in the driving device 5 shown in FIG. 2 is realized by using dedicated hardware. The processing circuit 41 that is dedicated hardware is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. It is a combination.
 図8は、図2に示す駆動装置5が有する制御部20の機能がプロセッサ42を用いて実現される場合のハードウェア構成を示す図である。プロセッサ42およびメモリ43は、相互に通信可能に接続されている。プロセッサ42は、メモリ43に格納されるプログラムを実行する。 FIG. 8 is a diagram showing a hardware configuration when the function of the control unit 20 included in the driving device 5 shown in FIG. 2 is realized by using the processor 42. The processor 42 and the memory 43 are communicably connected to each other. The processor 42 executes the program stored in the memory 43.
 プロセッサ42は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)である。制御部20の機能は、プロセッサ42と、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ43に格納される。メモリ43は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の不揮発性もしくは揮発性の半導体メモリ等の内蔵メモリである。 The processor 42 is a CPU (Central Processing Unit), a processing device, a computing device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). The function of the control unit 20 is realized by the processor 42, software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 43. The memory 43 is non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). It is a built-in memory such as a semiconductor memory.
 制御部20の機能の一部が専用のハードウェアにより実現され、制御部20の機能のその他の部分がソフトウェアあるいはファームウェアにより実現されても良い。このように、制御部20の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。 A part of the function of the control unit 20 may be realized by dedicated hardware, and the other part of the function of the control unit 20 may be realized by software or firmware. As described above, the function of the control unit 20 can be realized by hardware, software, firmware, or a combination thereof.
 実施の形態1によると、太陽光発電駆動システム1は、V/F特性およびソーラーパネル2が出力する直流電圧の値を基に出力周波数の制限値を算出し、インバータ出力電力がソーラー出力電力以上かつ制限値が指令値未満である場合に、制限値に基づいた周波数のパルス信号をインバータ回路部4へ出力する。太陽光発電駆動システム1は、V/F特性に基づいた制限値による出力周波数の制限によって、インバータ出力電力をソーラー出力電力未満にさせる調整を可能とし、モータ6の動作不良を低減可能とする。太陽光発電駆動システム1は、モータ6の回転数を反復して変化させてソーラーパネル2の出力電圧を検出するという調整が不要となることで、ソーラー出力電力の制御のための調整に要する時間を短縮することができる。太陽光発電駆動システム1は、あらかじめ設定されたタイミングにおいてモータ6の回転数を反復して変化させる必要がないため、ソーラー出力電力に変化がない場合におけるモータ6の安定した駆動が可能となる。これにより、太陽光発電駆動システム1は、ソーラーパネル2の出力電力を制御するための調整に要する時間を短縮でき、かつ負荷の安定した駆動が可能となるという効果を奏する。 According to the first embodiment, the photovoltaic power generation drive system 1 calculates the limit value of the output frequency based on the V/F characteristic and the value of the DC voltage output by the solar panel 2, and the inverter output power is equal to or higher than the solar output power. When the limit value is less than the command value, a pulse signal having a frequency based on the limit value is output to the inverter circuit unit 4. The photovoltaic power generation drive system 1 makes it possible to adjust the inverter output power to be less than the solar output power by limiting the output frequency by the limit value based on the V/F characteristics, and reduce the malfunction of the motor 6. Since the photovoltaic power generation drive system 1 does not need the adjustment of repeatedly changing the rotation speed of the motor 6 to detect the output voltage of the solar panel 2, the time required for the adjustment for controlling the solar output power. Can be shortened. Since the photovoltaic power generation drive system 1 does not need to repeatedly change the rotation speed of the motor 6 at a preset timing, the motor 6 can be stably driven when the solar output power does not change. As a result, the photovoltaic power generation drive system 1 has an effect that the time required for the adjustment for controlling the output power of the solar panel 2 can be shortened and the load can be stably driven.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with other known techniques, and the configurations of the configurations are not departing from the scope of the present invention. It is also possible to omit or change parts.
 1 太陽光発電駆動システム、2 ソーラーパネル、3 コンデンサ、4 インバータ回路部、5 駆動装置、6 モータ、10 電圧検出部、11 電流検出部、12 異常電圧降下判断部、13 周波数制限値算出部、14 加減速中断判断部、15 出力周波数算出部、20 制御部、41 処理回路、42 プロセッサ、43 メモリ。 1 solar power generation drive system, 2 solar panel, 3 capacitor, 4 inverter circuit section, 5 drive unit, 6 motor, 10 voltage detection section, 11 current detection section, 12 abnormal voltage drop determination section, 13 frequency limit value calculation section, 14 acceleration/deceleration interruption determination unit, 15 output frequency calculation unit, 20 control unit, 41 processing circuit, 42 processor, 43 memory.

Claims (7)

  1.  ソーラーパネルが出力する電力を利用して負荷を駆動する太陽光発電駆動システムであって、
     前記ソーラーパネルが出力する直流電圧をパルス信号に従い交流電圧へ変換して前記交流電圧を出力するインバータ回路部と、
     予め設定された前記交流電圧の周波数―電圧特性および前記ソーラーパネルが出力する直流電圧の値を基に前記交流電圧の周波数である出力周波数の制限値を算出する周波数制限値算出部と、
     出力周波数の指令値を算出し、前記指令値または前記制限値に基づいたパルス信号を前記インバータ回路部へ出力する出力周波数算出部と、
     を備えることを特徴とする太陽光発電駆動システム。
    A solar power generation drive system that drives a load using electric power output from a solar panel,
    An inverter circuit unit that converts the DC voltage output by the solar panel into an AC voltage according to a pulse signal and outputs the AC voltage,
    A frequency limit value calculation unit that calculates a limit value of an output frequency that is the frequency of the AC voltage based on a preset frequency-voltage characteristic of the AC voltage and a value of the DC voltage output by the solar panel,
    An output frequency calculation unit that calculates a command value of the output frequency and outputs a pulse signal based on the command value or the limit value to the inverter circuit unit,
    A photovoltaic power generation drive system comprising:
  2.  前記インバータ回路部の出力電力が前記ソーラーパネルの出力電力以上であって、かつ前記制限値が前記指令値未満である場合に、前記出力周波数算出部は、前記制限値に基づいたパルス信号を出力することを特徴とする請求項1に記載の太陽光発電駆動システム。 When the output power of the inverter circuit unit is equal to or higher than the output power of the solar panel and the limit value is less than the command value, the output frequency calculation unit outputs a pulse signal based on the limit value. The photovoltaic power generation drive system according to claim 1, wherein:
  3.  前記インバータ回路部の出力電力が前記ソーラーパネルの出力電力以上であって、かつ前記制限値が前記指令値以上である場合に、前記出力周波数算出部は、前記指令値に基づいたパルス信号を出力することを特徴とする請求項1または2に記載の太陽光発電駆動システム。 When the output power of the inverter circuit unit is equal to or higher than the output power of the solar panel and the limit value is equal to or higher than the command value, the output frequency calculation unit outputs a pulse signal based on the command value. The solar power generation drive system according to claim 1 or 2 characterized by things.
  4.  前記ソーラーパネルが出力する直流電圧の値の変化に基づいて直流電圧の降下が異常な電圧降下か否かを判断する異常電圧降下判断部を備え、
     前記周波数制限値算出部は、異常な電圧降下との判断があった場合、算出された前記制限値の減算補正を行うことを特徴とする請求項1から3のいずれか1つに記載の太陽光発電駆動システム。
    An abnormal voltage drop determination unit that determines whether or not the DC voltage drop is an abnormal voltage drop based on a change in the value of the DC voltage output by the solar panel,
    The sun according to any one of claims 1 to 3, wherein the frequency limit value calculation unit performs subtraction correction of the calculated limit value when it is determined that there is an abnormal voltage drop. Photovoltaic drive system.
  5.  前記直流電圧をV、前記インバータ回路部の基底周波数をf0、前記インバータ回路部の基底周波数電圧をVf0、前記インバータ回路部の出力開始圧力をV、ならびに前記インバータ回路部の出力開始周波数をfとして、前記周波数制限値算出部は、次の式(1)に基づいて前記制限値であるfL1を算出することを特徴とする請求項1から4のいずれか1つに記載の太陽光発電駆動システム。
    Figure JPOXMLDOC01-appb-M000001
    The DC voltage is V D , the base frequency of the inverter circuit unit is f0, the base frequency voltage of the inverter circuit unit is V f0 , the output start pressure of the inverter circuit unit is V S , and the output start frequency of the inverter circuit unit is The frequency limit value calculation unit calculates f L1 , which is the limit value, based on the following equation (1), where f S is f S. Photovoltaic drive system.
    Figure JPOXMLDOC01-appb-M000001
  6.  前記直流電圧をV、前記インバータ回路部の基底周波数をf0、前記インバータ回路部の基底周波数電圧をVf0、前記インバータ回路部の出力開始圧力をV、ならびに前記インバータ回路部の出力開始周波数をfとして、前記周波数制限値算出部は、次の式(2)に基づいて前記制限値であるfL2を算出することを特徴とする請求項1から4のいずれか1つに記載の太陽光発電駆動システム。
    Figure JPOXMLDOC01-appb-M000002
    The DC voltage is V D , the base frequency of the inverter circuit unit is f0, the base frequency voltage of the inverter circuit unit is V f0 , the output start pressure of the inverter circuit unit is V S , and the output start frequency of the inverter circuit unit is The frequency limit value calculation unit calculates f L2 , which is the limit value, based on the following equation (2), where f S is f S. Photovoltaic drive system.
    Figure JPOXMLDOC01-appb-M000002
  7.  ソーラーパネルが出力する直流電圧をパルス信号に従い交流電圧へ変換して前記交流電圧を出力するインバータ回路部を有し、前記ソーラーパネルが出力する電力を利用して負荷を駆動する太陽光発電駆動システムの制御方法であって、
     予め設定された交流電圧の周波数―電圧特性および前記ソーラーパネルが出力する直流電圧の値を基に前記交流電圧の周波数である出力周波数の制限値を算出する工程と、
     出力周波数の指令値を算出し、前記指令値または前記制限値に基づいたパルス信号を前記インバータ回路部へ出力する工程と、
     を含むことを特徴とする太陽光発電駆動システムの制御方法。
    Photovoltaic power generation drive system having an inverter circuit unit that converts a DC voltage output by a solar panel into an AC voltage according to a pulse signal and outputs the AC voltage, and drives a load by using electric power output by the solar panel Control method of
    A step of calculating a limit value of the output frequency, which is the frequency of the AC voltage, based on the frequency of the preset AC voltage-voltage characteristic and the value of the DC voltage output by the solar panel,
    Calculating a command value of the output frequency, and outputting a pulse signal based on the command value or the limit value to the inverter circuit unit,
    A method for controlling a photovoltaic power generation drive system, comprising:
PCT/JP2019/002305 2019-01-24 2019-01-24 Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system WO2020152830A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980089488.0A CN113302571B (en) 2019-01-24 2019-01-24 Photovoltaic power generation driving system and control method thereof
JP2019536334A JP6615421B1 (en) 2019-01-24 2019-01-24 Photovoltaic power generation drive system and control method for solar power generation drive system
PCT/JP2019/002305 WO2020152830A1 (en) 2019-01-24 2019-01-24 Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002305 WO2020152830A1 (en) 2019-01-24 2019-01-24 Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system

Publications (1)

Publication Number Publication Date
WO2020152830A1 true WO2020152830A1 (en) 2020-07-30

Family

ID=68763443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002305 WO2020152830A1 (en) 2019-01-24 2019-01-24 Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system

Country Status (3)

Country Link
JP (1) JP6615421B1 (en)
CN (1) CN113302571B (en)
WO (1) WO2020152830A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091487A1 (en) * 2013-09-27 2015-04-02 Abb Oy Method and arrangement for operating a pump
JP2018097876A (en) * 2016-12-14 2018-06-21 エルエス産電株式会社Lsis Co., Ltd. Solar pump system and method for controlling solar pump system
JP2018530840A (en) * 2015-10-13 2018-10-18 サンテック ドライブ, エルエルシー Variable speed maximum power point tracking, solar induction electric motor controller, and permanent magnet AC motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1538735A1 (en) * 2002-09-13 2005-06-08 Fuji Electric FA Components & Systems Co., Ltd. Control method of induction motor
KR20090100704A (en) * 2008-03-20 2009-09-24 엘에스산전 주식회사 Inverter for solar power generating system
CN103762937B (en) * 2013-12-31 2017-01-18 深圳易能电气技术股份有限公司 MPPT photovoltaic inverter control system and control method thereof
JP2016119822A (en) * 2014-12-24 2016-06-30 株式会社安川電機 Power conversion device, controller, and method for changing carrier frequency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091487A1 (en) * 2013-09-27 2015-04-02 Abb Oy Method and arrangement for operating a pump
JP2018530840A (en) * 2015-10-13 2018-10-18 サンテック ドライブ, エルエルシー Variable speed maximum power point tracking, solar induction electric motor controller, and permanent magnet AC motor
JP2018097876A (en) * 2016-12-14 2018-06-21 エルエス産電株式会社Lsis Co., Ltd. Solar pump system and method for controlling solar pump system

Also Published As

Publication number Publication date
JPWO2020152830A1 (en) 2021-02-18
JP6615421B1 (en) 2019-12-04
CN113302571B (en) 2022-09-23
CN113302571A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
RU2480889C1 (en) Converter control device
JP4737087B2 (en) Control device for permanent magnet synchronous motor
US9985567B2 (en) Electric motor drive device and control method therefor
KR101010506B1 (en) Inverter control method
JP5211869B2 (en) Electric motor control device, offset determination method, and offset correction method
JP5880420B2 (en) Inverter device
JP4968630B2 (en) Electric vehicle control device
JP2012120409A (en) Motor drive device
US20150200616A1 (en) Motor controller and method for controlling motor
CN110266200B (en) Power conversion device and control method thereof
JP2006141095A (en) Device for controlling drive of permanent magnet type synchronous motor
US9647597B2 (en) Motor control apparatus and method for controlling motor
JP5204463B2 (en) Motor control device
JP6197690B2 (en) Motor control system
CN113574792A (en) Control device of permanent magnet synchronous machine
WO2020152830A1 (en) Photovoltaic power generation drive system and method for controlling photovoltaic power generation drive system
US9641120B2 (en) Motor control apparatus and method for controlling motor
JP2017112694A (en) Motor control device and motor control method
JP2005065349A (en) Synchronous motor controller
KR102216667B1 (en) Apparatus and Method for controlling power source abnormality of motor
JP5166112B2 (en) Inverter controller for motor drive
JP6759830B2 (en) Power converter
JP5734626B2 (en) Power supply and air conditioner
CN108736790B (en) Control device and method for servo motor
JP6708091B2 (en) Failure determination device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536334

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911780

Country of ref document: EP

Kind code of ref document: A1