WO2020105598A1 - Composite carbon particles, method for producing same, and lithium ion secondary battery - Google Patents

Composite carbon particles, method for producing same, and lithium ion secondary battery

Info

Publication number
WO2020105598A1
WO2020105598A1 PCT/JP2019/045131 JP2019045131W WO2020105598A1 WO 2020105598 A1 WO2020105598 A1 WO 2020105598A1 JP 2019045131 W JP2019045131 W JP 2019045131W WO 2020105598 A1 WO2020105598 A1 WO 2020105598A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon particles
mass
composite carbon
less
carboxylic acid
Prior art date
Application number
PCT/JP2019/045131
Other languages
French (fr)
Japanese (ja)
Inventor
鎭碩 白
明央 利根川
敬 茂利
大輔 香野
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020105598A1 publication Critical patent/WO2020105598A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite carbon particle, a method for producing the same, a negative electrode active material containing the particle, a negative electrode containing the negative electrode active material, and a lithium ion secondary battery using the negative electrode.
  • a lithium-ion secondary battery is used as a power source for portable electronic devices.
  • lithium ion batteries had many problems such as insufficient battery capacity and short charge / discharge cycle life.
  • problems have been overcome, and the applications of lithium-ion secondary batteries have changed from low-power devices such as mobile phones, notebook computers and digital cameras to high-power devices that require power such as power tools and electric bicycles.
  • the application is spreading.
  • the lithium-ion secondary battery is particularly expected to be used as a power source for automobiles, and research and development of electrode materials, cell structures, etc. have been actively promoted.
  • Lithium-ion secondary batteries used as power sources for automobiles are required to have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high Coulombic efficiency. On the other hand, various methods have been taken.
  • a carbon material is used as the negative electrode active material of the lithium ion secondary battery. Further, it has been proposed to form a coating layer on the surface in order to repair the surface defects of the carbon material or to impart a characteristic different from that of the carbon material as the core material.
  • Patent Document 1 describes composite carbon particles in which an amorphous carbon layer is formed on the surface using petroleum pitch as a coating material.
  • Patent Document 2 describes composite carbon particles having a pyrolytic carbon layer formed on the surface by a CVD process.
  • Patent Document 3 describes composite carbon particles in which graphene is attached to the surface by using graphene as a coating material.
  • Patent Document 4 describes carbon composite silicon in which a graphene sheet is attached to the surface of silicon.
  • Patent Document 5 describes a method of manufacturing a graphene shell having a graphene film as a shell structure.
  • Non-Patent Document 1 describes multilayer graphene
  • Non-Patent Document 2 describes bilayer graphene
  • Japanese Patent No. 4531174 Japanese Patent No. 5898628 (European Patent No. 2650955) WO2017 / 169882 Japanese Patent Laid-Open No. 2013-60355 (US Pat. No. 9815691) Japanese Patent No. 5749418 (European Patent No. 0973698)
  • the coating layer When forming a carbonaceous coating layer by a CVD process, it is difficult to form a thin and uniform layer on a core material having large irregularities such as carbon particles. To form a uniform layer, the coating layer should be thick or It was necessary to form a buffer layer inside, and as a result, high temperature cycle characteristics and high temperature storage characteristics were insufficient.
  • Patent Document 4 The technique of coating graphene described in Patent Document 4 is to attach a coating layer using an electrophoretic method, and it is not possible to form a graphene layer on the surface of carbon particles.
  • the graphene shell using the graphene film described in Patent Document 5 as a shell is a technique that uses a catalytic metal inside, and the graphene layer cannot be coated on the surface of carbon particles.
  • An object of the present invention is to provide composite carbon particles for a lithium-ion secondary battery, which have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high Coulombic efficiency.
  • the present invention has the following configurations.
  • a composite carbon particle comprising carbon particles (A) and a carbonaceous coating layer (B) coating the surface thereof, wherein the carbonaceous coating layer (B) is a single layer having a thickness of 0.1 nm to 30.0 nm.
  • Composite carbon particles that are graphene or multilayer graphene.
  • the variation coefficient of the R values obtained from the Raman spectra by Raman spectroscopy ratio (ID / IG) of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG) is The composite carbon particle as described in 1 above, which is 0.30 or less.
  • the composite carbon particle according to any one of items 1 to 4 below which is as follows.
  • a method for producing composite carbon particles wherein the carbon particles (A) and a carboxylic acid compound having at least one carboxy group and one hydroxy group are added to the total mass of the carbon particles (A) and the carboxylic acid compound.
  • the carbon particles (A) are mixed in an amount of 80.0% by mass or more and 99.9% by mass or less and the carboxylic acid compound is 0.1% by mass or more and 20.0% by mass or less, and the resulting mixture is heat treated
  • a method for producing composite carbon particles comprising: [15] A method for producing composite carbon particles, comprising: carbon particles (A) and a carboxylic acid compound having two or more carboxy groups, based on the total mass of the carbon particles (A) and the carboxylic acid compound.
  • a method for producing composite carbon particles comprising carbon particles (A), a carboxylic acid compound having one or more carboxy groups and one or more hydroxy groups, and a carboxylic acid compound having two or more carboxy groups.
  • the carbon particles (A) are 80.0 mass% or more and 99.90 mass% or less and the carboxylic acid compound is 0.1 mass% or more and 20.0 mass% or less with respect to the total mass of (A) and the carboxylic acid compound.
  • a method for producing composite carbon particles which comprises:
  • a thin, uniform carbonaceous coating layer is formed on the surface of carbon particles, which has excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high coulombic efficiency. Carbon particles can be provided.
  • the composite carbon particles in one embodiment of the present invention include carbon particles (A) and a carbonaceous coating layer (B) that covers the surface thereof, and the carbon coating layer is single-layer graphene or multilayer graphene. (Hereinafter, it may be simply referred to as a graphene layer.).
  • the carbon particles (A) are not particularly limited, and graphite particles, carbon particles such as soft carbon and hard carbon, graphene, and the like can be used, and a composite material in which a metal, a metal oxide, or an alloy is compounded can also be used. .
  • Examples of the metal include silicon, tin, zinc and the like, and examples of the metal oxide include oxides thereof.
  • the particle shape is not limited, and examples thereof include spherical shape, lump shape, scale shape, and fibrous shape, and the particle shape is preferable.
  • Specific examples of the fibrous material include nanowires, vapor grown carbon fibers and carbon nanotubes. Of these, it is particularly preferable to use graphite particles. Since graphite particles have high crystallinity, they are excellent in discharge capacity, high temperature cycle characteristics, and high temperature storage characteristics.
  • the carbon particles (A) also include those whose surface is partially or wholly coated with amorphous carbon. Among the graphite particles, artificial graphite particles are preferable, and artificial graphite particles having a solid structure are more preferable.
  • the graphene contained in the carbonaceous coating layer (B) is a two-dimensional sheet-like material in which carbon particles are continuous in a honeycomb shape, and is superior in conductivity, chemical stability, and mechanical strength to amorphous carbon. Have strength. By covering the surface of the carbon particles with graphene, it is possible to suppress the volume change of the carbon particles and improve the conductivity, and obtain a negative electrode material for a lithium ion secondary battery having excellent durability and charge / discharge characteristics. ..
  • the graphene is preferably formed as a graphene layer along the surface of the carbon particles (A), and more preferably formed almost entirely or partially along the surface of the carbon particles (A) as a graphene layer. It is more preferable that the graphene layer is formed so as to cover almost the entire surface of the carbon particles (A). Further, it is more preferable that the surface of the carbon particles (A) is directly covered with the single-layer graphene or the multilayer graphene layer. Note that graphene including one layer is referred to as single-layer graphene and graphene including two or more layers is referred to as multilayer graphene, and graphene includes graphene oxide. Graphene having a thickness exceeding 30 nm is graphite and is excluded from the graphene layer forming the carbonaceous coating layer (B).
  • the thickness of the carbonaceous coating layer (B) is 0.1 nm or more. 0.1 nm corresponds to the thickness of a single layer of graphene.
  • the thickness of the carbonaceous coating layer (B) is preferably 1.0 nm or more, and more preferably 2.0 nm or more from the viewpoint of having a certain level of conductivity, chemical stability, and mechanical strength.
  • the carbonaceous coating layer (B) has a thickness of 30.0 nm or less. When the thickness of the carbonaceous coating layer (B) is 30.0 nm or less, the excessive formation of the carbonaceous coating layer (B) is suppressed, and the high temperature storability and the high temperature cycle characteristics can be kept good. From the same viewpoint, 20.0 nm or less is more preferable, 10.0 nm or less is still more preferable, and 5.0 nm or less is most preferable.
  • the thickness of the carbon coating layer (B) is measured by observation with a transmission electron microscope (TEM). From the viewpoint of measurement accuracy, the number of measurement points is preferably 30 or more, more preferably 60 or more. Let the average be the thickness of the carbonaceous coating layer (B). Specifically, it can be measured by the method described in Examples.
  • TEM transmission electron microscope
  • the R value of the composite carbon particles in one embodiment of the present invention is preferably 0.10.
  • the R value is more preferably 0.15 or more and most preferably 0.20 or more.
  • the R value of the composite carbon particles is preferably 0.40 or less. This is because when the R value is 0.40 or less, the crystallinity of the surface is not too low, and good high temperature storage and high temperature cycle characteristics can be maintained. From the same viewpoint, the R value is more preferably 0.35 or less, and further preferably 0.30 or less.
  • the R value means the intensity ratio (ID / IG) of the peak intensity (ID) near 1350 cm ⁇ 1 and the peak intensity (IG) near 1580 cm ⁇ 1 observed by Raman spectroscopy.
  • the state of the surface of the composite carbon particles can be evaluated by the R value. The smaller the R value, the higher the crystallinity of the surface of the composite carbon particles.
  • the variation coefficient of the R value (ID / IG) of the composite carbon particles in one embodiment of the present invention is preferably 0.30 or less.
  • the coefficient of variation of the R value is 0.30 or less, the variation in the coating state is small, so that the effect of reducing the resistance is large, and the high temperature cycle characteristics and the low temperature rate characteristics are improved. From the same viewpoint, the coefficient of variation is more preferably 0.25 or less, still more preferably 0.20 or less.
  • the coefficient of variation of the R value is obtained by measuring the R value at a plurality of points by the microscopic Raman spectroscopy and dividing the standard deviation value by the average value of the R values. The variation of the coating state can be evaluated by obtaining the coefficient of variation.
  • the microscopic Raman spectroscopic measurement method a microscopic laser Raman spectroscope having a high spatial resolution is used and R values are measured at a plurality of points for the same sample. From the viewpoint of measurement accuracy, 50 points or more are preferable, and 100 points or more are more preferable.
  • the measurement is performed by shifting the laser irradiation position after the end of each measurement so that the position is different each time.
  • the spatial resolution is too low (that is, when the irradiation positions overlap too much), variations between particles are difficult to be reflected in the R value, and the accuracy of the evaluation result may be reduced.
  • (Raman R value of composite carbon particles) / (Raman R value of carbon particles (A)) is preferably 1.50 or more.
  • the ratio is more preferably 1.80 or more, and most preferably 2.10 or more.
  • (Raman R value of composite carbon particles) / (Raman R value of carbon particles (A)) is preferably 10.00 or less.
  • the ratio is 10.00 or less, the excessive formation of the carbonaceous coating layer (B) can be suppressed, and thereby the high temperature storability and the high temperature cycle characteristics can be kept good.
  • the ratio is more preferably 6.00 or less and most preferably 4.00 or less.
  • the average interplanar spacing d002 of (002) planes of the composite carbon particles in one embodiment of the present invention is 0.3354 nm or more. This is the theoretical lower limit of graphite.
  • d002 is 0.3370 nm or less. When d002 is 0.3370 nm or less, the discharge capacity becomes large, and a battery satisfying the energy density required for a large battery can be obtained. From the same viewpoint, d002 is preferably 0.3367 nm or less, and more preferably 0.3364 nm or less.
  • the 50% particle diameter (D50) of the composite carbon particles in one embodiment of the present invention is preferably 1.0 ⁇ m or more.
  • D50 is more preferably 3.0 ⁇ m or more, and most preferably 5.0 ⁇ m or more.
  • D50 is preferably 50.0 ⁇ m or less. This is because when D50 is 50.0 ⁇ m or less, the electrical resistance of the electrode is reduced and the rate characteristics are improved. From the same viewpoint, 30.0 ⁇ m or less is more preferable, and 10.0 ⁇ m or less is most preferable.
  • the “50% particle size (D50)” means a particle size that is cumulative 50% in a volume-based particle size distribution obtained by a laser diffraction / scattering method.
  • the 400 times tapping density of the composite carbon particles in one embodiment of the present invention is preferably 0.30 g / cm 3 or more.
  • the tapping density is 0.30 g / cm 3 or more, the electrode density reached during pressing can be made sufficiently high, and a battery with high energy density can be obtained.
  • the tapping density is more preferably 0.40 g / cm 3 or more, most preferably 0.50 g / cm 3 or more.
  • the 400 times tapping density is preferably 1.50 g / cm 3 or less.
  • the tapping density is 1.50 g / cm 3 or less, the contact density between the materials in the obtained electrode can be sufficiently improved, and a battery having high input / output characteristics can be obtained.
  • the tapping density is more preferably 1.20 g / cm 3 or less, 0.90 g / cm 3 or less is most preferred.
  • the BET specific surface area of the composite carbon particles in one embodiment of the present invention is preferably 0.1 m 2 / g or more.
  • BET specific surface area is more preferably equal to or greater than 1.0m 2 / g, 3.0m 2 / g or more is most preferred.
  • the BET specific surface area is preferably 10.0 m 2 / g or less.
  • it When it is 10.0 m 2 / g or less, aggregation is suppressed, so that a slurry is easily prepared, and side reactions when used as a battery are suppressed, and Coulomb efficiency, high-temperature storability and high-temperature cycle characteristics are excellent. From the same viewpoint, it is preferably 8.0 m 2 / g or less, more preferably 5.0 m 2 / g or less.
  • the d002, D50, 400 times tapping density and BET specific surface area described in this specification are measured by the methods described in the examples.
  • a method for producing composite carbon particles in one embodiment of the present invention comprises a mixing step of mixing carbon particles and a carboxylic acid compound to obtain a mixture, and a mixture obtained in the mixing step. And a heat treatment step of heat treatment at 500 ° C. or more and 2000 ° C. or less.
  • the carboxylic acid compound used in one embodiment of the present invention is a compound containing two or more carboxy groups in one molecule (referred to as “polycarboxylic acid compound”), or one carboxylic xyl group and one hydroxy group in one molecule. It is a compound containing the above (referred to as “hydroxycarboxylic acid compound”).
  • polycarboxylic acid compounds include succinic acid (melting point 185 ° C), glutaric acid (95 ° C), maleic acid (131 ° C), phthalic acid (210 ° C), oxaloacetic acid (161 ° C). ) And malonic acid (at the same temperature of 135 ° C.).
  • hydroxycarboxylic acid examples include malic acid (130 ° C.), citric acid (153 ° C.), tartaric acid (168 ° C. (L form), 151 ° C. (meso form), 206 ° C. (racemic form)). , Gallic acid (at the same temperature of 250 ° C.) and salicylic acid (at the same temperature of 159 ° C.).
  • carboxylic acid compound in the heat treatment step described later, dehydration between molecules, a denser network structure is formed, and the carboxylic acid compound can cover the carbon particles more broadly and thinly. it can.
  • carboxylic acid compound may be used alone or in combination of two or more. That is, two or more polycarboxylic acid compounds may be used, two or more hydroxycarboxylic acid compounds may be used, or a polycarboxylic acid compound and a hydroxycarboxylic acid compound may be used in combination. Further, the carboxylic acid compound may be used in combination with a compound containing one carboxy group in one molecule.
  • the melting point of the carboxylic acid compound is preferably 300 ° C or lower. When the melting point is within this range, thermal decomposition of the carboxylic acid compound is small and the coating effect is high. From the same viewpoint, the melting point is more preferably 250 ° C. or lower, further preferably 200 ° C. or lower. The melting point of the carboxylic acid compound is preferably 90 ° C. or higher. When the melting point is in this range, the carboxylic acid compound can be easily handled and the yield after the mixing treatment is high. From the same viewpoint, the melting point is more preferably 110 ° C. or higher, further preferably 130 ° C. or higher.
  • the mixture obtained in the mixing step may contain materials other than carbon particles and a carboxylic acid compound, but the mixture is preferably composed of carbon particles and a carboxylic acid compound. It is preferable to use the carboxylic acid compound in a powder state.
  • the mixing method is preferably dry mixing, and a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and Nauta mixers.
  • the blending amount of the carbon particles (A) and the carboxylic acid compound is such that the carbon particles (A) are 80.0% by mass or more and 99.9% by mass or less, and the carboxylic acid is based on the total mass of the carbon particles (A) and the carboxylic acid compound.
  • the compound content is preferably 0.1% by mass or more and 20.0% by mass or less.
  • the reason why the blending amount of the carboxylic acid compound is 0.1% by mass or more is to sufficiently coat the carbon particles with the carboxylic acid compound. From this viewpoint, the amount of the carboxylic acid compound is more preferably 0.5% by mass or more, and further preferably 1.0% by mass or more.
  • the reason for setting the amount of the carboxylic acid compound to be 20.0% by mass or less is to suppress the formation of an excessive carbonaceous coating layer (B), thereby maintaining good high-temperature storability and high-temperature cycle characteristics.
  • the amount of the carboxylic acid compound is more preferably 15.0% by mass or less, and further preferably 10.0% by mass or less.
  • the heat treatment step of the mixture can be performed using a heat treatment apparatus such as a rotary kiln, a roller hearth kiln, or an electric tubular furnace.
  • a heat treatment apparatus such as a rotary kiln, a roller hearth kiln, or an electric tubular furnace.
  • the heat treatment temperature in the heat treatment step is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, in order to sufficiently promote carbonization, suppress the retention of hydrogen and oxygen, and improve the battery characteristics. Most preferably, the temperature is at least ° C. Further, in order to suppress graphitization and maintain good charge / discharge rate characteristics, the heat treatment temperature is preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and most preferably 1200 ° C. or lower.
  • the treatment time is not particularly limited as long as carbonization has progressed sufficiently, but is preferably 10 minutes or longer, more preferably 30 minutes or longer, and further preferably 50 minutes or longer.
  • the heat treatment step is preferably performed in an inert gas atmosphere.
  • the inert gas for the inert gas atmosphere include argon gas and nitrogen gas.
  • (BET specific surface area of composite carbon particles) / (BET specific surface area of carbon particles (A)) is preferably 0.90 or less.
  • the ratio is more preferably 0.80 or less, and most preferably 0.70 or less.
  • the ratio is preferably 0.30 or more. When the ratio is 0.30 or more, the coating amount does not become excessive and the cycle characteristics and the high temperature storage characteristics are kept good. From the same viewpoint, the ratio is more preferably 0.50 or more, and most preferably 0.60 or more.
  • a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention contains the composite carbon particles.
  • the negative electrode active material is composed of the above composite carbon particles, or further contains another carbon material or a conductivity imparting agent.
  • another carbon material or a conductivity-imparting agent 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass of spherical natural graphite or artificial graphite is mixed with 100 parts by mass of the composite carbon particles. Can be used.
  • By mixing and using another graphite material it is possible to obtain a negative electrode active material that also has the excellent characteristics of other graphite materials while maintaining the excellent characteristics of the composite carbon particles.
  • Such a negative electrode active material can be obtained by mixing the composite carbon particles with another carbon material or the like. Upon mixing, it is possible to appropriately select a mixing material and determine the mixing amount according to required battery characteristics.
  • carbon fiber can be mixed with the negative electrode active material.
  • the blending amount is preferably 0.01 to 20 parts by mass and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • carbon fibers examples include PAN-based carbon fibers, pitch-based carbon fibers, organic carbon fibers such as rayon-based carbon fibers, and vapor grown carbon fibers.
  • PAN-based carbon fibers pitch-based carbon fibers
  • organic carbon fibers such as rayon-based carbon fibers
  • vapor grown carbon fibers having high crystallinity and high thermal conductivity is particularly preferable.
  • the carbon fiber is adhered to the surface of the composite carbon particle, the vapor grown carbon fiber is particularly preferable.
  • a commercially available mixer or stirrer can be used as a device for mixing the composite carbon particles and other materials.
  • mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and Nauta mixers.
  • the electrode paste in one embodiment of the present invention contains the above-mentioned negative electrode active material, a binder and a solvent.
  • the electrode paste is obtained by kneading the negative electrode active material and the binder.
  • a device such as a ribbon mixer, a screw type kneader, a Spartan Luzer, a Loedige mixer, a planetary mixer, a universal mixer or the like can be used.
  • the electrode paste can be formed into a sheet shape, a pellet shape, or the like.
  • a fluorine-based polymer such as polyvinylidene fluoride or polytetrafluoroethylene
  • a rubber-based material such as SBR (styrene butadiene rubber), etc.
  • the amount of the binder used is preferably 1 to 30 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • Solvents used for kneading include those suitable for each binder, such as toluene and N-methylpyrrolidone in the case of fluoropolymers; water and the like in the case of SBR; and dimethylformamide, isopropanol and the like.
  • a binder using water as a solvent it is preferable to use a thickening agent such as carboxymethyl cellulose (CMC) together.
  • CMC carboxymethyl cellulose
  • the negative electrode for a lithium ion secondary battery in one embodiment of the present invention comprises a current collector and a negative electrode active material on the current collector.
  • the negative electrode can be obtained by applying the above-mentioned electrode paste on a current collector, drying and press-molding.
  • the current collector for example, aluminum, nickel, copper, stainless steel foil, mesh, or the like can be used.
  • the applied thickness of the paste is preferably 50 to 200 ⁇ m.
  • the method of applying the paste is not particularly limited, and examples thereof include a method of applying with a doctor blade or a bar coater and thereafter forming with a roll press or the like.
  • Examples of the pressure molding method include a roll pressing method and a press pressing method.
  • the pressure during pressure molding is preferably 1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm 2 .
  • Lithium Ion Secondary Battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte.
  • the lithium ion secondary battery in one embodiment of the present invention comprises the negative electrode as the negative electrode.
  • a lithium-containing transition metal oxide is usually used as the positive electrode active material, and preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
  • An oxide mainly containing one kind of transition metal element and lithium in which a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn,
  • a compound which is an oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and whose molar ratio of lithium to the transition metal is 0.3 to 2.2 is used.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include a nonwoven fabric containing polyolefin such as polyethylene and polypropylene as a main component, a cloth, a microporous film, or a combination thereof.
  • electrolytes inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolyte and the electrolyte that compose the lithium-ion secondary battery in the preferred embodiment of the present invention, but the organic electrolyte is from the viewpoint of electrical conductivity. preferable.
  • the all-solid-state lithium-ion secondary battery has a structure in which the positive electrode and the negative electrode are in contact with the solid electrolyte layer.
  • FIG. 9 is a schematic diagram showing an example of the configuration of the all-solid-state lithium-ion secondary battery 1 according to this embodiment.
  • the all-solid-state lithium-ion secondary battery 1 includes a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
  • the positive electrode 11 has a positive electrode current collector 111 and a positive electrode mixture layer 112.
  • the positive electrode current collector 111 is connected to a positive electrode lead 111a for exchanging electric charges with an external circuit.
  • the positive electrode current collector 111 is preferably a metal foil, and an aluminum foil is preferably used as the metal foil.
  • the positive electrode mixture layer 112 contains a positive electrode active material, and may further contain a solid electrolyte, a conductive additive, a binder, and the like.
  • the positive electrode active material include rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel type active materials such as LiMn 2 O 4.
  • rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel type active materials such as LiMn 2 O 4.
  • LiFePO 4, LiMnPO 4, LiNiPO 4 , LiCuPO 4 olivine active material such as, sulfide Monokatsu substance such Li 2 S and the like.
  • these active materials may be coated with LTO (Lithium Tin Oxide), carbon or the like.
  • the content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
  • the content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and more preferably 125 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
  • the conduction aid it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid.
  • a particulate carbonaceous conductive aid Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), graphene Particulate carbon such as can be used.
  • vapor phase carbon fibers VGCF (registered trademark), VGCF (registered trademark) -H (manufactured by Showa Denko KK)
  • carbon nanotubes carbon nanohorns and the like
  • VGCF registered trademark
  • Vapor grown carbon fiber VGCF (registered trademark) -H" (manufactured by Showa Denko KK) is most preferable because it has excellent cycle characteristics.
  • the content of the conductive additive in the positive electrode mixture layer 112 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the positive electrode active material.
  • the content of the conductive additive in the positive electrode mixture layer 112 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, carboxymethyl cellulose and the like.
  • the content of the binder with respect to 100 parts by mass of the positive electrode active material is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 7 parts by mass or less.
  • the solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13, and serves as a medium for moving lithium ions between the positive electrode layer 11 and the negative electrode layer 13.
  • the solid electrolyte layer 12 preferably contains at least one selected from the group consisting of a sulfide solid electrolyte and an oxide solid electrolyte, and more preferably contains a sulfide solid electrolyte.
  • sulfide solid electrolyte examples include sulfide glass, sulfide glass ceramics, Thio-LISICON type sulfide, and the like. More specifically, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S—P 2 S 5 —Z
  • the sulfide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
  • oxide solid electrolyte examples include perovskite, garnet, and LISICON type oxide. More specifically, for example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3. N 0.46 (LIPON), Li 3.6 Si 0.6 P 0.4 O 4, Li 1.07 Al 0.69 Ti 1.46 (PO 4) 3, Li 1.5 Al 0.5 Ge 1.5 (PO 4) may be mentioned 3 or the like.
  • the oxide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
  • the negative electrode layer 13 includes a negative electrode current collector 131 and a negative electrode mixture layer 132.
  • the negative electrode current collector 131 is connected to a negative electrode lead 131a for exchanging charges with an external circuit.
  • the negative electrode current collector 131 is preferably a metal foil, and a stainless foil, a copper foil, or an aluminum foil is preferably used as the metal foil.
  • the surface of the current collector may be coated with carbon or the like.
  • the negative electrode mixture layer 132 contains a negative electrode active material, and may also contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like.
  • the composite carbon particles are used as the negative electrode active material.
  • the materials described in the solid electrolyte layer 12 may be used, but the solid electrolyte included in the solid electrolyte layer 12 or the positive electrode mixture layer may be included.
  • a material different from the existing solid electrolyte may be used.
  • the content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
  • the content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
  • the conductive auxiliary agent that may be contained in the negative electrode mixture layer 132 the conductive auxiliary agents mentioned in the description of the positive electrode mixture layer 112 can be used. Different materials may be used.
  • the content of the conductive additive in the negative electrode mixture layer 132 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the negative electrode active material.
  • the content of the conductive additive in the negative electrode mixture layer 132 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
  • the binder for example, the materials mentioned in the description of the positive electrode mixture layer 112 can be used, but the binder is not limited thereto.
  • the content of the binder with respect to 100 parts by mass of the negative electrode active material is preferably 0.3 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass or more and 5 parts by mass or less. More preferable.
  • R value and coefficient of variation of R value JASCO Corporation NRS-5100 was used as a microscopic laser Raman spectroscope, and measurement was performed at an excitation wavelength of 532.36 nm.
  • the R value (ID / IG) is defined as the ratio of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 in the Raman spectrum.
  • Microscopic laser Raman spectroscopic imaging was performed on the composite carbon particles in the following region.
  • Measurement point 22 ⁇ 28 places Measurement step: 0.32 ⁇ m Measurement area: 7.0 ⁇ 9.0 ⁇ m
  • 100 points were randomly extracted from the region corresponding to the carbon particles, and the standard deviation of the obtained R value was divided by the average value of the R values to obtain the coefficient of variation. Moreover, the average value of the R values was taken as the R value of the composite carbon particles.
  • This measurement was performed on three arbitrarily selected carbon particles, data of 30 points in total were obtained, and the average thereof was used as the thickness of the coating layer. Further, the layer structure such as the graphene layer and the amorphous carbon layer was determined by evaluating the FFT (Fast Fourier Transform) pattern.
  • FFT Fast Fourier Transform
  • Electrode Paste 96.5 g of carbon particles obtained in each of Examples and Comparative Examples described later and 0.5 g of carbon black (manufactured by TIMCAL, C65) as a conduction aid.
  • An aqueous solution in which 1.5 g of carboxymethyl cellulose (CMC) as a thickener and 8 to 12 g of water are appropriately added to adjust the viscosity, and fine particles of an aqueous binder (Polysol (registered trademark) manufactured by Showa Denko KK) are dispersed. 5 g was added and stirred and mixed to prepare a slurry-like dispersion having sufficient fluidity, which was used as an electrode paste.
  • CMC carboxymethyl cellulose
  • Polysol registered trademark
  • This positive electrode slurry was applied on an aluminum foil having a thickness of 20 ⁇ m by a roll coater so as to have a uniform thickness, dried and then roll-pressed, and punched out so that the applied portion was 4.2 ⁇ 4.2 cm 2 .
  • a positive electrode was obtained.
  • the thickness of the active material layer after pressing is 65 ⁇ m.
  • [2-6] Battery assembly (bipolar cell) An ultrasonic welding machine was used to attach a nickel tab to the copper foil portion of the negative electrode 1 and an aluminum tab to the aluminum foil portion of the positive electrode. A negative electrode 1 and a positive electrode are laminated so as to face each other via a polypropylene film microporous film, packed with an aluminum laminate film, and after pouring an electrolyte solution, the opening is sealed by heat fusion to form a bipolar cell. It was made.
  • Counter electrode lithium cell half cell
  • a separator polypropylene microporous film (Cell Guard 2400)
  • Cell Guard 2400 polypropylene microporous film
  • High temperature storage / recovery characteristics measurement test Using a bipolar cell, the test was carried out in a constant temperature bath set at 25 ° C. for both charging and discharging. The cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V, and then at a constant voltage of 4 V with a cutoff current value of 0.34 mA. The charged cell was allowed to stand in a constant temperature bath set at 60 ° C. for 4 weeks and then discharged at a constant current of 0.2 C at a lower limit voltage of 2 V to measure the discharge capacity. This discharge capacity was defined as the high temperature storage capacity (f). The high temperature storage capacity (f) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 ⁇ (f) / (c) was taken as the value of the high temperature retention characteristic.
  • the cell After measuring the storage capacity, the cell was charged with a constant current of 0.2 C with an upper limit voltage of 4 V and then with a cut-off current value of 0.34 mA. Then, constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C, and the discharge capacity was measured. This discharge capacity was defined as the high temperature recovery capacity (g).
  • the high temperature recovery capacity (g) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 ⁇ (g) / (c) was taken as the value of the high temperature recovery characteristic.
  • the temperature inside the constant temperature bath was returned to 25 ° C, and constant current discharge was performed at a lower limit voltage of 2V and 0.2C.
  • the cell was subjected to constant current charging at 1 C with an upper limit voltage of 4 V in a constant temperature bath set at ⁇ 20 ° C., and then constant voltage charging at 4 V with a cut-off current value of 0.34 mA to measure the charge capacity.
  • This charge capacity was defined as the low temperature charge capacity (i).
  • the low temperature charge capacity (i) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 ⁇ (i) / (c) was taken as the value of the low temperature charge rate characteristic.
  • Raw materials for carbonaceous coating layer Materials shown in Tables 1 and 2.
  • Examples 1 to 24, Comparative Examples 1 to 23 In each Example and each Comparative Example, the raw materials and proportions shown in Tables 1 and 2 were put into a V-type mixer (VM-10, manufactured by Dalton Co., Ltd.), and dry mixing was performed at room temperature for 10 minutes. The mixture was heat-treated under an atmosphere of nitrogen gas at a temperature shown in Tables 1 and 2 in an electric tubular furnace for 1 hour to obtain composite carbon particles or carbon particles.
  • “none” in the heat treatment step column means that the corresponding heat treatment step has not been performed. Various physical properties of the obtained carbon particles were measured. Further, a battery was produced using the obtained carbon particles and evaluated. The results are shown in Tables 1 to 4.
  • Comparative Examples 24-26 Nitrogen gas containing 0.05 g / L of benzene was introduced into a fluidized reactor at 1 L / min, and carbon particles (A) were in a fluidized state at 900 ° C. for a time shown in Table 2 by chemical vapor deposition (Chemical Vapor Deposition: CVD). ) Treated. The amount of benzene used in the CVD process was 1 to 5 mass%. Various physical properties of the obtained carbon particles were measured in the same manner as in Examples to prepare a battery. The results are shown in Tables 2 and 4. The R value imaging result of the carbon particles obtained in Comparative Example 26 is shown in FIG.
  • the graphene layer is thinly and uniformly formed on the surface of the carbon particles, and all the evaluation results of each battery are improved.
  • the composite carbon particles having the amorphous carbonaceous layer formed on the surface of the carbon particles have lower DC-IR, better initial Coulombic efficiency, and lower temperature rate characteristics than the carbon particles having no carbonaceous layer formed on the surface.
  • the battery characteristics at high temperature are deteriorated (Comparative Examples 3 to 5 and Comparative Examples 12 to 17).
  • the coefficient of variation of the R value is large, the coating is non-uniform, and the effect of coating is not sufficiently obtained.

Abstract

The present invention provides composite carbon particles, each of which comprises a carbon particle (A) and a carbonaceous cover layer (B) that covers the surface of the carbon particle (A), and which is configured such that the carbonaceous cover layer (B) is composed of single-walled graphene or multi-walled graphene having a thickness of from 0.1 nm to 30.0 nm (inclusive). The R value of the particles is preferably 0.10-0.40; and the variation coefficient of the R value is preferably 0.30 or less. The composite carbon particles according to the present invention enable the achievement of a lithium ion secondary battery which is excellent in terms of low-temperature charge and discharge rate characteristics, high-temperature storage characteristics and high-temperature cycle characteristics, while having low internal resistance and high coulombic efficiency.

Description

複合炭素粒子、その製造方法及びリチウムイオン二次電池COMPOSITE CARBON PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
 本発明は、複合炭素粒子、その製造方法、前記粒子を含む負極活物質、その負極活物質を含む負極、及びその負極を用いたリチウムイオン二次電池に関する。 The present invention relates to a composite carbon particle, a method for producing the same, a negative electrode active material containing the particle, a negative electrode containing the negative electrode active material, and a lithium ion secondary battery using the negative electrode.
 携帯電子機器などの電源としてリチウムイオン二次電池が使用されている。リチウムイオン電池は、当初、電池容量の不足、充放電サイクル寿命が短いなど多くの課題があった。現在ではそのような課題が克服され、リチウムイオン二次電池の用途は携帯電話、ノートブック型パソコン、デジタルカメラなどの弱電機器から、電動工具、電動自転車などのパワーを必要とする強電機器にも適用が広がってきている。さらに、リチウムイオン二次電池は、自動車の動力源への利用が特に期待されており、電極材料、セル構造などの研究開発が盛んにすすめられている。 A lithium-ion secondary battery is used as a power source for portable electronic devices. Initially, lithium ion batteries had many problems such as insufficient battery capacity and short charge / discharge cycle life. Nowadays, such problems have been overcome, and the applications of lithium-ion secondary batteries have changed from low-power devices such as mobile phones, notebook computers and digital cameras to high-power devices that require power such as power tools and electric bicycles. The application is spreading. Further, the lithium-ion secondary battery is particularly expected to be used as a power source for automobiles, and research and development of electrode materials, cell structures, etc. have been actively promoted.
 自動車の電源として用いられるリチウムイオン二次電池は、低温充放電レート特性、高温保存特性、高温サイクル特性に優れること、及び内部抵抗が低く、高いクーロン効率を有することが求められ、それぞれの課題に対し様々な手法が講じられている。 Lithium-ion secondary batteries used as power sources for automobiles are required to have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high Coulombic efficiency. On the other hand, various methods have been taken.
 リチウムイオン二次電池の負極活物質としては炭素材料が使用される。また、炭素材料の表面欠陥の修復するため、あるいは心材となる炭素材料とは異なる特性を付与するために表面に被覆層を形成することが提案されている。 A carbon material is used as the negative electrode active material of the lithium ion secondary battery. Further, it has been proposed to form a coating layer on the surface in order to repair the surface defects of the carbon material or to impart a characteristic different from that of the carbon material as the core material.
 特許文献1には被覆材として石油系ピッチを用いて表面にアモルファス炭素層を形成した複合炭素粒子が記載されている。 Patent Document 1 describes composite carbon particles in which an amorphous carbon layer is formed on the surface using petroleum pitch as a coating material.
 特許文献2はCVD処理により表面に熱分解炭素層を形成した複合炭素粒子が記載されている。 Patent Document 2 describes composite carbon particles having a pyrolytic carbon layer formed on the surface by a CVD process.
 特許文献3は被覆材としてグラフェンを用いて表面にグラフェン付着させた複合炭素粒子が記載されている。 Patent Document 3 describes composite carbon particles in which graphene is attached to the surface by using graphene as a coating material.
 特許文献4はシリコン表面にグラフェンシートを付着させた炭素複合シリコンが記載されている。 Patent Document 4 describes carbon composite silicon in which a graphene sheet is attached to the surface of silicon.
 特許文献5はグラフェン膜をシェル構造としたグラフェンシェルの製造方法が記載されている。 Patent Document 5 describes a method of manufacturing a graphene shell having a graphene film as a shell structure.
 非特許文献1には多層グラフェンが記載され、非特許文献2には2層グラフェンが記載されている。 Non-Patent Document 1 describes multilayer graphene, and Non-Patent Document 2 describes bilayer graphene.
特許第4531174号公報Japanese Patent No. 4531174 特許第5898628号公報(欧州特許第2650955号)Japanese Patent No. 5898628 (European Patent No. 2650955) WO2017/168982号WO2017 / 169882 特開2013-60355号公報(米国特許第9815691号)Japanese Patent Laid-Open No. 2013-60355 (US Pat. No. 9815691) 特許第5749418号公報(欧州特許第0973698号)Japanese Patent No. 5749418 (European Patent No. 0973698)
 ピッチを用いて被覆層を形成する従来の技術では、炭素粒子の表面にアモルファス炭素層を形成した複合炭素粒子を作製することができる。しかし、アモルファス炭素層は高温特性が不十分であり、またアモルファス炭素層の厚みを均一に制御することが難しく、そのため電子伝導性も不均一となるため、内部抵抗が高く、レート特性も不十分であった。 With the conventional technology of forming a coating layer using pitch, it is possible to produce composite carbon particles in which an amorphous carbon layer is formed on the surface of carbon particles. However, the high temperature characteristics of the amorphous carbon layer are insufficient, and it is difficult to control the thickness of the amorphous carbon layer uniformly. Therefore, the electronic conductivity becomes non-uniform, so that the internal resistance is high and the rate characteristics are insufficient. Met.
 CVD処理により炭素性被覆層を形成する場合、炭素粒子のような凹凸の大きい心材に対して薄く均一な層を形成することは難しく、均一な層を形成するには被覆層を厚くするか、内部に緩衝層を形成する必要があり、その結果高温サイクル特性や高温保存特性や不十分であった。 When forming a carbonaceous coating layer by a CVD process, it is difficult to form a thin and uniform layer on a core material having large irregularities such as carbon particles. To form a uniform layer, the coating layer should be thick or It was necessary to form a buffer layer inside, and as a result, high temperature cycle characteristics and high temperature storage characteristics were insufficient.
 特許文献3に記載のグラフェンを被覆させる技術では、心材とグラフェンの結着にアモルファス炭素が用いられ、高温特性が不十分である。 In the technique of coating graphene described in Patent Document 3, amorphous carbon is used for binding the core material and graphene, and the high temperature characteristics are insufficient.
 特許文献4に記載のグラフェンを被覆させる技術は電気泳動法を用いて被覆層を付着させるものであり、炭素粒子表面にグラフェン層を形成することはできない。 The technique of coating graphene described in Patent Document 4 is to attach a coating layer using an electrophoretic method, and it is not possible to form a graphene layer on the surface of carbon particles.
 特許文献5に記載のグラフェン膜をシェルとしたグラフェンシェルは内部に触媒金属を用いる技術であり、炭素粒子表面にグラフェン層を被覆することはできない。 The graphene shell using the graphene film described in Patent Document 5 as a shell is a technique that uses a catalytic metal inside, and the graphene layer cannot be coated on the surface of carbon particles.
 本発明の課題は、低温充放電レート特性、高温保存特性、高温サイクル特性に優れ、内部抵抗が低く、高クーロン効率を有するリチウムイオン二次電池のための複合炭素粒子を提供することにある。 An object of the present invention is to provide composite carbon particles for a lithium-ion secondary battery, which have excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high Coulombic efficiency.
 本発明は以下の構成からなる。
[1]炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含む複合炭素粒子であって、前記炭素性被覆層(B)が0.1nm以上30.0nm以下の単層グラフェンまたは多層グラフェンである複合炭素粒子。
[2]顕微ラマン分光分析法によるラマンスペクトルから得られるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))の変動係数が0.30以下である前項1に記載の複合炭素粒子。
[3]ラマン分光分析法によって測定されるR値が0.10以上0.40以下である前項1または前項2に記載の複合炭素粒子。
[4]X線回折法で測定される(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下である前項1~3のいずれか1項に記載の複合炭素粒子。
[5]レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1.0μm以上30.0μm以下であり、400回タッピング密度が0.30g/cm3以上1.50g/cm3以下である前項1~4のいずれか1項に記載の複合炭素粒子。
[6]BET比表面積が1.0m2/g以上10.0m2/g以下である前項1~5のいずれか1項に記載の複合炭素粒子。
[7]前記炭素粒子(A)が、黒鉛粒子である前項1~6のいずれか1項に記載の複合炭素粒子。
[8](複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)が0.30以上0.90以下である前項1~7のいずれか1項に記載の複合炭素粒子。
[9](複合炭素粒子のラマンR値)/(炭素粒子(A)のラマンR値)が1.50以上10.00以下である前項1~8のいずれか1項に記載の複合炭素粒子。
[10]前項1~9のいずれか1項に記載の複合炭素粒子を含む負極活物質。
[11]前項11に記載の負極活物質と集電体を含む負極。
[12]前項11に記載の負極を用いたリチウムイオン二次電池。
[13]前項11に記載の負極を用いた全固体型リチウムイオン二次電池。
[14]複合炭素粒子の製造方法であって、炭素粒子(A)と、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.9質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。
[15]複合炭素粒子の製造方法であって、炭素粒子(A)と、カルボキシ基を2個以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.9質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。
[16]複合炭素粒子の製造方法であって、炭素粒子(A)とカルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するカルボン酸化合物と、カルボキシ基を2個以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.90質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。
The present invention has the following configurations.
[1] A composite carbon particle comprising carbon particles (A) and a carbonaceous coating layer (B) coating the surface thereof, wherein the carbonaceous coating layer (B) is a single layer having a thickness of 0.1 nm to 30.0 nm. Composite carbon particles that are graphene or multilayer graphene.
[2] The variation coefficient of the R values obtained from the Raman spectra by Raman spectroscopy (ratio (ID / IG) of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG)) is The composite carbon particle as described in 1 above, which is 0.30 or less.
[3] The composite carbon particles as described in 1 or 2 above, wherein the R value measured by Raman spectroscopy is 0.10 or more and 0.40 or less.
[4] The composite carbon particles as described in any one of the above items 1 to 3, wherein an average interplanar spacing d002 of (002) planes measured by an X-ray diffraction method is 0.3354 nm or more and 0.3370 nm or less.
[5] The 50% particle diameter (D50) in the volume-based cumulative particle size distribution measured by the laser diffraction method is 1.0 μm or more and 30.0 μm or less, and the 400 times tapping density is 0.30 g / cm 3 or more and 1.50 g / cm 3 5. The composite carbon particle according to any one of items 1 to 4 below, which is as follows.
[6] The composite carbon particles as described in any one of the above items 1 to 5, which has a BET specific surface area of 1.0 m 2 / g or more and 10.0 m 2 / g or less.
[7] The composite carbon particles as described in any one of the above items 1 to 6, wherein the carbon particles (A) are graphite particles.
[8] The composite carbon particles as described in any one of 1 to 7 above, wherein (BET specific surface area of composite carbon particles) / (BET specific surface area of carbon particles (A)) is 0.30 or more and 0.90 or less. ..
[9] The composite carbon particles as described in any one of 1 to 8 above, wherein (Raman R value of composite carbon particles) / (Raman R value of carbon particles (A)) is 1.50 or more and 10.00 or less. ..
[10] A negative electrode active material containing the composite carbon particles according to any one of items 1 to 9 above.
[11] A negative electrode including the negative electrode active material and the current collector described in the above item 11.
[12] A lithium ion secondary battery using the negative electrode described in 11 above.
[13] An all-solid-state lithium ion secondary battery using the negative electrode described in 11 above.
[14] A method for producing composite carbon particles, wherein the carbon particles (A) and a carboxylic acid compound having at least one carboxy group and one hydroxy group are added to the total mass of the carbon particles (A) and the carboxylic acid compound. On the other hand, the carbon particles (A) are mixed in an amount of 80.0% by mass or more and 99.9% by mass or less and the carboxylic acid compound is 0.1% by mass or more and 20.0% by mass or less, and the resulting mixture is heat treated A method for producing composite carbon particles, comprising:
[15] A method for producing composite carbon particles, comprising: carbon particles (A) and a carboxylic acid compound having two or more carboxy groups, based on the total mass of the carbon particles (A) and the carboxylic acid compound. (A) is mixed so that 80.0 mass% or more and 99.9 mass% or less and a carboxylic acid compound is 0.1 mass% or more and 20.0 mass% or less, and the obtained mixture is heat-treated. And a method for producing composite carbon particles.
[16] A method for producing composite carbon particles, comprising carbon particles (A), a carboxylic acid compound having one or more carboxy groups and one or more hydroxy groups, and a carboxylic acid compound having two or more carboxy groups. The carbon particles (A) are 80.0 mass% or more and 99.90 mass% or less and the carboxylic acid compound is 0.1 mass% or more and 20.0 mass% or less with respect to the total mass of (A) and the carboxylic acid compound. A method for producing composite carbon particles, which comprises:
 本発明によれば、炭素粒子の表面に薄く、均一な炭素性被覆層が形成され、低温充放電レート特性、高温保存特性、高温サイクル特性に優れ、内部抵抗が低く、高クーロン効率を有する複合炭素粒子を提供することができる。 According to the present invention, a thin, uniform carbonaceous coating layer is formed on the surface of carbon particles, which has excellent low-temperature charge / discharge rate characteristics, high-temperature storage characteristics, high-temperature cycle characteristics, low internal resistance, and high coulombic efficiency. Carbon particles can be provided.
実施例1で製造された複合炭素粒子の透過型電子顕微鏡写真である。1 is a transmission electron micrograph of the composite carbon particles produced in Example 1. 実施例5で製造された複合炭素粒子の透過型電子顕微鏡写真である。6 is a transmission electron micrograph of the composite carbon particles produced in Example 5. 比較例3で製造された複合炭素粒子の透過型電子顕微鏡写真である。5 is a transmission electron micrograph of the composite carbon particles produced in Comparative Example 3. 比較例13で製造された複合炭素粒子の透過型電子顕微鏡写真である。13 is a transmission electron micrograph of the composite carbon particles produced in Comparative Example 13. 実施例5で製造された複合炭素粒子のR値イメージング結果である。9 is an R value imaging result of the composite carbon particles manufactured in Example 5. 比較例1で製造された炭素粒子のR値イメージング結果である。5 is an R value imaging result of the carbon particles manufactured in Comparative Example 1. 比較例3で製造された複合炭素粒子のR値イメージング結果である。5 is an R value imaging result of the composite carbon particles manufactured in Comparative Example 3. 比較例26で製造された複合炭素粒子のR値イメージング結果である。9 is an R value imaging result of the composite carbon particles produced in Comparative Example 26. 本発明の一実施形態に係る全固体型リチウムイオン電池1の構成の一例を示す概略図である。It is a schematic diagram showing an example of composition of all-solid-state type lithium ion battery 1 concerning one embodiment of the present invention.
 以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[1]複合炭素粒子
 本発明の一実施態様における複合炭素粒子は、炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含み、前記炭素被覆層が単層グラフェンまたは多層グラフェン(以下、単にグラフェン層と称することがある。)である。
 炭素粒子(A)は特に限定されず、黒鉛粒子やソフトカーボン、ハードカーボン等の炭素粒子、グラフェン等が利用でき、これらに金属や金属酸化物、合金を複合させた複合材料も用いることができる。金属としては例えばシリコン、すず、亜鉛等が挙げられ、金属酸化物としてはそれらの酸化物などが挙げられる。粒子形状は限定されず、球状、塊状、鱗片状、繊維状等が挙げられるが、粒子状が好ましい。繊維状のものとして具体的には、ナノワイヤー、気相法炭素繊維やカーボンナノチューブ等が挙げられる。これらの中で特に黒鉛粒子を用いることが好ましい。黒鉛粒子は結晶性が高いことから、放電容量、高温サイクル特性、高温保存特性に優れる。炭素粒子(A)には、その表面の一部または全部がアモルファス炭素によりコーティングされているものも含む。
 黒鉛粒子の中でも人造黒鉛粒子が好ましく、中実構造の人造黒鉛粒子がさらに好ましい。内部が中実構造であると、充放電に伴う膨張収縮の繰り返しによっても粒子内剥離がほとんど起きず、高温サイクル特性、高温保存特性が優れる。
 前記炭素性被覆層(B)に含まれるグラフェンは炭素粒子がハニカム状に連続している2次元のシート状物質であり、アモルファス炭素よりも優れた導電性、化学的安定性、及び高い機械的強度を有する。グラフェンによって炭素粒子の表面が被覆されることにより、炭素粒子の体積変化を抑えて導電性を改善することができ、耐久性及び充放電特性の優れたリチウムイオン二次電池用負極材が得られる。グラフェンは、炭素粒子(A)の表面に沿ってグラフェン層として形成されていることが好ましく、炭素粒子(A)の表面に沿ってほぼ全面または一部にグラフェン層として形成されていることがより好ましく、炭素粒子(A)の表面に沿ってほぼ全面を被覆するグラフェン層として形成されていることがさらに好ましい。また、炭素粒子(A)の表面を単層グラフェンまたは多層グラフェン層が直接覆っていることがさらに好ましい。なお、1層からなるグラフェンを単層グラフェン、2層以上からなるグラフェンを多層グラフェンと呼び、グラフェンには酸化グラフェンも含まれる。厚さが30nmを超えるグラフェンはグラファイト(黒鉛)とし、炭素性被覆層(B)を形成するグラフェン層からは除外する。
[1] Composite Carbon Particles The composite carbon particles in one embodiment of the present invention include carbon particles (A) and a carbonaceous coating layer (B) that covers the surface thereof, and the carbon coating layer is single-layer graphene or multilayer graphene. (Hereinafter, it may be simply referred to as a graphene layer.).
The carbon particles (A) are not particularly limited, and graphite particles, carbon particles such as soft carbon and hard carbon, graphene, and the like can be used, and a composite material in which a metal, a metal oxide, or an alloy is compounded can also be used. .. Examples of the metal include silicon, tin, zinc and the like, and examples of the metal oxide include oxides thereof. The particle shape is not limited, and examples thereof include spherical shape, lump shape, scale shape, and fibrous shape, and the particle shape is preferable. Specific examples of the fibrous material include nanowires, vapor grown carbon fibers and carbon nanotubes. Of these, it is particularly preferable to use graphite particles. Since graphite particles have high crystallinity, they are excellent in discharge capacity, high temperature cycle characteristics, and high temperature storage characteristics. The carbon particles (A) also include those whose surface is partially or wholly coated with amorphous carbon.
Among the graphite particles, artificial graphite particles are preferable, and artificial graphite particles having a solid structure are more preferable. When the inside has a solid structure, intra-particle peeling hardly occurs even after repeated expansion and contraction due to charge and discharge, and high temperature cycle characteristics and high temperature storage characteristics are excellent.
The graphene contained in the carbonaceous coating layer (B) is a two-dimensional sheet-like material in which carbon particles are continuous in a honeycomb shape, and is superior in conductivity, chemical stability, and mechanical strength to amorphous carbon. Have strength. By covering the surface of the carbon particles with graphene, it is possible to suppress the volume change of the carbon particles and improve the conductivity, and obtain a negative electrode material for a lithium ion secondary battery having excellent durability and charge / discharge characteristics. .. The graphene is preferably formed as a graphene layer along the surface of the carbon particles (A), and more preferably formed almost entirely or partially along the surface of the carbon particles (A) as a graphene layer. It is more preferable that the graphene layer is formed so as to cover almost the entire surface of the carbon particles (A). Further, it is more preferable that the surface of the carbon particles (A) is directly covered with the single-layer graphene or the multilayer graphene layer. Note that graphene including one layer is referred to as single-layer graphene and graphene including two or more layers is referred to as multilayer graphene, and graphene includes graphene oxide. Graphene having a thickness exceeding 30 nm is graphite and is excluded from the graphene layer forming the carbonaceous coating layer (B).
 前記炭素性被覆層(B)の厚さは0.1nm以上である。0.1nmはグラフェンの単層の厚さに相当する。一定以上の導電性、化学的安定性、機械的強度を備える観点から炭素性被覆層(B)の厚さは1.0nm以上であることが好ましく、2.0nm以上がさらに好ましい。炭素性被覆層(B)の厚さは30.0nm以下である。炭素性被覆層(B)の厚さが30.0nm以下であると、過剰な炭素性被覆層(B)の形成が抑制され高温保存性や高温サイクル特性を良好に保つことができる。同様の観点から20.0nm以下がより好ましく、10.0nm以下がさらに好ましく、5.0nm以下が最も好ましい。 The thickness of the carbonaceous coating layer (B) is 0.1 nm or more. 0.1 nm corresponds to the thickness of a single layer of graphene. The thickness of the carbonaceous coating layer (B) is preferably 1.0 nm or more, and more preferably 2.0 nm or more from the viewpoint of having a certain level of conductivity, chemical stability, and mechanical strength. The carbonaceous coating layer (B) has a thickness of 30.0 nm or less. When the thickness of the carbonaceous coating layer (B) is 30.0 nm or less, the excessive formation of the carbonaceous coating layer (B) is suppressed, and the high temperature storability and the high temperature cycle characteristics can be kept good. From the same viewpoint, 20.0 nm or less is more preferable, 10.0 nm or less is still more preferable, and 5.0 nm or less is most preferable.
 炭素性被覆層(B)の厚さは、透過型電子顕微鏡(TEM)観察により測定する。測定精度の観点から測定箇所は30点以上が好ましく、60点以上がより好ましい。その平均を炭素性被覆層(B)の厚さとする。具体的には、実施例に記載の方法により測定することができる。 The thickness of the carbon coating layer (B) is measured by observation with a transmission electron microscope (TEM). From the viewpoint of measurement accuracy, the number of measurement points is preferably 30 or more, more preferably 60 or more. Let the average be the thickness of the carbonaceous coating layer (B). Specifically, it can be measured by the method described in Examples.
 本発明の一実施態様における複合炭素粒子のR値は0.10以上が好ましい。R値が0.10以上であると、複合炭素粒子の表面における電気抵抗が下がり、低温充放電特性が良好なリチウムイオン二次電池が得られる。同様の観点から、R値は0.15以上がより好ましく、0.20以上が最も好ましい。複合炭素粒子のR値は0.40以下が好ましい。R値が0.40以下であると、表面の結晶化度が低すぎないことから、良好な高温保存、高温サイクル特性を維持できるためである。同様の観点から、R値は0.35以下がより好ましく、0.30以下がさらに好ましい。
 R値とは、ラマン分光測定で観測される1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の強度比(ID/IG)を意味する。R値により複合炭素粒子表面の状態を評価することができる。R値が小さい程、複合炭素粒子の表面の結晶化度が高いことを示す。
The R value of the composite carbon particles in one embodiment of the present invention is preferably 0.10. When the R value is 0.10 or more, the electric resistance on the surface of the composite carbon particles is reduced, and a lithium ion secondary battery having good low temperature charge / discharge characteristics can be obtained. From the same viewpoint, the R value is more preferably 0.15 or more and most preferably 0.20 or more. The R value of the composite carbon particles is preferably 0.40 or less. This is because when the R value is 0.40 or less, the crystallinity of the surface is not too low, and good high temperature storage and high temperature cycle characteristics can be maintained. From the same viewpoint, the R value is more preferably 0.35 or less, and further preferably 0.30 or less.
The R value means the intensity ratio (ID / IG) of the peak intensity (ID) near 1350 cm −1 and the peak intensity (IG) near 1580 cm −1 observed by Raman spectroscopy. The state of the surface of the composite carbon particles can be evaluated by the R value. The smaller the R value, the higher the crystallinity of the surface of the composite carbon particles.
 本発明の一実施態様における複合炭素粒子のR値(ID/IG)の変動係数は0.30以下が好ましい。R値の変動係数が0.30以下であると、コーティング状態のばらつきが小さいため、低抵抗化の効果が大きく、高温サイクル特性、低温レート特性が向上する。同様の観点から、変動係数は0.25以下がより好ましく、0.20以下がさらに好ましい。
 R値の変動係数は、顕微ラマン分光測定法によりR値を複数点測定し、その標準偏差値をR値の平均値で割って求める。変動係数を求めることでコーティング状態のばらつきを評価することができる。変動係数が大きいほどR値の均一性が低く、コーティング状態のばらつきが大きいことを示す。
 顕微ラマン分光測定法では、高い空間分解能を有する顕微レーザーラマン分光器を用い、同一サンプルに対してR値を複数点測定する。測定精度の観点から50点以上が好ましく、100点以上がさらに好ましい。典型的には、毎回箇所が異なるよう、各回の測定終了後にレーザーの照射位置をずらして測定を行う。空間分解能が低すぎると(すなわち、照射位置の重なりが大きすぎると)、粒子間のばらつきがR値に反映され難く、評価結果の精度が低下する場合がある。
The variation coefficient of the R value (ID / IG) of the composite carbon particles in one embodiment of the present invention is preferably 0.30 or less. When the coefficient of variation of the R value is 0.30 or less, the variation in the coating state is small, so that the effect of reducing the resistance is large, and the high temperature cycle characteristics and the low temperature rate characteristics are improved. From the same viewpoint, the coefficient of variation is more preferably 0.25 or less, still more preferably 0.20 or less.
The coefficient of variation of the R value is obtained by measuring the R value at a plurality of points by the microscopic Raman spectroscopy and dividing the standard deviation value by the average value of the R values. The variation of the coating state can be evaluated by obtaining the coefficient of variation. The larger the coefficient of variation, the lower the uniformity of the R value, and the larger the variation in the coating state.
In the microscopic Raman spectroscopic measurement method, a microscopic laser Raman spectroscope having a high spatial resolution is used and R values are measured at a plurality of points for the same sample. From the viewpoint of measurement accuracy, 50 points or more are preferable, and 100 points or more are more preferable. Typically, the measurement is performed by shifting the laser irradiation position after the end of each measurement so that the position is different each time. When the spatial resolution is too low (that is, when the irradiation positions overlap too much), variations between particles are difficult to be reflected in the R value, and the accuracy of the evaluation result may be reduced.
 本発明の一実施態様における複合炭素粒子において、(複合炭素粒子のラマンR値)/(炭素粒子(A)のラマンR値)が1.50以上であることが好ましい。前記比が1.50以上であると、炭素粒子(A)の表面に炭素性被覆層が形成され低抵抗化の効果が大きく、低温レート特性が向上する。同様の観点から、前記比は1.80以上であることがさらに好ましく、2.10以上が最も好ましい。一方、(複合炭素粒子のラマンR値)/(炭素粒子(A)のラマンR値)は10.00以下であることが好ましい。前記比が10.00以下であると、過剰な炭素性被覆層(B)の形成を抑制し、それにより高温保存性や高温サイクル特性を良好に保つことができる。同様の観点から前記比は6.00以下がさらに好ましく、4.00以下が最も好ましい。 In the composite carbon particles according to one embodiment of the present invention, (Raman R value of composite carbon particles) / (Raman R value of carbon particles (A)) is preferably 1.50 or more. When the ratio is 1.50 or more, the carbonaceous coating layer is formed on the surface of the carbon particles (A), the effect of lowering the resistance is large, and the low temperature rate characteristics are improved. From the same viewpoint, the ratio is more preferably 1.80 or more, and most preferably 2.10 or more. On the other hand, (Raman R value of composite carbon particles) / (Raman R value of carbon particles (A)) is preferably 10.00 or less. When the ratio is 10.00 or less, the excessive formation of the carbonaceous coating layer (B) can be suppressed, and thereby the high temperature storability and the high temperature cycle characteristics can be kept good. From the same viewpoint, the ratio is more preferably 6.00 or less and most preferably 4.00 or less.
 本発明の一実施態様における複合炭素粒子のX線回折法で測定される(002)面の平均面間隔d002は0.3354nm以上である。これは黒鉛の理論下限値である。d002は0.3370nm以下である。d002が0.3370nm以下であると、放電容量が大きくなり、大型電池に要求されるエネルギー密度を満足する電池が得られる。同様の観点から、d002は0.3367nm以下が好ましく、0.3364nm以下がさらに好ましい。 The average interplanar spacing d002 of (002) planes of the composite carbon particles in one embodiment of the present invention is 0.3354 nm or more. This is the theoretical lower limit of graphite. d002 is 0.3370 nm or less. When d002 is 0.3370 nm or less, the discharge capacity becomes large, and a battery satisfying the energy density required for a large battery can be obtained. From the same viewpoint, d002 is preferably 0.3367 nm or less, and more preferably 0.3364 nm or less.
 本発明の一実施態様における複合炭素粒子の50%粒子径(D50)は、1.0μm以上が好ましい。D50が1.0μm以上であると粒子の凝集が抑制され電極塗工のためのスラリーを作製しやすくなる。同様の観点から、D50は3.0μm以上がより好ましく、5.0μm以上が最も好ましい。D50は50.0μm以下が好ましい。D50が50.0μm以下であると電極の電気抵抗が小さくなりレート特性が向上するためである。同様の観点から30.0μm以下がさらに好ましく、10.0μm以下が最も好ましい。
 本明細書において、「50%粒子径(D50)」とは、レーザー回折・散乱法によって求めた体積基準の粒径分布における累積50%となる粒子径を意味する。
The 50% particle diameter (D50) of the composite carbon particles in one embodiment of the present invention is preferably 1.0 μm or more. When D50 is 1.0 μm or more, aggregation of particles is suppressed, and a slurry for electrode coating is easily prepared. From the same viewpoint, D50 is more preferably 3.0 μm or more, and most preferably 5.0 μm or more. D50 is preferably 50.0 μm or less. This is because when D50 is 50.0 μm or less, the electrical resistance of the electrode is reduced and the rate characteristics are improved. From the same viewpoint, 30.0 μm or less is more preferable, and 10.0 μm or less is most preferable.
In the present specification, the “50% particle size (D50)” means a particle size that is cumulative 50% in a volume-based particle size distribution obtained by a laser diffraction / scattering method.
 本発明の一実施態様における複合炭素粒子の400回タッピング密度は0.30g/cm3以上が好ましい。タッピング密度が0.30g/cm3以上であるとプレス時に到達する電極密度を充分高くすることが可能となり高エネルギー密度の電池が得られる。同様の観点から、タッピング密度は0.40g/cm3以上がより好ましく、0.50g/cm3以上が最も好ましい。400回タッピング密度は1.50g/cm3以下が好ましい。タッピング密度が1.50g/cm3以下の場合、得られた電極内の材料間の接触密度を充分よくすることが可能となり入出力特性の高い電池が得られる。同様の観点から、タッピング密度は1.20g/cm3以下がより好ましく、0.90g/cm3以下が最も好ましい。 The 400 times tapping density of the composite carbon particles in one embodiment of the present invention is preferably 0.30 g / cm 3 or more. When the tapping density is 0.30 g / cm 3 or more, the electrode density reached during pressing can be made sufficiently high, and a battery with high energy density can be obtained. From the same viewpoint, the tapping density is more preferably 0.40 g / cm 3 or more, most preferably 0.50 g / cm 3 or more. The 400 times tapping density is preferably 1.50 g / cm 3 or less. When the tapping density is 1.50 g / cm 3 or less, the contact density between the materials in the obtained electrode can be sufficiently improved, and a battery having high input / output characteristics can be obtained. From the same viewpoint, the tapping density is more preferably 1.20 g / cm 3 or less, 0.90 g / cm 3 or less is most preferred.
 本発明の一実施態様における複合炭素粒子のBET比表面積は0.1m2/g以上が好ましい。BET比表面積が0.1m2/g以上であると高速充放電が可能となる。同様の観点から、BET比表面積は1.0m2/g以上がより好ましく、3.0m2/g以上が最も好ましい。BET比表面積は10.0m2/g以下が好ましい。10.0m2/g以下であると凝集が抑制されるためスラリーを作製しやすく、また電池としたときの副反応を抑制し、クーロン効率、高温保存性や高温サイクル特性が優れる。同様の観点から、好ましくは8.0m2/g以下であり、より好ましくは5.0m2/g以下である。 The BET specific surface area of the composite carbon particles in one embodiment of the present invention is preferably 0.1 m 2 / g or more. When the BET specific surface area is 0.1 m 2 / g or more, high-speed charging / discharging becomes possible. From the same viewpoint, BET specific surface area is more preferably equal to or greater than 1.0m 2 / g, 3.0m 2 / g or more is most preferred. The BET specific surface area is preferably 10.0 m 2 / g or less. When it is 10.0 m 2 / g or less, aggregation is suppressed, so that a slurry is easily prepared, and side reactions when used as a battery are suppressed, and Coulomb efficiency, high-temperature storability and high-temperature cycle characteristics are excellent. From the same viewpoint, it is preferably 8.0 m 2 / g or less, more preferably 5.0 m 2 / g or less.
 本明細書に記載のd002、D50、400回タッピング密度及びBET比表面積は実施例に記載の方法により測定する。 The d002, D50, 400 times tapping density and BET specific surface area described in this specification are measured by the methods described in the examples.
[2]複合炭素粒子の製造方法
 本発明の一実施態様における複合炭素粒子の製造方法は、炭素粒子とカルボン酸化合物とを混合して混合物を得る混合工程と、混合工程で得られた混合物を500℃以上2000℃以下で熱処理する熱処理工程とを含む。
[2] Method for producing composite carbon particles A method for producing composite carbon particles in one embodiment of the present invention comprises a mixing step of mixing carbon particles and a carboxylic acid compound to obtain a mixture, and a mixture obtained in the mixing step. And a heat treatment step of heat treatment at 500 ° C. or more and 2000 ° C. or less.
[2-1]混合工程
 混合工程では炭素粒子(A)と、カルボン酸化合物とを混合して混合物を得る。
[2-1] Mixing Step In the mixing step, the carbon particles (A) and the carboxylic acid compound are mixed to obtain a mixture.
 本発明の一実施態様で用いるカルボン酸化合物は、一分子中にカルボキシ基を2つ以上含む化合物(「ポリカルボン酸化合物」という)、または一分子中にカルボンキシル基とヒドロキシ基をそれぞれ1つ以上含む化合物(「ヒドロキシカルボン酸化合物」という)である。このようなポリカルボン酸化合物としては、例えば、コハク酸(融点185℃)、グルタル酸(同95℃)、マレイン酸(同131℃)、フタル酸(同210℃)、オキサロ酢酸(同161℃)、マロン酸(同135℃)が挙げられる。ヒドロキシカルボン酸としては、例えば、リンゴ酸(同130℃)、クエン酸(同153℃)、酒石酸(同168℃(L体)、同151℃(メソ体)、同206℃(ラセミ体))、没食子酸(同250℃)、サリチル酸(同159℃)が挙げられる。このようなカルボン酸化合物を用いることにより、後述する熱処理工程において、分子間で脱水して、より密なネットワーク構造が形成され、より広範囲かつ薄く、強固にカルボン酸化合物が炭素粒子を覆うことができる。
 中でも、一分子中にカルボキシ基を2つ以上、ヒドロキシ基を1つ以上含む化合物がより好ましく、リンゴ酸(融点130℃)、クエン酸(同153℃)、酒石酸(同168℃(L体))が特に好ましい。
 カルボン酸化合物は1種でもよいし、2種以上含んでいても良い。すなわち、ポリカルボン酸化合物を2種以上用いてもよいし、ヒドロキシカルボン酸化合物を2種以上用いてもよいし、ポリカルボン酸化合物とヒドロキシカルボン酸化合物を組み合わせて用いてもよい。また、上記カルボン酸化合物と、一分子中にカルボキシ基を1つ含む化合物を併用することもできる。
The carboxylic acid compound used in one embodiment of the present invention is a compound containing two or more carboxy groups in one molecule (referred to as “polycarboxylic acid compound”), or one carboxylic xyl group and one hydroxy group in one molecule. It is a compound containing the above (referred to as “hydroxycarboxylic acid compound”). Examples of such polycarboxylic acid compounds include succinic acid (melting point 185 ° C), glutaric acid (95 ° C), maleic acid (131 ° C), phthalic acid (210 ° C), oxaloacetic acid (161 ° C). ) And malonic acid (at the same temperature of 135 ° C.). Examples of the hydroxycarboxylic acid include malic acid (130 ° C.), citric acid (153 ° C.), tartaric acid (168 ° C. (L form), 151 ° C. (meso form), 206 ° C. (racemic form)). , Gallic acid (at the same temperature of 250 ° C.) and salicylic acid (at the same temperature of 159 ° C.). By using such a carboxylic acid compound, in the heat treatment step described later, dehydration between molecules, a denser network structure is formed, and the carboxylic acid compound can cover the carbon particles more broadly and thinly. it can.
Of these, compounds containing two or more carboxy groups and one or more hydroxy groups in one molecule are more preferable, and malic acid (melting point: 130 ° C), citric acid (153 ° C: 168 ° C) and tartaric acid (168 ° C: L form). ) Is particularly preferable.
The carboxylic acid compound may be used alone or in combination of two or more. That is, two or more polycarboxylic acid compounds may be used, two or more hydroxycarboxylic acid compounds may be used, or a polycarboxylic acid compound and a hydroxycarboxylic acid compound may be used in combination. Further, the carboxylic acid compound may be used in combination with a compound containing one carboxy group in one molecule.
 カルボン酸化合物の融点は300℃以下であることが好ましい。融点がこの範囲内であることにより、カルボン酸化合物の熱分解が少なく被覆効果が高くなる。同様の観点から融点は250℃以下がより好ましく、200℃以下がさらに好ましい。カルボン酸化合物の融点は90℃以上であることが好ましい。融点がこの範囲であることにより、カルボン酸化合物の取り扱いが容易であり混合処理後の収率も高い。同様の観点から融点は110℃以上がより好ましく、130℃以上がさらに好ましい。 The melting point of the carboxylic acid compound is preferably 300 ° C or lower. When the melting point is within this range, thermal decomposition of the carboxylic acid compound is small and the coating effect is high. From the same viewpoint, the melting point is more preferably 250 ° C. or lower, further preferably 200 ° C. or lower. The melting point of the carboxylic acid compound is preferably 90 ° C. or higher. When the melting point is in this range, the carboxylic acid compound can be easily handled and the yield after the mixing treatment is high. From the same viewpoint, the melting point is more preferably 110 ° C. or higher, further preferably 130 ° C. or higher.
 混合工程で得られる混合物には炭素粒子とカルボン酸化合物以外の材料を含んでもよいが、混合物は炭素粒子及びカルボン酸化合物からなるものが好ましい。カルボン酸化合物は粉末状態のものを用いることが好ましい。混合方法は乾式混合が好ましく、市販の混合機、撹拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。 The mixture obtained in the mixing step may contain materials other than carbon particles and a carboxylic acid compound, but the mixture is preferably composed of carbon particles and a carboxylic acid compound. It is preferable to use the carboxylic acid compound in a powder state. The mixing method is preferably dry mixing, and a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and Nauta mixers.
 炭素粒子(A)とカルボン酸化合物の配合量は、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.9質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下であることが好ましい。カルボン酸化合物の配合量を0.1質量%以上とする理由は、カルボン酸化合物で炭素粒子を十分に被覆するためである。この観点から、カルボン酸化合物の量は、0.5質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。カルボン酸化合物の配合量を20.0質量%以下とする理由は、過剰な炭素性被覆層(B)の形成を抑制し、それにより高温保存性や高温サイクル特性を良好に保つためである。この観点から、カルボン酸化合物の量は、15.0質量%以下であることがより好ましく、10.0質量%以下であることがさらに好ましい。 The blending amount of the carbon particles (A) and the carboxylic acid compound is such that the carbon particles (A) are 80.0% by mass or more and 99.9% by mass or less, and the carboxylic acid is based on the total mass of the carbon particles (A) and the carboxylic acid compound. The compound content is preferably 0.1% by mass or more and 20.0% by mass or less. The reason why the blending amount of the carboxylic acid compound is 0.1% by mass or more is to sufficiently coat the carbon particles with the carboxylic acid compound. From this viewpoint, the amount of the carboxylic acid compound is more preferably 0.5% by mass or more, and further preferably 1.0% by mass or more. The reason for setting the amount of the carboxylic acid compound to be 20.0% by mass or less is to suppress the formation of an excessive carbonaceous coating layer (B), thereby maintaining good high-temperature storability and high-temperature cycle characteristics. From this viewpoint, the amount of the carboxylic acid compound is more preferably 15.0% by mass or less, and further preferably 10.0% by mass or less.
[2-2]熱処理工程
 前記混合物を熱処理する工程はロータリーキルン、ローラーハースキルン、電気式管状炉等の熱処理装置を用いて行うことができる。熱処理工程により、炭素粒子の表面が炭素性被覆層(B)によって被覆された複合炭素粒子が得られる。
[2-2] Heat Treatment Step The heat treatment step of the mixture can be performed using a heat treatment apparatus such as a rotary kiln, a roller hearth kiln, or an electric tubular furnace. By the heat treatment step, composite carbon particles in which the surfaces of the carbon particles are covered with the carbonaceous coating layer (B) are obtained.
 炭素化を十分に進行させ、水素や酸素の残留を抑制し、電池特性を向上させるため、熱処理工程における熱処理温度は500℃以上であることが好ましく、700℃以上であることがさらに好ましく、900℃以上あることが最も好ましい。また、黒鉛化を抑制し、充放電レート特性を良好に保つために、熱処理温度は2000℃以下であることが好ましく、1500℃以下であることがさらに好ましく、1200℃以下あることが最も好ましい。処理時間は炭素化が十分に進行していれば特に制限はないが、10分以上が好ましく、30分以上であることがより好ましく、50分以上であることがさらに好ましい。 The heat treatment temperature in the heat treatment step is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, in order to sufficiently promote carbonization, suppress the retention of hydrogen and oxygen, and improve the battery characteristics. Most preferably, the temperature is at least ° C. Further, in order to suppress graphitization and maintain good charge / discharge rate characteristics, the heat treatment temperature is preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower, and most preferably 1200 ° C. or lower. The treatment time is not particularly limited as long as carbonization has progressed sufficiently, but is preferably 10 minutes or longer, more preferably 30 minutes or longer, and further preferably 50 minutes or longer.
 熱処理工程は、不活性ガス雰囲気で行うことが好ましい。不活性ガス雰囲気のための不活性ガスとしては、アルゴンガス、窒素ガスなどが挙げられる。 The heat treatment step is preferably performed in an inert gas atmosphere. Examples of the inert gas for the inert gas atmosphere include argon gas and nitrogen gas.
 (複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)は0.90以下であることが好ましい。前記比が0.90以下であれば、炭素粒子(A)の表面が十分に被覆されており、低抵抗化の効果が大きいため、充放電特性が良好になる。同様の観点から、前記比は0.80以下であることがさらに好ましく、0.70以下であることが最も好ましい。前記比は0.30以上であることが好ましい。前記比が0.30以上であれば、コーティング量が過剰にならず、サイクル特性や高温保存特性が良好に保たれる。同様の観点から、前記比は0.50以上であることがさらに好ましく、0.60以上であることが最も好ましい。 (BET specific surface area of composite carbon particles) / (BET specific surface area of carbon particles (A)) is preferably 0.90 or less. When the ratio is 0.90 or less, the surface of the carbon particles (A) is sufficiently covered and the effect of lowering the resistance is large, so that the charge / discharge characteristics are improved. From the same viewpoint, the ratio is more preferably 0.80 or less, and most preferably 0.70 or less. The ratio is preferably 0.30 or more. When the ratio is 0.30 or more, the coating amount does not become excessive and the cycle characteristics and the high temperature storage characteristics are kept good. From the same viewpoint, the ratio is more preferably 0.50 or more, and most preferably 0.60 or more.
[3]リチウムイオン二次電池の負極活物質
 本発明の一実施態様におけるリチウムイオン二次電池の負極活物質は上記複合炭素粒子を含んでなる。
[3] Negative Electrode Active Material for Lithium Ion Secondary Battery A negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention contains the composite carbon particles.
 負極活物質は上記複合炭素粒子からなるか、あるいはさらに他の炭素材料や導電付与剤を含んでなる。他の炭素材料や導電付与剤を含む場合、複合炭素粒子100質量部に対して、球状の天然黒鉛または人造黒鉛を0.01~200質量部、好ましくは0.01~100質量部配合したものを使用することができる。他の黒鉛材料を混合して用いることにより、複合炭素粒子の優れた特性を維持した状態で、他の黒鉛材料が有する優れた特性も兼ね備えた負極活物質とすることが可能である。
 このような負極活物質は複合炭素粒子と他の炭素材料等を混合することにより得ることができる。混合に際しては、要求される電池特性に応じて適宜、混合材料を選択し、混合量を決定することができる。
The negative electrode active material is composed of the above composite carbon particles, or further contains another carbon material or a conductivity imparting agent. When another carbon material or a conductivity-imparting agent is included, 0.01 to 200 parts by mass, preferably 0.01 to 100 parts by mass of spherical natural graphite or artificial graphite is mixed with 100 parts by mass of the composite carbon particles. Can be used. By mixing and using another graphite material, it is possible to obtain a negative electrode active material that also has the excellent characteristics of other graphite materials while maintaining the excellent characteristics of the composite carbon particles.
Such a negative electrode active material can be obtained by mixing the composite carbon particles with another carbon material or the like. Upon mixing, it is possible to appropriately select a mixing material and determine the mixing amount according to required battery characteristics.
 また、負極活物質には炭素繊維を配合することもできる。配合量は、前記負極活物質100質量部に対して、0.01~20質量部が好ましく、0.5~5質量部がより好ましい。 Also, carbon fiber can be mixed with the negative electrode active material. The blending amount is preferably 0.01 to 20 parts by mass and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などの有機系カーボンファイバー、気相法炭素繊維などが挙げられる。これらのうち、特に、結晶性が高く、熱伝導性の高い、気相法炭素繊維が好ましい。炭素繊維を複合炭素粒子の表面に接着させる場合には、特に気相法炭素繊維が好ましい。 Examples of carbon fibers include PAN-based carbon fibers, pitch-based carbon fibers, organic carbon fibers such as rayon-based carbon fibers, and vapor grown carbon fibers. Of these, vapor grown carbon fiber having high crystallinity and high thermal conductivity is particularly preferable. When the carbon fiber is adhered to the surface of the composite carbon particle, the vapor grown carbon fiber is particularly preferable.
 複合炭素粒子と他の材料を混合するための装置としては、市販の混合機、攪拌機を用いることができる。具体的な例としてはリボンミキサー、V型混合機、W型混合機、ワンブレードミキサー、ナウターミキサー等の混合機を挙げることができる。 As a device for mixing the composite carbon particles and other materials, a commercially available mixer or stirrer can be used. Specific examples include mixers such as ribbon mixers, V-type mixers, W-type mixers, one-blade mixers, and Nauta mixers.
[4]電極用ペースト
 本発明の一実施態様における電極用ペーストは、上記負極活物質とバインダーと溶媒を含んでなる。電極用ペーストは、負極活物質とバインダーとを混練することによって得られる。混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置が使用できる。電極用ペーストは、シート状、ペレット状等の形状に成形することができる。
[4] Electrode Paste The electrode paste in one embodiment of the present invention contains the above-mentioned negative electrode active material, a binder and a solvent. The electrode paste is obtained by kneading the negative electrode active material and the binder. For kneading, a device such as a ribbon mixer, a screw type kneader, a Spartan Luzer, a Loedige mixer, a planetary mixer, a universal mixer or the like can be used. The electrode paste can be formed into a sheet shape, a pellet shape, or the like.
 電極用ペーストに用いるバインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系材料等が挙げられる。 As the binder used for the electrode paste, a fluorine-based polymer such as polyvinylidene fluoride or polytetrafluoroethylene, a rubber-based material such as SBR (styrene butadiene rubber), etc. may be mentioned.
 バインダーの使用量は、負極活物質100質量部に対して1~30質量部であることが好ましく、1~10質量部であることがより好ましい。 The amount of the binder used is preferably 1 to 30 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 混練する際に用いる溶媒としては、各々のバインダーに適したもの、例えばフッ素系ポリマーの場合はトルエン、N-メチルピロリドン等;SBRの場合は水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。溶媒として水を使用するバインダーの場合は、例えば、カルボキシメチルセルロース(CMC)等の増粘剤を併用することが好ましい。溶媒、及び増粘剤の量は、電極ペーストが集電体に塗布しやすい粘度となるように調整される。 Solvents used for kneading include those suitable for each binder, such as toluene and N-methylpyrrolidone in the case of fluoropolymers; water and the like in the case of SBR; and dimethylformamide, isopropanol and the like. In the case of a binder using water as a solvent, it is preferable to use a thickening agent such as carboxymethyl cellulose (CMC) together. The amounts of the solvent and the thickener are adjusted so that the electrode paste has a viscosity that makes it easy to apply the current collector.
[5]リチウムイオン二次電池用負極
 本発明の一実施態様におけるリチウムイオン二次電池用負極は、集電体とその集電体上の負極活物質からなる。負極は、上記電極用ペーストを集電体上に塗布し、乾燥し、加圧成形することによって得ることができる。
[5] Negative Electrode for Lithium Ion Secondary Battery The negative electrode for a lithium ion secondary battery in one embodiment of the present invention comprises a current collector and a negative electrode active material on the current collector. The negative electrode can be obtained by applying the above-mentioned electrode paste on a current collector, drying and press-molding.
 集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。ペーストの塗布厚は、50~200μmとすることが好ましい。ペーストの塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。 As the current collector, for example, aluminum, nickel, copper, stainless steel foil, mesh, or the like can be used. The applied thickness of the paste is preferably 50 to 200 μm. The method of applying the paste is not particularly limited, and examples thereof include a method of applying with a doctor blade or a bar coater and thereafter forming with a roll press or the like.
 加圧成形法としては、ロール加圧、プレス加圧等の成形法を挙げることができる。加圧成形するときの圧力は1×103~3×103kg/cm2とすることが好ましい。 Examples of the pressure molding method include a roll pressing method and a press pressing method. The pressure during pressure molding is preferably 1 × 10 3 to 3 × 10 3 kg / cm 2 .
[6]リチウムイオン二次電池
 リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造を有する。本発明の一実施態様におけるリチウムイオン二次電池は、負極として前記負極を用いてなる。
[6] Lithium Ion Secondary Battery A lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte. The lithium ion secondary battery in one embodiment of the present invention comprises the negative electrode as the negative electrode.
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属元素に対するモル比が0.3~2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムの遷移金属に対するモル比が0.3~2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0.02~1.2)、またはLiy24(Nは少なくともMnを含む。y=0.02~2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 In the positive electrode of the lithium ion secondary battery, a lithium-containing transition metal oxide is usually used as the positive electrode active material, and preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W. An oxide mainly containing one kind of transition metal element and lithium, in which a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn, A compound which is an oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium, and whose molar ratio of lithium to the transition metal is 0.3 to 2.2 is used. In addition, you may contain Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B etc. in the range of less than 30 mol% with respect to the mainly existing transition metal. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe and Mn, x = 0.02 to 1.2) or Li y N 2 O 4 (N Contains at least Mn, and it is preferable to use at least one material having a spinel structure represented by y = 0.02-2).
 リチウムイオン二次電池では正極と負極との間にセパレーターを設けることがある。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。 In a lithium-ion secondary battery, a separator may be provided between the positive electrode and the negative electrode. Examples of the separator include a nonwoven fabric containing polyolefin such as polyethylene and polypropylene as a main component, a cloth, a microporous film, or a combination thereof.
 本発明の好ましい実施態様におけるリチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。 Known electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used as the electrolyte and the electrolyte that compose the lithium-ion secondary battery in the preferred embodiment of the present invention, but the organic electrolyte is from the viewpoint of electrical conductivity. preferable.
[7]全固体リチウムイオン二次電池
 全固体リチウムイオン二次電池は、正極と負極とが固体電解質層と接触した構造を有する。図9は、本実施形態に係る全固体型リチウムイオン二次電池1の構成の一例を示す概略図である。全固体型リチウムイオン二次電池1は、正極層11と固体電解質層12と負極層13とを備える。
[7] All-solid-state lithium-ion secondary battery The all-solid-state lithium-ion secondary battery has a structure in which the positive electrode and the negative electrode are in contact with the solid electrolyte layer. FIG. 9 is a schematic diagram showing an example of the configuration of the all-solid-state lithium-ion secondary battery 1 according to this embodiment. The all-solid-state lithium-ion secondary battery 1 includes a positive electrode layer 11, a solid electrolyte layer 12, and a negative electrode layer 13.
 正極11は、正極集電体111と正極合剤層112とを有する。正極集電体111には、外部回路との電荷の授受を行うための正極リード111aが接続されている。正極集電体111は金属箔であることが好ましく、金属箔としてはアルミニウム箔を用いることが好ましい。 The positive electrode 11 has a positive electrode current collector 111 and a positive electrode mixture layer 112. The positive electrode current collector 111 is connected to a positive electrode lead 111a for exchanging electric charges with an external circuit. The positive electrode current collector 111 is preferably a metal foil, and an aluminum foil is preferably used as the metal foil.
 正極合剤層112は正極活物質を含み、さらに固体電解質、導電助剤、バインダー等を含んでもよい。正極活物質としては、LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Mn1/3Co1/32等の岩塩型層状活物質、LiMn24等のスピネル型活物質、LiFePO4、LiMnPO4、LiNiPO4、LiCuPO4等のオリビン型活物質、Li2S等の硫化物活物質等を使用することができる。また、これらの活物質はLTO(Lithium Tin Oxide)や炭素等でコーティングされていてもよい。 The positive electrode mixture layer 112 contains a positive electrode active material, and may further contain a solid electrolyte, a conductive additive, a binder, and the like. Examples of the positive electrode active material include rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 and spinel type active materials such as LiMn 2 O 4. , can be used LiFePO 4, LiMnPO 4, LiNiPO 4 , LiCuPO 4 olivine active material such as, sulfide Monokatsu substance such Li 2 S and the like. Further, these active materials may be coated with LTO (Lithium Tin Oxide), carbon or the like.
 正極合剤層112に含まれていてもよい固体電解質としては、後述する固体電解質層12で挙げられている材料を用いることができるが、固体電解質層12に含まれている材料と異なる材料を用いてもよい。正極合剤層112における固体電解質の含有量は、正極活物質100質量部に対して50質量部以上であることが好ましく、70質量部以上であることがより好ましく、80質量部以上であることがさらに好ましい。正極合剤層112における固体電解質の含有量は、正極活物質100質量部に対して200質量部以下であることが好ましく、150質量部以下であることがより好ましく、125質量部以下であることがさらに好ましい。 As the solid electrolyte that may be contained in the positive electrode mixture layer 112, the materials mentioned in the solid electrolyte layer 12 described later can be used, but a material different from the material contained in the solid electrolyte layer 12 can be used. You may use. The content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the positive electrode active material. Is more preferable. The content of the solid electrolyte in the positive electrode mixture layer 112 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and more preferably 125 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. Is more preferable.
 導電助剤としては、粒子状炭素質導電助剤または繊維状炭素質導電助剤を用いることが好ましい。粒子状炭素質導電助剤としては、デンカブラック(登録商標)(電気化学工業株式会社製)、ケッチェンブラック(登録商標)(ライオン株式会社製)、黒鉛微粉SFGシリーズ(Timcal社製)、グラフェン等の粒子状炭素を使用することができる。繊維状炭素質導電助剤としては、気相法炭素繊維(VGCF(登録商標)、VGCF(登録商標)‐H(昭和電工株式会社製))、カーボンナノチューブ、カーボンナノホーン等を使用することができる。サイクル特性に優れることから気相法炭素繊維「VGCF(登録商標)‐H」(昭和電工株式会社製)が最も好ましい。正極合剤層112における導電助剤の含有量は、正極活物質100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましい。正極合剤層112における導電助剤の含有量は、正極活物質100質量部に対して5質量部以下であることが好ましく、3質量部以下であることがより好ましい。 As the conduction aid, it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid. As the particulate carbonaceous conductive aid, Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), graphene Particulate carbon such as can be used. As the fibrous carbonaceous conductive additive, vapor phase carbon fibers (VGCF (registered trademark), VGCF (registered trademark) -H (manufactured by Showa Denko KK)), carbon nanotubes, carbon nanohorns and the like can be used. .. Vapor grown carbon fiber "VGCF (registered trademark) -H" (manufactured by Showa Denko KK) is most preferable because it has excellent cycle characteristics. The content of the conductive additive in the positive electrode mixture layer 112 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the positive electrode active material. The content of the conductive additive in the positive electrode mixture layer 112 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
 バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、スチレン-ブタジエンラバー、カルボキシメチルセルロース等を挙げることができる。 Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, carboxymethyl cellulose and the like.
 正極合剤層112において、正極活物質100質量部に対するバインダーの含有量は、1質量部以上10質量部以下であることが好ましく、1質量部以上7質量部以下であることがより好ましい。 In the positive electrode mixture layer 112, the content of the binder with respect to 100 parts by mass of the positive electrode active material is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 7 parts by mass or less.
 固体電解質層12は、正極層11と負極層13との間に介在し、正極層11と負極層13との間でリチウムイオンを移動させるための媒体となる。固体電解質層12は、硫化物固体電解質及び酸化物固体電解質からなる群から選ばれる少なくとも1つを含有することが好ましく、硫化物固体電解質を含有することがより好ましい。 The solid electrolyte layer 12 is interposed between the positive electrode layer 11 and the negative electrode layer 13, and serves as a medium for moving lithium ions between the positive electrode layer 11 and the negative electrode layer 13. The solid electrolyte layer 12 preferably contains at least one selected from the group consisting of a sulfide solid electrolyte and an oxide solid electrolyte, and more preferably contains a sulfide solid electrolyte.
 硫化物固体電解質としては、硫化物ガラス、硫化物ガラスセラミックス、Thio-LISICON型硫化物などを挙げることができる。より具体的には、例えば、Li2S-P25、Li2S-P25-LiI、Li2S-P25-LiCl、Li2S-P25-LiBr、Li2S-P25-Li2O、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li2S-P25-Zmn(式中、m、nは正の数、ZはGe、Zn、Gaのいずれかを表す。)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(式中、x、yは正の数、MはP、Si、Ge、B、Al、Ga、Inのいずれかを表す。)、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50LiS2・50GeS2、Li7311、Li3.250.954、Li3PS4、Li2S・P23・P25等を挙げることができる。硫化物固体電解質材料は、非晶質でも、結晶質でもよく、ガラスセラミックスであってもよい。 Examples of the sulfide solid electrolyte include sulfide glass, sulfide glass ceramics, Thio-LISICON type sulfide, and the like. More specifically, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S—P 2 S 5 —Z m S n (where m and n are positive numbers, Z represents any one of Ge, Zn, and Ga), Li 2 S—GeS 2 , and Li 2 S— SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x and y are positive numbers, M is P, Si, Ge, B, Al, Ga or In) , Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S.26B 2 S 3 .44LiI, 63Li 2 S.36SiS 2 .1Li 3 PO 4 , 57Li 2 S.38SiS 2 .. 5Li 4 SiO 4 , 70Li 2 S · 30P 2 S 5 , 50LiS 2 · 50GeS 2 , Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 3 PS 4 , Li 2 S · P 2 S 3 · P 2 S 5 and the like can be mentioned. The sulfide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
 酸化物固体電解質としては、ペロブスカイト、ガーネット、LISICON型酸化物が挙げられる。より具体的には、例えば、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO43、Li7La3Zr212、50Li4SiO4・50Li3BO3、Li2.9PO3.30.46(LIPON)、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5Al0.5Ge1.5(PO43等を挙げることができる。酸化物固体電解質材料は、非晶質でも、結晶質でもよく、ガラスセラミックスであってもよい。 Examples of the oxide solid electrolyte include perovskite, garnet, and LISICON type oxide. More specifically, for example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3. N 0.46 (LIPON), Li 3.6 Si 0.6 P 0.4 O 4, Li 1.07 Al 0.69 Ti 1.46 (PO 4) 3, Li 1.5 Al 0.5 Ge 1.5 (PO 4) may be mentioned 3 or the like. The oxide solid electrolyte material may be amorphous, crystalline, or glass ceramics.
 負極層13は、負極集電体131と負極合剤層132とを有する。負極集電体131には、外部回路との電荷の授受を行うための負極リード131aが接続されている。負極集電体131は金属箔であることが好ましく、金属箔としてはステンレス箔、銅箔またはアルミニウム箔を用いることが好ましい。集電体の表面はカーボン等でコートされていてもよい。 The negative electrode layer 13 includes a negative electrode current collector 131 and a negative electrode mixture layer 132. The negative electrode current collector 131 is connected to a negative electrode lead 131a for exchanging charges with an external circuit. The negative electrode current collector 131 is preferably a metal foil, and a stainless foil, a copper foil, or an aluminum foil is preferably used as the metal foil. The surface of the current collector may be coated with carbon or the like.
 負極合剤層132は、負極活物質を含み、固体電解質、バインダー及び導電助剤等を含んでもよい。負極活物質としては前記複合炭素粒子が用いられる。 The negative electrode mixture layer 132 contains a negative electrode active material, and may also contain a solid electrolyte, a binder, a conductive auxiliary agent, and the like. The composite carbon particles are used as the negative electrode active material.
 負極合剤層132に含まれていてもよい固体電解質としては、固体電解質層12で挙げられている材料を用いることができるが、固体電解質層12に含まれる固体電解質あるいは正極合剤層に含まれている固体電解質と異なる材料を用いてもよい。負極合剤層132における固体電解質の含有量は、負極活物質100質量部に対して50質量部以上であることが好ましく、70質量部以上であることがより好ましく、80質量部以上であることがさらに好ましい。負極合剤層132における固体電解質の含有量は、負極活物質100質量部に対して200質量部以下であることが好ましく、150質量部以下であることがより好ましく、125質量部以下であることがさらに好ましい。 As the solid electrolyte that may be included in the negative electrode mixture layer 132, the materials described in the solid electrolyte layer 12 may be used, but the solid electrolyte included in the solid electrolyte layer 12 or the positive electrode mixture layer may be included. A material different from the existing solid electrolyte may be used. The content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and 80 parts by mass or more with respect to 100 parts by mass of the negative electrode active material. Is more preferable. The content of the solid electrolyte in the negative electrode mixture layer 132 is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and 125 parts by mass or less with respect to 100 parts by mass of the negative electrode active material. Is more preferable.
 負極合剤層132に含まれていてもよい導電助剤としては、正極合剤層112の説明で挙げた導電助剤を用いることができるが、正極合剤層112に含まれる導電助剤と異なる材料を用いてもよい。負極合剤層132における導電助剤の含有量は、負極活物質100質量部に対して0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましい。負極合剤層132における導電助剤の含有量は、負極活物質100質量部に対して5質量部以下であることが好ましく、3質量部以下であることがより好ましい。 As the conductive auxiliary agent that may be contained in the negative electrode mixture layer 132, the conductive auxiliary agents mentioned in the description of the positive electrode mixture layer 112 can be used. Different materials may be used. The content of the conductive additive in the negative electrode mixture layer 132 is preferably 0.1 part by mass or more, and more preferably 0.3 part by mass or more, with respect to 100 parts by mass of the negative electrode active material. The content of the conductive additive in the negative electrode mixture layer 132 is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
 バインダーは、例えば、正極合剤層112の説明で挙げた材料を用いることができるが、これらに限られない。負極合剤層132において、負極活物質100質量部に対するバインダーの含有量は、0.3質量部以上10質量部以下であることが好ましく、0.5質量部以上5質量部以下であることがより好ましい。 As the binder, for example, the materials mentioned in the description of the positive electrode mixture layer 112 can be used, but the binder is not limited thereto. In the negative electrode mixture layer 132, the content of the binder with respect to 100 parts by mass of the negative electrode active material is preferably 0.3 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass or more and 5 parts by mass or less. More preferable.
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。 Note that there is no restriction on the selection of the necessary members for battery configuration other than the above.
 以下、本発明に実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明を限定するものではない。
 実施例及び比較例の炭素粒子の評価方法、電池の作製方法、電池の特性の測定方法、及び各例で用いた原料は以下の通りである。
Hereinafter, examples of the present invention will be specifically described. It should be noted that these are merely examples for explanation and do not limit the present invention.
The carbon particle evaluation methods, battery production methods, battery characteristic measurement methods, and raw materials used in each example of Examples and Comparative Examples are as follows.
[1]炭素粒子の評価
[1-1]50%粒子径(D50)
 粒度測定装置としてマルバーン製マスターサイザー2000(Mastersizer;登録商標)を用い、5mgのサンプルを容器に入れ、界面活性剤が0.04質量%含まれた水を10g加えて5分間超音波処理を行った後に測定を行った。
[1] Evaluation of carbon particles [1-1] 50% particle diameter (D50)
Using a Malvern Mastersizer 2000 (Mastersizer; registered trademark) as a particle size measuring device, a 5 mg sample was placed in a container, 10 g of water containing 0.04% by mass of a surfactant was added, and ultrasonic treatment was performed for 5 minutes. After that, the measurement was performed.
[1-2]タッピング密度
 タップ密度測定装置としてカンタクローム(Quantachrome)社製Autotapを用い、250mLのガラスシリンダーに50gのサンプルを入れ、400回タップ後の体積を測定し密度を算出した。これはASTM B527及びJIS K5101-12-2に準拠した測定方法であるが、オートタップの落下高さは5mmとした。
[1-2] Tapping Density Using Autotap manufactured by Quantachrome as a tap density measuring device, 50 g of a sample was put into a 250 mL glass cylinder, and the volume after 400 taps was measured to calculate the density. This is a measuring method based on ASTM B527 and JIS K5101-12-2, but the drop height of the auto tap was 5 mm.
[1-3]BET比表面積
 BET比表面積測定装置としてカンタクローム(Quantachrome)社製NOVA2200eを用い、サンプルセル(9mm×135mm)に3gのサンプルを入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはN2を用いた。
[1-3] BET Specific Surface Area Using NOVA2200e manufactured by Quantachrome as a BET specific surface area measuring device, 3 g of a sample was put in a sample cell (9 mm × 135 mm), and dried at 300 ° C. for 1 hour under a vacuum condition. , Measurement was performed. N 2 was used as the gas for measuring the BET specific surface area.
[1-4]面間隔d002
 複合炭素粒子と標準シリコン粒子(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
 XRD装置:リガク製SmartLab(登録商標)
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:24.0~30.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対し、学振法を適用し面間隔d002の値を求めた。
[1-4] Surface spacing d002
A mixture of composite carbon particles and standard silicon particles (manufactured by NIST) in a mass ratio of 9: 1 was filled in a glass sample plate (sample plate window 18 × 20 mm, depth 0.2 mm). The measurement was performed under such conditions.
XRD device: Rigaku's SmartLab (registered trademark)
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measuring range: 24.0 to 30.0 deg.
Scan speed: 2.0 deg. / Min.
The Gakushin method was applied to the obtained waveform to determine the value of the surface spacing d002.
[1-5]R値とR値の変動係数
 顕微レーザーラマン分光装置として日本分光株式会社NRS-5100を用い、励起波長532.36nmで測定を行った。
 ラマンスペクトルにおける1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比をR値(ID/IG)とする。
 複合炭素粒子に対して以下の領域で顕微レーザーラマン分光イメージングを行った。
  測定ポイント:22×28箇所
  測定ステップ:0.32μm
  測定エリア:7.0×9.0μm
 上記測定のうち炭素粒子に相当する領域からランダムに100点を抽出し、得られたR値の標準偏差をR値の平均値で割った値を変動係数とした。
 また、R値の平均値を複合炭素粒子のR値とした。
[1-5] R value and coefficient of variation of R value JASCO Corporation NRS-5100 was used as a microscopic laser Raman spectroscope, and measurement was performed at an excitation wavelength of 532.36 nm.
The R value (ID / IG) is defined as the ratio of the peak intensity (ID) near 1350 cm -1 and the peak intensity (IG) near 1580 cm -1 in the Raman spectrum.
Microscopic laser Raman spectroscopic imaging was performed on the composite carbon particles in the following region.
Measurement point: 22 × 28 places Measurement step: 0.32 μm
Measurement area: 7.0 × 9.0 μm
Of the above measurements, 100 points were randomly extracted from the region corresponding to the carbon particles, and the standard deviation of the obtained R value was divided by the average value of the R values to obtain the coefficient of variation.
Moreover, the average value of the R values was taken as the R value of the composite carbon particles.
[1-6]透過型電子顕微鏡(TEM)観察による炭素性被覆層(B)の状態と厚さ
 複合炭素粒子をエタノールに分散させ、マイクログリッドメッシュに回収し、以下のような条件で測定を行った。
 透過型電子顕微鏡装置:日立製H-9500
 加速電圧:300kV
 観察倍率:30,000倍
 測定から炭素性被覆層(B)の状態を観察した。次いで、任意に1つの炭素粒子を選択し、その炭素粒子表面の被覆層を上記倍率にて5視野観察し、1視野当り2箇所の被覆層の厚さを測定した。各箇所の被覆層の厚さは、被覆層長さ10nmの平均値とした。この測定を、任意に選択した3つの炭素粒子に対して行い、合計30点のデータを得て、その平均を被覆層の厚さとした。また、FFT(Fast Fourier Transform)パターンを評価することでグラフェン層、アモルファス炭素層等の層構造を決定した。
[1-6] State and Thickness of Carbonaceous Coating Layer (B) Observed by Transmission Electron Microscope (TEM) The composite carbon particles are dispersed in ethanol, collected on a microgrid mesh, and measured under the following conditions. went.
Transmission electron microscope device: Hitachi H-9500
Accelerating voltage: 300kV
Observation magnification: 30,000 times The state of the carbon coating layer (B) was observed from the measurement. Next, one carbon particle was arbitrarily selected, and the coating layer on the surface of the carbon particle was observed in 5 fields of view at the above-mentioned magnification, and the thickness of the coating layer at 2 locations per field of view was measured. The thickness of the coating layer at each location was the average value of the coating layer length of 10 nm. This measurement was performed on three arbitrarily selected carbon particles, data of 30 points in total were obtained, and the average thereof was used as the thickness of the coating layer. Further, the layer structure such as the graphene layer and the amorphous carbon layer was determined by evaluating the FFT (Fast Fourier Transform) pattern.
[2]電池の作製
[2-1]電極ペースト作製
 後述する各実施例及び比較例で得られた炭素粒子を96.5g、導電助剤としてカーボンブラック(TIMCAL社製、C65)を0.5g、増粘剤としてカルボキシメチルセルロース(CMC)を1.5g及び水を8~12g適宜加えて粘度を調節し、水系バインダー(昭和電工株式会社製、ポリゾール(登録商標))微粒子の分散した水溶液1.5gを加え撹拌・混合し、充分な流動性を有するスラリー状の分散液を作製し、電極ペーストとした。
[2] Preparation of Battery [2-1] Preparation of Electrode Paste 96.5 g of carbon particles obtained in each of Examples and Comparative Examples described later and 0.5 g of carbon black (manufactured by TIMCAL, C65) as a conduction aid. An aqueous solution in which 1.5 g of carboxymethyl cellulose (CMC) as a thickener and 8 to 12 g of water are appropriately added to adjust the viscosity, and fine particles of an aqueous binder (Polysol (registered trademark) manufactured by Showa Denko KK) are dispersed. 5 g was added and stirred and mixed to prepare a slurry-like dispersion having sufficient fluidity, which was used as an electrode paste.
[2-2]負極1の作製
 電極ペーストを高純度銅箔上でドクターブレードを用いて150μm厚に塗布し、70℃で12時間真空乾燥した。塗布部が4.2×4.2cm2となるように打ち抜き機を用いて打ち抜いた後、超鋼製プレス板で挟み、電極密度が1.3g/cm3となるようにプレスし、負極1を作製した。プレス後の活物質層の厚さは65μmである。
[2-2] Preparation of Negative Electrode 1 The electrode paste was applied on a high-purity copper foil with a doctor blade to a thickness of 150 μm, and vacuum dried at 70 ° C. for 12 hours. After punching using a punching machine so that the coated part would be 4.2 × 4.2 cm 2 , it was sandwiched between press plates made of super steel, and pressed so that the electrode density was 1.3 g / cm 3, and the negative electrode 1 Was produced. The thickness of the active material layer after pressing is 65 μm.
[2-3]負極2の作製
 上記の電極ペーストが塗布された銅箔を16mmφの円形に打ち抜いた後、負極1と同様の方法で、電極密度が1.3g/cm3となるようにプレスし、負極2を作製した。プレス後の活物質層の厚さは65μmである。
[2-3] Preparation of Negative Electrode 2 The copper foil coated with the above electrode paste was punched out into a circle of 16 mmφ, and then pressed in the same manner as in Negative Electrode 1 so that the electrode density was 1.3 g / cm 3. Then, the negative electrode 2 was produced. The thickness of the active material layer after pressing is 65 μm.
[2-4]正極の作製
 LiFe2PO4(D50:7μm)を95g、導電助剤としてのカーボンブラック(TIMCAL社製、C65)を1.2g、気相法炭素繊維(昭和電工株式会社製、VGCF(登録商標)-H)を0.3g、結着材としてのポリフッ化ビニリデン(PVdF)を3.5g、N-メチル-ピロリドンを適宜加えながら撹拌・混合し、正極スラリーを作製した。
 この正極スラリーを厚み20μmのアルミ箔上に厚さが均一になるようにロールコーターにより塗布し、乾燥後、ロールプレスを行い、塗布部が4.2×4.2cm2となるように打ち抜き、正極を得た。プレス後の活物質層の厚さは65μmである。
[2-4] Preparation of Positive Electrode 95 g of LiFe 2 PO 4 (D50: 7 μm), 1.2 g of carbon black (manufactured by TIMCAL, C65) as a conduction aid, vapor grown carbon fiber (manufactured by Showa Denko KK) , VGCF (registered trademark) -H), 0.3 g of polyvinylidene fluoride (PVdF) as a binder, and N-methyl-pyrrolidone were appropriately added and stirred to prepare a positive electrode slurry.
This positive electrode slurry was applied on an aluminum foil having a thickness of 20 μm by a roll coater so as to have a uniform thickness, dried and then roll-pressed, and punched out so that the applied portion was 4.2 × 4.2 cm 2 . A positive electrode was obtained. The thickness of the active material layer after pressing is 65 μm.
[2-5]電解液の作製
 EC(エチレンカーボネート)3質量部、DMC(ジメチルカーボネート)2質量部及びEMC(エチルメチルカーボネート)5質量部の混合液に、電解質としてLiPF6を1.2モル/リットル溶解し、添加剤としてVC(ビニレンカーボネート)1質量部を加えて、電解液とした。
[2-5] Preparation of electrolytic solution In a mixed solution of 3 parts by mass of EC (ethylene carbonate), 2 parts by mass of DMC (dimethyl carbonate) and 5 parts by mass of EMC (ethyl methyl carbonate), 1.2 mol of LiPF 6 was used as an electrolyte. / Liter was dissolved and 1 part by mass of VC (vinylene carbonate) was added as an additive to prepare an electrolytic solution.
[2-6]電池の組み立て
(二極セル)
 負極1の銅箔部にニッケルタブを、正極のアルミ箔部にアルミタブを超音波溶接機で溶接しとりつけた。ポリプロピレン製フィルム微多孔膜を介して、負極1と正極とを対向させ積層し、アルミラミネートフィルムによりパックし、電解液を注液後、開口部を熱融着により封止し、二極セルを作製した。
[2-6] Battery assembly (bipolar cell)
An ultrasonic welding machine was used to attach a nickel tab to the copper foil portion of the negative electrode 1 and an aluminum tab to the aluminum foil portion of the positive electrode. A negative electrode 1 and a positive electrode are laminated so as to face each other via a polypropylene film microporous film, packed with an aluminum laminate film, and after pouring an electrolyte solution, the opening is sealed by heat fusion to form a bipolar cell. It was made.
(対極リチウムセル(ハーフセル))
 ポリプロピレン製のねじ込み式フタつきのセル(内径約18mm)内において、負極2と16mmφに打ち抜いた金属リチウム箔との間にセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、電解液を加えてかしめ機でかしめることで、対極リチウムセルを作製した。
(Counter electrode lithium cell (half cell))
In a polypropylene cell with a screw-in lid (internal diameter of about 18 mm), a separator (polypropylene microporous film (Cell Guard 2400)) was sandwiched and laminated between the negative electrode 2 and a 16 mmφ metal lithium foil to form an electrolytic solution. Then, a counter electrode lithium cell was produced by adding and caulking with a caulking machine.
[3]電池の評価
[3-1]初回クーロン効率の測定
 対極リチウムセルを用いて25℃に設定した恒温槽内で試験を行った。レストポテンシャルから0.005Vまで0.02mAで定電流充電を行った。次に0.005Vで定電圧充電に切り替え、定電流充電と定電圧充電とを合わせて40時間になるように充電を行い、初回充電容量(a)を測定した。
 上限電圧1.5Vとして0.2mAで定電流放電を行い、初回放電容量(b)を測定した。
 初回放電容量(b)/初回充電容量(a)を百分率で表した値、すなわち100×(b)/(a)を初回クーロン効率とした。
[3] Evaluation of Battery [3-1] Measurement of Initial Coulombic Efficiency A test was conducted in a constant temperature bath set at 25 ° C. using a counter electrode lithium cell. Constant current charging was performed at 0.02 mA from the rest potential to 0.005V. Next, switching to constant voltage charging was carried out at 0.005 V, charging was carried out for 40 hours including constant current charging and constant voltage charging, and the initial charge capacity (a) was measured.
Constant current discharge was performed at 0.2 mA with an upper limit voltage of 1.5 V, and the initial discharge capacity (b) was measured.
The initial discharge capacity (b) / initial charge capacity (a) was expressed as a percentage, that is, 100 × (b) / (a) was defined as the initial Coulombic efficiency.
[3-2]基準容量の測定
 二極セルを用いて、25℃に設定した恒温槽内で試験を行った。セルを上限電圧4Vとして0.2C(満充電状態の電池を1時間で放電する電流値を1Cとする、以下同様)で定電流充電したのち、カットオフ電流値0.85mA、4Vで定電圧充電した。その後、下限電圧2V、0.2Cで定電流放電を行った。上記操作を計4回繰り返し、4回目の放電容量を二極セルの基準容量(c)とした。
[3-2] Measurement of Reference Capacity Using a bipolar cell, a test was conducted in a constant temperature bath set at 25 ° C. After the cell was charged with a constant current of 0.2 V (the current value for discharging a fully charged battery in 1 hour is 1 C, the same applies below) with the upper limit voltage of 4 V, the cutoff current value was 0.85 mA and a constant voltage was 4 V. Charged. After that, constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C. The above operation was repeated four times in total, and the discharge capacity at the fourth time was used as the reference capacity (c) of the bipolar cell.
[3-3]高温サイクル特性の測定
 二極セルを用いて、55℃に設定した恒温槽中で試験を行った。充電はレストポテンシャルから上限電圧を4Vとして定電流値85mA(5C相当)で定電流充電を行ったのち、カットオフ電流値0.34mA、4Vで定電圧充電を行った。
 その後、下限電圧2Vとして、85mAで定電流放電を行った。
 上記条件で、500サイクル充放電を繰り返し、高温サイクル放電容量(d)を測定した。上記条件で測定した高温サイクル放電容量(d)/二極セルの基準容量(c)を百分率で表した値、すなわち100×(d)/(c)を高温サイクル容量維持率とした。
[3-3] Measurement of high temperature cycle characteristics Using a bipolar cell, a test was conducted in a constant temperature bath set at 55 ° C. Regarding charging, constant current charging was performed at a constant current value of 85 mA (corresponding to 5 C) from the rest potential with an upper limit voltage of 4 V, and then constant voltage charging was performed at a cutoff current value of 0.34 mA and 4 V.
After that, constant current discharge was performed at 85 mA with a lower limit voltage of 2V.
Under the above conditions, 500 cycles of charge and discharge were repeated to measure the high temperature cycle discharge capacity (d). The high temperature cycle discharge capacity (d) measured under the above conditions / the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (d) / (c) was taken as the high temperature cycle capacity retention rate.
[3-4]内部抵抗(DC-IR)の測定
 試験は25℃に設定した恒温槽内で行った。満充電状態から満充電容量の50%まで0.1Cで定電流放電をした。30分休止後、17mAを5秒放電したときの電圧降下量からオームの法則(R=ΔV/0.017)により二極セルの内部抵抗(DC-IR)(e)を求めた。
[3-4] Measurement of internal resistance (DC-IR) The test was conducted in a constant temperature bath set at 25 ° C. Constant current discharge was performed at 0.1 C from the fully charged state to 50% of the fully charged capacity. After 30 minutes of rest, the internal resistance (DC-IR) (e) of the bipolar cell was obtained from Ohm's law (R = ΔV / 0.017) from the amount of voltage drop when 17 mA was discharged for 5 seconds.
[3-5]高温保存・回復特性の測定試験:
 二極セルを用いて、充電及び放電のいずれについても25℃に設定した恒温槽内で試験を行った。セルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電した。充電したセルを60℃に設定した恒温槽で4週間静置後、下限電圧2Vで0.2Cで定電流放電し、放電容量を測定した。この放電容量を高温保存容量(f)とした。二極セルの基準容量(c)に対する高温保存容量(f)を百分率で表した値、すなわち100×(f)/(c)を高温保持特性の値とした。
[3-5] High temperature storage / recovery characteristics measurement test:
Using a bipolar cell, the test was carried out in a constant temperature bath set at 25 ° C. for both charging and discharging. The cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V, and then at a constant voltage of 4 V with a cutoff current value of 0.34 mA. The charged cell was allowed to stand in a constant temperature bath set at 60 ° C. for 4 weeks and then discharged at a constant current of 0.2 C at a lower limit voltage of 2 V to measure the discharge capacity. This discharge capacity was defined as the high temperature storage capacity (f). The high temperature storage capacity (f) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (f) / (c) was taken as the value of the high temperature retention characteristic.
 保存容量の測定後、セルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電を行った。その後、下限電圧2V、0.2Cで定電流放電を行い、放電容量を測定した。この放電容量を高温回復容量(g)とした。二極セルの基準容量(c)に対する高温回復容量(g)を百分率で表した値、すなわち100×(g)/(c)を高温回復特性の値とした。 After measuring the storage capacity, the cell was charged with a constant current of 0.2 C with an upper limit voltage of 4 V and then with a cut-off current value of 0.34 mA. Then, constant current discharge was performed at a lower limit voltage of 2 V and 0.2 C, and the discharge capacity was measured. This discharge capacity was defined as the high temperature recovery capacity (g). The high temperature recovery capacity (g) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (g) / (c) was taken as the value of the high temperature recovery characteristic.
[3-6]低温充放電レート測定
 二極セルを用いて試験を行った。25℃に設定した恒温槽内にてセルを上限電圧4Vとして0.2Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電した。充電したセルを-20℃に設定した恒温槽にて下限電圧2V、1Cで定電流放電し、放電容量を測定した。この放電容量を低温放電容量(h)とした。二極セルの基準容量(c)に対する低温放電容量(h)を百分率で表した値、すなわち100×(h)/(c)を低温放電レート特性の値とした。
[3-6] Low Temperature Charge / Discharge Rate Measurement A test was conducted using a bipolar cell. The cell was charged at a constant current of 0.2 C with an upper limit voltage of 4 V in a constant temperature bath set at 25 ° C., and then at a constant voltage of 4 V with a cutoff current value of 0.34 mA. The charged cell was subjected to constant current discharge at a lower limit voltage of 2 V and 1 C in a constant temperature bath set at -20 ° C, and the discharge capacity was measured. This discharge capacity was defined as the low temperature discharge capacity (h). The low temperature discharge capacity (h) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (h) / (c) was taken as the value of the low temperature discharge rate characteristic.
 低温放電容量の測定後、恒温槽内温度を25℃に戻し、下限電圧2V、0.2Cで定電流放電を行った。そのセルを-20℃に設定した恒温槽にて上限電圧4Vとして1Cで定電流充電したのち、カットオフ電流値0.34mAとして4Vで定電圧充電し、充電容量を測定した。この充電容量を低温充電容量(i)とした。二極セルの基準容量(c)に対する低温充電容量(i)を百分率で表した値、すなわち100×(i)/(c)を低温充電レート特性の値とした。 After measuring the low temperature discharge capacity, the temperature inside the constant temperature bath was returned to 25 ° C, and constant current discharge was performed at a lower limit voltage of 2V and 0.2C. The cell was subjected to constant current charging at 1 C with an upper limit voltage of 4 V in a constant temperature bath set at −20 ° C., and then constant voltage charging at 4 V with a cut-off current value of 0.34 mA to measure the charge capacity. This charge capacity was defined as the low temperature charge capacity (i). The low temperature charge capacity (i) with respect to the reference capacity (c) of the bipolar cell was expressed as a percentage, that is, 100 × (i) / (c) was taken as the value of the low temperature charge rate characteristic.
[4]原料
 炭素粒子(A):人造黒鉛(昭和電工株式会社製、SCMG(登録商標))、50%粒子径(D50):6.0μm、BET比表面積:5.9m2/g。
 炭素性被覆層用原料:表1及び表2に示す材料。
[4] Raw material Carbon particles (A): artificial graphite (SCMG (registered trademark) manufactured by Showa Denko KK), 50% particle diameter (D50): 6.0 μm, BET specific surface area: 5.9 m 2 / g.
Raw materials for carbonaceous coating layer: Materials shown in Tables 1 and 2.
実施例1~24,比較例1~23: 
 各実施例及び各比較例において、表1及び表2に示す原料及び割合でV型混合機(VM-10、株式会社ダルトン製)に投入し、常温で10分間乾式混合を行った。その混合物を窒素ガス雰囲気下で表1及び2に示す温度にて電気式管状炉にて1時間熱処理を行い、複合炭素粒子または炭素粒子を得た。なお、表1及び2において、熱処理工程の欄に「なし」とあるのは、該当する熱処理工程を行っていないことを意味する。
 得られた炭素粒子に対し、各種物性を測定した。また、得られた炭素粒子を用いて電池を作製し評価した。その結果を表1~4に示す。
 実施例1、5、比較例3及び13で得られた炭素粒子のTEM写真を図1~4にそれぞれ示す。実施例5、比較例1及び3で得られた炭素粒子のR値イメージング結果を図5~7にそれぞれ示す。R値イメージングは濃淡がない方がR値のバラツキが少ない(変動係数が小さい)ことを表す。
Examples 1 to 24, Comparative Examples 1 to 23:
In each Example and each Comparative Example, the raw materials and proportions shown in Tables 1 and 2 were put into a V-type mixer (VM-10, manufactured by Dalton Co., Ltd.), and dry mixing was performed at room temperature for 10 minutes. The mixture was heat-treated under an atmosphere of nitrogen gas at a temperature shown in Tables 1 and 2 in an electric tubular furnace for 1 hour to obtain composite carbon particles or carbon particles. In Tables 1 and 2, “none” in the heat treatment step column means that the corresponding heat treatment step has not been performed.
Various physical properties of the obtained carbon particles were measured. Further, a battery was produced using the obtained carbon particles and evaluated. The results are shown in Tables 1 to 4.
TEM photographs of the carbon particles obtained in Examples 1 and 5 and Comparative Examples 3 and 13 are shown in FIGS. 1 to 4, respectively. The R value imaging results of the carbon particles obtained in Example 5 and Comparative Examples 1 and 3 are shown in FIGS. 5 to 7, respectively. In the R value imaging, there is less variation in the R value (the coefficient of variation is smaller) when there is no shading.
比較例24~26: 
 流動式反応炉にベンゼンを0.05g/L含む窒素ガスを1L/minで導入し、900℃で表2に示す時間で、炭素粒子(A)を流動状態で化学蒸着(Chemical Vapor Deposition:CVD)処理した。CVD処理に用いたベンゼンの使用量は1~5質量%であった。
 得られた炭素粒子に対し、実施例と同様に各種物性を測定し電池の作製を行った。その結果を表2及び4に示す。
 比較例26で得られた炭素粒子のR値イメージング結果を図8に示す。





































Comparative Examples 24-26:
Nitrogen gas containing 0.05 g / L of benzene was introduced into a fluidized reactor at 1 L / min, and carbon particles (A) were in a fluidized state at 900 ° C. for a time shown in Table 2 by chemical vapor deposition (Chemical Vapor Deposition: CVD). ) Treated. The amount of benzene used in the CVD process was 1 to 5 mass%.
Various physical properties of the obtained carbon particles were measured in the same manner as in Examples to prepare a battery. The results are shown in Tables 2 and 4.
The R value imaging result of the carbon particles obtained in Comparative Example 26 is shown in FIG.





































Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表及び図から、実施例の複合炭素粒子は、炭素粒子表面にグラフェン層が薄く均一に形成されており、各電池評価の結果がすべて向上していることがわかる。一方、炭素粒子表面にアモルファス炭素質層が形成された複合炭素粒子は、表面に炭素質層が形成されていない炭素粒子に比べて、低DC-IR、初回クーロン効率及び低温レート特性の向上の効果はあるが、高温での電池特性は悪化している(比較例3~5、比較例12~17)。また、R値の変動係数が大きいことから、コーティングが不均一であり、被覆の効果が十分に得られていない。
 また、用いるカルボン酸化合物の量が少なすぎると被覆層が形成されず、すべての電池特性に効果がほとんど見られない(比較例6、8、10)。カルボン酸化合物の量が多すぎると低DC-IR及び低温レート特性は向上するものの、d002の増大及びタップ密度の低下が生じるとともに、R値及びBETが過剰に上昇し、初回クーロン効率の低下、高温での電池特性の低下につながる(比較例7、9、11)。
 CVD処理による被覆を行った場合には、炭素粒子のような凹凸の大きい粒子に対してグラフェン層を薄く制御することが困難であり、R値の変動係数を0.20以下に低減するためには、グラフェン層の厚みが過剰になり、R値も過剰に上昇する結果、高温での電池特性の低下につながる(比較例24~26、図8)。
From the table and the figures, it is understood that in the composite carbon particles of the examples, the graphene layer is thinly and uniformly formed on the surface of the carbon particles, and all the evaluation results of each battery are improved. On the other hand, the composite carbon particles having the amorphous carbonaceous layer formed on the surface of the carbon particles have lower DC-IR, better initial Coulombic efficiency, and lower temperature rate characteristics than the carbon particles having no carbonaceous layer formed on the surface. Although effective, the battery characteristics at high temperature are deteriorated (Comparative Examples 3 to 5 and Comparative Examples 12 to 17). Further, since the coefficient of variation of the R value is large, the coating is non-uniform, and the effect of coating is not sufficiently obtained.
Further, if the amount of the carboxylic acid compound used is too small, the coating layer is not formed and almost no effect is seen on all the battery characteristics (Comparative Examples 6, 8, 10). When the amount of the carboxylic acid compound is too large, the low DC-IR and the low temperature rate characteristics are improved, but d002 is increased and the tap density is decreased, and the R value and BET are excessively increased, and the initial Coulombic efficiency is decreased. This leads to deterioration of battery characteristics at high temperatures (Comparative Examples 7, 9, 11).
When the coating is performed by the CVD process, it is difficult to control the graphene layer thinly for particles having large irregularities such as carbon particles, and in order to reduce the variation coefficient of the R value to 0.20 or less, Results in an excessively thick graphene layer and an excessively high R value, resulting in deterioration of battery characteristics at high temperatures (Comparative Examples 24 to 26, FIG. 8).

Claims (16)

  1.  炭素粒子(A)及びその表面を被覆する炭素性被覆層(B)を含む複合炭素粒子であって、前記炭素性被覆層(B)が0.1nm以上30.0nm以下の単層グラフェンまたは多層グラフェンである複合炭素粒子。 A composite carbon particle comprising carbon particles (A) and a carbonaceous coating layer (B) coating the surface thereof, wherein the carbonaceous coating layer (B) is 0.1 nm or more and 30.0 nm or less single layer graphene or multilayer. Composite carbon particles that are graphene.
  2.  顕微ラマン分光分析法によるラマンスペクトルから得られるR値(1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の比(ID/IG))の変動係数が0.30以下である請求項1に記載の複合炭素粒子。 Coefficient of variation of R values obtained from the Raman spectra by Raman spectroscopy (ratio (ID / IG) of 1350 cm -1 vicinity of the peak intensity (ID) and 1580 cm -1 vicinity of the peak intensity (IG)) is 0.30 The composite carbon particles according to claim 1, which are as follows.
  3.  ラマン分光分析法によって測定されるR値が0.10以上0.40以下である請求項1または請求項2に記載の複合炭素粒子。 The composite carbon particle according to claim 1 or 2, wherein the R value measured by Raman spectroscopy is 0.10 or more and 0.40 or less.
  4.  X線回折法で測定される(002)面の平均面間隔d002が0.3354nm以上0.3370nm以下である請求項1~3のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 3, wherein the average interplanar spacing d002 of the (002) plane measured by X-ray diffraction is 0.3354 nm or more and 0.3370 nm or less.
  5.  レーザー回折法による体積基準累積粒度分布における50%粒子径(D50)が1.0μm以上30.0μm以下であり、400回タッピング密度が0.30g/cm3以上1.50g/cm3以下である請求項1~4のいずれか1項に記載の複合炭素粒子。 Is 50% particle size (D50) of the 1.0μm or 30.0μm or less in volume-based cumulative particle size distribution by laser diffraction method, it is 400 times the tapping density of 0.30 g / cm 3 or more 1.50 g / cm 3 or less The composite carbon particle according to any one of claims 1 to 4.
  6.  BET比表面積が1.0m2/g以上10.0m2/g以下である請求項1~5のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 5, which has a BET specific surface area of 1.0 m 2 / g or more and 10.0 m 2 / g or less.
  7.  前記炭素粒子(A)が、黒鉛粒子である請求項1~6のいずれか1項に記載の複合炭素粒子。 The composite carbon particles according to any one of claims 1 to 6, wherein the carbon particles (A) are graphite particles.
  8.  (複合炭素粒子のBET比表面積)/(炭素粒子(A)のBET比表面積)が0.30以上0.90以下である請求項1~7のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 7, wherein (BET specific surface area of composite carbon particle) / (BET specific surface area of carbon particle (A)) is 0.30 or more and 0.90 or less.
  9.  (複合炭素粒子のラマンR値)/(炭素粒子(A)のラマンR値)が1.50以上10.00以下である請求項1~8のいずれか1項に記載の複合炭素粒子。 The composite carbon particle according to any one of claims 1 to 8, wherein (Raman R value of composite carbon particle) / (Raman R value of carbon particle (A)) is 1.50 or more and 10.00 or less.
  10.  請求項1~9のいずれか1項に記載の複合炭素粒子を含む負極活物質。 A negative electrode active material containing the composite carbon particles according to any one of claims 1 to 9.
  11.  請求項10に記載の負極活物質と集電体を含む負極。 A negative electrode including the negative electrode active material according to claim 10 and a current collector.
  12.  請求項11に記載の負極を用いたリチウムイオン二次電池。 A lithium-ion secondary battery using the negative electrode according to claim 11.
  13.  請求項11に記載の負極を用いた全固体型リチウムイオン二次電池。 All-solid-state lithium-ion secondary battery using the negative electrode according to claim 11.
  14.  複合炭素粒子の製造方法であって、炭素粒子(A)と、カルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.9質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。 A method for producing composite carbon particles, comprising: forming carbon particles (A) and a carboxylic acid compound having at least one carboxy group and one hydroxy group based on the total mass of the carbon particles (A) and the carboxylic acid compound. The particles (A) are mixed so as to be 80.0% by mass or more and 99.9% by mass or less, and the carboxylic acid compound is 0.1% by mass or more and 20.0% by mass or less, and the resulting mixture is heat-treated. A method for producing composite carbon particles, which is characterized.
  15.  複合炭素粒子の製造方法であって、炭素粒子(A)と、カルボキシ基を2個以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.9質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。 A method for producing composite carbon particles, comprising: carbon particles (A) and a carboxylic acid compound having two or more carboxy groups, based on the total mass of the carbon particles (A) and the carboxylic acid compound. Of 80.0 mass% or more and 99.9 mass% or less and the carboxylic acid compound are mixed so as to be 0.1 mass% or more and 20.0 mass% or less, and the resulting mixture is heat-treated. Method for producing carbon particles.
  16.  複合炭素粒子の製造方法であって、炭素粒子(A)とカルボキシ基及びヒドロキシ基をそれぞれ1つ以上有するカルボン酸化合物と、カルボキシ基を2個以上有するカルボン酸化合物とを、炭素粒子(A)とカルボン酸化合物の合計質量に対して炭素粒子(A)が80.0質量%以上99.90質量%以下、カルボン酸化合物が0.1質量%以上20.0質量%以下となるように混合し、得られた混合物を熱処理することを特徴とする複合炭素粒子の製造方法。 A method for producing composite carbon particles, comprising: carbon particles (A), a carboxylic acid compound having at least one carboxy group and a hydroxy group, and a carboxylic acid compound having at least two carboxy groups. And carbon particles (A) are mixed in an amount of 80.0 mass% to 99.90 mass% and a carboxylic acid compound of 0.1 mass% to 20.0 mass% with respect to the total mass of the carboxylic acid compound. And heat-treating the obtained mixture, the manufacturing method of the composite carbon particle characterized by the above-mentioned.
PCT/JP2019/045131 2018-11-19 2019-11-18 Composite carbon particles, method for producing same, and lithium ion secondary battery WO2020105598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216734 2018-11-19
JP2018-216734 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105598A1 true WO2020105598A1 (en) 2020-05-28

Family

ID=70773281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045131 WO2020105598A1 (en) 2018-11-19 2019-11-18 Composite carbon particles, method for producing same, and lithium ion secondary battery

Country Status (2)

Country Link
TW (1) TW202034569A (en)
WO (1) WO2020105598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187708A (en) * 2020-05-29 2021-12-13 昭和電工株式会社 Carbon-coated composite materials and their uses
CN115286952A (en) * 2022-08-30 2022-11-04 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123561A (en) * 2012-11-21 2014-07-03 Showa Denko Kk Process of manufacturing negative electrode material for lithium ion battery
JP2016108214A (en) * 2014-11-28 2016-06-20 川研ファインケミカル株式会社 Graphene-coated alumina, assembly of graphene-coated alumina, graphene-coated alumina-containing electronic material, and surface hydrophobic treatment method
WO2016136803A1 (en) * 2015-02-25 2016-09-01 新日鉄住金化学株式会社 Active material for negative electrode of lithium-ion secondary battery, secondary battery negative electrode using same, and secondary battery
JP2016195103A (en) * 2015-03-31 2016-11-17 東レ株式会社 Composite conductive particle and method for producing the same, and conductive resin
JP2017503310A (en) * 2013-11-13 2017-01-26 エックスジー・サイエンシーズ・インコーポレイテッドXG Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
WO2017116657A1 (en) * 2015-12-28 2017-07-06 Nanotek Instruments, Inc. Graphene-Carbon Hybrid Foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123561A (en) * 2012-11-21 2014-07-03 Showa Denko Kk Process of manufacturing negative electrode material for lithium ion battery
JP2017503310A (en) * 2013-11-13 2017-01-26 エックスジー・サイエンシーズ・インコーポレイテッドXG Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
JP2016108214A (en) * 2014-11-28 2016-06-20 川研ファインケミカル株式会社 Graphene-coated alumina, assembly of graphene-coated alumina, graphene-coated alumina-containing electronic material, and surface hydrophobic treatment method
WO2016136803A1 (en) * 2015-02-25 2016-09-01 新日鉄住金化学株式会社 Active material for negative electrode of lithium-ion secondary battery, secondary battery negative electrode using same, and secondary battery
JP2016195103A (en) * 2015-03-31 2016-11-17 東レ株式会社 Composite conductive particle and method for producing the same, and conductive resin
WO2017116657A1 (en) * 2015-12-28 2017-07-06 Nanotek Instruments, Inc. Graphene-Carbon Hybrid Foam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187708A (en) * 2020-05-29 2021-12-13 昭和電工株式会社 Carbon-coated composite materials and their uses
JP7456291B2 (en) 2020-05-29 2024-03-27 株式会社レゾナック Carbon-coated composite materials and their applications
CN115286952A (en) * 2022-08-30 2022-11-04 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint
CN115286952B (en) * 2022-08-30 2023-10-03 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint

Also Published As

Publication number Publication date
TW202034569A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
Lv et al. Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery
Yang et al. Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell
He et al. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery
US8748036B2 (en) Non-aqueous secondary battery
KR101887952B1 (en) Negative-electrode material for lithium-ion secondary battery
Xia et al. Synthesis and electrochemical properties of MoO3/C composite as anode material for lithium-ion batteries
Zheng et al. High performance Na3V2 (PO4) 3 cathode prepared by a facile solution evaporation method for sodium-ion batteries
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
Hsieh et al. Electrochemical performance of lithium iron phosphate cathodes at various temperatures
JP7371735B2 (en) Method for producing negative electrode material for lithium ion secondary batteries, and negative electrode material for lithium ion secondary batteries
Wang et al. Solid-state synthesis of graphite carbon-coated Li 4 Ti 5 O 12 anode for lithium ion batteries
JP7456291B2 (en) Carbon-coated composite materials and their applications
JPWO2019031543A1 (en) Negative electrode active material for secondary battery and secondary battery
JP2021172544A (en) Composite material, method for producing the same and all-solid-state lithium ion secondary battery
WO2020196610A1 (en) Composite particles and negative electrode material for lithium ion secondary batteries
WO2020105598A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
Shi et al. Application of magnetron sputtering to deposit a multicomponent separator with polysulfide chemisorption and electrode stabilization for high-performance lithium‑sulfur batteries
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof
JP6377881B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020105599A1 (en) Composite carbon particles, method for producing same, and lithium ion secondary battery
Xia et al. One-step synthesis of carbon-coated Li 4 Ti 4.95 Nd 0.05 O 12 by modified citric acid sol–gel method for lithium-ion battery
Rao et al. Carbon nanofibers derived from carbonization of electrospinning polyacrylonitrile (PAN) as high performance anode material for lithium ion batteries
WO2020213627A1 (en) Composite carbon particle, method for manufacturing same, and use thereof
Chen et al. Preparation of LiNi0. 5Mn1. 5O4 cathode materials by using different-sized Mn3O4 nanocrystals as precursors
Guo et al. Structure, Morphology, and Composition of Mn 3 N 2/MnO/C Composite Anode Materials for Li-Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP