WO2020026717A1 - Slip control device for torque converter - Google Patents

Slip control device for torque converter Download PDF

Info

Publication number
WO2020026717A1
WO2020026717A1 PCT/JP2019/027076 JP2019027076W WO2020026717A1 WO 2020026717 A1 WO2020026717 A1 WO 2020026717A1 JP 2019027076 W JP2019027076 W JP 2019027076W WO 2020026717 A1 WO2020026717 A1 WO 2020026717A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
gain
slip
lock
calculating
Prior art date
Application number
PCT/JP2019/027076
Other languages
French (fr)
Japanese (ja)
Inventor
博 周
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2020026717A1 publication Critical patent/WO2020026717A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches

Definitions

  • the present invention relates to a slip control device for a torque converter mounted on a vehicle.
  • a slip control device has been developed that controls the engagement capacity of a lock-up clutch so that the actual slip rotation between input and output elements of a torque converter that transmits rotation from a prime mover (engine) converges to a target slip rotation.
  • Patent Document 1 discloses that a target slip rotation of a torque converter is obtained from a driving state of a vehicle, a slip rotation command value for making the actual slip rotation coincide with the target slip rotation is calculated, and the total performance data of the prime mover is calculated from the driving state of the vehicle.
  • a motor output torque is estimated based on the map, a lock-up clutch engagement pressure command value corresponding to the slip rotation command value is calculated from the motor output torque estimated value and the slip rotation command value, and the lock-up clutch
  • a technique for controlling the fastening pressure is disclosed.
  • a slip rotation gain is obtained from a turbine rotation of a torque converter
  • a target converter torque is obtained by dividing a slip rotation command value by a slip rotation gain
  • the target converter torque is subtracted from an estimated motor output torque value.
  • a target lock-up clutch engagement capacity is determined by the above-described method, and the lock-up clutch is controlled based on the target engagement capacity.
  • the present invention has been made in view of such a problem, and when an engine torque transiently changes due to depression and return of an accelerator pedal, an appropriate slip control is performed to generate an excessive engine speed up-speed. It is an object of the present invention to provide a torque converter slip control device capable of suppressing the occurrence of shock of a vehicle or a vehicle.
  • a slip control device for a torque converter in a vehicle, and detects a slip state of a torque converter having a lock-up clutch interposed between an engine and a stepped automatic transmission.
  • Estimated engine torque calculating means for calculating;
  • An engagement command pressure calculating means for calculating an engagement command pressure of the lock-up clutch from the estimated engine torque and the slip torque capacity, wherein a time change rate of the torque signal is set to a first predetermined value by an accelerator operation of the vehicle.
  • a gain changing means is provided for increasing the gain by a predetermined amount when the gain exceeds the value.
  • the gain changing means preferably stops increasing the gain when the rate of change of the torque signal falls below a second predetermined value smaller than the first predetermined value during the increase of the gain. It is preferable that the gain changing unit stops the process of increasing the gain when a predetermined time has elapsed after increasing the gain. It is preferable that the predetermined amount is a predetermined constant value. It is preferable that the predetermined amount is set to a larger value as the time change rate of the accelerator operation amount is larger. It is preferable that a gain change prohibiting unit that prohibits an increase in the gain is provided during a shift of the stepped automatic transmission.
  • the gain for calculating the estimated engine torque is increased from the torque signal.
  • the influence of the delay of the torque on the actual engine torque can be suppressed, and the engagement command pressure of the lock-up clutch can be optimized. As a result, it is possible to suppress the occurrence of excessive engine speed up when the accelerator pedal is depressed and the occurrence of longitudinal acceleration shock of the vehicle when the accelerator pedal is released.
  • 1 is a system diagram showing a main part of a drive system and a control system of a vehicle to which a slip control device for a torque converter according to an embodiment of the present invention is applied.
  • 1 is a block diagram of a main part of a slip control device for a torque converter according to an embodiment of the present invention.
  • 5 is a time chart for explaining control by the slip control device of the torque converter according to one embodiment of the present invention, wherein (a) shows a case where the present control is not applied, and (b) shows a case where the present control is applied.
  • . 4 is a flowchart illustrating control by a slip control device for a torque converter according to an embodiment of the present invention.
  • FIG. 1 is a system diagram showing a main part of a drive system and a control system of a vehicle to which a slip control device for a torque converter according to the present embodiment is applied.
  • the drive system of the vehicle includes an engine (internal combustion engine) 1 as a drive source, a torque converter 2, a transmission mechanism 3, a power transmission system 7 downstream of the transmission mechanism 3 in a power transmission direction, And a drive wheel (not shown) downstream of the power transmission direction.
  • the automatic transmission 10 is configured by housing the torque converter 2 and the transmission mechanism 3 in the transmission case 10A.
  • a portion (mainly the engine 1) on the upstream side in the power transmission direction with respect to the torque converter 2 and a portion between the torque converter 2 and a friction engagement element 31 described later (a turbine described later of the torque converter 2).
  • the inertia masses of the runner 24 (including the runner 24) and the portion downstream of the friction engagement element 31 in the power transmission direction are indicated by simple blocks A, B, and C.
  • the torque converter 2 is a starting element having a torque increasing function, and includes a pump impeller 23 connected to the engine output shaft 11 via a converter housing 22, a turbine runner 24 connected to the torque converter output shaft 21, and A stator 25 provided via a one-way clutch (not shown) is a component.
  • the transmission mechanism 3 employs a stepped transmission mechanism that achieves a plurality of forward speeds and reverse speeds. Each shift speed is achieved by selectively engaging a plurality of friction engagement elements 31 such as a clutch or a brake. For example, when the vehicle starts moving forward, the friction engagement element 31 that achieves the first gear is engaged, and when the vehicle starts traveling backward, the friction engagement element 31 that achieves the reverse gear is engaged. At the time of forward running, the friction engagement element 31 that achieves an appropriate gear position is engaged according to the vehicle speed and the engine load (here, the throttle valve opening degree).
  • the engine load here, the throttle valve opening degree
  • the engagement state of the lock-up clutch 20 and each friction engagement element 31 is determined by the hydraulic control through the corresponding hydraulic control valve (control valve) 41. This is done by adjusting the combined pressure.
  • the hydraulic control valve 41 is a solenoid valve provided in the hydraulic control unit 4, and is operated by a command signal of an automatic transmission control unit 5 (hereinafter, referred to as ATCU).
  • the hydraulic control valve 41 adjusts the engagement state of the lock-up clutch 20 and each friction engagement element 31 by adjusting the oil pressure of the hydraulic oil supplied from an oil pump (not shown) according to the command signal.
  • the present control device is characterized in that the engagement state of the lock-up clutch 20 is adjusted, and in particular, the lock-up clutch 20 is slip-controlled.
  • the ATCU 5 includes a shift control unit (shift control means) 50A which is a function for controlling engagement and release of each friction engagement element 31 in order to perform a shift stage such as upshift or downshift. And a lock-up clutch control section (lock-up clutch control means) 50B for controlling the engagement state of the lock-up clutch 20.
  • the lock-up clutch 20 responds to a differential pressure PA-PR between the torque converter apply pressure PA and the torque converter release pressure PR on both sides (input side and output side), and the release pressure PR is increased.
  • PA-PR differential pressure
  • the lock-up clutch 20 is released and does not directly connect the input / output elements of the torque converter.
  • the release pressure PR becomes lower than the apply pressure PA, the lock-up clutch 20 is engaged and the torque converter is turned on. Reduce or eliminate the slip speed between output elements.
  • the engagement force of the lock-up clutch 20, that is, the lock-up capacity is determined by the differential pressure PA-PR.
  • the greater the differential pressure the greater the engagement force of the lock-up clutch 20 and the greater the lock-up capacity.
  • the differential pressure PA-PR is controlled by the hydraulic control valve 41.
  • the differential pressure PA-PR is simply referred to as lock-up pressure.
  • the lock-up clutch control unit 50B includes an engine rotation speed Ne (corresponding to the engine rotation speed) Ne, a turbine rotation speed (corresponding to the turbine rotation speed ⁇ t) Nt of the torque converter 2, a vehicle speed V, a throttle opening TVO, Operating state information of the vehicle, such as a gear ratio ip, an oil temperature (AT fluid temperature) T ATF , and an engine torque signal (hereinafter, also simply referred to as a torque signal) Te, is input from each sensor.
  • the lockup clutch control unit 50B calculates a target slip rotation speed Tslp of the lockup clutch 20 (target slip rotation calculation unit) to control the engagement state of the lockup clutch 20 based on these signals.
  • Speed calculation means) 51 an actual slip rotation calculation section (actual slip rotation speed calculation means) 52 for calculating the actual slip rotation speed ⁇ slp, and control so that the actual slip rotation speed ⁇ slp follows the target slip rotation speed Tslp.
  • a slip control unit (slip control means) 53 that performs the control.
  • the target slip rotation calculation unit 51 calculates a target slip rotation speed Tslp based on the vehicle operating state such as the vehicle speed V, the throttle opening TVO, the turbine speed Nt, the speed ratio ip, and the oil temperature T ATF .
  • the target slip rotation speed Tslp is a difference between the input and output rotation speeds of the lock-up clutch 20, and is obtained by subtracting the rotation speed (turbine rotation speed) ⁇ t of the turbine runner 24 from the rotation speed (impeller rotation speed) ⁇ i of the pump impeller 23. Value.
  • a test or the like is performed in advance, and the slip rotation speed at which the occurrence of the torque fluctuation and the muffled sound is minimized is stored in a map or the like in correspondence with the driving state of the vehicle.
  • the target slip rotation speed Tslp is calculated with reference to this map and the like.
  • the actual slip rotation calculating section 52 calculates an actual slip rotation speed ⁇ slp by subtracting the turbine rotation speed ⁇ t detected by the sensor from the impeller rotation speed ⁇ i detected by the sensor. Since the impeller rotation speed ⁇ i corresponds to the engine rotation speed Ne, the impeller rotation speed ⁇ i is obtained from the engine rotation speed Ne obtained by the engine rotation sensor 64. The turbine rotation speed ⁇ t is obtained by the turbine rotation sensor 65.
  • the slip control unit 53 controls the actual slip rotation speed ⁇ slp so as to follow the target slip rotation speed Tslp.
  • the slip rotation speed of the lock-up clutch 20 is determined by the input torque input to the lock-up clutch 20.
  • (Torque difference) ⁇ T between the output torque output from the lock-up clutch 20 (torque capacity transmitted by the lock-up clutch 20) and the slip control unit 53 adjusts the slip control unit 53 according to the target slip rotation speed.
  • the torque difference ⁇ T is calculated, and a torque value obtained by subtracting the torque difference ⁇ T from the input torque to the lock-up clutch 20 is set as a torque capacity target value (hereinafter, also simply referred to as torque capacity) Tlu transmitted by the lock-up clutch 20. Controls the torque capacity of the lock-up clutch 20 to achieve the target slip rotation speed I do.
  • the slip control unit 53 controls the slip state of the lock-up clutch 20 using feedback control and feedforward control. Therefore, as shown in FIG. 2, the slip control unit 53 includes a slip torque capacity calculation unit (slip torque capacity calculation means) 53A having a feedback control unit 54 and a feedforward control unit 55, a command value conversion unit 58, The slip torque capacity calculator 53A calculates a torque value (slip torque capacity) corresponding to the target slip rotation speed, and derives a command value for controlling the engagement state of the lock-up clutch 20 based on the slip torque capacity. I am trying to do it.
  • the slip control unit 53 will be further described. As shown in FIG. 2, the slip control unit 53 performs a process corresponding to a sudden change in torque, specifically, phase lead compensation, on the target slip rotation speed Tslp output from the target slip rotation calculation unit 51. .
  • the target slip rotation speed Tslpa subjected to this processing is sent to the feedback control unit 54 and the feedforward control unit 55 of the slip torque capacity calculation unit 53A.
  • the output (torque level) Tcnvfb from the feedback control unit 54 and the output (torque level) Tcnvff from the feedforward control unit 55 are sent to the addition unit 53b and added, and the slip for achieving the target slip rotation speed is obtained. It is output as the torque capacity Tcnv.
  • the slip torque capacity Tcnv calculated by the slip torque capacity calculation section 53A is sent to the subtraction section 53c, and the torque signal processing section 59 as an estimated engine torque calculation section (estimated engine torque calculation means) performs processing based on the engine torque signal Te.
  • the slip torque capacity Tcnv is subtracted from the processed torque value Tea to calculate the torque capacity (control value) Tlu of the lock-up clutch 20.
  • the torque capacity Tlu is sent to the command value conversion unit 58, and the lock-up clutch 20 is converted into an instruction current value Ilu of the control valve 41 for controlling the engagement state of the control valve 20 and output.
  • the feedback control unit 54 processes the target slip rotation speed Tslpa according to the reference model, performs processing relating to the dead time of the lock-up clutch 20 with respect to the output target slip rotation speed, and calculates the processed target slip rotation speed Tslp.
  • PI control proportional / integral control
  • the feedforward control unit 55 performs a process for compensating the phase with respect to the target slip rotation speed Tslpa, converts the obtained target slip rotation speed Tslpff into a feedforward slip torque capacity Tcnvff, and outputs it as a feedforward control value.
  • the slip torque capacity calculation unit 53A the feedback slip torque capacity Tcnvfb output from the feedback control unit 54 and the feedforward slip torque capacity Tcnvff output from the feedforward control unit 55 are added by the addition unit 53b, It is output as slip torque capacity Tcnv.
  • the torque signal processing section 59 performs a dead time process (reference numeral 59a), a first-order lag process (reference numeral 59b), and a gain correction (reference numeral 59c) on the engine torque signal Te, and outputs a torque value Tea.
  • the gain used for gain correction in the torque signal processing unit 59 (hereinafter, also simply referred to as gain) is increased under specific conditions. This will be described later.
  • the subtractor 53c calculates the torque capacity Tlu of the lock-up clutch 20 by subtracting the slip torque capacity Tcnv from the torque value Tea based on the engine torque signal Te.
  • the command value converter 58 performs a torque-differential pressure conversion process on the torque capacity Tlu, performs phase lead compensation, performs a command pressure-current conversion process, and outputs the obtained indicated current value Ilu to the control valve 41. I do.
  • a current is sent to the solenoid of the control valve 41 in accordance with the command current value Ilu output from the slip control unit 53, and the hydraulic pressure (differential pressure) of the lock-up clutch 20 is set to the predetermined value Plu by the control valve 41.
  • the slip state of the lock-up clutch 20 is controlled to the target state.
  • the torque value Tea is calculated by strongly reflecting the latest engine torque signal Te that has started to increase. I have to.
  • the ATCU 5 has a gain changing unit (gain changing means) for increasing the gain by a predetermined amount. ) 60 are provided. Switching of the accelerator pedal between off and on can be detected as, for example, switching of the idle switch between on and off.
  • the gain changing unit 60 pays attention to the time change rate ⁇ Te of the engine torque signal Te when the switching between the off state and the on state of the accelerator pedal occurs, and when the time change rate ⁇ Te becomes equal to or more than the first predetermined value ⁇ Te1. It is determined that the situation is such that the actual engine torque suddenly increases, and the gain is increased.
  • FIG. 3B shows a dashed line and a solid line for Gain, where the dashed line is a target value and the solid line is a command value.
  • the command value changes the gain in a ramp shape to prevent a sudden change in the gain, thereby stabilizing the control.
  • the predetermined amount for increasing the gain may be a fixed amount by performing a test in advance, or may be a variable amount such as increasing as the accelerator pedal depressing speed (the rate of time change of the accelerator operation amount) increases. Good.
  • FIG. 3 illustrates a case where the accelerator pedal is changed from the released state to the depressed state, so that the lock-up capacity becomes too small and the engine speed is excessively increased. However, the accelerator pedal is released from the depressed state to the released state. In the case where the lock-up capacity becomes excessive due to the above, the longitudinal acceleration shock occurs in the vehicle, it is also found that the engine torque signal Te used for controlling the lock-up clutch 20 is delayed with respect to the actual engine torque. are doing.
  • the gain changing unit 60 determines that the rate of change (absolute value) ⁇ Te of the torque signal Te is larger than the first predetermined value ⁇ Te1 during the increase in the gain. Is smaller than the second predetermined value ⁇ Te2, the increase of the gain is stopped.
  • the gain changing unit 60 may be configured to stop the process of increasing the gain after a predetermined period of time has elapsed since the gain was increased.
  • a gain change prohibition unit (a gain change prohibiting unit) that prohibits the change of the gain during the shift. 61 is provided to regulate a gain change by the gain changing unit 60.
  • the vehicle shift control device Since the vehicle shift control device according to one embodiment of the present invention is configured as described above, for example, as shown in the flowchart of FIG.
  • the gain becomes equal to or greater than the predetermined value ⁇ Te1, the gain can be changed by the gain changing unit 60 that increases the gain by a predetermined amount.
  • F is a flag that is set to 1 during a gain change, and is set to 0 when the gain is not being changed, that is, when the gain is a normal value.
  • step S20 it is determined whether or not the flag F is 0. If the flag F is 0, that is, if the gain is a normal value, it is determined whether or not the idle switch has been switched on and off ( In step S20), if the idle switch has been switched between on and off, it is determined whether or not gear shifting is in progress (step S30). Here, if it is determined that the shift is not being performed, it is determined whether the rate of change (absolute value) ⁇ Te of the engine torque signal Te is equal to or greater than a first predetermined value ⁇ Te1 (step S50).
  • the flag F is set to 1 (step S60) to correct the gain of the engine torque signal Te. Is increased (step S70).
  • the flag F is 0 and there is no switching of the idle switch between on and off, even if there is this switching, the gear is being shifted, and the rate of change (absolute value) ⁇ Te of the engine torque signal Te is the If it is smaller than the predetermined value ⁇ Te1, the gain is not increased and the gain is set to the normal value (step S40).
  • step S10 When the flag F is set to 1 to increase the gain, the process proceeds from step S10 to step S80, where the rate of change (absolute value) ⁇ Te of the torque signal Te is smaller than the first predetermined value ⁇ Te1. It is determined whether or not the value is less than the value ⁇ Te2, and when the rate of change (absolute value) ⁇ Te of the torque signal Te is less than the second predetermined value ⁇ Te2, the flag F is reset to 0 (step S90), and the gain is increased. Is stopped, and the gain is set to the normal value (step S40). Note that it may be determined whether or not a predetermined time set in advance has elapsed since the gain was increased, and after the predetermined time has elapsed, the process of increasing the gain may be stopped to set the gain to a normal value. .
  • the gain is increased only by switching the accelerator pedal between on and off (switching the idle switch between off and on), the operation amount of the accelerator pedal (depressed amount or depressed amount) is detected.
  • the gain can be easily and quickly increased as compared with the case where the gain is increased.
  • the change of the gain is restricted during the shift, the possibility that the change of the gain may hinder the shift control is also avoided.
  • the control device for the torque converter according to one embodiment of the present invention has been described, but the present invention is not limited to this embodiment.
  • the gain itself processed in the gain correction unit 59c is changed.
  • a gain correction unit different from the gain correction unit 59c is provided in the torque signal processing unit 59, and the correction processing is performed here.
  • the normal value of the gain to be used is 1 and the increase value is a value larger than 1 by a predetermined amount
  • the engine torque signal Te or a value obtained by processing the engine torque signal Te may be multiplied by this gain to calculate the torque value Tea. .
  • the gain changing unit 60 causes a sudden increase in the actual engine torque when the time change rate ⁇ Te becomes greater than or equal to the first predetermined value ⁇ Te1 due to the switching between the on and off states of the accelerator pedal.
  • the gain is determined to be under the condition and the gain is increased, the time is not limited to the switching between the on and off of the accelerator pedal, and the depression and the return of the accelerator pedal are detected, and the time of the engine torque signal Te is detected. Focusing on the rate of change ⁇ Te, when the time rate of change ⁇ Te becomes equal to or greater than the first predetermined value ⁇ Te1, it may be determined that the situation is such that the actual engine torque suddenly increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

This slip control device for a torque converter is provided with a calculating means (51) for calculating a target slip rotational speed of a lockup clutch (20) on the basis of a driving state of a vehicle, a calculating means (53A) for calculating a slip torque capacity of the lockup clutch (20) from a feed-forward control quantity based on the target slip rotational speed, and a feedback control quantity based on the target slip rotation speed and an actual slip rotational speed, a calculating means (59) for calculating an estimated engine torque by subjecting a torque signal from an engine (1) to a correction process using a gain, and a calculating means (58) for calculating an engagement command pressure of the torque converter (20) from the estimated engine torque and the slip torque capacity, and is also provided with a gain modifying means (60) for increasing the gain by a prescribed amount if the rate of change over time in the torque signal is equal to or greater than a first prescribed value as a result a vehicle acceleration operation.

Description

トルクコンバータのスリップ制御装置Slip control device for torque converter
 本発明は、車両に装備されるトルクコンバータのスリップ制御装置に関するものである。 The present invention relates to a slip control device for a torque converter mounted on a vehicle.
 原動機(エンジン)からの回転を伝達するトルクコンバータの入出力要素間における実スリップ回転が目標スリップ回転に収束するようにロックアップクラッチの締結容量を制御するスリップ制御装置が開発されている。 ス リ ッ プ A slip control device has been developed that controls the engagement capacity of a lock-up clutch so that the actual slip rotation between input and output elements of a torque converter that transmits rotation from a prime mover (engine) converges to a target slip rotation.
 例えば特許文献1には、車両の運転状態からトルクコンバータの目標スリップ回転を求め、実スリップ回転を目標スリップ回転に一致させるスリップ回転指令値を算出し、車両の運転状態から予定の原動機全性能データマップをもとに原動機出力トルクを推定し、原動機出力トルク推定値およびスリップ回転指令値からスリップ回転指令値に対応したロックアップクラッチ締結圧指令値を算出して、この指令値によりロックアップクラッチの締結圧を制御する技術が開示されている。 For example, Patent Document 1 discloses that a target slip rotation of a torque converter is obtained from a driving state of a vehicle, a slip rotation command value for making the actual slip rotation coincide with the target slip rotation is calculated, and the total performance data of the prime mover is calculated from the driving state of the vehicle. A motor output torque is estimated based on the map, a lock-up clutch engagement pressure command value corresponding to the slip rotation command value is calculated from the motor output torque estimated value and the slip rotation command value, and the lock-up clutch A technique for controlling the fastening pressure is disclosed.
 また、特許文献1には、トルクコンバータのタービン回転からスリップ回転ゲインを求め、スリップ回転指令値をスリップ回転ゲインで除算することにより目標コンバータトルクを求め、原動機出力トルク推定値から目標コンバータトルクを差し引いて目標ロックアップクラッチ締結容量を求め、これによりロックアップクラッチを制御することも開示されている。 Further, in Patent Document 1, a slip rotation gain is obtained from a turbine rotation of a torque converter, a target converter torque is obtained by dividing a slip rotation command value by a slip rotation gain, and the target converter torque is subtracted from an estimated motor output torque value. It is also disclosed that a target lock-up clutch engagement capacity is determined by the above-described method, and the lock-up clutch is controlled based on the target engagement capacity.
 ところで、トルクコンバータのスリップ制御装置を備えた車両において、アクセルペダルを踏み込んだ場合に、ロックアップ容量が過少になってエンジン回転の吹け上がりが過剰になることや、アクセルペダルを踏み戻した場合に、ロックアップ容量が過多になって車両に前後加速度ショックが生じることが、本発明者らによる装置の開発過程で判明した。 By the way, in the vehicle equipped with the slip control device of the torque converter, when the accelerator pedal is depressed, the lock-up capacity becomes too small and the engine speed is increased too much, or when the accelerator pedal is depressed. It has been found during the development of the device by the present inventors that the lock-up capacity becomes excessive and a longitudinal acceleration shock occurs in the vehicle.
 本発明はこのような課題に着目して創案されたもので、アクセルペダルの踏み込みや踏み戻しによるエンジントルクの過渡変動時に、適切にスリップ制御を行うことにより、エンジン回転の過剰な吹け上がりの発生や車両のショックの発生を抑制することができるようにしたトルクコンバータのスリップ制御装置を提供することを目的としている。 The present invention has been made in view of such a problem, and when an engine torque transiently changes due to depression and return of an accelerator pedal, an appropriate slip control is performed to generate an excessive engine speed up-speed. It is an object of the present invention to provide a torque converter slip control device capable of suppressing the occurrence of shock of a vehicle or a vehicle.
特開2000-97333号公報JP 2000-97333 A
 上記目的を達成するために、本発明のトルクコンバータのスリップ制御装置は、車両に装備され、エンジンと有段自動変速機との間に介装されたロックアップクラッチを有するトルクコンバータのスリップ状態を制御する制御装置であって、前記車両の運転状態に基づいて前記ロックアップクラッチの目標スリップ回転速度を演算する目標スリップ回転演算手段と、前記目標スリップ回転速度に基づくフィードフォワード制御量、及び、前記目標スリップ回転速度と実スリップ回転速度とに基づくフィードバック制御量から前記ロックアップクラッチのスリップトルク容量を演算するスリップトルク容量演算手段と、前記エンジンのトルク信号をゲインによって補正処理して推定エンジントルクを演算する推定エンジントルク演算手段と、前記推定エンジントルクと前記スリップトルク容量とから前記ロックアップクラッチの係合指令圧を演算する係合指令圧演算手段とを備え、前記車両のアクセル操作により前記トルク信号の時間変化率が第1所定値以上になったら、前記ゲインを所定量増大させるゲイン変更手段を備えている。 In order to achieve the above object, a slip control device for a torque converter according to the present invention is provided in a vehicle, and detects a slip state of a torque converter having a lock-up clutch interposed between an engine and a stepped automatic transmission. A control device for controlling, a target slip rotation calculating means for calculating a target slip rotation speed of the lock-up clutch based on an operation state of the vehicle, a feedforward control amount based on the target slip rotation speed, and A slip torque capacity calculating means for calculating a slip torque capacity of the lock-up clutch from a feedback control amount based on a target slip speed and an actual slip speed; and correcting the estimated engine torque by correcting the engine torque signal by a gain. Estimated engine torque calculating means for calculating; An engagement command pressure calculating means for calculating an engagement command pressure of the lock-up clutch from the estimated engine torque and the slip torque capacity, wherein a time change rate of the torque signal is set to a first predetermined value by an accelerator operation of the vehicle. A gain changing means is provided for increasing the gain by a predetermined amount when the gain exceeds the value.
 前記ゲイン変更手段は、前記ゲインの増大中に、前記トルク信号の変化率が前記第1所定値よりも小さい第2所定値未満になったら、前記ゲインの増大を停止することが好ましい。
 前記ゲイン変更手段は、前記ゲインを増大させてから所定時間が経過したら、前記ゲインの増大処理を停止することが好ましい。
 前記所定量は、予め設定された一定値であることが好ましい。
 前記所定量は、前記アクセル操作量の時間変化率が大きいほど大きな値に設定されることが好ましい。
 前記有段自動変速機の変速中には前記ゲインの増大を禁止するゲイン変更禁止手段を備えていることが好ましい。
The gain changing means preferably stops increasing the gain when the rate of change of the torque signal falls below a second predetermined value smaller than the first predetermined value during the increase of the gain.
It is preferable that the gain changing unit stops the process of increasing the gain when a predetermined time has elapsed after increasing the gain.
It is preferable that the predetermined amount is a predetermined constant value.
It is preferable that the predetermined amount is set to a larger value as the time change rate of the accelerator operation amount is larger.
It is preferable that a gain change prohibiting unit that prohibits an increase in the gain is provided during a shift of the stepped automatic transmission.
 本発明によれば、アクセルペダルの操作に伴ってエンジンのトルク信号が急変した場合に、このトルク信号から推定エンジントルクを演算するためのゲインを増大するので、エンジントルクの過渡変動時における推定エンジントルクの実エンジントルクに対する遅れの影響を抑制し、ロックアップクラッチの係合指令圧を適正化できる。これにより、アクセルペダルの踏み込み時のエンジン回転の過剰な吹け上がりの発生やアクセルペダルの解放時の車両の前後加速度ショックの発生を抑制することができる。 According to the present invention, when the torque signal of the engine suddenly changes with the operation of the accelerator pedal, the gain for calculating the estimated engine torque is increased from the torque signal. The influence of the delay of the torque on the actual engine torque can be suppressed, and the engagement command pressure of the lock-up clutch can be optimized. As a result, it is possible to suppress the occurrence of excessive engine speed up when the accelerator pedal is depressed and the occurrence of longitudinal acceleration shock of the vehicle when the accelerator pedal is released.
本発明の一実施形態に係るトルクコンバータのスリップ制御装置が適用された車両の駆動系と制御系の要部を示すシステム図である。1 is a system diagram showing a main part of a drive system and a control system of a vehicle to which a slip control device for a torque converter according to an embodiment of the present invention is applied. 本発明の一実施形態に係るトルクコンバータのスリップ制御装置の要部のブロック線図である。1 is a block diagram of a main part of a slip control device for a torque converter according to an embodiment of the present invention. 本発明の一実施形態に係るトルクコンバータのスリップ制御装置による制御を説明するタイムチャートであって、(a)は本制御を適用しない場合を示し、(b)は本制御を適用した場合を示す。5 is a time chart for explaining control by the slip control device of the torque converter according to one embodiment of the present invention, wherein (a) shows a case where the present control is not applied, and (b) shows a case where the present control is applied. . 本発明の一実施形態に係るトルクコンバータのスリップ制御装置による制御を説明するフローチャートである。4 is a flowchart illustrating control by a slip control device for a torque converter according to an embodiment of the present invention.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することや適宜組み合わせることが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely examples, and there is no intention to exclude various modifications and application of technology not explicitly described in the following embodiments. Each configuration of the following embodiments can be variously modified and implemented without departing from the spirit thereof, and can be selected or appropriately combined as needed.
 [1.全体システム構成]
 図1は、本実施形態に係るトルクコンバータのスリップ制御装置が適用された車両の駆動系と制御系の要部を示すシステム図である。
 図1に示すように、車両の駆動系は、駆動源であるエンジン(内燃機関)1と、トルクコンバータ2と、変速機構3と、変速機構3の動力伝達方向下流の動力伝達系7と、その動力伝達方向下流の図示しない駆動輪とを備えている。
[1. Overall system configuration]
FIG. 1 is a system diagram showing a main part of a drive system and a control system of a vehicle to which a slip control device for a torque converter according to the present embodiment is applied.
As shown in FIG. 1, the drive system of the vehicle includes an engine (internal combustion engine) 1 as a drive source, a torque converter 2, a transmission mechanism 3, a power transmission system 7 downstream of the transmission mechanism 3 in a power transmission direction, And a drive wheel (not shown) downstream of the power transmission direction.
 なお、トルクコンバータ2と変速機構3とをトランスミッションケース10A内に収納することにより自動変速機10が構成される。また、図1では、トルクコンバータ2よりも動力伝達方向上流側の部分(主にエンジン1)と、トルクコンバータ2と後述の摩擦係合要素31との間の部分(トルクコンバータ2の後述のタービンランナ24を含む)と、摩擦係合要素31よりも動力伝達方向下流側の部分との、各イナーシャマスを簡易的なブロックA,B,Cで示している。 The automatic transmission 10 is configured by housing the torque converter 2 and the transmission mechanism 3 in the transmission case 10A. In FIG. 1, a portion (mainly the engine 1) on the upstream side in the power transmission direction with respect to the torque converter 2 and a portion between the torque converter 2 and a friction engagement element 31 described later (a turbine described later of the torque converter 2). The inertia masses of the runner 24 (including the runner 24) and the portion downstream of the friction engagement element 31 in the power transmission direction are indicated by simple blocks A, B, and C.
 トルクコンバータ2は、トルク増大機能を有する発進要素であり、エンジン出力軸11にコンバータハウジング22を介して連結されたポンプインペラ23と、トルクコンバータ出力軸21に連結されたタービンランナ24と、ケースにワンウェイクラッチ(図示略)を介して設けられたステータ25とを構成要素としている。本実施形態では、トルク増大機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21とを直結可能なロックアップクラッチ20を有している。 The torque converter 2 is a starting element having a torque increasing function, and includes a pump impeller 23 connected to the engine output shaft 11 via a converter housing 22, a turbine runner 24 connected to the torque converter output shaft 21, and A stator 25 provided via a one-way clutch (not shown) is a component. In this embodiment, when the torque increasing function is not required, the lock-up clutch 20 that can directly connect the engine output shaft 11 (= torque converter input shaft) and the torque converter output shaft 21 is provided.
 変速機構3には、複数の前進段と後進段とを達成する有段変速機構が適用されている。各変速段は、クラッチ又はブレーキといった複数備えられた摩擦係合要素31を選択的に係合させることによって達成される。例えば前進発進時には、1速段を達成する摩擦係合要素31を係合させ、後進発進時には、後進段を達成する摩擦係合要素31を係合させる。前進走行時には、車速とエンジン負荷(ここでは、スロットルバルブ開度とする)とに応じて適宜の変速段を達成する摩擦係合要素31を係合させる。 The transmission mechanism 3 employs a stepped transmission mechanism that achieves a plurality of forward speeds and reverse speeds. Each shift speed is achieved by selectively engaging a plurality of friction engagement elements 31 such as a clutch or a brake. For example, when the vehicle starts moving forward, the friction engagement element 31 that achieves the first gear is engaged, and when the vehicle starts traveling backward, the friction engagement element 31 that achieves the reverse gear is engaged. At the time of forward running, the friction engagement element 31 that achieves an appropriate gear position is engaged according to the vehicle speed and the engine load (here, the throttle valve opening degree).
 ロックアップクラッチ20及び各摩擦係合要素31の係合や解放の係合状態は、対応する油圧制御弁(コントロールバルブ)41を通じた油圧制御によってロックアップクラッチ20や各摩擦係合要素31の係合圧を調整することによって行われる。油圧制御弁41は、油圧コントロールユニット4内に装備されたソレノイドバルブであって、自動変速機コントロールユニット5(以下、ATCUと言う)の指令信号によって作動する。 The engagement state of the lock-up clutch 20 and each friction engagement element 31 is determined by the hydraulic control through the corresponding hydraulic control valve (control valve) 41. This is done by adjusting the combined pressure. The hydraulic control valve 41 is a solenoid valve provided in the hydraulic control unit 4, and is operated by a command signal of an automatic transmission control unit 5 (hereinafter, referred to as ATCU).
 油圧制御弁41は、指令信号に従って、図示しないオイルポンプから供給される作動油の油圧を調圧して、ロックアップクラッチ20や各摩擦係合要素31の係合状態を調整する。本制御装置では、ロックアップクラッチ20の係合状態を調整し、特に、ロックアップクラッチ20をスリップ制御する点に特徴がある。このため、ATCU5には、アップシフトやダウンシフトといった変速段の切り替えを行うために各摩擦係合要素31の係合や解放を制御するための機能である変速制御部(変速制御手段)50Aと、ロックアップクラッチ20の係合状態を制御するための機能であるロックアップクラッチ制御部(ロックアップクラッチ制御手段)50Bとが備えられている。 (4) The hydraulic control valve 41 adjusts the engagement state of the lock-up clutch 20 and each friction engagement element 31 by adjusting the oil pressure of the hydraulic oil supplied from an oil pump (not shown) according to the command signal. The present control device is characterized in that the engagement state of the lock-up clutch 20 is adjusted, and in particular, the lock-up clutch 20 is slip-controlled. For this reason, the ATCU 5 includes a shift control unit (shift control means) 50A which is a function for controlling engagement and release of each friction engagement element 31 in order to perform a shift stage such as upshift or downshift. And a lock-up clutch control section (lock-up clutch control means) 50B for controlling the engagement state of the lock-up clutch 20.
 なお、図示を省略するが、ロックアップクラッチ20は、その両側(入力側,出力側)におけるトルクコンバータアプライ圧PAとトルクコンバータレリーズ圧PRとの差圧PA-PRに応動し、レリーズ圧PRがアプライ圧PAよりも高いとロックアップクラッチ20は解放されてトルクコンバータ入出力要素間を直結せず、レリーズ圧PRがアプライ圧PAよりも低くなる時ロックアップクラッチ20は係合されてトルクコンバータ入出力要素間のスリップ回転数を低減またはゼロとする。 Although not shown, the lock-up clutch 20 responds to a differential pressure PA-PR between the torque converter apply pressure PA and the torque converter release pressure PR on both sides (input side and output side), and the release pressure PR is increased. When the pressure is higher than the apply pressure PA, the lock-up clutch 20 is released and does not directly connect the input / output elements of the torque converter. When the release pressure PR becomes lower than the apply pressure PA, the lock-up clutch 20 is engaged and the torque converter is turned on. Reduce or eliminate the slip speed between output elements.
 そして、ロックアップクラッチ20の締結力、つまりロックアップ容量は、上記の差圧PA-PRにより決定し、この差圧が大きい程ロックアップクラッチ20の係合力が増大してロックアップ容量を増大する。差圧PA-PRは、油圧制御弁41により制御される。なお、差圧PA-PRについては単にロックアップ圧とも言う。 The engagement force of the lock-up clutch 20, that is, the lock-up capacity is determined by the differential pressure PA-PR. The greater the differential pressure, the greater the engagement force of the lock-up clutch 20 and the greater the lock-up capacity. . The differential pressure PA-PR is controlled by the hydraulic control valve 41. The differential pressure PA-PR is simply referred to as lock-up pressure.
 [2.ロックアップクラッチのスリップ制御]
 ここで、ATCU5について、ロックアップクラッチ制御部50Bに着目して説明する。ロックアップクラッチ制御部50Bには、エンジン回転数(エンジン回転速度に対応する。)Ne,トルクコンバータ2のタービン回転数(タービン回転速度ωtに対応する。)Nt,車速V,スロットル開度TVO,変速比ip,油温(ATフルードの温度)TATF,エンジントルク信号(以下、単に、トルク信号とも言う)Te等の車両の運転状態情報が各センサ類から入力されるようになっている。
[2. Lock-up clutch slip control]
Here, the ATCU 5 will be described focusing on the lock-up clutch control unit 50B. The lock-up clutch control unit 50B includes an engine rotation speed Ne (corresponding to the engine rotation speed) Ne, a turbine rotation speed (corresponding to the turbine rotation speed ωt) Nt of the torque converter 2, a vehicle speed V, a throttle opening TVO, Operating state information of the vehicle, such as a gear ratio ip, an oil temperature (AT fluid temperature) T ATF , and an engine torque signal (hereinafter, also simply referred to as a torque signal) Te, is input from each sensor.
 ロックアップクラッチ制御部50Bは、これらの信号に基づいてロックアップクラッチ20の係合状態を制御するために、ロックアップクラッチ20の目標スリップ回転速度Tslpを演算する目標スリップ回転演算部(目標スリップ回転速度演算手段)51と、実際のスリップ回転速度ωslpを演算する実スリップ回転演算部(実スリップ回転速度演算手段)52と、実際のスリップ回転速度ωslpが目標スリップ回転速度Tslpに追従するように制御するスリップ制御部(スリップ制御手段)53と、を備えている。 The lockup clutch control unit 50B calculates a target slip rotation speed Tslp of the lockup clutch 20 (target slip rotation calculation unit) to control the engagement state of the lockup clutch 20 based on these signals. Speed calculation means) 51, an actual slip rotation calculation section (actual slip rotation speed calculation means) 52 for calculating the actual slip rotation speed ωslp, and control so that the actual slip rotation speed ωslp follows the target slip rotation speed Tslp. And a slip control unit (slip control means) 53 that performs the control.
 目標スリップ回転演算部51は、車速V,スロットル開度TVO,タービン回転数Nt,変速比ip,油温TATFといった車両の運転状態に基づいて、目標スリップ回転速度Tslpを演算する。なお、目標スリップ回転速度Tslpは、ロックアップクラッチ20の入出力回転速度差であり、ポンプインペラ23の回転速度(インペラ回転速度)ωiからタービンランナ24の回転速度(タービン回転速度)ωtを減算した値である。ここでは、予め試験等を行なって、車両の運転状態に対してトルク変動やこもり音の発生が最も少なくなるスリップ回転速度を対応させてマップ等に記憶しており、車両の運転状態に対してこのマップ等を参照して目標スリップ回転速度Tslpを演算する。 The target slip rotation calculation unit 51 calculates a target slip rotation speed Tslp based on the vehicle operating state such as the vehicle speed V, the throttle opening TVO, the turbine speed Nt, the speed ratio ip, and the oil temperature T ATF . The target slip rotation speed Tslp is a difference between the input and output rotation speeds of the lock-up clutch 20, and is obtained by subtracting the rotation speed (turbine rotation speed) ωt of the turbine runner 24 from the rotation speed (impeller rotation speed) ωi of the pump impeller 23. Value. Here, a test or the like is performed in advance, and the slip rotation speed at which the occurrence of the torque fluctuation and the muffled sound is minimized is stored in a map or the like in correspondence with the driving state of the vehicle. The target slip rotation speed Tslp is calculated with reference to this map and the like.
 実スリップ回転演算部52は、センサで検出されたインペラ回転速度ωiからセンサで検出されたタービン回転速度ωtを減算して実際のスリップ回転速度ωslpを演算する。
なお、インペラ回転速度ωiはエンジン回転数Neに対応するのでエンジン回転センサ64により得られるエンジン回転数Neからインペラ回転速度ωiを求める。タービン回転速度ωtはタービン回転センサ65により得る。
The actual slip rotation calculating section 52 calculates an actual slip rotation speed ωslp by subtracting the turbine rotation speed ωt detected by the sensor from the impeller rotation speed ωi detected by the sensor.
Since the impeller rotation speed ωi corresponds to the engine rotation speed Ne, the impeller rotation speed ωi is obtained from the engine rotation speed Ne obtained by the engine rotation sensor 64. The turbine rotation speed ωt is obtained by the turbine rotation sensor 65.
 スリップ制御部53は、実際のスリップ回転速度ωslpが目標スリップ回転速度Tslpに追従するように制御するが、ここでは、ロックアップクラッチ20のスリップ回転速度は、ロックアップクラッチ20に入力される入力トルクと、ロックアップクラッチ20から出力される出力トルク(ロックアップクラッチ20が伝達するトルク容量)との差(トルク差)ΔTに対応するものと考え、スリップ制御部53は、目標スリップ回転速度に応じたトルク差ΔTを算出し、ロックアップクラッチ20への入力トルクからこのトルク差ΔTを減算したトルク値をロックアップクラッチ20が伝達するトルク容量目標値(以下、単に、トルク容量とも言う)Tluとして、ロックアップクラッチ20のトルク容量を制御して、目標スリップ回転速度を実現する。 The slip control unit 53 controls the actual slip rotation speed ωslp so as to follow the target slip rotation speed Tslp. Here, the slip rotation speed of the lock-up clutch 20 is determined by the input torque input to the lock-up clutch 20. (Torque difference) ΔT between the output torque output from the lock-up clutch 20 (torque capacity transmitted by the lock-up clutch 20) and the slip control unit 53 adjusts the slip control unit 53 according to the target slip rotation speed. The torque difference ΔT is calculated, and a torque value obtained by subtracting the torque difference ΔT from the input torque to the lock-up clutch 20 is set as a torque capacity target value (hereinafter, also simply referred to as torque capacity) Tlu transmitted by the lock-up clutch 20. Controls the torque capacity of the lock-up clutch 20 to achieve the target slip rotation speed I do.
 また、スリップ制御部53は、フィードバック制御とフィードフォワード制御とを用いてロックアップクラッチ20のスリップ状態を制御する。このため、スリップ制御部53は、図2に示すように、フィードバック制御部54とフィードフォワード制御部55とを有するスリップトルク容量演算部(スリップトルク容量演算手段)53Aと、指令値変換部58とを備え、スリップトルク容量演算部53Aで目標スリップ回転速度に応じたトルク値(スリップトルク容量)を求めて、このスリップトルク容量を基にロックアップクラッチ20の係合状態を制御する指令値を導出するようにしている。 (4) The slip control unit 53 controls the slip state of the lock-up clutch 20 using feedback control and feedforward control. Therefore, as shown in FIG. 2, the slip control unit 53 includes a slip torque capacity calculation unit (slip torque capacity calculation means) 53A having a feedback control unit 54 and a feedforward control unit 55, a command value conversion unit 58, The slip torque capacity calculator 53A calculates a torque value (slip torque capacity) corresponding to the target slip rotation speed, and derives a command value for controlling the engagement state of the lock-up clutch 20 based on the slip torque capacity. I am trying to do it.
 スリップ制御部53についてさらに説明する。
 スリップ制御部53では、図2に示すように、目標スリップ回転演算部51から出力された目標スリップ回転速度Tslpに対して、トルクの急変に対応する処理、具体的には、位相進み補償を行なう。この処理をされた目標スリップ回転速度Tslpaは、スリップトルク容量演算部53Aのフィードバック制御部54とフィードフォワード制御部55とに送られる。
The slip control unit 53 will be further described.
As shown in FIG. 2, the slip control unit 53 performs a process corresponding to a sudden change in torque, specifically, phase lead compensation, on the target slip rotation speed Tslp output from the target slip rotation calculation unit 51. . The target slip rotation speed Tslpa subjected to this processing is sent to the feedback control unit 54 and the feedforward control unit 55 of the slip torque capacity calculation unit 53A.
 さらに、フィードバック制御部54からの出力(トルクレベル)Tcnvfbとフィードフォワード制御部55からの出力(トルクレベル)Tcnvffは、加算部53bに送られて加算され、目標スリップ回転速度を達成するためのスリップトルク容量Tcnvとして出力される。
 スリップトルク容量演算部53Aで演算されたスリップトルク容量Tcnvは減算部53cに送られて、推定エンジントルク演算部(推定エンジントルク演算手段)としてのトルク信号処理部59で、エンジントルク信号Teに基づいて処理されたトルク値Teaから、このスリップトルク容量Tcnvを減算し、ロックアップクラッチ20のトルク容量(制御値)Tluを演算し、トルク容量Tluは指令値変換部58に送られ、ロックアップクラッチ20の係合状態を制御するコントロールバルブ41の指示電流値Iluに変換され出力される。
Further, the output (torque level) Tcnvfb from the feedback control unit 54 and the output (torque level) Tcnvff from the feedforward control unit 55 are sent to the addition unit 53b and added, and the slip for achieving the target slip rotation speed is obtained. It is output as the torque capacity Tcnv.
The slip torque capacity Tcnv calculated by the slip torque capacity calculation section 53A is sent to the subtraction section 53c, and the torque signal processing section 59 as an estimated engine torque calculation section (estimated engine torque calculation means) performs processing based on the engine torque signal Te. The slip torque capacity Tcnv is subtracted from the processed torque value Tea to calculate the torque capacity (control value) Tlu of the lock-up clutch 20. The torque capacity Tlu is sent to the command value conversion unit 58, and the lock-up clutch 20 is converted into an instruction current value Ilu of the control valve 41 for controlling the engagement state of the control valve 20 and output.
 フィードバック制御部54では、規範モデルによって目標スリップ回転速度Tslpaを処理し、出力された目標スリップ回転速度に対してロックアップクラッチ20が持つ無駄時間に関する処理を行ない、処理された目標スリップ回転速度Tslpと実スリップ回転演算部52により演算された実スリップ回転速度ωslpとの差分errslp(=Tslp-ωslp)を算出する。さらに、この差分errslpを抑制するために、比例・積分制御(PI制御)の処理を行なって、スリップ回転量をトルク量であるフィードバックスリップトルク容量Tcnvfbに変換してフィードバック制御値として出力する。 The feedback control unit 54 processes the target slip rotation speed Tslpa according to the reference model, performs processing relating to the dead time of the lock-up clutch 20 with respect to the output target slip rotation speed, and calculates the processed target slip rotation speed Tslp. A difference errslp (= Tslp−ωslp) from the actual slip rotation speed ωslp calculated by the actual slip rotation calculation unit 52 is calculated. Further, in order to suppress the difference errslp, a process of proportional / integral control (PI control) is performed to convert the slip rotation amount into a feedback slip torque capacity Tcnvfb, which is a torque amount, and to output the feedback control value.
 フィードフォワード制御部55では、目標スリップ回転速度Tslpaに対して位相を補償する処理を行ない、得られた目標スリップ回転速度Tslpffをフィードフォワードスリップトルク容量Tcnvffに変換してフィードフォワード制御値として出力する。 The feedforward control unit 55 performs a process for compensating the phase with respect to the target slip rotation speed Tslpa, converts the obtained target slip rotation speed Tslpff into a feedforward slip torque capacity Tcnvff, and outputs it as a feedforward control value.
 スリップトルク容量演算部53Aでは、こうして、フィードバック制御部54から出力されるフィードバックスリップトルク容量Tcnvfbと、フィードフォワード制御部55から出力されるフィードフォワードスリップトルク容量Tcnvffとが加算部53bで加算されて、スリップトルク容量Tcnvとして出力される。 In the slip torque capacity calculation unit 53A, the feedback slip torque capacity Tcnvfb output from the feedback control unit 54 and the feedforward slip torque capacity Tcnvff output from the feedforward control unit 55 are added by the addition unit 53b, It is output as slip torque capacity Tcnv.
 また、トルク信号処理部59では、エンジントルク信号Teに無駄時間処理(符号59a),一次遅れ処理(符号59b)及びゲイン補正(符号59c)をしてトルク値Teaを出力する。
 ただし、トルク信号処理部59においてゲイン補正に用いるゲイン(以下、単に、ゲインとも言う)は、特定条件下で増大されるようになっている。これについては後述する。
Further, the torque signal processing section 59 performs a dead time process (reference numeral 59a), a first-order lag process (reference numeral 59b), and a gain correction (reference numeral 59c) on the engine torque signal Te, and outputs a torque value Tea.
However, the gain used for gain correction in the torque signal processing unit 59 (hereinafter, also simply referred to as gain) is increased under specific conditions. This will be described later.
 減算部53cでは、エンジントルク信号Teに基づくトルク値Teaからスリップトルク容量Tcnvを減算し、ロックアップクラッチ20のトルク容量Tluを演算する。
 指令値変換部58は、トルク容量Tluにトルク-差圧変換の処理を行い、位相進み補償を行い、指令圧-電流変換処理を行って、得られた指示電流値Iluをコントロールバルブ41に出力する。
The subtractor 53c calculates the torque capacity Tlu of the lock-up clutch 20 by subtracting the slip torque capacity Tcnv from the torque value Tea based on the engine torque signal Te.
The command value converter 58 performs a torque-differential pressure conversion process on the torque capacity Tlu, performs phase lead compensation, performs a command pressure-current conversion process, and outputs the obtained indicated current value Ilu to the control valve 41. I do.
 このように、スリップ制御部53から出力された指示電流値Iluに応じてコントロールバルブ41のソレノイドに電流が送られて、コントロールバルブ41によりロックアップクラッチ20の油圧(差圧)が所定値Pluに制御されロックアップクラッチ20のスリップ状態が目標状態に制御される。 As described above, a current is sent to the solenoid of the control valve 41 in accordance with the command current value Ilu output from the slip control unit 53, and the hydraulic pressure (differential pressure) of the lock-up clutch 20 is set to the predetermined value Plu by the control valve 41. The slip state of the lock-up clutch 20 is controlled to the target state.
 なお、ロックアップクラッチ20では、このスリップ制御時にトルク容量がTluの値に制御されるため、エンジントルク信号Teに基づくトルク値Teaとトルク容量Tluとの差分Ttc(=Te-Tlu)がスリップトルク容量となる。これに、タービン回転速度ωtの変化によるイナーシャトルクの変化量Iedωt/dtが減算されたスリップトルク量(=Ttc-Iedωt/dt)に応じて、ロックアップクラッチ20にスリップ回転(回転速度ωslp)が、所定の応答特性〔ωslp=Gslp/(Tcslp s+1)〕をもって発生する。
 また、このスリップ制御では、エンジン1のトルクが上昇しないときでも、ロックアップクラッチ20の容量を徐々に低下させる。これにより、エンジン回転数Neの低下を抑制することができ、実スリップ回転速度ωslpが低下してロックアップクラッチ20が締結してしまうことを防止することができる。
In the lock-up clutch 20, since the torque capacity is controlled to the value of Tlu during the slip control, the difference Ttc (= Te-Tlu) between the torque value Tea based on the engine torque signal Te and the torque capacity Tlu is determined as the slip torque. Capacity. In addition, the slip rotation (rotation speed ωslp) of the lock-up clutch 20 is changed according to the slip torque amount (= Ttc−Iedωt / dt) from which the inertia torque change amount Iedωt / dt due to the change in the turbine rotation speed ωt is subtracted. , With a predetermined response characteristic [ωslp = Gslp / (Tcslps + 1)].
In this slip control, the capacity of the lock-up clutch 20 is gradually reduced even when the torque of the engine 1 does not increase. Thus, a decrease in the engine speed Ne can be suppressed, and it is possible to prevent the actual slip rotation speed ωslp from decreasing and the lock-up clutch 20 from being engaged.
 〔3.トルク信号Teのゲイン補正に用いるゲイン〕
 エンジントルク信号Teは、例えばエンジン回転数Neなどのエンジン1の作動状態の検出結果に基づいて演算されるため、演算タイミングの遅れが発生し、このエンジントルク信号Teが実エンジントルクに対して遅れることがわかっている。
[3. Gain used for gain correction of torque signal Te]
Since the engine torque signal Te is calculated based on the detection result of the operating state of the engine 1 such as the engine speed Ne, the calculation timing is delayed, and the engine torque signal Te is delayed with respect to the actual engine torque. I know that.
 [発明が解決しようとする課題]の欄で説明したように、本装置は、アクセルペダルを踏み込んだ場合に、ロックアップ容量が過少になってエンジン回転の吹け上がりが過剰になることや、アクセルペダルを踏み戻した場合に、ロックアップ容量が過多になって車両に前後加速度ショックが生じることを、回避或いは抑制しようとするものである。 As described in the section of [Problems to be Solved by the Invention], when the accelerator pedal is depressed, the lock-up capacity becomes too small, so that the engine speed is excessively increased. It is intended to prevent or suppress the occurrence of longitudinal acceleration shock in the vehicle due to an excessive lock-up capacity when the pedal is depressed again.
 ロックアップ容量が過少になったり過多になったりする原因を調べたところ、ロックアップクラッチ20の制御に用いるエンジントルク信号Teが実エンジントルクに対して遅れることが原因であることが判明した。 (4) When the cause of the lockup capacity becoming too small or too large was examined, it was found that the cause was that the engine torque signal Te used for controlling the lockup clutch 20 was delayed with respect to the actual engine torque.
 例えば図3(a)に示すように、ロックアップクラッチ20を微小にスリップさせ且つアクセルペダルを解放させてクルーズ走行しているときに、アクセルペダルを踏み込んだ場合、この踏み込みに応じてスロットル開度TVOが立ち上がり燃料カット状態から燃料リカバリーが行われるため、時点t1で実エンジントルクが急増し、ドライブ走行状態となる。しかし、エンジントルク信号Teはこの実エンジントルクの急増に対して遅れるため、エンジントルク信号Teに基づいて演算されるトルク容量Tluも実エンジントルクの急増に対して遅れて増加する。
 この結果、ロックアップクラッチ20のトルク容量が不足することになり、実エンジントルクの急増に対応してエンジン回転数Neも急増して、エンジン回転の吹け上がりが過剰になる。
For example, as shown in FIG. 3 (a), when the accelerator pedal is depressed during cruising while the lock-up clutch 20 is slightly slipped and the accelerator pedal is released, the throttle opening is adjusted according to the depression. Since TVO rises and fuel recovery is performed from the fuel cut state, the actual engine torque sharply increases at time t1, and the vehicle enters the drive running state. However, since the engine torque signal Te is delayed with respect to the rapid increase in the actual engine torque, the torque capacity Tlu calculated based on the engine torque signal Te also increases with a delay with respect to the rapid increase in the actual engine torque.
As a result, the torque capacity of the lock-up clutch 20 becomes insufficient, and the engine speed Ne also increases rapidly in response to the rapid increase in the actual engine torque, and the engine speed becomes excessive.
 これに対して、本装置では、このようにアクセルペダルが解放(オフ)から踏み込み(オン)に切り替わって実エンジントルクの急増が生じる状況下では、例えば図3(b)にGainと示すように、エンジントルク信号Teからトルク値Teaを演算する際のゲイン補正で用いるゲインを一時的に増大させることで、増加し始めた直近のエンジントルク信号Teを強く反映させてトルク値Teaを演算するようにしている。 On the other hand, in the present device, in a situation where the accelerator pedal is switched from release (off) to depression (on) and the actual engine torque suddenly increases, for example, as shown in FIG. By temporarily increasing the gain used for gain correction when calculating the torque value Tea from the engine torque signal Te, the torque value Tea is calculated by strongly reflecting the latest engine torque signal Te that has started to increase. I have to.
 そこで、ATCU5に、所定の条件、即ち、アクセルペダルのオフとオンとの間の切替が生じて且つ実エンジントルクの急増が生じる条件下では、ゲインを所定量増大させるゲイン変更部(ゲイン変更手段)60が設けられている。アクセルペダルのオフとオンとの間の切替は、例えばアイドルスイッチのオンとオフとの切替として検出できる。 Therefore, under a predetermined condition, that is, under a condition where switching between the accelerator pedal is turned off and on and a sudden increase in the actual engine torque occurs, the ATCU 5 has a gain changing unit (gain changing means) for increasing the gain by a predetermined amount. ) 60 are provided. Switching of the accelerator pedal between off and on can be detected as, for example, switching of the idle switch between on and off.
 ただし、実エンジントルクは検出していないので実エンジントルクの急増は直接把握できない。そこで、ゲイン変更部60は、アクセルペダルのオフとオンとの間の切り替えが生じたら、エンジントルク信号Teの時間変化率ΔTeに着目し、時間変化率ΔTeが第1所定値ΔTe1以上になったら実エンジントルクの急増が生じる状況下であると判定し、ゲインを増大させる。 However, since the actual engine torque is not detected, it is not possible to directly grasp the sudden increase in the actual engine torque. Therefore, the gain changing unit 60 pays attention to the time change rate ΔTe of the engine torque signal Te when the switching between the off state and the on state of the accelerator pedal occurs, and when the time change rate ΔTe becomes equal to or more than the first predetermined value ΔTe1. It is determined that the situation is such that the actual engine torque suddenly increases, and the gain is increased.
 なお、図3(b)にはGainについて破線と実線とを示すが、破線は目標値であり実線は指令値である。指令値はゲインをランプ状に変化させ、ゲインの急変を防止して、制御の安定化を図っている。
 また、ゲインを増大させる所定量は、予め試験を実施して、一定の量としてもよく、アクセルペダルの踏み込み速度(アクセル操作量の時間変化率)が大きいほど大きくするなど、可変の量としてもよい。
FIG. 3B shows a dashed line and a solid line for Gain, where the dashed line is a target value and the solid line is a command value. The command value changes the gain in a ramp shape to prevent a sudden change in the gain, thereby stabilizing the control.
In addition, the predetermined amount for increasing the gain may be a fixed amount by performing a test in advance, or may be a variable amount such as increasing as the accelerator pedal depressing speed (the rate of time change of the accelerator operation amount) increases. Good.
 図3には、アクセルペダルを解放状態から踏み込み状態としたことでロックアップ容量が過少になってエンジン回転の吹け上がりが過剰になる場合を例示しているが、アクセルペダルを踏み込み状態から解放状態としたことでロックアップ容量が過多になって車両に前後加速度ショックが生じる場合も、ロックアップクラッチ20の制御に用いるエンジントルク信号Teが実エンジントルクに対して遅れることが原因であることが判明している。 FIG. 3 illustrates a case where the accelerator pedal is changed from the released state to the depressed state, so that the lock-up capacity becomes too small and the engine speed is excessively increased. However, the accelerator pedal is released from the depressed state to the released state. In the case where the lock-up capacity becomes excessive due to the above, the longitudinal acceleration shock occurs in the vehicle, it is also found that the engine torque signal Te used for controlling the lock-up clutch 20 is delayed with respect to the actual engine torque. are doing.
 つまり、アクセルペダルを踏み込み状態から解放状態へ変更すると、実エンジントルクが急減し、これに遅れてエンジントルク信号Teが急減する。この場合、エンジントルク信号Teの減少が遅れるため、ロックアップ容量が過多になって、ロックアップクラッチ20が微小時間であるが完全係合或いはこれに近い状態になって車両に前後加速度ショックが生じるものと考えられる。 In other words, when the accelerator pedal is changed from the depressed state to the released state, the actual engine torque sharply decreases, and the engine torque signal Te sharply decreases later. In this case, since the decrease in the engine torque signal Te is delayed, the lock-up capacity becomes excessive, and the lock-up clutch 20 is fully engaged or close to this for a short time, causing a longitudinal acceleration shock in the vehicle. It is considered something.
 この場合も、ゲインを一時的に増大させることで、減少し始めた直近のエンジントルク信号Teを強く反映させてトルク値Teaを演算することで、ロックアップ容量が過多になることを防止又は抑制することができる。 In this case as well, by temporarily increasing the gain and calculating the torque value Tea by strongly reflecting the latest engine torque signal Te that has begun to decrease, it is possible to prevent or suppress the lock-up capacity from becoming excessive. can do.
 このようなゲインの増大は、エンジントルクの過渡変動時近辺だけでよいので、ゲイン変更部60は、ゲインの増大中に、トルク信号Teの変化率(絶対値)ΔTeが第1所定値ΔTe1よりも小さい第2所定値ΔTe2未満になったら、ゲインの増大を停止する。
 あるいは、ゲイン変更部60を、ゲインを増大させてから予め設定された所定時間が経過したら、前記ゲインの増大処理を停止するように構成してもよい。
Since such an increase in the gain is required only in the vicinity of the transient fluctuation of the engine torque, the gain changing unit 60 determines that the rate of change (absolute value) ΔTe of the torque signal Te is larger than the first predetermined value ΔTe1 during the increase in the gain. Is smaller than the second predetermined value ΔTe2, the increase of the gain is stopped.
Alternatively, the gain changing unit 60 may be configured to stop the process of increasing the gain after a predetermined period of time has elapsed since the gain was increased.
 ただし、変速中(変速段の切替中)に、ゲインの変更を行うと変速制御に支障をきたすおそれがあるので、変速中にはゲインの変更を禁止するゲイン変更禁止部(ゲイン変更禁止手段)61が装備され、ゲイン変更部60によるゲイン変更を規制している。 However, if the gain is changed during the shift (while the gear is being switched), the shift control may be hindered. Therefore, a gain change prohibition unit (a gain change prohibiting unit) that prohibits the change of the gain during the shift. 61 is provided to regulate a gain change by the gain changing unit 60.
 〔4.作用及び効果〕
 本発明の一実施形態にかかる車両用変速制御装置は、上述のように構成されているので、例えば図4のフローチャートに示すように、アクセル操作のオンオフ切替時にトルク信号の時間変化率ΔTeが第1所定値ΔTe1以上になったら、ゲインを所定量増大させるゲイン変更部60によるゲイン変更を実施することができる。なお、図4において、Fはゲイン変更中に1とされるフラグであり、ゲイン変更中でない、即ち、ゲインが通常値の場合には0とされる。
[4. Action and effect)
Since the vehicle shift control device according to one embodiment of the present invention is configured as described above, for example, as shown in the flowchart of FIG. When the gain becomes equal to or greater than the predetermined value ΔTe1, the gain can be changed by the gain changing unit 60 that increases the gain by a predetermined amount. In FIG. 4, F is a flag that is set to 1 during a gain change, and is set to 0 when the gain is not being changed, that is, when the gain is a normal value.
 まず、フラグFが0であるか否かが判断され、フラグFが0である、即ち、ゲインが通常値の場合には、アイドルスイッチのオンとオフとの切替があったか否かが判定され(ステップS20)、アイドルスイッチのオンとオフとの切替があった場合、変速中であるか否が判定される(ステップS30)。ここで、変速中でないと判定されたら、エンジントルク信号Teの変化率(絶対値)ΔTeが第1所定値ΔTe1以上であるか否かが判定される(ステップS50)。 First, it is determined whether or not the flag F is 0. If the flag F is 0, that is, if the gain is a normal value, it is determined whether or not the idle switch has been switched on and off ( In step S20), if the idle switch has been switched between on and off, it is determined whether or not gear shifting is in progress (step S30). Here, if it is determined that the shift is not being performed, it is determined whether the rate of change (absolute value) ΔTe of the engine torque signal Te is equal to or greater than a first predetermined value ΔTe1 (step S50).
 ここで、エンジントルク信号Teの変化率(絶対値)ΔTeが第1所定値ΔTe1以上であると判定されたら、フラグFを1にセットし(ステップS60)、エンジントルク信号Teをゲイン補正するためのゲインを増大させる(ステップS70)。
 一方、フラグFが0であって、アイドルスイッチのオンとオフとの切替がない場合、この切替があっても変速中である場合や、エンジントルク信号Teの変化率(絶対値)ΔTeが第1所定値ΔTe1未満である場合は、ゲインの増大は行わず、ゲインを通常値とする(ステップS40)。
Here, if it is determined that the rate of change (absolute value) ΔTe of the engine torque signal Te is equal to or greater than the first predetermined value ΔTe1, the flag F is set to 1 (step S60) to correct the gain of the engine torque signal Te. Is increased (step S70).
On the other hand, when the flag F is 0 and there is no switching of the idle switch between on and off, even if there is this switching, the gear is being shifted, and the rate of change (absolute value) ΔTe of the engine torque signal Te is the If it is smaller than the predetermined value ΔTe1, the gain is not increased and the gain is set to the normal value (step S40).
 また、フラグFが1にセットしてゲインを増大させているときには、ステップS10からステップS80に進んで、トルク信号Teの変化率(絶対値)ΔTeが第1所定値ΔTe1よりも小さい第2所定値ΔTe2未満になったか否かを判定し、トルク信号Teの変化率(絶対値)ΔTeが第2所定値ΔTe2未満になったら、フラグFを0にリセットし(ステップS90)、ゲインの増大処理を停止して、ゲインを通常値とする(ステップS40)。なお、ゲインを増大させてから予め設定された所定時間が経過したか否かを判定し、所定時間が経過したら、ゲインの増大処理を停止して、ゲインを通常値とするようにしてもよい。 When the flag F is set to 1 to increase the gain, the process proceeds from step S10 to step S80, where the rate of change (absolute value) ΔTe of the torque signal Te is smaller than the first predetermined value ΔTe1. It is determined whether or not the value is less than the value ΔTe2, and when the rate of change (absolute value) ΔTe of the torque signal Te is less than the second predetermined value ΔTe2, the flag F is reset to 0 (step S90), and the gain is increased. Is stopped, and the gain is set to the normal value (step S40). Note that it may be determined whether or not a predetermined time set in advance has elapsed since the gain was increased, and after the predetermined time has elapsed, the process of increasing the gain may be stopped to set the gain to a normal value. .
 このように、特定の条件下でエンジントルク信号Teをゲイン補正するためのゲインを増大させるので、エンジントルク信号Teが実エンジントルクに対して遅れることに起因して発生する不具合が解消される。
 即ち、アクセルペダルを解放から踏み込みに変更した場合に、ロックアップ容量が過少になってエンジン回転の吹け上がりが過剰になることが回避或いは抑制され、アクセルペダルを踏み込みから解放に変更した場合に、ロックアップ容量が過多になって車両に前後加速度ショックが生じることを、回避或いは抑制することができる。
As described above, since the gain for correcting the gain of the engine torque signal Te is increased under a specific condition, a problem that occurs due to the delay of the engine torque signal Te with respect to the actual engine torque is eliminated.
That is, when the accelerator pedal is changed from release to depression, the lock-up capacity becomes too small to prevent the engine speed from rising excessively, and when the accelerator pedal is changed from depression to release, It is possible to avoid or suppress occurrence of longitudinal acceleration shock in the vehicle due to excessive lock-up capacity.
 また、アクセルペダルのオンとオフとの間の切替(アイドルスイッチのオフとオンとの切替)のみでゲインを増大させているため、アクセルペダルの操作量(踏み込み量や踏み戻し量)を検出してゲインを増大させる場合に比べ、簡単に素早くゲインの増大を実施することができる。
 また、変速中にはゲイン変更を規制するので、ゲインの変更によって変速制御に支障をきたすおそれも回避される。
Also, since the gain is increased only by switching the accelerator pedal between on and off (switching the idle switch between off and on), the operation amount of the accelerator pedal (depressed amount or depressed amount) is detected. Thus, the gain can be easily and quickly increased as compared with the case where the gain is increased.
In addition, since the change of the gain is restricted during the shift, the possibility that the change of the gain may hinder the shift control is also avoided.
 [5.その他]
 以上、本発明の一実施形態にかかるトルクコンバータの制御装置について説明したが、本発明はかかる実施形態に限定されるものではない。
 例えば、上記実施形態では、ゲイン補正部59cにおいて処理するゲイン自体を変更しているが、トルク信号処理部59内に、ゲイン補正部59cとは別のゲイン補正部を設けて、ここで補正処理に用いるゲインの通常値を1とし増大値を1よりも所定量大きい値として、エンジントルク信号Te或いはこれを処理した値に、このゲインを乗算してトルク値Teaを演算するようにしてもよい。
[5. Others]
As described above, the control device for the torque converter according to one embodiment of the present invention has been described, but the present invention is not limited to this embodiment.
For example, in the above embodiment, the gain itself processed in the gain correction unit 59c is changed. However, a gain correction unit different from the gain correction unit 59c is provided in the torque signal processing unit 59, and the correction processing is performed here. Assuming that the normal value of the gain to be used is 1 and the increase value is a value larger than 1 by a predetermined amount, the engine torque signal Te or a value obtained by processing the engine torque signal Te may be multiplied by this gain to calculate the torque value Tea. .
 また、上記実施形態では、ゲイン変更部60は、アクセルペダルのオンとオフとの間の切替が生じて、時間変化率ΔTeが第1所定値ΔTe1以上になったら、実エンジントルクの急増が生じる状況下であると判断して、ゲインを増大させているが、アクセルペダルのオンとオフとの間の切替に限らず、アクセルペダルの踏み込みや踏み戻しを検知して、エンジントルク信号Teの時間変化率ΔTeに着目し、時間変化率ΔTeが第1所定値ΔTe1以上になったら、実エンジントルクの急増が生じる状況下であると判断してもよい。 Further, in the above-described embodiment, the gain changing unit 60 causes a sudden increase in the actual engine torque when the time change rate ΔTe becomes greater than or equal to the first predetermined value ΔTe1 due to the switching between the on and off states of the accelerator pedal. Although the gain is determined to be under the condition and the gain is increased, the time is not limited to the switching between the on and off of the accelerator pedal, and the depression and the return of the accelerator pedal are detected, and the time of the engine torque signal Te is detected. Focusing on the rate of change ΔTe, when the time rate of change ΔTe becomes equal to or greater than the first predetermined value ΔTe1, it may be determined that the situation is such that the actual engine torque suddenly increases.

Claims (6)

  1.  車両に装備され、エンジンと有段自動変速機との間に介装されたロックアップクラッチを有するトルクコンバータのスリップ状態を制御する制御装置であって、
     前記車両の運転状態に基づいて前記ロックアップクラッチの目標スリップ回転速度を演算する目標スリップ回転演算手段と、
     前記目標スリップ回転速度に基づくフィードフォワード制御量、及び、前記目標スリップ回転速度と実スリップ回転速度とに基づくフィードバック制御量から前記ロックアップクラッチのスリップトルク容量を演算するスリップトルク容量演算手段と、
     前記エンジンのトルク信号をゲインによって補正処理して推定エンジントルクを演算する推定エンジントルク演算手段と、
     前記推定エンジントルクと前記スリップトルク容量とから前記ロックアップクラッチの係合指令圧を演算する係合指令圧演算手段とを備え、
     前記車両のアクセル操作により前記トルク信号の時間変化率が第1所定値以上になったら、前記ゲインを所定量増大させるゲイン変更手段を備えている、トルクコンバータのスリップ制御装置。
    A control device that is mounted on a vehicle and controls a slip state of a torque converter having a lock-up clutch interposed between an engine and a stepped automatic transmission,
    Target slip rotation calculating means for calculating a target slip rotation speed of the lock-up clutch based on a driving state of the vehicle;
    A feedforward control amount based on the target slip rotation speed, and a slip torque capacity calculation means for calculating a slip torque capacity of the lockup clutch from a feedback control amount based on the target slip rotation speed and the actual slip rotation speed;
    Estimated engine torque calculating means for calculating an estimated engine torque by correcting the engine torque signal with a gain,
    An engagement command pressure calculating means for calculating an engagement command pressure of the lock-up clutch from the estimated engine torque and the slip torque capacity,
    A slip control device for a torque converter, comprising: gain changing means for increasing the gain by a predetermined amount when a time change rate of the torque signal becomes equal to or more than a first predetermined value by an accelerator operation of the vehicle.
  2.  前記ゲイン変更手段は、前記ゲインの増大中に、前記トルク信号の変化率が前記第1所定値よりも小さい第2所定値未満になったら、前記ゲインの増大を停止する、請求項1に記載のトルクコンバータのスリップ制御装置。 2. The gain changing unit according to claim 1, wherein the gain changing unit stops increasing the gain when the rate of change of the torque signal becomes smaller than a second predetermined value smaller than the first predetermined value during the increase of the gain. 3. Slip control device for torque converter.
  3.  前記ゲイン変更手段は、前記ゲインを増大させてから所定時間が経過したら、前記ゲインの増大処理を停止する、請求項1に記載のトルクコンバータのスリップ制御装置。 2. The torque converter slip control device according to claim 1, wherein the gain changing unit stops the process of increasing the gain when a predetermined time has elapsed after increasing the gain.
  4.  前記所定量は、予め設定された一定値である、請求項1~3の何れか1項に記載のトルクコンバータのスリップ制御装置。 The slip control device for a torque converter according to any one of claims 1 to 3, wherein the predetermined amount is a predetermined constant value.
  5.  前記所定量は、前記アクセル操作量の時間変化率が大きいほど大きな値に設定される、請求項1~3の何れか1項に記載のトルクコンバータのスリップ制御装置。 The slip control device for a torque converter according to any one of claims 1 to 3, wherein the predetermined amount is set to a larger value as the time change rate of the accelerator operation amount is larger.
  6.  前記有段自動変速機の変速中には前記ゲインの増大を禁止するゲイン変更禁止手段を備えている、請求項1~5の何れか1項に記載のトルクコンバータのスリップ制御装置。 The slip control device for a torque converter according to any one of claims 1 to 5, further comprising a gain change prohibiting unit that prohibits an increase in the gain during shifting of the stepped automatic transmission.
PCT/JP2019/027076 2018-08-02 2019-07-09 Slip control device for torque converter WO2020026717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018146228A JP2022001765A (en) 2018-08-02 2018-08-02 Slip control device of torque converter
JP2018-146228 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020026717A1 true WO2020026717A1 (en) 2020-02-06

Family

ID=69232442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027076 WO2020026717A1 (en) 2018-08-02 2019-07-09 Slip control device for torque converter

Country Status (2)

Country Link
JP (1) JP2022001765A (en)
WO (1) WO2020026717A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116292876B (en) * 2023-02-23 2024-04-26 广州汽车集团股份有限公司 Vehicle starting control method, device, equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180365A (en) * 1988-12-28 1990-07-13 Mazda Motor Corp Slip control device for fluid coupling
JP2004293744A (en) * 2003-03-28 2004-10-21 Toyota Motor Corp Control device for directly coupled clutch for vehicle
JP2012117636A (en) * 2010-12-02 2012-06-21 Aisin Aw Co Ltd Lock-up apparatus and method for controlling the same
JP2017129232A (en) * 2016-01-21 2017-07-27 ジヤトコ株式会社 Control device of torque converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180365A (en) * 1988-12-28 1990-07-13 Mazda Motor Corp Slip control device for fluid coupling
JP2004293744A (en) * 2003-03-28 2004-10-21 Toyota Motor Corp Control device for directly coupled clutch for vehicle
JP2012117636A (en) * 2010-12-02 2012-06-21 Aisin Aw Co Ltd Lock-up apparatus and method for controlling the same
JP2017129232A (en) * 2016-01-21 2017-07-27 ジヤトコ株式会社 Control device of torque converter

Also Published As

Publication number Publication date
JP2022001765A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US7149616B2 (en) Control apparatus and method for vehicle
US8340878B2 (en) Torque converter control device and control method thereof
US8210988B2 (en) Vehicle controller and control method
JP3846405B2 (en) Control device for lock-up clutch
US8851049B2 (en) Engine control device
CN109027219B (en) Vehicle control device
JP2010038300A (en) Control device and control method of vehicle
JP6636809B2 (en) Control device for torque converter
US10137895B2 (en) Vehicle control apparatus
WO2020026717A1 (en) Slip control device for torque converter
JP4640140B2 (en) Vehicle control device
KR101737640B1 (en) Estimating device and method for oil temparature
JP6588294B2 (en) Torque converter control device
JP3656506B2 (en) Creep force control device for vehicle automatic transmission
JP4924562B2 (en) Vehicle start control device
JP2018141533A (en) Control device of lockup clutch
JP2000145950A (en) Slip control device of torque converter
JP7036922B2 (en) Control device for automatic transmission
KR101880546B1 (en) Method and system for releasing sports mode of vehicle
JP2019138426A (en) Gear change control device for vehicle
JP4924561B2 (en) Vehicle start control device
JP2787949B2 (en) Control device for automatic transmission
KR100482588B1 (en) Methold of controlling a shift at 4 - 3 kick down shift for an automatic transmission for vehicles
JP3656514B2 (en) Creep force control device for vehicle automatic transmission
KR20080053152A (en) Method for controlling damper clutch of automatic transmission for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP