WO2020009421A1 - Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction - Google Patents

Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction Download PDF

Info

Publication number
WO2020009421A1
WO2020009421A1 PCT/KR2019/008034 KR2019008034W WO2020009421A1 WO 2020009421 A1 WO2020009421 A1 WO 2020009421A1 KR 2019008034 W KR2019008034 W KR 2019008034W WO 2020009421 A1 WO2020009421 A1 WO 2020009421A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphite oxide
oxide
reaction
graphite
Prior art date
Application number
PCT/KR2019/008034
Other languages
French (fr)
Korean (ko)
Inventor
이중희
박옥경
김남훈
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2020009421A1 publication Critical patent/WO2020009421A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation

Definitions

  • the present invention relates to a method for environmentally friendly production of graphite oxide and graphene oxide using a chemical oxidation reaction capable of introducing a hydroxyl group (-OH) to the surface of the carbon crystal structure, and more specifically, graphite Oxidation reaction on strong acid solutions such as sulfuric acid (H 2 SO 4 ), phosphoric acid (Phosphoric acid, H 3 PO 4 ), nitric acid (HNO 3 )
  • the reaction solvent is used as distilled water (DI-water), and graphite, sodium hydroxide, and potassium permanganate are added to the distilled water to induce a chemical oxidation reaction to sp 2 bonds between carbon and carbon.
  • the present invention relates to an oxidation process that is environmentally friendly and can improve production efficiency.
  • the oxidation method according to the present invention breaks down the neutralization process time, which accounts for most of the acid wastewater treatment and graphite oxide manufacturing process time, which occur in the washing / neutralization process after the oxidation reaction required by the conventional Hummer 'method in terms of the production of graphite oxide. Can be reduced to reduce product production efficiency and cost, providing a great advantage in the industrial mass production of graphite oxide and graphene oxide.
  • Graphene is a two-dimensional carbon allotrope consisting of carbon-to-carbon bonds, and has excellent mechanical properties as well as low electrical resistivity and high thermal conductivity.
  • Graphene is generally manufactured using chemical oxidation / reduction method and chemical vapor deposition method (CVD), and when the chemical vapor deposition method is used, it is possible to produce high quality graphene.
  • CVD chemical oxidation / reduction method
  • CVD chemical vapor deposition method
  • mass production of graphene oxide should be preceded as an essential prerequisite.
  • graphene oxide reacts graphite with oxidizing agents such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acidic solutions such as sulfuric acid, nitric acid, and phosphoric acid.
  • oxidizing agents such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acidic solutions such as sulfuric acid, nitric acid, and phosphoric acid.
  • the graphene oxide is prepared by applying a shear force through an ultrasonic disperser, a fine homogenizer, or the like and peeling it into a single layer or an aqueous layer.
  • the prepared graphene oxide finally removes the oxygen functional groups formed on the surface through thermal and chemical reduction methods to finally prepare graphene.
  • the method for preparing graphene using a strong acid solution / acid mixture requires a considerably long process time in the process of neutralizing the pH of the reaction mixture to 6 to 7 while washing the acid solvent after the oxidation reaction. Since a large amount of acidic wastewater treatment process is required, additional costs are required in terms of product commercialization and wastewater treatment in terms of product commercialization, resulting in an improvement in the manufacturing cost of the product.
  • the long neutralization process time and the problem of the large amount of wastewater treatment process will be a big consideration in terms of mass production and commercialization of graphene in the future, and it will be greatly noticed in various industries as a preliminary task that requires a technical solution in terms of manufacturing process. have.
  • due to the acid removal / refining process that requires a long time there is a problem that a high speed graphene oxide synthesis process is difficult to be disposed in a continuous process.
  • the inventors of the present invention provide a method for producing an environmentally friendly graphite oxide comprising reacting an alkali ion, an oxidizing agent and a carbon source in a distilled water solution or a hydrophilic organic solvent to chemically oxidize the carbon source. It provides a method for producing high conductivity graphene oxide comprising the step of peeling through the shear stress or ultrasonic dispersion by addition to the phase and a method for producing graphene through a method of chemically reducing or thermally reducing the graphene oxide. .
  • the present invention provides a method for producing environmentally friendly graphite oxide comprising the following steps.
  • the present invention provides a method for producing graphene comprising the following steps.
  • the present invention provides a method for producing graphene comprising the following steps.
  • Graphite oxide and graphene oxide prepared by the present invention is because the oxidation reaction is carried out in distilled water without using an acidic solution, the defects on the surface of the graphite oxide prepared in comparison with the oxidation reaction using a conventionally used strong acid The rate of formation can be reduced to result in the production of high conductivity graphene oxide.
  • no acidic solution is used as the reaction solvent, a neutralization process that takes most of the time for preparing graphene oxide is not required, and thus, a process time for producing graphite oxide can be significantly reduced.
  • an excessive amount generated in the neutralization process Since it does not produce acidic wastewater solution, it is possible to remove industrial wastewater treatment process later. This will significantly reduce the manufacturing cost and production time of the product will provide a great advantage in terms of cost competitiveness and production process efficiency in terms of commercialization of graphene oxide.
  • FIG. 1 illustrates a schematic diagram of an oxidation reaction of natural graphite using an oxidation reaction on distilled water according to one embodiment of the present invention.
  • Example 2 shows Fourier transform infrared spectroscopy (FT-IR) analysis results of Example 1 according to an embodiment of the present invention.
  • FIG. 3 shows the results of thermogravimetric analysis (TGA) of graphene according to Example 1 and Comparative Example 2 according to an embodiment of the present invention.
  • Figure 4 shows the results of confirming the change of the dispersion phase of Example 1 according to an embodiment of the present invention on distilled water and enmethylpyrrolidone (N-Methyl Pyrrolidone, NMP).
  • Example 5 is GO-1 (using the graphene oxide and Hummer 'oxidation method of Example 2 prepared through a process of peeling by applying a shearing force through ultrasonic dispersion in Example 1 according to an embodiment of the present invention) Comparative Example 1) is shown through the analysis of the atomic force microscope (Atomic Force Microscope, AFM).
  • Example 6 is D-band and G of GO-1 (Comparative Example 1) prepared using Example 2 and Hummer 'oxidation method prepared by exfoliating Example 1 through ultrasonic dispersion according to an embodiment of the present invention.
  • the Raman graph shows the change in intensity ratio (I D / I G ) of the -band.
  • Example 7 is a result of comparing the electrical conductivity of Example 1 and GO-1 (Comparative Example 1) prepared using the Hummer 'oxidation method according to an embodiment of the present invention.
  • graphene oxide is a rapid chemical oxidation method in which graphite is reacted with an oxidizing agent such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acid solutions such as sulfuric acid, nitric acid, and phosphoric acid.
  • an oxidizing agent such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acid solutions such as sulfuric acid, nitric acid, and phosphoric acid.
  • the method for producing graphite oxide using a strong acid solution / acid mixture requires a fairly long process time in the process of neutralizing the pH of the reaction mixture to 6 to 7 while washing the acid solvent after the oxidation reaction, There is a disadvantage in that a large amount of wastewater treatment process generated in the treatment process is required. In addition, due to the acid removal / refining process that requires a long time, there is a problem that a high speed graphene oxide synthesis process is difficult to be disposed in a continuous process.
  • the chemical oxidation reaction is induced by using an aqueous solution containing alkali ions and oxidizing agent of the osmium tetroxide (OsO4) series
  • the reaction solvent was used as distilled water (DI-water), and it was confirmed that graphite oxide could be efficiently produced by drastically reducing the production time in terms of environment-friendly and process.
  • natural graphite, sodium hydroxide (NaOH) and potassium permanganate (KMnO 4 ) were added to 50 mL of distilled water, followed by stirring at 60 ° C. for 3 days (FIG. 1).
  • the present invention provides a method for producing an affinity graphite oxide comprising the following steps.
  • the alkali metal ion may be any one or more selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), barium hydroxide (BrOH) and lithium hydroxide (LiOH), preferably sodium hydroxide.
  • the molar concentration of the alkali metal may be 1 mol to 50 mol, preferably 10 mol to 40 mol, and most preferably 20 to 25 mol.
  • the oxidizing agent may be any one or more selected from the group of onium tetraoxide consisting of potassium permanganate, potassium chlorate, perchloric acid, and hydrogen peroxide, and preferably potassium permanganate.
  • the molar concentration of the oxidant may be 1 mol to 50 mol, preferably 10 mol to 40 mol, and most preferably 20 to 25 mol.
  • Chemical ion bonding between the alkali metal and hydroxyl by the oxidizing agent may form an alkali hydroxide material that generates hydroxide ions and alkali ions in an aqueous solution.
  • the above-mentioned method can be used to form graphite between carbon and carbon atoms on a graphite surface through a chemical reaction between sodium hydroxide (NaOH) in distilled water and potassium oxidant (Potassium permanganate, KMnO 4 ). Conversion of sp 2 bonds to sp 3 bonds can form hydroxyl (Hydroxyl, -OH) functional groups.
  • As a result of comparing the graphite oxide and natural graphite of the present invention it was confirmed that graphite oxide containing about 15 wt% of an oxygen functional group was prepared (FIG. 3).
  • the carbon source may be any one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphene having sp 2 bonds between carbon atoms, preferably graphite.
  • the hydrophilic organic solvent is selected from the group consisting of dimethylformamide (Dimethylformamide, DMF), ethylenepyrrolidone (N-Methyl Pyrrolidone, NMP), dimethyl sulfoxide (Dimethyl sulfoxide, DMSO) and ethanol (Ethanol, EtOH) It can be either.
  • the reaction may be performed at 40 ° C. to 80 ° C. for 1 day to 10 days, preferably at 50 ° C. to 70 ° C. for 1 day to 8 days, and more preferably The reaction may proceed for 2 to 6 days at 55 °C to 65 °C.
  • the (ii) may be stirred for 1 minute to 120 minutes at room temperature, preferably the reaction may proceed for 1 to 60 minutes at 15 °C to 35 °C, more preferably 1 at 20 °C to 30 °C The reaction may proceed for 30 minutes.
  • the present invention also provides a method for producing graphene oxide comprising the following steps.
  • Graphene oxide is prepared by peeling graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion.
  • the organic solvent may be any one or more selected from the group consisting of water, methanol, ethanol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, and mixtures thereof, as a hydrophilic solvent.
  • a hydrophilic solvent Preferably N-methylpyrrolidone.
  • the graphite oxide of the present invention After adding the graphite oxide of the present invention to distilled water and NMP phase and proceeding a peeling process through an ultrasonic disperser for 30 minutes, the dispersibility over time was observed to show the dispersed phase even after 30 days (FIG. 4). ).
  • the graphite oxide prepared according to the present invention was irradiated using AFM to confirm whether it is exfoliated in a hydrophilic organic solvent through ultrasonic dispersion to form graphene oxide, and as shown in FIG. It was confirmed that the eggplant was made of graphene oxide.
  • the present invention provides a method for producing graphene comprising the following steps.
  • the reducing agent may be any one or more selected from the group consisting of hydrazine, hydrazine monohydrate, acetichydrazide, sodium or potassium borohydride, N-methyl pyrrolidine and morpholine, preferably hydrazine, hydrazine monohydride It may be any one selected from the group consisting of latex and acetichydrazide, most preferably hydrazine.
  • the shear force rate may be 100 to 10000 rpm, preferably 500 to 10000 rpm, and most preferably 5000 to 6000 rpm.
  • the present invention provides a method for producing graphene comprising the following steps.
  • the temperature range may be 500 ° C or higher, preferably 500 ° C to 1000 ° C, and more preferably 600 ° C to 800 ° C.
  • the oxidation reaction described in the embodiment of the present invention proceeds in distilled water, it will provide advantages in terms of commercialization of graphene oxide and graphene, and also greatly reduces the defect production rate of the surface occurring in the oxidation reaction process, resulting in crystallinity and Since the graphene oxide with improved electrical conductivity can be produced, it can be widely used in materials fields such as high-performance polymer composite materials as well as electrical and electronic devices.
  • Graphite oxide was prepared by exposing the graphite oxide prepared in Example 1 to distilled water or enmethylpyrrolidone (NMP) solution and applying a shear force for 30 minutes using an ultrasonic disperser to perform a peeling process.
  • NMP enmethylpyrrolidone
  • the graphene oxide prepared in Example 2 was specified as GO.
  • Natural graphite was used as an initial material to determine the physical properties, oxidation, and absence of graphite oxide prepared by the oxidation method proposed by the present invention, and 2 was specified in the comparison to prove the results of the present invention.
  • Example 1 In order to confirm the formation and content of the oxidation functional group by the oxidation method proposed in the present invention, it was confirmed by comparing the TGA pyrolysis curves of Example 1 and Comparative Example 2, the results are shown in FIG. As can be seen in FIG. 3, in the case of pure graphite state which does not undergo oxidation reaction, 2 shows a stable pyrolysis curve up to 800 degrees. However, in Example 1 in which the oxidation reaction was performed through the present invention, the pyrolysis curve was shown from 200 degrees by the oxygen functional group, and about 15 wt% in the decomposition temperature range of the oxygen functional group is 200-500 degrees. A weight loss was shown.
  • Example 1 Graphite oxide prepared by the oxidation method proposed in the present invention (Example 1) was examined using AFM to determine whether the graphene oxide was peeled off in a hydrophilic organic solvent through ultrasonic dispersion, and the confirmed results were shown in FIG. 5 is shown. As can be seen in Figure 5 it was confirmed that the case of Example 2 was made of graphene oxide having a thickness of less than about 2nm. Through the above results, it was confirmed that the graphene oxide and the mixed graphene oxide dispersion liquid can be easily prepared by the method for producing graphite oxide and the graphene oxide proposed through the present invention.

Abstract

The present invention relates to an eco-friendly efficient oxidation method for producing graphite oxide (O-Gr) and high-conductivity graphene oxide (GO) by using a chemical oxidation reaction capable of introducing a hydroxyl group into a carbon crystal lattice. More specifically, instead of conducting an oxidation reaction within a strong acid solution that is typically used as a reaction solvent when producing graphite oxide from graphene, such as sulfuric acid (H2SO4), phosphoric acid (H3PO4), and nitric acid (HNO3), the oxidation method of the present invention uses deionized water (DI-water) as a reaction solvent for the oxidation reaction, and by adding graphite, sodium hydroxide, and potassium permanganate to the DI-water, induces a chemical oxidation reaction, producing O-Gr and high-conductivity GO having reduced lattice defects by using same. The oxidation method according to the present invention can dramatically decrease the processing time and costs required for the process of treating and neutralizing acidic wastewater generated from post-reaction washing/neutralization processes in O-Gr production, and thus can increase the efficiency of product production and reduce the costs thereof, providing a great advantage in the mass-production of O-Gr and GO.

Description

수산화 반응을 이용한 친환경적으로 산화 흑연 및 산화 그래핀을 제조하는 방법Eco-friendly method for producing graphite oxide and graphene oxide using hydroxide reaction
본 출원은 2018년 07월 03일 출원된 대한민국 특허출원 제10-2018-0077191호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.This application claims the priority of Korean Patent Application No. 10-2018-0077191, filed July 03, 2018, the entirety of which is a reference of the present application.
본 발명은 탄소결정 구조 표면에 수산화 기능기 (Hydroxyl group, -OH)를 도입할 수 있는 화학적 산화반응을 이용한 산화 흑연 및 산화 그래핀을 친환경적으로 제조하는 방법에 관한 것으로, 더 자세하게는 일반적으로 흑연으로부터 산화 흑연을 제조하는데 반응 용매로 사용되는 황산 (Sulfuric acid, H2SO4), 인산 (Phosphoric acid, H3PO4), 질산 (Nitric acid, HNO3)과 같은 강한 산성 용액 상에서 산화 반응을 진행하지 않고, 산화 반응 시 반응 용매를 증류수 (DI-water)로 사용하고, 상기 증류수 상에 흑연, 수산화나트륨, 과망간산칼륨을 첨가하여 탄소-탄소 간의 sp2 결합에 화학적 산화반응을 유도하여, 산화흑연(Graphite oxide: O-Gr) 및 이를 이용하여 산화 공정상에서 발생하는 결정결함의 생성 비율을 급격하게 감소시킨 고전도성의 산화 그래핀(Graphene oxide: GO)을 제조하는 환경 친화적이면서 생산 효율성을 향상시킬 수 있는 산화 공정에 관한 것이다. 본 발명에 따른 산화 방법은 산화 흑연의 제조 측면에서 기존의 Hummer’방법에서 요하는 산화 반응 후 세척/중화 공정에서 발생하는 산 폐수 처리 및 산화 흑연의 제조공정 시간에서 대부분을 차지하는 중화 공정시간을 획기적으로 감소시킬 수 있어 제품 생산 효율성 및 비용을 감소시켜, 산화 흑연 및 산화 그래핀의 산업적 대량 생산 측면에서 큰 이점을 제공한다. The present invention relates to a method for environmentally friendly production of graphite oxide and graphene oxide using a chemical oxidation reaction capable of introducing a hydroxyl group (-OH) to the surface of the carbon crystal structure, and more specifically, graphite Oxidation reaction on strong acid solutions such as sulfuric acid (H 2 SO 4 ), phosphoric acid (Phosphoric acid, H 3 PO 4 ), nitric acid (HNO 3 ) In the oxidation reaction, the reaction solvent is used as distilled water (DI-water), and graphite, sodium hydroxide, and potassium permanganate are added to the distilled water to induce a chemical oxidation reaction to sp 2 bonds between carbon and carbon. Graphite oxide (O-Gr) and a high-conductivity graphene oxide (GO) using the same to rapidly reduce the rate of crystal defects generated in the oxidation process The present invention relates to an oxidation process that is environmentally friendly and can improve production efficiency. The oxidation method according to the present invention breaks down the neutralization process time, which accounts for most of the acid wastewater treatment and graphite oxide manufacturing process time, which occur in the washing / neutralization process after the oxidation reaction required by the conventional Hummer 'method in terms of the production of graphite oxide. Can be reduced to reduce product production efficiency and cost, providing a great advantage in the industrial mass production of graphite oxide and graphene oxide.
그래핀은 탄소-탄소 원자간의 결합으로 이루어진 2차원의 탄소 동소체 물질로서 우수한 기계적 물성과 더불어서, 낮은 전기비저항, 높은 열전도율을 가진 산업전반에서 그 응용성이 주목되는 소재이다. 그래핀은 일반적으로 화학적인 산화·환원 방법과 화학기상 증착 방법 (Chemical vapor deposition method, CVD)을 사용하여 제조하는데, 화학기상 증착방법을 통해 제조하는 경우 고품질의 그래핀을 제조 할 수 있다는 이점을 가지지만, 산업적인 대량화가 어려워 다양한 산업 전반에서 그 응용이 어렵다는 제한점을 가진다. 가격적, 기술적 경쟁력을 가지는 산화 그래핀 및 그래핀 제품을 제조하기 위해서는 산화 그래핀의 대량생산화가 필수 선결과제로 선행되어야 한다. Graphene is a two-dimensional carbon allotrope consisting of carbon-to-carbon bonds, and has excellent mechanical properties as well as low electrical resistivity and high thermal conductivity. Graphene is generally manufactured using chemical oxidation / reduction method and chemical vapor deposition method (CVD), and when the chemical vapor deposition method is used, it is possible to produce high quality graphene. Although it is difficult to industrialize mass, it has a limitation that its application is difficult in various industries. In order to manufacture graphene oxide and graphene products having cost and technical competitiveness, mass production of graphene oxide should be preceded as an essential prerequisite.
대량의 그래핀을 접목 시켜야 하는 산업체에서는 대량생산이 용이한 화학적 산화·환원 방법을 이용하여 산화 그래핀 또는 그래핀을 제조 하는 방법이 화학 기상 증착법을 이용하여 그래핀을 제조하는 방법과 비교하여 제품 생산성 측면, 또는 가격적 경쟁력 측면에서 유용한 방법으로 고려되어 지고 있다. 일반적으로 산화 그래핀은 흑연을 황산, 질산, 인산과 같은 강한 산성용액 상에서 과망간산칼륨(Potassium permanganate, KMnO4) 및 과산화수소(Hydrogen peroxide, H2O2)와 같은 산화제와 반응시켜 산소기능기 그룹을 표면에 형성시킨 후 초음파 분산기, 미세균질 분쇄기 등을 통해 전단력 (Shear force)을 인가해 단층 또는 수층으로 박리하는 공정을 통해서 산화 그래핀을 제조한다. 제조된 산화 그래핀은 열적, 화학적 환원방법을 통해 표면에 형성된 산소 기능기 그룹을 제거하여 최종적으로 그래핀을 제조한다. In industries that need to incorporate a large amount of graphene, the method of preparing graphene oxide or graphene using chemical oxidation / reduction method that is easy to mass-produce is compared with the method of preparing graphene using chemical vapor deposition. It is considered as a useful method in terms of productivity or price competitiveness. In general, graphene oxide reacts graphite with oxidizing agents such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acidic solutions such as sulfuric acid, nitric acid, and phosphoric acid. After forming on the surface, the graphene oxide is prepared by applying a shear force through an ultrasonic disperser, a fine homogenizer, or the like and peeling it into a single layer or an aqueous layer. The prepared graphene oxide finally removes the oxygen functional groups formed on the surface through thermal and chemical reduction methods to finally prepare graphene.
그러나 강한 산용액/산혼합액을 사용한 그래핀의 제조 방법은 산화 반응 후 산용매를 세척하면서 반응혼합물의 pH를 6 내지 7로 중화하는 공정에서 상당히 긴 공정 시간을 필요로 하고, 용매 상에서 그래핀의 처리 과정에서 발생하는 대량의 산성 폐수의 처리 공정을 필요로 하기 때문에 제품 사업화 측면에서 제품 생산 공정설비 측면과 폐수 처리과정에서 추가적인 비용을 요구하게 되어 결과적으로 제품의 제조단가의 향상을 초래한다. 상기 긴 중화공정 시간 및 대량의 폐수 처리 공정의 문제점은 차후에 그래핀의 대량화, 상업화 측면에서 큰 고려사항으로 작용되며, 제조 공정 측면에서 우선적으로 기술적 해결을 요하는 선결 과제로 다양한 산업계에서 크게 주목되고 있다. 또한, 긴 시간을 요하는 산제거/정제 공정으로 인해서 고속으로 이루어지는 산화 그래핀 합성 공정이 연속 공정으로 배치되기 어려운 문제점도 있다. However, the method for preparing graphene using a strong acid solution / acid mixture requires a considerably long process time in the process of neutralizing the pH of the reaction mixture to 6 to 7 while washing the acid solvent after the oxidation reaction. Since a large amount of acidic wastewater treatment process is required, additional costs are required in terms of product commercialization and wastewater treatment in terms of product commercialization, resulting in an improvement in the manufacturing cost of the product. The long neutralization process time and the problem of the large amount of wastewater treatment process will be a big consideration in terms of mass production and commercialization of graphene in the future, and it will be greatly noticed in various industries as a preliminary task that requires a technical solution in terms of manufacturing process. have. In addition, due to the acid removal / refining process that requires a long time, there is a problem that a high speed graphene oxide synthesis process is difficult to be disposed in a continuous process.
상기에 언급된 것과 같이 실제 산업체에서 제품 제조 공정에서 요하는 문제점을 해결하기 위해 산화 그래핀을 제조하는 공정에서 약산을 사용하거나 산을 사용하지 않은 친환경적인 산화 방법과 연관된 다양한 연구가 최근 크게 주목 되고 있다. As mentioned above, various studies related to eco-friendly oxidation methods using weak acid or no acid in the process of manufacturing graphene oxide to address the problems in the manufacturing process of products in the industry have recently been greatly attracting attention. have.
프랑스의 Centre de Recherche Paul Pascal (CRPP)의 G. Drummond 교수 연구팀은 칼륨 (Potassium, K)이온을 층간에 삽입시킨 천연흑연을 테트라 하이드로 퓨란 (Tetrahydrofuran, THF)상에 분산시켜 (-)전하를 띠는 그래핀이 분산된 혼합 용액을 제조한 후 탈포 처리한 증류수상에 분산시켜 겸함형성 비율을 감소시킨 고 결정성의 그래핀을 제조하는 기술에 관한 연구 결과를 2017년 Nature Chemistry 에 보고 하였다 (Nature Chemistry, C. Drummond et al., 2017, 9, 347). 이 경우 증류수상에 존재하는 기포에 의해 발생하는 그래핀 간의 재뭉침 현상을 방지할 수 있고 수산화 이온 (OH-)이 그래핀 표면에 이온결합을 통해 흡착되어 증류수와의 호환성 (compatibility)을 향상 시켜 제조된 그래핀이 증류수 상에서 균일한 분산상을 형성하게 하였다. 하지만 이 연구 또한 유기 용매인 테트라 하이드로퓨란 상에서 일차적인 전처리가 진행되기 때문에 차후로 유기 폐수용액 처리 공정 단계가 필요하며, 수산화 그룹이 이온결합을 통해 존재하기 때문에 약한 화학적 결합 지속력으로 인해 분산 안정성이 급격하게 감소할 수 있다는 문제점을 가지고 있다. Professor G. Drummond of the Center de Recherche Paul Pascal (CRPP) in France disperses natural graphite containing potassium (Potassium, K) ions intercalated onto Tetrahydrofuran (THF) to carry a negative charge. Reported the results of research on a technique for preparing a highly crystalline graphene having a reduced mixing ratio by preparing a mixed solution in which graphene is dispersed and then dispersing it in a degassed distilled water (Nature Chemistry, 2017). , C. Drummond et al., 2017, 9, 347). In this case, it is possible to prevent the graphene material bunching phenomenon between caused by bubbles present in the distilled Water hydroxide ions (OH -) is adsorbed by the ion bonded to the graphene surface to improve the compatibility (compatibility) with distilled water The prepared graphene was allowed to form a uniform dispersed phase on distilled water. However, this study also requires an organic pretreatment process step because of the first pretreatment on tetrahydrofuran, an organic solvent, and because of the presence of hydroxyl groups through ionic bonds, the dispersion stability is abrupt due to weak chemical bond persistence. There is a problem that can be reduced.
인도의 Indian Institute of Engineering Science and Technology의 S. Sarkar 박사 연구 팀은 산용액이 아닌 이산화질소(Nitrogen Dioxide, NO2) 가스를 반응물에 주입하는 방법을 통해 산용액을 사용하지 않고 산화 흑연을 제조하는 연구결과를 2017년 Chemistry Select에 보고하였다 (Chemistry Select, S. Sarkar et al., 2017, 2, 5564). 흑연, 또는 풀러렌과 같은 탄소-탄소 이중결합을 가지는 탄소소재를 디클로로메테인 (Dichloro methane, DCM) 용액에 분산시킨 후 이산화질소 가스를 주입하여 NO2이온이 탄소원자간의 sp2결합과 π-π 상호작용에 의해 화학적 결합을 형성하고 수산화나트륨 (Sodium hydroxide: NaOH)과 염산 (Hydrochloric acid: HCl)수용액 상에서 세척하는 과정에서 NO2H가 제거되면서 하이드록실 그룹 (-OH)과 케톤 (C=O) 그룹이 표면에 형성된 산화 흑연을 제조하였다. 하지만 이 경우 반응을 유기 용액 하에서 진행하고, NO2이온을 주입한 후 세척하는 과정에서 산폐수 용액이 발생하고, 과량의 이산화질소를 용액 중에 주입함으로써 제조 단가의 상승 및 가스탈포에 의한 구조결함 형성율이 증가해서 물성을 감소시키는 문제점 을 야기한다. S. Sarkar, Ph.D., a research team at the Indian Institute of Engineering Science and Technology in India, uses a method of preparing graphite oxide without acid solution by injecting nitrogen dioxide (NO 2 ) gas into the reactant, not acid solution. The results were reported to Chemistry Select in 2017 (Chemistry Select, S. Sarkar et al., 2017, 2, 5564). Carbon dioxide having a carbon-carbon double bond such as graphite or fullerene is dispersed in a dichloromethane (DCM) solution, followed by injection of nitrogen dioxide, so that NO 2 ions are sp 2 bonds between the carbon atoms and π-π interactions. Hydroxyl groups (-OH) and ketones (C = O) as NO 2 H is removed during the formation of chemical bonds by action and washing in aqueous sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions Graphite oxide with groups formed on the surface was produced. In this case, however, the acid wastewater solution is generated during the reaction in the organic solution, the NO 2 ions are injected, and the washing process is carried out, and the production cost is increased by injecting excess nitrogen dioxide into the solution. This increases, causing a problem of decreasing physical properties.
그리고 산화 흑연 및 산화 그래핀을 제조하는데 공정시간을 단축하기 위해서 강산 및 온도제어를 통해 반응속도를 조정하고자 하는 연구가 다양한 방법을 통해 제안되고 있으나, 이 경우에는 폐산액 증가에 따른 환경 문제 및 이들을 처리하기 위한 추가비용이 증가되는 문제점을 야기한다. 따라서 화학적 합성방법을 통한 산화 흑연 또는 산화 그래핀의 제조에 있어 제조 공정시간을 줄임과 동시에 보다 친환경적인 방법이 모색되고 있는 실정이다. In order to shorten the process time for producing graphite oxide and graphene oxide, researches to adjust the reaction rate through strong acid and temperature control have been proposed through various methods. This leads to the problem of an additional cost for processing. Therefore, in the production of graphite oxide or graphene oxide through a chemical synthesis method, while reducing the manufacturing process time, more environmentally friendly methods are being sought.
이에, 본 발명자들은 증류수 용액 또는 친수성 유기 용매 상에서 알칼리 이온, 산화제 및 탄소원을 반응시켜 탄소원을 화학적 산화시키는 단계를 포함하는 환경 친화적인 산화 흑연의 제조방법, 상기의 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하여 전단 응력 또는 초음파 분산을 통해 박리하는 단계를 포함하는 고전도성 산화 그래핀 제조방법 및 상기 산화 그래핀을 화학적 환원 방법 또는 열적으로 환원 시키는 방법을 통해서 그래핀을 제조하는 방법을 제공한다. Accordingly, the inventors of the present invention provide a method for producing an environmentally friendly graphite oxide comprising reacting an alkali ion, an oxidizing agent and a carbon source in a distilled water solution or a hydrophilic organic solvent to chemically oxidize the carbon source. It provides a method for producing high conductivity graphene oxide comprising the step of peeling through the shear stress or ultrasonic dispersion by addition to the phase and a method for producing graphene through a method of chemically reducing or thermally reducing the graphene oxide. .
본 발명은 하기의 단계를 포함하는 친환경적인 산화 흑연의 제조방법을 제공한다.The present invention provides a method for producing environmentally friendly graphite oxide comprising the following steps.
(i) 증류수 또는 친수성 유기 용매 상에서 알칼리 금속이온, 산화제 및 탄소원을 반응시켜 탄소원을 화학적 산화시키는 단계;(i) chemically oxidizing the carbon source by reacting an alkali metal ion, an oxidant and a carbon source in distilled water or a hydrophilic organic solvent;
(ii) 상기 산화된 반응물에 과산화수소를 첨가하고 교반하여 반응을 종결시키는 단계; 및(ii) adding hydrogen peroxide to the oxidized reactant and stirring to terminate the reaction; And
(iii) 상기 반응이 종결된 반응물을 증류수로 세척하여 산화흑연을 제조하는 단계.(iii) washing the reactant with distilled water to produce graphite oxide.
또한, 본 발명의 하기의 단계를 포함하는 산화 그래핀의 제조방법을 제공한다. In addition, it provides a method for producing graphene oxide comprising the following steps of the present invention.
(i) 상기의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; 및(i) adding graphite oxide prepared by the above method to an organic solvent or distilled water; And
(ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계.(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide.
또한 본 발명은 하기의 단계를 포함하는 그래핀의 제조 방법을 제공한다. In another aspect, the present invention provides a method for producing graphene comprising the following steps.
(i) 상기의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding graphite oxide prepared by the above method to an organic solvent or distilled water;
(ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
(iii) 상기 산화 그래핀에 환원제를 투입하여 그래핀을 제조하는 단계.(iii) preparing graphene by adding a reducing agent to the graphene oxide.
또한 본 발명은 하기의 단계를 포함하는 그래핀의 제조방법을 제공한다. In another aspect, the present invention provides a method for producing graphene comprising the following steps.
(i) 상기 서술한 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding graphite oxide prepared by the above-mentioned preparation method onto an organic solvent or distilled water;
(ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
(iii) 상기 산화 그래핀을 500 ℃ 이상에서 열처리하여 그래핀을 제조하는 단계.(iii) preparing graphene by heat treating the graphene oxide at 500 ° C. or higher.
본 발명에 의해서 제조되는 산화 흑연 및 산화 그래핀은 산성용액을 사용하지 않고 증류수 상에서 산화반응이 이루어지기 때문에 기존에 일반적으로 사용되어진 강산을 사용한 산화반응과 비교하여 제조된 산화흑연의 표면에 결함을 형성하는 비율을 감소시켜 결과적으로 고 전도성의 산화 그래핀을 제조할 수 있다. 또한 반응 용매로 산성용액을 사용하지 않기 때문에 산화그래핀을 제조하는 시간의 대부분을 차지하는 중화 공정이 요구되지 않아 산화흑연을 제조하는 공정시간을 현저히 감소시킬 수 있으며, 이 외에도 중화 공정에서 생성되는 과량의 산 폐수용액을 생성하지 않기 때문에 추후 산업 폐수 처리공정을 제거 할 수 있다. 이는 제품의 제조단가 및 생산시간을 현저히 감소시켜 산화 그래핀의 제품화 측면에서 가격적 경쟁력 및 생산 공정 효율성 측면에서 큰 이점을 제공할 것이다. Graphite oxide and graphene oxide prepared by the present invention is because the oxidation reaction is carried out in distilled water without using an acidic solution, the defects on the surface of the graphite oxide prepared in comparison with the oxidation reaction using a conventionally used strong acid The rate of formation can be reduced to result in the production of high conductivity graphene oxide. In addition, since no acidic solution is used as the reaction solvent, a neutralization process that takes most of the time for preparing graphene oxide is not required, and thus, a process time for producing graphite oxide can be significantly reduced. In addition, an excessive amount generated in the neutralization process Since it does not produce acidic wastewater solution, it is possible to remove industrial wastewater treatment process later. This will significantly reduce the manufacturing cost and production time of the product will provide a great advantage in terms of cost competitiveness and production process efficiency in terms of commercialization of graphene oxide.
도 1은 본 발명은 일구현예에 따른 증류수 상에서 산화 반응을 이용한 천연 흑연의 산화 반응의 모식도를 나타낸 것이다.1 illustrates a schematic diagram of an oxidation reaction of natural graphite using an oxidation reaction on distilled water according to one embodiment of the present invention.
도 2는 본 발명의 일구현예에 따른 실시예 1의 푸리에변환 적외선 분광 분석법 (Fourier transform infrared spectroscopy, FT-IR) 분석 결과를 나타낸 것이다.2 shows Fourier transform infrared spectroscopy (FT-IR) analysis results of Example 1 according to an embodiment of the present invention.
도 3은 본 발명의 일구현예에 따른 실시예1 및 비교예 2에 의한 그래핀의 열중량 분석 (Thermogravity analysis, TGA)결과를 나타낸 것이다.Figure 3 shows the results of thermogravimetric analysis (TGA) of graphene according to Example 1 and Comparative Example 2 according to an embodiment of the present invention.
도 4는 증류수와 엔메틸피롤리돈 (N-Methyl Pyrrolidone, NMP)상에서 본 발명의 일구현예에 따른 실시예 1의 분산상의 변화를 시간의 변화에 따라 확인한 결과를 나타낸 것이다.Figure 4 shows the results of confirming the change of the dispersion phase of Example 1 according to an embodiment of the present invention on distilled water and enmethylpyrrolidone (N-Methyl Pyrrolidone, NMP).
도 5는 본 발명의 일구현예에 따른 실시예 1을 초음파 분산을 통해 전단력을 가해 박리하는 공정을 통해서 제조된 실시예 2의 산화그래핀 및 Hummer’산화 방법을 사용하여 제조된 GO-1 (비교예 1)을 원자간력 현미경 (Atomic Force Microscope, AFM)을 통해서 분석한 결과를 나타낸 것이다. 5 is GO-1 (using the graphene oxide and Hummer 'oxidation method of Example 2 prepared through a process of peeling by applying a shearing force through ultrasonic dispersion in Example 1 according to an embodiment of the present invention) Comparative Example 1) is shown through the analysis of the atomic force microscope (Atomic Force Microscope, AFM).
도 6은 본 발명의 일구현예에 따른 실시예 1을 초음파 분산을 통해 박리하여 제조된 실시예 2 및 Hummer’산화 방법을 사용하여 제조된 GO-1 (비교예 1)의 D-band와 G-band의 intensity비율 (ID/IG)의 변화를 라만 그래프로 나타낸 것이다. 6 is D-band and G of GO-1 (Comparative Example 1) prepared using Example 2 and Hummer 'oxidation method prepared by exfoliating Example 1 through ultrasonic dispersion according to an embodiment of the present invention. The Raman graph shows the change in intensity ratio (I D / I G ) of the -band.
도 7은 본 발명의 일구현예에 따른 실시예 1 및 Hummer’산화 방법을 사용하여 제조된 GO-1 (비교예 1)의 전기 전도성을 비교한 결과이다.7 is a result of comparing the electrical conductivity of Example 1 and GO-1 (Comparative Example 1) prepared using the Hummer 'oxidation method according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 본 발명은 도면에 제시된 실시예를 참고로 설명 되었으나 이는 하나의 실시예로서 설명되는 것이며, 이것에 의해 본 발명의 기술적 내용과 그 핵심 구성 및 작용이 제한되지 않는다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described. The present invention has been described with reference to the embodiments presented in the drawings, which are described as one embodiment, whereby the technical details of the present invention and its core configuration and operation are not limited.
일반적으로 산화 그래핀은 흑연을 황산, 질산, 인산과 같은 강한 산성용액 상에서 과망간산칼륨(Potassium permanganate, KMnO4) 및 과산화수소(Hydrogen peroxide, H2O2)와 같은 산화제와 반응시킨 급격한 화학적 산화 방법을 통해 산소기능기 그룹을 표면에 형성시킨 후 초음파 분산기, 미세균질 분쇄기 등을 통해 전단력 (Shear force)을 인가해 단층 또는 수층으로 박리하는 공정을 통해서 제조한다. 그러나 강한 산용액/산혼합액을 사용한 산화 흑연의 제조 방법은 산화 반응 후 산용매를 세척하면서 반응혼합물의 pH를 6 내지 7로 중화하는 공정에서 상당히 긴 공정 시간을 필요로 하고, 용매 상에서 산화 흑연의 처리 과정에서 발생하는 대량의 폐수 처리 공정을 필요로 하는 단점이 있다. 또한, 긴 시간을 요하는 산제거/정제 공정으로 인해서 고속으로 이루어지는 산화 그래핀 합성 공정이 연속 공정으로 배치되기 어려운 문제점도 있다.In general, graphene oxide is a rapid chemical oxidation method in which graphite is reacted with an oxidizing agent such as potassium permanganate (KMnO 4 ) and hydrogen peroxide (H 2 O 2 ) in strong acid solutions such as sulfuric acid, nitric acid, and phosphoric acid. After the oxygen functional group is formed on the surface through the ultrasonic disperser, fine homogenizer, etc. by applying a shear force (Shear force) is produced through the process of peeling into a single layer or a water layer. However, the method for producing graphite oxide using a strong acid solution / acid mixture requires a fairly long process time in the process of neutralizing the pH of the reaction mixture to 6 to 7 while washing the acid solvent after the oxidation reaction, There is a disadvantage in that a large amount of wastewater treatment process generated in the treatment process is required. In addition, due to the acid removal / refining process that requires a long time, there is a problem that a high speed graphene oxide synthesis process is difficult to be disposed in a continuous process.
상기의 문제점을 극복하기 위해, 본 발명에서는 흑연으로부터 산화 흑연을 제조 하는 방법에 있어서, 알칼리 이온을 포함하는 수용액 및 사산화오스늄(Osmium tetroxide, OsO4) 계열의 산화제를 사용하여 화학적 산화반응을 유도하고, 반응 용매를 증류수 (DI-water)로 사용하여 환경 친화적이면서 공정적 측면에서 제조시간을 급격하게 감소시켜 효율적으로 산화 흑연을 제조하는 할 수 있다는 사실을 확인하였다. 본 발명은 천연흑연, 수산화나트륨(NaOH) 및 과망간산칼륨 (KMnO4)을 50 mL의 증류수에 첨가시켜준 후 60도상에서 3일 동안 교반하여 산화 반응을 진행하였다 (도 1). 상기 반응이 산화된 흑연에 과산화수소를 첨가하여 재교반하여 반응을 종결 시킨 후, 증류수와 30 wt% 염산 (HCl) 수용액으로 세척하며 잔존하는 미반응 산화제를 제거, 필터 해준 후 동결건조 하여 최종적으로 산화 흑연을 제조하였다. In order to overcome the above problems, in the present invention, in the method for producing graphite oxide from graphite, the chemical oxidation reaction is induced by using an aqueous solution containing alkali ions and oxidizing agent of the osmium tetroxide (OsO4) series In addition, the reaction solvent was used as distilled water (DI-water), and it was confirmed that graphite oxide could be efficiently produced by drastically reducing the production time in terms of environment-friendly and process. In the present invention, natural graphite, sodium hydroxide (NaOH) and potassium permanganate (KMnO 4 ) were added to 50 mL of distilled water, followed by stirring at 60 ° C. for 3 days (FIG. 1). After the reaction was quenched by adding hydrogen peroxide to the oxidized graphite, the reaction was terminated, washed with distilled water and 30 wt% hydrochloric acid (HCl) aqueous solution, removing the remaining unreacted oxidant, filtration and lyophilization, and finally, graphite oxide. Was prepared.
본 발명은 하기 단계를 포함하는 친화경적인 산화 흑연의 제조 방법을 제공한다. The present invention provides a method for producing an affinity graphite oxide comprising the following steps.
(i) 증류수 또는 친수성 유기 용매 상에서 알칼리 금속 이온, 산화제 및 탄소원을 반응시켜 탄소원을 화학적 산화시키는 단계;(i) chemically oxidizing the carbon source by reacting an alkali metal ion, an oxidant and a carbon source in distilled water or a hydrophilic organic solvent;
(ii) 상기 산화된 반응물에 과산화수소를 첨가하고 교반하여 반응을 종결시키는 단계; 및(ii) adding hydrogen peroxide to the oxidized reactant and stirring to terminate the reaction; And
(iii) 상기 반응이 종결된 반응물을 증류수 및 산 용액으로 세척하여 산화흑연을 제조하는 단계.(iii) preparing the graphite oxide by washing the reacted product with distilled water and an acid solution.
상기 알칼리 금속이온은 수산화나트륨 (NaOH), 수산화칼륨(KOH), 수산화바륨 (BrOH) 및 수산화리튬(LiOH)으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으며, 바람직하게는 수산화나트륨일 수 있다. The alkali metal ion may be any one or more selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), barium hydroxide (BrOH) and lithium hydroxide (LiOH), preferably sodium hydroxide.
상기 알칼리 금속의 몰농도는 1 mol 내지 50 mol일 수 있으며, 바람직하게는 10 mol 내지 40 mol 일 수 있으며, 가장 바람직하게는 20 내지 25 mol일 수 있다. The molar concentration of the alkali metal may be 1 mol to 50 mol, preferably 10 mol to 40 mol, and most preferably 20 to 25 mol.
상기 산화제는 과망간산칼륨, 염소산칼륨, 과염소산 및 과산화수소로 이루어진 사산화오스늄 군으로부터 선택되는 어느 하나 이상일 수 있으며 바람직하게는 과망간산칼륨일 수 있다. The oxidizing agent may be any one or more selected from the group of onium tetraoxide consisting of potassium permanganate, potassium chlorate, perchloric acid, and hydrogen peroxide, and preferably potassium permanganate.
상기 산화제의 몰농도는 1 mol 내지 50 mol일 수 있으며, 바람직하게는 10 mol 내지 40 mol 일 수 있으며, 가장 바람직하게는 20 내지 25 mol일 수 있다. The molar concentration of the oxidant may be 1 mol to 50 mol, preferably 10 mol to 40 mol, and most preferably 20 to 25 mol.
상기 알칼리 금속과 산화제에 의한 하이드록실 간의 화학적 이온결합은 수용액 상에서 수산화 이온과 알칼리 이온을 생성하는 수산화 알칼리 물질을 형성할 수 있다. 자세하게는 상기 방법으로, 흑연을 증류수 상에서 수산화나트륨 (Sodium hydroxide, NaOH)와 산화제인 과망간산칼륨 (Potassium permanganate, KMnO4)간에 화학반응인 수산화반응 (Hydroxylation reaction)을 통해서 흑연 표면에 탄소-탄소 원자 간의 sp2결합을 sp3결합으로 전환되면서 하이드록실 (Hydroxyl, -OH) 기능기 그룹을 형성할 수 있다. 본 발명의 산화흑연 및 천연 흑연을 비교한 결과 약 15 wt%의 산소기능기 그룹을 함유한 산화 흑연이 제조되었음을 확인할 수 있었다 (도 3).Chemical ion bonding between the alkali metal and hydroxyl by the oxidizing agent may form an alkali hydroxide material that generates hydroxide ions and alkali ions in an aqueous solution. In detail, the above-mentioned method can be used to form graphite between carbon and carbon atoms on a graphite surface through a chemical reaction between sodium hydroxide (NaOH) in distilled water and potassium oxidant (Potassium permanganate, KMnO 4 ). Conversion of sp 2 bonds to sp 3 bonds can form hydroxyl (Hydroxyl, -OH) functional groups. As a result of comparing the graphite oxide and natural graphite of the present invention, it was confirmed that graphite oxide containing about 15 wt% of an oxygen functional group was prepared (FIG. 3).
상기 탄소원은 탄소원자간의 sp2결합을 가지는 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며 바람직하게는 흑연 일 수 있다. The carbon source may be any one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphene having sp 2 bonds between carbon atoms, preferably graphite.
상기 친수성 유기 용매는 디메틸포름아마이드(Dimethylformamide, DMF), 엔메틸피롤리돈(N-Methyl Pyrrolidone, NMP), 디메틸설폭사이드 (Dimethyl sulfoxide, DMSO) 및 에탄올 (Ethanol, EtOH)로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. The hydrophilic organic solvent is selected from the group consisting of dimethylformamide (Dimethylformamide, DMF), ethylenepyrrolidone (N-Methyl Pyrrolidone, NMP), dimethyl sulfoxide (Dimethyl sulfoxide, DMSO) and ethanol (Ethanol, EtOH) It can be either.
상기 (i)단계는 40 ℃ 내지 80 ℃에서 1일 내지 10일 동안 반응이 진행 될 수 있고, 바람직하게는 50 ℃ 내지 70 ℃에서 1일 내지 8일 동안 반응이 진행 될 수 있으며, 더욱 바람직하게는 55 ℃ 내지 65 ℃에서 2일 내지 6일 동안 반응이 진행 될 수 있다. In the step (i), the reaction may be performed at 40 ° C. to 80 ° C. for 1 day to 10 days, preferably at 50 ° C. to 70 ° C. for 1 day to 8 days, and more preferably The reaction may proceed for 2 to 6 days at 55 ℃ to 65 ℃.
상기 (ii) 는 상온에서 1분 내지 120분 간 교반 할 수 있으며, 바람직하게는 15 ℃ 내지 35 ℃에서 1분 내지 60분간 반응이 진행 될 수 있으며, 더욱 바람직하게는 20 ℃ 내지 30 ℃에서 1분 내지 30분간 반응이 진행 될 수 있다.The (ii) may be stirred for 1 minute to 120 minutes at room temperature, preferably the reaction may proceed for 1 to 60 minutes at 15 ℃ to 35 ℃, more preferably 1 at 20 ℃ to 30 ℃ The reaction may proceed for 30 minutes.
본 발명은 또한 하기의 단계를 포함하는 산화 그래핀이 제조방법을 제공한다.       The present invention also provides a method for producing graphene oxide comprising the following steps.
상기의 방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; 및Adding graphite oxide prepared by the above method to an organic solvent or distilled water; And
상기 유기용매 또는 증류수상에 있는 산화흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계.Graphene oxide is prepared by peeling graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion.
상기 유기 용매는 친수성 용제로서, 자세하게는 물, 메탄올, 에탄올, 디메틸포름아마이드, 디메틸아세트아마이드, N-메틸피롤리돈, 디메틸포름아미드 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나이상일 수 있으며, 바람직하게는 N-메틸피롤리돈일 수 있다. The organic solvent may be any one or more selected from the group consisting of water, methanol, ethanol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylformamide, and mixtures thereof, as a hydrophilic solvent. Preferably N-methylpyrrolidone.
상기의 방법으로, 흑연 또는 탄소소재를 구성하는 탄소-탄소 원자 간의 이중결합 (sp2)을 탄소-탄소 원자 간의 단일 결합 (sp3)으로 전환 시키면서 하이드록실(-OH)그룹을 형성하면, 이에 따라 탄소소재의 표면에 산소기능기 그룹이 형성되므로 유기 용매/증류수 상에서 분산성을 향상시켜 결과적으로 외부에서 인가되는 전단력 (Shear force)에 의해서 박리 반응이 이루어져 단층 또는 수층의 산화 그래핀을 제조할 수 있다. 본 발명의 산화흑연을 증류수와 NMP상에 첨가시킨 후 30분간 초음파 분산기를 통해 박리 공정을 진행한 뒤, 시간에 따른 분산성을 변화를 지켜 본 결과 30일이 지난 후에도 분산상을 나타내었다 (도 4). 또한 본 발명에 의해 제조된 산화 흑연이 초음파 분산을 통해 친수성 유기 용매 안에서 박리 되어 산화 그래핀을 형성하는지 확인하기 위해서 AFM을 사용하여 조사한 결과, 하기 도 5에서 알 수 있듯이 약 2 nm 미만의 두께를 가지는 산화 그래핀으로 제조되었음을 확인할 수 있었다.In the above method, when hydroxyl (-OH) group is formed while converting double bond (sp 2 ) between carbon-carbon atoms constituting graphite or carbon material into single bond (sp 3 ) between carbon-carbon atoms, Accordingly, since oxygen functional groups are formed on the surface of the carbon material, dispersibility is improved in organic solvents / distilled water, and as a result, a peeling reaction is performed by a shear force applied from the outside, thereby producing graphene oxide of a single layer or a water layer. Can be. After adding the graphite oxide of the present invention to distilled water and NMP phase and proceeding a peeling process through an ultrasonic disperser for 30 minutes, the dispersibility over time was observed to show the dispersed phase even after 30 days (FIG. 4). ). In addition, the graphite oxide prepared according to the present invention was irradiated using AFM to confirm whether it is exfoliated in a hydrophilic organic solvent through ultrasonic dispersion to form graphene oxide, and as shown in FIG. It was confirmed that the eggplant was made of graphene oxide.
본 발명에 의해 제조된 산화 그래핀이 산성용매 하에서 산화 반응이 진행된 비교예 1과 비교하여 결함 형성비율이 감소하는지 확인하기 위해서 라만 분광기 (Raman spectroscopy)를 사용하여 G-band와 D-band사이의 인텐시티 비율 (ID/IG)을 확인한 결과, 도 6에서 와 같이 비교예 1과 비교하여 실시예 1의 ID/IG 비율이 0.07로 크게 감소한 값을 나타내는 것을 확인 할 수 있었다.In order to confirm whether the graphene oxide prepared according to the present invention is reduced in defect formation rate compared to Comparative Example 1 in which the oxidation reaction proceeds under an acidic solvent, Raman spectroscopy is used between G-band and D-band. As a result of confirming the intensity ratio (I D / I G ), as shown in FIG. 6, it was confirmed that the I D / I G ratio of Example 1 showed a greatly reduced value of 0.07.
또한 본 발명은 하기의 단계를 포함하는 그래핀의 제조방법을 제공한다. In another aspect, the present invention provides a method for producing graphene comprising the following steps.
(i) 상기의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding graphite oxide prepared by the above method to an organic solvent or distilled water;
(ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
(iii) 상기 산화 그래핀에 환원제를 투입하여 그래핀을 제조하는 단계.(iii) preparing graphene by adding a reducing agent to the graphene oxide.
상기 환원제는 히드라진, 히드라진모노히드레이트, 아세틱히드라자이드, 소디움 또는 포타슘 보로하이드라이드, N-메틸 피롤리딘 및 모폴린로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있고 바람직하게는 히드라진, 히드라진모노히드레이트 및 아세틱히드라자이드 으로 이루어진 군으로부터 선택되는 어느 하나 일 수 있으며, 가장 바람직하게는 히드라진 일 수 있다. The reducing agent may be any one or more selected from the group consisting of hydrazine, hydrazine monohydrate, acetichydrazide, sodium or potassium borohydride, N-methyl pyrrolidine and morpholine, preferably hydrazine, hydrazine monohydride It may be any one selected from the group consisting of latex and acetichydrazide, most preferably hydrazine.
상기 전단력 속도는 100 내지 10000 rpm 일 수 있으며, 바람직하게는 500내지 10000 rpm 일수 있으며, 가장 바람직하게는 5000 내지 6000 rpm 일 수 있다.The shear force rate may be 100 to 10000 rpm, preferably 500 to 10000 rpm, and most preferably 5000 to 6000 rpm.
또한 본 발명은 하기의 단계를 포함하는 그래핀의 제조 방법을 제공한다. In another aspect, the present invention provides a method for producing graphene comprising the following steps.
(i) 상기의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding graphite oxide prepared by the above method to an organic solvent or distilled water;
(ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
(iii) 상기의 제조방법으로 제조된 산화 그래핀을 500℃이상에서 열처리 하는 단계; 를 더 포함하는 그래핀의 제조 방법을 제공할 수 있다. (iii) heat-treating the graphene oxide prepared by the above method at 500 ° C or higher; It can provide a method for producing a graphene further comprising a.
상기 온도 범위는 500℃이상 일 수 있으며, 바람직하게는 500℃ 내지 1000℃일 수 있으며, 더욱 바람직하게는 600 ℃ 내지 800 ℃일 수 있다. The temperature range may be 500 ° C or higher, preferably 500 ° C to 1000 ° C, and more preferably 600 ° C to 800 ° C.
본 발명의 일구현예에 명시된 산화 반응은 증류수 상에서 진행되기 때문에 산화 그래핀 및 그래핀의 상품화 측면에서 이점을 제공 할 것이며, 또한 산화반응 공정상에서 발생하는 표면의 결함 생산율을 현저히 감소시켜 결정성 및 전기전도성을 향상시킨 산화 그래핀을 제조할 수 있기 때문에 전기·전자 소자는 물론, 고성능의 고분자 복합소재등의 재료 분야에 있어서 널리 활용될 수 있다.       Since the oxidation reaction described in the embodiment of the present invention proceeds in distilled water, it will provide advantages in terms of commercialization of graphene oxide and graphene, and also greatly reduces the defect production rate of the surface occurring in the oxidation reaction process, resulting in crystallinity and Since the graphene oxide with improved electrical conductivity can be produced, it can be widely used in materials fields such as high-performance polymer composite materials as well as electrical and electronic devices.
아래의 구체적인 실시예 및 실험예를 통하여 본 발명을 상세히 설명하도록 한다. 아래의 실시예 및 실험예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범주 및 범위가 이에 의해 제한되는 것은 아니다.       The present invention will be described in detail through specific examples and experimental examples below. The following Examples and Experimental Examples are only examples to help understanding of the present invention, but the scope and scope of the present invention are not limited thereto.
실시예 1Example 1
산화 흑연의 제조Preparation of Graphite Oxide
천연흑연 1g과 23 mol의 수산화나트륨(NaOH)과 과망간산칼륨 (KMnO4)을 50 mL의 증류수에 첨가시켜준 후 60도상에서 3일 동안 교반하여 산화 반응을 진행 하였다. 반응이 끝난 후 상온으로 반응물의 온도를 낮춰준 후 과산화수소수 (H2O2)를 첨가 시켜준 후 상온 상에서 30분간 재교반을 진행 하였다. 반응을 종결시킨 혼합액을 증류수와 30 wt% 염산 (HCl) 수용액으로 세척하며 반응잔존물을 제거, 필터 해준 후 동결건조 하여 최종적으로 산화 흑연을 제조 하였다. 본 발명에서는 실시예1을 통해 제조된 산화 흑연을 O-Gr로 명기하였다. 1 g of natural graphite and 23 mol of sodium hydroxide (NaOH) and potassium permanganate (KMnO 4 ) were added to 50 mL of distilled water, followed by stirring at 60 ° C. for 3 days to proceed the oxidation reaction. After the reaction was completed, the temperature of the reactant was lowered to room temperature, hydrogen peroxide (H 2 O 2 ) was added, and then stirred again at room temperature for 30 minutes. The reaction mixture was rinsed with distilled water and 30 wt% hydrochloric acid (HCl) aqueous solution, the reaction residues were removed, filtered, and lyophilized to finally prepare graphite oxide. In the present invention, graphite oxide prepared in Example 1 was designated as O-Gr.
실시예 2Example 2
산화 그래핀의 제조Preparation of Graphene Oxide
실시예 1을 통해 제조된 산화 흑연을 증류수 또는 엔메틸피롤리돈 (NMP) 용액에 참가시킨 후 초음파 분산기를 사용해 30분간 전단력을 인가해 박리 과정을 수행하여 산화 그래핀을 제조하였다. 본 발명에서는 실시예2를 통해 제조된 산화 그래핀을 GO로 명기하였다. Graphite oxide was prepared by exposing the graphite oxide prepared in Example 1 to distilled water or enmethylpyrrolidone (NMP) solution and applying a shear force for 30 minutes using an ultrasonic disperser to perform a peeling process. In the present invention, the graphene oxide prepared in Example 2 was specified as GO.
비교예 1Comparative Example 1
Hummer’산화 방법을 통한 산화흑연의 제조Hummer ’production of graphite oxide through oxidation
천연흑연 1g을 50 mL의 황산 용액 (H2SO4)에 첨가시켜 혼합한 후, 과망간산칼륨 (KMnO4) 6g을 천천히 넣어 준다. 산화제 첨가가 완료된 후, 50도 상에서 12시간동안 교반하여 반응을 시켜준 후 반응 조를 상온으로 온도를 떨어뜨려 준다. 실온으로 온도를 낮춰준 반응 조에 80 mL의 증류수를 천천히 첨가하여 준다. 반응용액을 교반하면서 실온까지 온도가 낮아지면 추가적으로 200 mL의 증류수를 넣고, 6 mL 의 과산화수소 (H2O2:35 wt% 수용액)을 산화 흑연 반응 액의 색깔이 노란색으로 변할 때까지 첨가시켜 준다. 노란색의 산화 흑연 분산액을 추가적으로 30분간 교반하여 주면서 온도가 실온까지 낮아지는 것을 확인한 후, 진공 감압 장치를 사용하여 DI-water로 세척하여 필터해 준다. 마지막으로는 100 mL이 30 wt% 염산 (HCl) 수용액으로 세척하여 과망간산칼륨 잔유물을 제거해준다. 최종적으로 수득된 산화 흑연은 동결건조 하여 산화 흑연을 제조하였다. 제조된 산화 흑연은 초음파 분산기를 사용해 전단력을 인가해 박리 과정을 수행하여 산화 그래핀을 제조하였다. 본 발명에서 비교예 1을 통해 제조된 산화 흑연을 GO-1으로 명기한다.1 g of natural graphite is added to 50 mL of sulfuric acid solution (H 2 SO 4 ) and mixed, and 6 g of potassium permanganate (KMnO 4 ) is slowly added thereto. After the addition of the oxidizing agent, the reaction was stirred for 12 hours at 50 ° C and the temperature of the reaction vessel was decreased to room temperature. Slowly add 80 mL of distilled water to the reaction tank which lowered the temperature to room temperature. When the reaction solution is cooled to room temperature, add 200 mL of distilled water, and add 6 mL of hydrogen peroxide (H 2 O 2 : 35 wt% aqueous solution) until the color of the graphite oxide reaction solution turns yellow. . After stirring the yellow graphite oxide dispersion for an additional 30 minutes to confirm that the temperature is lowered to room temperature, the filter is washed with DI-water using a vacuum decompression device. Finally, 100 mL is washed with 30 wt% hydrochloric acid (HCl) aqueous solution to remove potassium permanganate residue. Finally, the obtained graphite oxide was lyophilized to produce graphite oxide. The prepared graphite oxide was subjected to a peeling process by applying shear force using an ultrasonic disperser to prepare graphene oxide. In the present invention, graphite oxide prepared through Comparative Example 1 is designated as GO-1.
비교예 2Comparative Example 2
천연흑연Natural graphite
본 발명에서 제안하는 산화 방법에 의해 제조된 산화 흑연의 물성 및 산화 유·무를 판단하기 위해서 초기 물질로 천연흑연을 사용하였으며 본 발명의 결과를 증명하기 위해 비교에 2로 명기하였다. Natural graphite was used as an initial material to determine the physical properties, oxidation, and absence of graphite oxide prepared by the oxidation method proposed by the present invention, and 2 was specified in the comparison to prove the results of the present invention.
실험예 1Experimental Example 1
본 발명에 따른 산화 방법에 의해 산소 기능기 그룹이 형성되어 산화 흑연이 제조 되었는지를 확인하기 위하여, 실시예 1의 FT-IR 결과 통해 조사 하였으며 도 2에 나타내었다. 상기 도 2에서 보이는 것과 같이 -C=O (1712 cm-1), -C-O (1110 cm-1), -OH (3416 cm-1)에서 산소기능기 그룹과 연관한 특성 피크 영역을 확인함으로써 본 발명에서 제안한 산화 방법에 의해서 산화 흑연이 제조되었음을 확인할 수 있었다.In order to confirm whether the oxygen functional group is formed by the oxidation method according to the present invention to produce a graphite oxide, it was investigated through the FT-IR results of Example 1 and is shown in FIG. As shown in FIG. 2, the characteristic peak region associated with the oxygen functional group in -C = O (1712 cm -1 ), -CO (1110 cm -1 ), -OH (3416 cm -1 ) was observed. Graphite oxide was produced by the oxidation method proposed in the invention.
실험예 2Experimental Example 2
본 발명에서 제안하는 산화 방법에 의해서 산화 기능기 그룹의 형성 유무 및 함량을 확인하기 위하여, 실시예 1과 비교예 2의 TGA 열분해 곡선을 비교하여 확인하였으며, 확인한 결과는 도 3에 나타내었다. 상기 도 3에서 확인할 수 있듯이, 산화반응을 진행하지 않은 순수한 흑연상태인 비교에 2의 경우 800도 까지 안정된 열분해 곡선을 나타내었다. 하지만 본 발명을 통해 산화 반응을 진행한 실시예1의 경우 산소 기능기 그룹에 의해서 200도부터 열분해 곡선을 나타내었으며, 산소 기능기 그룹의 분해 온도 영역인 200 - 500 도에서 약 15 wt% 정도의 중량 감소를 나타내었다. 상기 실험예1의 결과와 연관시켜 볼 때, 본 발명에서 제안하는 산화 반응을 통해 약 15 wt%의 산소기능기 그룹을 함유한 산화 흑연이 제조되었음을 확인할 수 있었다. 상기의 산소 작용기들 때문에 산화 흑연은 친수성이 되고 증류수에 넣고 초음파 처리를 해주면 단일층의 산화 그래핀이 쉽게 박리가 되고 매우 안정한 분산액을 얻을 수 있다. In order to confirm the formation and content of the oxidation functional group by the oxidation method proposed in the present invention, it was confirmed by comparing the TGA pyrolysis curves of Example 1 and Comparative Example 2, the results are shown in FIG. As can be seen in FIG. 3, in the case of pure graphite state which does not undergo oxidation reaction, 2 shows a stable pyrolysis curve up to 800 degrees. However, in Example 1 in which the oxidation reaction was performed through the present invention, the pyrolysis curve was shown from 200 degrees by the oxygen functional group, and about 15 wt% in the decomposition temperature range of the oxygen functional group is 200-500 degrees. A weight loss was shown. In connection with the results of Experimental Example 1, it was confirmed that the graphite oxide containing the oxygen functional group of about 15 wt% through the oxidation reaction proposed in the present invention. Because of the oxygen functional groups, the graphite oxide becomes hydrophilic, and is subjected to ultrasonic treatment in distilled water, whereby a single layer of graphene oxide can be easily peeled off and a very stable dispersion can be obtained.
실험예 3Experimental Example 3
본 발명에서 제안하는 산화 방법에 의해 제조된 산화 흑연이 친수성 용매에서 분산성 및 분산 안정성을 나타내는지 확인하기 위해서 실험예 1을 증류수와 NMP상에 첨가시킨 후 30분간 초음파 분산기를 통해 박리 공정을 진행해준 후 시간에 따른 분산성의 변화를 확인하였으며, 확인된 결과는 도 4에 나타내었다. 상기 도 4에서 확인할 수 있듯이 실시예 1을 통해 제조된 산화 흑연이 증류수와 NMP상에서 30일이 지난 후에도 분산상을 나타내었다. 이와 같은 결과를 통해서 본 발명을 통해서 제조된 산화흑연의 표면에 형성된 산화 기능기 그룹에 의해서 친수성 용매 상에서 분산성을 나타내는 사실을 확인할 수 있었다. In order to confirm whether the graphite oxide prepared by the oxidation method proposed in the present invention exhibits dispersibility and dispersion stability in a hydrophilic solvent, Experimental Example 1 was added to distilled water and NMP, followed by a stripping process through an ultrasonic disperser for 30 minutes. After the change was confirmed a change in dispersibility with time, the confirmed result is shown in FIG. As can be seen in FIG. 4, the graphite oxide prepared in Example 1 showed a dispersed phase even after 30 days in distilled water and NMP phase. Through these results, it was confirmed that the oxidative functional groups formed on the surface of the graphite oxide produced by the present invention exhibits dispersibility on the hydrophilic solvent.
실험예 4Experimental Example 4
본 발명에서 제안하는 산화 방법에 의해 제조된 산화 흑연 (실시예 1)이 초음파 분산을 통해 친수성 유기 용매 안에서 박리 되어 산화 그래핀을 형성하는지 확인하기 위해서 AFM을 사용하여 조사 하였으며, 확인된 결과는 도 5에 나타내었다. 상기 도 5에서 확인할 수 있듯이 실시예 2의 경우 약 2nm 미만의 두께를 가지는 산화 그래핀으로 제조되었음을 확인할 수 있었다. 이와 같은 결과를 통해서 본 발명을 통해 제안한 산화 흑연의 제조 방법 및 산화 그래핀의 제조 방법에 의해서 용이하게 산화 그래핀 및 산화 그래핀이 분산된 혼합액을 제조할 수 있음을 확인하였다. Graphite oxide prepared by the oxidation method proposed in the present invention (Example 1) was examined using AFM to determine whether the graphene oxide was peeled off in a hydrophilic organic solvent through ultrasonic dispersion, and the confirmed results were shown in FIG. 5 is shown. As can be seen in Figure 5 it was confirmed that the case of Example 2 was made of graphene oxide having a thickness of less than about 2nm. Through the above results, it was confirmed that the graphene oxide and the mixed graphene oxide dispersion liquid can be easily prepared by the method for producing graphite oxide and the graphene oxide proposed through the present invention.
실험예 5Experimental Example 5
본 발명에서 제안하는 산화 방법에 의해 제조된 산화 그래핀이 산성용매 하에서 산화 반응이 진행된 비교예 1과 비교하여 결함 형성비율이 감소하는지 확인하기 위해서 라만 분광기 (Raman spectroscopy)를 사용하여 G-band와 D-band사이의 인텐시티 비율 (ID/IG)을 확인 하였으며, 확인한 결과를 아래의 도 6 에 나타 내었다. 도 6의 결과에서 확인할 수 있듯이 비교에 1과 비교하여 실시예 1의 ID/IG 비율이 0.07로 크게 감소한 값을 나타내는 것을 확인 할 수 있었다. 상기 실험예 3과 연관시켜 볼 때, 본 발명에서 제안하는 산화 방법에 의해서 결함 형성비율을 급격하게 감소시킨 고결정성의 산화 그래핀을 제조할 수 있음을 확인하였다. In order to confirm whether the graphene oxide prepared by the oxidation method proposed by the present invention is reduced in the defect formation rate compared with Comparative Example 1 in which the oxidation reaction proceeds under an acidic solvent, Raman spectroscopy and G-band were used. The intensity ratio (I D / I G ) between the D-bands was confirmed, and the results are shown in FIG. 6 below. As can be seen from the results of FIG. 6, it was confirmed that the I D / I G ratio of Example 1 was significantly reduced to 0.07 compared to 1 in comparison. In connection with the Experimental Example 3, it was confirmed that by the oxidation method proposed in the present invention it is possible to produce a highly crystalline graphene oxide with a drastically reduced defect formation rate.
실험예 6Experimental Example 6
본 발명에서 제안하는 산화 방법에 의해 제조된 산화 그래핀이 감소된 구조결함으로 인해 전기전도성이 향상되었는지 확인하기 위해서 압축한 디스크 타입의 GO 펠렛을 제조하여 4-point prove 방식의 장비 (Keithley, 6221 DC and AC current Source, 2182A Nanovoltmeter)를 사용하여 조사하였다 (도 7). 실시예 1은 Hummer’방법을 통해 제조된 비교예 1과 비교하여 약 80배 이상 향상된 760 ±210 S/m의 전기전도도 값을 나타내었다. 이와 같은 결과를 통해 상기 발명을 통해서 제안된 산화 방법을 통해서 전기전도성을 크게 향상시킨 고전도성 산화 그래핀을 제조할 수 있음을 확인하였다. In order to confirm whether the graphene oxide produced by the oxidation method proposed by the present invention has improved electrical conductivity due to the reduced structural defects, a compressed disk-type GO pellet was manufactured to provide a 4-point prove device (Keithley, 6221). DC and AC current Source, 2182A Nanovoltmeter) to investigate using (Fig. 7). Example 1 showed an electrical conductivity value of 760 ± 210 S / m improved by about 80 times or more compared to Comparative Example 1 prepared through the Hummer 'method. Through these results, it was confirmed that the highly conductive graphene oxide having greatly improved electrical conductivity through the proposed oxidation method through the present invention.

Claims (6)

  1. (i) 증류수 또는 친수성 유기 용매 상에서 알칼리 금속이온, 산화제 및 탄소원을 반응시켜 탄소원을 화학적 산화시키는 단계; (i) chemically oxidizing the carbon source by reacting an alkali metal ion, an oxidant and a carbon source in distilled water or a hydrophilic organic solvent;
    (ii) 상기 산화된 반응물에 과산화수소를 첨가하고 교반하여 반응을 종결시키는 단계; 및(ii) adding hydrogen peroxide to the oxidized reactant and stirring to terminate the reaction; And
    (iii) 상기 반응이 종결된 반응물을 세척하여 산화흑연을 제조하는 단계; 를 포함하며(iii) washing the reactant from which the reaction is terminated to produce graphite oxide; Including
    상기 알칼리 금속이온은 수산화 나트륨 (NaOH), 수산화 칼륨(KOH) 및 수산화 브롬(BrOH)으로 이루어진 군으로부터 선택되는 어느 하나 이상이고, 상기 산화제는 과망간산칼륨, 염소산칼륨, 과염소산 및 과산화수소로 이루어진 사산화오스늄 군으로부터 선택되는 어느 하나 이상인, 산화 흑연의 친환경적인 제조방법. The alkali metal ion is at least one selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH) and bromine hydroxide (BrOH), and the oxidizing agent is composed of potassium permanganate, potassium chlorate, perchloric acid and hydrogen peroxide. Environmentally friendly method for producing graphite oxide, which is at least one selected from the group of nium.
  2. 제 1항에 있어서, 상기 친수성 유기 용매는 디메틸포름아마이드(Dimethylformamide), N-메틸피롤리돈(N-Methyl Pyrrolidone), 디메틸설폭사이드 (Dimethyl sulfoxide) 및 에탄올 (Ethanol)로 이루어진 군으로부터 선택되는 어느 하나 이상인, 산화 흑연의 친환경적인 제조방법.The method of claim 1, wherein the hydrophilic organic solvent is any one selected from the group consisting of dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and ethanol Environmentally friendly method for producing one or more graphite oxides.
  3. 제 1항에 있어서, 상기 탄소원은 탄소원자간의 sp2결합을 가지는 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택되는 어느 하나 이상인, 산화 흑연의 친환경적인 제조방법.The method of claim 1, wherein the carbon source is any one or more selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene having sp 2 bonds between carbon atoms, environmentally friendly graphite oxide Manufacturing method.
  4. (i) 제 1항 내지 제3항 중 어느 한 항의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding graphite oxide prepared by the method of any one of claims 1 to 3 onto an organic solvent or distilled water;
    (ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
    (iii) 상기 산화 그래핀에 환원제를 투입하여 그래핀을 제조하는 단계;(iii) preparing graphene by adding a reducing agent to the graphene oxide;
    를 포함하는, 그래핀의 제조 방법. Including, graphene manufacturing method.
  5. 제 4항에 있어서, 상기 환원제는 히드라진, 히드라진모노히드레이트, 아세틱히드라자이드, 소디움 또는 포타슘 보로하이드라이드, 트리소디움 시트레이트, 그리고 메틸디에탄올아민, 에탄올 아민, 디에탄올 아민, 프로판올 아민, 부탄올 아민, 헥사놀 아민, 디메틸에탄올 아민, 2-아미노-2-메틸 프로판올, 디메틸아민보란(Dimethylamineborane), 부틸아민보란, 피페리딘, N-메틸피페리딘, 피페라진, N,N'-디메틸 피페라진, 1-아미노-4-메틸 피페라진, 피롤리딘, N-메틸 피롤리딘 및 모르폴린으로 이루어진 군으로부터 선택되는 어느 하나인, 그래핀의 제조방법. The method of claim 4, wherein the reducing agent is hydrazine, hydrazine monohydrate, acetichydrazide, sodium or potassium borohydride, trisodium citrate, and methyl diethanolamine, ethanol amine, diethanol amine, propanol amine, butanol Amine, hexanol amine, dimethylethanol amine, 2-amino-2-methyl propanol, dimethylamineborane, butylamineborane, piperidine, N-methylpiperidine, piperazine, N, N'-dimethyl Piperazine, 1-amino-4-methyl piperazine, pyrrolidine, N-methyl pyrrolidine and any one selected from the group consisting of morpholine, a method for producing graphene.
  6. (i) 제 1항 내지 제6항 중 어느 한 항의 제조방법으로 제조된 산화 흑연을 유기용매 또는 증류수 상에 첨가하는 단계; (i) adding the graphite oxide prepared by the method of any one of claims 1 to 6 onto an organic solvent or distilled water;
    (ii) 상기 유기용매 또는 증류수상에 있는 산화 흑연을 전단 응력 또는 초음파 분산을 통해 박리하여 산화 그래핀을 제조하는 단계; 및(ii) exfoliating graphite oxide in the organic solvent or distilled water through shear stress or ultrasonic dispersion to produce graphene oxide; And
    (iii) 상기 산화 그래핀을 500 ℃ 이상에서 열처리하여 그래핀을 제조하는 단계;(iii) heat treating the graphene oxide at 500 ° C. or higher to prepare graphene;
    를 포함하는, 그래핀의 제조 방법. Including, graphene manufacturing method.
PCT/KR2019/008034 2018-07-03 2019-07-02 Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction WO2020009421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0077191 2018-07-03
KR1020180077191A KR102072914B1 (en) 2018-07-03 2018-07-03 A method for eco-friendly production of oxidized graphite and oxidized graphene using a hydroxylation reaction

Publications (1)

Publication Number Publication Date
WO2020009421A1 true WO2020009421A1 (en) 2020-01-09

Family

ID=69060149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008034 WO2020009421A1 (en) 2018-07-03 2019-07-02 Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction

Country Status (2)

Country Link
KR (1) KR102072914B1 (en)
WO (1) WO2020009421A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465860A (en) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 Preparation method of low-oxygen high-stripping graphene oxide and application of obtained product
CN116199378A (en) * 2023-03-06 2023-06-02 国中创业(北京)环保科技有限公司 Wastewater recycling treatment method in graphene preparation process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996883B1 (en) * 2010-01-08 2010-11-26 전남대학교산학협력단 Method of green synthesis of graphene nano-sheets and graphene nano-sheets
KR20140062964A (en) * 2012-11-15 2014-05-27 주식회사 아이디티인터내셔널 Preparing method of graphite oxide
KR20140122944A (en) * 2013-04-11 2014-10-21 주식회사 아이디티인터내셔널 Method and apparatus for manufacturing graphite oxide
US20160064726A1 (en) * 2014-08-27 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, electronic device, and graphene
KR20170054941A (en) * 2015-11-10 2017-05-18 한국에너지기술연구원 Fabricating method for reduced graphene oxide, reduced graphene oxide fabricated by the method and supercapacitor having the reduced graphene oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273492B1 (en) * 2011-06-16 2013-06-17 인하대학교 산학협력단 Manufacturing method of transition metal nanoparticles loaded graphite composites for the hydrogen storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996883B1 (en) * 2010-01-08 2010-11-26 전남대학교산학협력단 Method of green synthesis of graphene nano-sheets and graphene nano-sheets
KR20140062964A (en) * 2012-11-15 2014-05-27 주식회사 아이디티인터내셔널 Preparing method of graphite oxide
KR20140122944A (en) * 2013-04-11 2014-10-21 주식회사 아이디티인터내셔널 Method and apparatus for manufacturing graphite oxide
US20160064726A1 (en) * 2014-08-27 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, electronic device, and graphene
KR20170054941A (en) * 2015-11-10 2017-05-18 한국에너지기술연구원 Fabricating method for reduced graphene oxide, reduced graphene oxide fabricated by the method and supercapacitor having the reduced graphene oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465860A (en) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 Preparation method of low-oxygen high-stripping graphene oxide and application of obtained product
CN115465860B (en) * 2022-07-06 2023-06-16 山东海科创新研究院有限公司 Preparation method of low-oxygen and high-stripping graphene oxide and application of obtained product
CN116199378A (en) * 2023-03-06 2023-06-02 国中创业(北京)环保科技有限公司 Wastewater recycling treatment method in graphene preparation process

Also Published As

Publication number Publication date
KR102072914B1 (en) 2020-02-03
KR20200004126A (en) 2020-01-13

Similar Documents

Publication Publication Date Title
WO2014081117A1 (en) Method for forming graphene quantum dot
WO2017188564A1 (en) Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using electric field-induced wet spinning process
WO2013081248A1 (en) Graphene oxide reduced material dispersed at high concentration by cation-π interaction and method for manufacturing same
WO2017191887A1 (en) Method for producing graphene oxide/carbon nanotube composite fiber, graphene oxide/graphene composite fiber or graphene oxide/graphene/carbon nanotube composite fiber using wet spinning process
WO2011046415A2 (en) Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene
WO2020009421A1 (en) Method for producing graphite oxide and graphene oxide in eco-friendly manner by using hydroxylation reaction
WO2014058235A1 (en) Method for forming graphene oxide
WO2015106437A1 (en) Large-scale preparation method for graphene quantum dots
WO2011078462A2 (en) Graphene dispersion and graphene-ionic liquid polymer compound
WO2011055961A2 (en) Method for manufacturing a composite carbon sheet by coating a mixed dispersion solution onto an expanded graphite sheet
Pistone et al. Morphological modification of MWCNT functionalized with HNO3/H2SO4 mixtures
WO2016045035A1 (en) Method for preparing graphene
KR101103672B1 (en) Apparatus for continuous synthesis and purification of graphene oxide with centrifugal separation type for mass production, and method of synthesis and purification of graphene oxide using the same
CN110203913B (en) Method for preparing graphene
WO2016043396A1 (en) Method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared thereby
CN113860295A (en) Method for preparing graphene oxide by using large-particle-size flake graphite
WO2019059570A1 (en) Method for producing fuel cell catalyst, and fuel cell catalyst produced thereby
CN108314024B (en) Plasma preparation method of graphene transparent conductive film
CN108314027B (en) Preparation method of high-conductivity hydroxyl/epoxy externally-modified graphene transparent conductive film
WO2019093660A2 (en) Method for manufacture of maghemite
WO2016114467A1 (en) Method for preparing multi-wall carbon nanotubes modified with methacrylate
KR101425375B1 (en) post-treatment method of carbon materials using dehydrocyclization and post-treated carbon materials using the same and polymer composite materials comprising thereof
WO2020180079A1 (en) Carbon-containing material gained from spent coffee grounds, production method therefor and use thereof
WO2016171466A1 (en) Graphene oxide and method for manufacturing same
WO2016080801A1 (en) Method for producing silicon nitride nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830674

Country of ref document: EP

Kind code of ref document: A1