WO2019225309A1 - Solar power generation system - Google Patents

Solar power generation system Download PDF

Info

Publication number
WO2019225309A1
WO2019225309A1 PCT/JP2019/018320 JP2019018320W WO2019225309A1 WO 2019225309 A1 WO2019225309 A1 WO 2019225309A1 JP 2019018320 W JP2019018320 W JP 2019018320W WO 2019225309 A1 WO2019225309 A1 WO 2019225309A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
cable
inverter
devices
Prior art date
Application number
PCT/JP2019/018320
Other languages
French (fr)
Japanese (ja)
Inventor
真士 田村
守口 正生
義哉 安彦
塁 三上
開路 杉山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019225309A1 publication Critical patent/WO2019225309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation system.
  • This application claims priority based on Japanese Patent Application No. 2018-099934 filed on May 24, 2018, and incorporates all the contents described in the above Japanese application.
  • the concentrating solar power generation device generates power by converging sunlight with a lens and applying it to a photoelectric conversion element (cell).
  • a concentrating solar power generation device has a solar tracking function for automatically tracking the sun in a solar power generation panel (array) in order to continuously generate power during the day.
  • the solar power generation devices are installed separately from each other in order to provide each solar power generation device with an operating range for solar tracking.
  • a solar power generation system is a power generation system that converts direct current output from an array into alternating current using an inverter device (power conditioner), converts the obtained alternating current into voltage using a substation, and sends it to an electric power system.
  • Patent Document 1 discloses a photovoltaic power generation system in which one inverter device is provided for a plurality of arrays, and direct currents output from each array are collectively converted into alternating currents by the inverter devices.
  • a photovoltaic power generation system includes a plurality of photovoltaic power generation apparatuses that are each provided with a photovoltaic power generation panel capable of changing an attitude, and are installed separately from each other in an installation region, and the plurality of solar power generation apparatuses.
  • a plurality of DC cables that are connected to each of the photovoltaic power generators, send the direct current output from the photovoltaic power generator, and have the same standard that defines the thickness, material, and structure, and are connected to the direct current cables.
  • a plurality of inverter devices for converting the direct current sent to the alternating current, and the plurality of inverter devices are arranged in one area in the installation area.
  • a photovoltaic power generation system that converts direct current output from a plurality of arrays into a single alternating current by a single inverter device
  • one inverter device is installed in a section of the installation area where the solar power generation device is installed,
  • a DC cable is wired from each photovoltaic power generation device to the inverter device.
  • the distance from the solar power generation device to the inverter device is different for each solar power generation device. For this reason, the wiring length of the DC cable is different for each solar power generation device.
  • the direct-current voltage converted into alternating current is adjusted to the lowest voltage among the input direct currents.
  • the resistance value of each DC cable is made uniform by changing the thickness of the DC cable according to the distance from the photovoltaic power generation device to the inverter device.
  • operativity is bad. In wiring design, a complicated operation of selecting a cable having an appropriate thickness for each photovoltaic power generation apparatus is required.
  • the photovoltaic power generation system has a photovoltaic power generation panel that can change its posture, and includes a plurality of photovoltaic power generation apparatuses that are installed separately from each other in the installation area, Connected to each of the photovoltaic power generators, sends the DC power output by the photovoltaic power generator, a plurality of DC cables having the same standard that defines the thickness, material, and structure, and connected to the DC cable, A plurality of inverter devices that convert direct-current power sent by a direct-current cable into alternating-current power, and the plurality of inverter devices are arranged in one area in the installation area.
  • the standard of a DC cable is unified, the number of types of cables used is suppressed, and workability and design efficiency of wiring can be improved.
  • the length that is, the resistance value differs depending on the DC cable
  • it since it is the structure which disperse
  • the price of a plurality of small inverter devices may be lower than the price of one large inverter device, and the cost of the entire system can be suppressed by adopting the above configuration.
  • the same number of the inverter devices as the solar power generation devices are provided, and the solar power generation devices and the inverter devices are connected one-to-one by the DC cable. May be. Thereby, since a dedicated inverter device is provided for each solar power generation device, there is no need to match the DC voltage input to the inverter device between the solar power generation devices.
  • the solar power generation system is connected to each of the plurality of inverter devices, and sends AC power output from the inverter device.
  • a plurality of AC cables having the same standard that defines the structure, and substation equipment connected to each of the plurality of AC cables.
  • FIG. 1 is a perspective view showing a configuration of a photovoltaic power generation apparatus according to the present embodiment, and FIG. 2 is a side view thereof.
  • the solar power generation device 100 includes an array 1 having a shape that is continuous on the upper side and divided into left and right on the lower side, and a support device 2.
  • the array 1 is an example of a photovoltaic power generation panel according to the embodiment.
  • the array 1 is configured by arranging the concentrating solar power generation modules 1M on the rear frame 11 (FIG. 2).
  • the support device 2 includes a column 21, a base 22, a biaxial drive unit 23, and a horizontal shaft 24 (FIG. 2) that serves as a drive shaft.
  • the column 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 at the upper end.
  • a box 13 (FIG. 2) for electrical connection and electrical circuit storage is provided near the lower end of the column 21.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the support column 21 is vertical and the horizontal axis 24 is horizontal.
  • the biaxial drive unit 23 can rotate the horizontal axis 24 in two directions, that is, an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal axis 24 as a central axis).
  • the horizontal shaft 24 is fixed to the gantry 11. Therefore, if the horizontal axis 24 rotates in the direction of azimuth or elevation, the array 1 also rotates in that direction.
  • any support device that can support the array 1 so as to be movable in two axes may be used.
  • the module 1M is a concentrating solar power generation module.
  • a plurality of cells which are photoelectric conversion elements, are disposed inside a rectangular flat-bottomed casing made of metal, and a lid is placed on the casing. It is set as the structure by which the condensing lens was provided in the condensing part attached.
  • the condenser lens converges sunlight, and the cell receives the converged light to generate electric power.
  • the solar power generation device 100 configured as described above can perform solar tracking.
  • sun tracking the array 1 rotates in the azimuth and elevation directions so that the light receiving surface of the array 1 faces the sun, that is, the incident angle of sunlight on the light receiving surface of the array 1 is 0 °.
  • the attitude of the array 1 is controlled.
  • FIG. 3 is a diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment.
  • FIG. 3 shows a state in which the solar power generation devices 100 are arranged from above.
  • a plurality of solar power generation devices 100 are installed in an installation area 500 provided in the site of an organization that operates the solar power generation system 600.
  • 35 solar power generation devices 100 are installed in a matrix of 5 rows and 7 columns.
  • Each solar power generation device 100 generates power while performing solar tracking. For this reason, the adjacent solar power generation devices 100 are spaced apart from each other so that the solar power generation devices 100 do not contact each other during solar tracking.
  • a plurality of inverter devices 200 that convert DC power into AC power are arranged in some of the sections 510 of the installation area 500.
  • the inverter devices 200 are provided in the same number (35) as the solar power generation devices 100, and the solar power generation devices 100 and the inverter devices 200 are connected one-to-one by DC cables 300.
  • Each inverter device 200 causes the connected photovoltaic power generation device 100 to perform efficient power generation by MPP (Maximum Power Point Tracking) control.
  • the section 510 is provided approximately at the center of the installation area 500. Thereby, the difference of the distance with the inverter apparatus 200 connected between the photovoltaic power generation apparatuses 100 can be suppressed.
  • the section 510 is provided at a position slightly deviated to the right side from the center of the installation area 500, the present invention is not limited to this.
  • the section 510 can be provided at any position within the installation area 500.
  • the number of columns or rows in which the photovoltaic power generation apparatuses 100 are arranged may be an even number so that the photovoltaic power generation apparatus 100 is not disposed in the center of the installation area 500, and the section 510 may be provided in the center of the installation area 500. Further, the section 510 may be provided at the end of the installation area 500.
  • each DC cable 300 that connects the photovoltaic power generation device 100 and the inverter device 200.
  • This standard defines thickness, ie diameter or cross-sectional area, material and structure. That is, the thickness, material, and structure of each DC cable 300 are unified.
  • the standard of the DC cable 300 may define at least one of items other than thickness, material, and structure, for example, a processing method and performance. The performance may include a resistance value per unit length.
  • the distance between the photovoltaic power generation apparatus 100 and the inverter apparatus 200 connected to each other varies. That is, the wiring length of the DC cable 300 is different for each photovoltaic power generation apparatus 100. Since the thickness (standard) of each DC cable 300 is the same, the resistance value of the DC cable 300 differs depending on the length. Therefore, even if the output voltage of each solar power generation device 100 is the same, the input voltage in the inverter device 200 is different. In this embodiment, the inverter apparatus 200 is provided for every photovoltaic power generation apparatus. For this reason, even if the input voltage of each inverter device 200 is different, voltage conversion is performed with a different transformation ratio for each inverter device 200, and the DC power can be converted to AC power after equalizing the voltage.
  • the photovoltaic power generation system 600 is configured to disperse the direct current generated by the plurality of photovoltaic power generation devices 100 and convert the direct current to the alternating current by the plurality of inverter devices 200, the small rated power is small.
  • Inverter device 200 can be used.
  • the price of the plurality of small inverter devices 200 may be lower than the price of one large inverter device, and the cost of the entire system can be suppressed by adopting the above configuration.
  • FIG. 4 is a diagram showing an electrical connection relationship of the photovoltaic power generation system 600.
  • Each solar power generation device 100 is provided with a connection box 101.
  • the array 1 includes a plurality of strings (not shown) in which a plurality of modules 1M (for example, the modules 1M arranged in a line in the array 1) are connected in series.
  • wiring from each string is accommodated, and output current from each string is collected via a diode and a switch for preventing backflow.
  • the connection box 101 is connected to the inverter device 200 one-on-one via a pair of DC cables 300 at + and ⁇ .
  • One end of an AC cable 310 is connected to the output side of each inverter device 200.
  • the AC cable 310 is provided for each inverter device 200.
  • One substation equipment 400 is installed in the vicinity of the section 510 (see FIG. 3). The other end of each AC cable 310 is connected to the input side of the substation equipment 400.
  • FIG. 5A and 5B are diagrams showing an example of an electrical connection relationship between the inverter device 200 and the substation equipment 400.
  • FIG. 5A shows a plan view
  • FIG. 5B shows a side view.
  • the AC cable 310 extending from the output side of the inverter device 200 is concentrated on the tubular cable support portion 211 provided on the mounting base 210 of the inverter device 200 and collected into three bundles. In the state, it extends from the cable support portion 211 to the ground.
  • Each of the bundles of AC cables 310 extends horizontally at a position of 1 meter below the ground, and extends from the ground to the inside of the substation facilities 400 below the substation facilities 400 and is connected to an AC current collector panel 410 built in the substation facilities 400.
  • the alternating current output from each inverter device 200 is input to the substation facility 400 through the alternating current cable 310.
  • the substation equipment 400 converts the input AC voltage.
  • a power transmission cable 320 extends from the output side of the substation facility 400, and output alternating current is sent to the power system by the power transmission cable 320.
  • each AC cable 310 The same standard cable is used for each AC cable 310.
  • This standard defines thickness, ie diameter or cross-sectional area, material and structure. That is, the thickness, material, and structure of each AC cable 310 are unified.
  • the standard of the AC cable 310 may define at least one of items other than thickness, material, and structure, for example, a processing method and performance.
  • the performance may include an impedance per unit length.
  • the inverter devices 200 are collectively installed in the section 510. Therefore, the difference in distance between each inverter device 200 and the substation equipment 400 is small. For this reason, the length of each AC cable 310 can be made substantially uniform. Therefore, by using the AC cable 310 of the same standard, the impedance of the AC cable 310 is substantially uniform. More preferably, the length of each AC cable 310 may be the same. Thereby, the impedance of the AC cable 310 can be more accurately aligned.

Landscapes

  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar power generation system comprises: a plurality of solar power generation devices, each having a solar power generation panel for which the orientation can be changed, the plurality of solar power generation devices being arranged separated from each other in an installation area; a plurality of DC cables connected, respectively, to the plurality of solar power generation devices, the plurality of DC cables sending the DC power that is outputted by the solar power generation devices, and the standards defining the thickness, material, and structure of the plurality of DC cables being the same; and a plurality of inverter devices connected to the DC cables, the plurality of inverter devices converting the DC power sent via the DC cables to AC power. The plurality of inverter devices are disposed so as to be aggregated in one area within the installation area.

Description

太陽光発電システムSolar power system
 本発明は、太陽光発電システムに関する。本出願は、2018年5月24日出願の日本出願第2018-099934号に基づく優先権を主張し、前記日本出願に記載された全ての内容を援用するものである。 The present invention relates to a solar power generation system. This application claims priority based on Japanese Patent Application No. 2018-099934 filed on May 24, 2018, and incorporates all the contents described in the above Japanese application.
 集光型の太陽光発電装置は、太陽光をレンズで収束させて光電変換素子(セル)に当て、発電を行う。かかる集光型の太陽光発電装置は、日中継続して発電を行うために、太陽光発電パネル(アレイ)に自動的に太陽を追尾させる太陽追尾機能を備えている。複数の太陽光発電装置によって発電を行う太陽光発電システムでは、各太陽光発電装置に太陽追尾の動作範囲を与えるため、太陽光発電装置が互いに離隔して設置される。 The concentrating solar power generation device generates power by converging sunlight with a lens and applying it to a photoelectric conversion element (cell). Such a concentrating solar power generation device has a solar tracking function for automatically tracking the sun in a solar power generation panel (array) in order to continuously generate power during the day. In a solar power generation system that generates power using a plurality of solar power generation devices, the solar power generation devices are installed separately from each other in order to provide each solar power generation device with an operating range for solar tracking.
 太陽光発電システムは、アレイから出力される直流をインバータ装置(パワーコンディショナ)によって交流に変換し、得られた交流を変電設備によって電圧変換した上で電力系統へと送る発電システムである。特許文献1には、複数のアレイに対して1台のインバータ装置を設け、各アレイから出力される直流を当該インバータ装置によってまとめて交流に変換する太陽光発電システムが開示されている。 A solar power generation system is a power generation system that converts direct current output from an array into alternating current using an inverter device (power conditioner), converts the obtained alternating current into voltage using a substation, and sends it to an electric power system. Patent Document 1 discloses a photovoltaic power generation system in which one inverter device is provided for a plurality of arrays, and direct currents output from each array are collectively converted into alternating currents by the inverter devices.
特開2013-247149号公報JP 2013-247149 A
 本開示の一態様に係る太陽光発電システムは、姿勢の変化が可能な太陽光発電パネルをそれぞれ有し、設置領域において互いに離隔して設置された複数の太陽光発電装置と、前記複数の太陽光発電装置のそれぞれに接続され、前記太陽光発電装置が出力する直流を送る、太さ、材料、及び構造を定める規格が同一の複数の直流ケーブルと、前記直流ケーブルに接続され、前記直流ケーブルによって送られた直流を交流に変換する複数のインバータ装置と、を備え、前記複数のインバータ装置は、前記設置領域内の一の領域に集約して配置される。 A photovoltaic power generation system according to an aspect of the present disclosure includes a plurality of photovoltaic power generation apparatuses that are each provided with a photovoltaic power generation panel capable of changing an attitude, and are installed separately from each other in an installation region, and the plurality of solar power generation apparatuses. A plurality of DC cables that are connected to each of the photovoltaic power generators, send the direct current output from the photovoltaic power generator, and have the same standard that defines the thickness, material, and structure, and are connected to the direct current cables. And a plurality of inverter devices for converting the direct current sent to the alternating current, and the plurality of inverter devices are arranged in one area in the installation area.
実施形態に係る太陽光発電装置の構成を示す斜視図である。It is a perspective view which shows the structure of the solar power generation device which concerns on embodiment. 実施形態に係る太陽光発電装置の構成を示す側面図である。It is a side view which shows the structure of the solar power generation device which concerns on embodiment. 実施形態に係る太陽光発電システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the solar energy power generation system which concerns on embodiment. 実施形態に係る太陽光発電システムの電気的な接続関係を示す図である。It is a figure which shows the electrical connection relationship of the solar energy power generation system which concerns on embodiment. 実施形態に係るインバータ装置と変電設備との電気的な接続関係を示す平面図である。It is a top view which shows the electrical connection relation of the inverter apparatus and substation equipment which concern on embodiment. 実施形態に係るインバータ装置と変電設備との電気的な接続関係を示す側面図である。It is a side view which shows the electrical connection relation of the inverter apparatus and substation equipment which concern on embodiment.
 <本開示が解決しようとする課題>
 複数のアレイから出力される直流を1基のインバータ装置によってまとめて交流に変換する太陽光発電システムでは、太陽光発電装置が設置された設置領域の一画に1基のインバータ装置が設置され、各太陽光発電装置から直流ケーブルが当該インバータ装置へと配線される。太陽光発電装置からインバータ装置までの距離は太陽光発電装置毎に異なっており、このため直流ケーブルの配線長が太陽光発電装置毎に異なる。インバータ装置では、交流に変換される直流電圧が、入力される直流のうち最も低い電圧に合わせられるため、インバータ装置に入力される直流の電圧を均一に揃えなければ変換効率が悪化する。このような理由から、太陽光発電装置からインバータ装置までの距離に応じて直流ケーブルの太さを変えることで、各直流ケーブルの抵抗値を揃えていた。しかしながら、太陽光発電装置に応じて直流ケーブルの太さを変えるためには、様々な太さのケーブルを用意する必要がある。また、配線作業においては、太陽光発電装置毎に対応する太さのケーブルを選択しなければならないため作業性が悪い。配線設計においては、太陽光発電装置毎に適切な太さのケーブルを選定するという煩雑な作業が必要となる。
<Problems to be solved by the present disclosure>
In a photovoltaic power generation system that converts direct current output from a plurality of arrays into a single alternating current by a single inverter device, one inverter device is installed in a section of the installation area where the solar power generation device is installed, A DC cable is wired from each photovoltaic power generation device to the inverter device. The distance from the solar power generation device to the inverter device is different for each solar power generation device. For this reason, the wiring length of the DC cable is different for each solar power generation device. In the inverter device, the direct-current voltage converted into alternating current is adjusted to the lowest voltage among the input direct currents. Therefore, if the direct-current voltages input to the inverter device are not evenly arranged, the conversion efficiency deteriorates. For these reasons, the resistance value of each DC cable is made uniform by changing the thickness of the DC cable according to the distance from the photovoltaic power generation device to the inverter device. However, in order to change the thickness of the DC cable according to the solar power generation device, it is necessary to prepare cables of various thicknesses. Moreover, in wiring work, since the cable of the thickness corresponding to every photovoltaic power generation apparatus must be selected, workability | operativity is bad. In wiring design, a complicated operation of selecting a cable having an appropriate thickness for each photovoltaic power generation apparatus is required.
 また、多数の太陽光発電装置により発電された直流をまとめて交流に変換するためには、定格電力が大きい高価なインバータ装置を用いる必要がある。 Also, in order to collectively convert direct current generated by a large number of solar power generation devices into alternating current, it is necessary to use an expensive inverter device having a large rated power.
 <本開示の効果>
 本開示によれば、使用されるケーブルの種類の数を抑制し、配線の作業性及び設計効率を向上させることができ、システム全体のコストを抑制することができる。
<Effects of the present disclosure>
According to the present disclosure, the number of types of cables to be used can be suppressed, the workability and design efficiency of wiring can be improved, and the cost of the entire system can be suppressed.
 <本開示の実施形態の概要>
 以下、本発明の実施形態の概要を列記して説明する。
<Outline of Embodiment of the Present Disclosure>
Hereinafter, an outline of embodiments of the present invention will be listed and described.
 (1) 本実施形態に係る太陽光発電システムは、姿勢の変化が可能な太陽光発電パネルをそれぞれ有し、設置領域において互いに離隔して設置された複数の太陽光発電装置と、前記複数の太陽光発電装置のそれぞれに接続され、前記太陽光発電装置が出力する直流電力を送る、太さ、材料、及び構造を定める規格が同一の複数の直流ケーブルと、前記直流ケーブルに接続され、前記直流ケーブルによって送られた直流電力を交流電力に変換する複数のインバータ装置と、を備え、前記複数のインバータ装置は、前記設置領域内の一の領域に集約して配置される。これにより、直流ケーブルの規格が統一され、使用されるケーブルの種類の数が抑制され、配線の作業性及び設計効率を向上させることができる。また、直流ケーブルによって長さ、即ち抵抗値が異なっていても、各インバータ装置において独立して直流電力が交流電力に変換されるので、インバータ装置における入力直流電圧の差異による損失を抑制することができる。また、複数の太陽光発電装置によって発電された直流を複数のインバータ装置によって分散して交流に変換する構成であるため、定格電力が小さい小型のインバータ装置を用いることができる。複数の小型のインバータ装置の価格は、1基の大型のインバータ装置の価格よりも低い場合が考えられ、上記の構成とすることでシステム全体のコストを抑制することができる。 (1) The photovoltaic power generation system according to the present embodiment has a photovoltaic power generation panel that can change its posture, and includes a plurality of photovoltaic power generation apparatuses that are installed separately from each other in the installation area, Connected to each of the photovoltaic power generators, sends the DC power output by the photovoltaic power generator, a plurality of DC cables having the same standard that defines the thickness, material, and structure, and connected to the DC cable, A plurality of inverter devices that convert direct-current power sent by a direct-current cable into alternating-current power, and the plurality of inverter devices are arranged in one area in the installation area. Thereby, the standard of a DC cable is unified, the number of types of cables used is suppressed, and workability and design efficiency of wiring can be improved. Moreover, even if the length, that is, the resistance value differs depending on the DC cable, since DC power is converted into AC power independently in each inverter device, loss due to a difference in input DC voltage in the inverter device can be suppressed. it can. Moreover, since it is the structure which disperse | distributes the direct current | flow generated with the some solar power generation device to a several inverter device, and converts it into alternating current, a small inverter device with small rated power can be used. The price of a plurality of small inverter devices may be lower than the price of one large inverter device, and the cost of the entire system can be suppressed by adopting the above configuration.
 (2) また、本実施形態に係る太陽光発電システムにおいて、前記インバータ装置は、前記太陽光発電装置と同数設けられ、前記太陽光発電装置及び前記インバータ装置は、前記直流ケーブルによって一対一に接続されていてもよい。これにより、太陽光発電装置毎に専用のインバータ装置が設けられるため、インバータ装置に入力される直流電圧を太陽光発電装置間で合わせる必要がない。 (2) Moreover, in the solar power generation system according to the present embodiment, the same number of the inverter devices as the solar power generation devices are provided, and the solar power generation devices and the inverter devices are connected one-to-one by the DC cable. May be. Thereby, since a dedicated inverter device is provided for each solar power generation device, there is no need to match the DC voltage input to the inverter device between the solar power generation devices.
 (3) また、本実施形態に係る太陽光発電システムにおいて、前記太陽光発電システムは、前記複数のインバータ装置のそれぞれに接続され、前記インバータ装置が出力する交流電力を送る、太さ、材料、及び構造を定める規格が同一の複数の交流ケーブルと、前記複数の交流ケーブルのそれぞれに接続された変電設備と、をさらに備えてもよい。これにより、交流ケーブルの規格が統一され、使用されるケーブルの種類の数が抑制され、配線の作業性及び設計効率を向上させることができる。 (3) Moreover, in the solar power generation system according to the present embodiment, the solar power generation system is connected to each of the plurality of inverter devices, and sends AC power output from the inverter device. And a plurality of AC cables having the same standard that defines the structure, and substation equipment connected to each of the plurality of AC cables. Thereby, the standard of an AC cable is unified, the number of types of cables used is suppressed, and workability and design efficiency of wiring can be improved.
 <本開示の実施形態の詳細>
 以下、図面を参照しつつ、本開示の実施形態の詳細を説明する。
<Details of Embodiment of Present Disclosure>
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 [1.太陽光発電装置の構成]
 図1は、本実施形態に係る太陽光発電装置の構成を示す斜視図であり、図2は、その側面図である。太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ1と、その支持装置2とを備える。アレイ1は、実施形態に係る太陽光発電パネルの一例である。かかるアレイ1は、背面側の架台11(図2)上に集光型太陽光発電モジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する192(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。
[1. Configuration of solar power generator]
FIG. 1 is a perspective view showing a configuration of a photovoltaic power generation apparatus according to the present embodiment, and FIG. 2 is a side view thereof. The solar power generation device 100 includes an array 1 having a shape that is continuous on the upper side and divided into left and right on the lower side, and a support device 2. The array 1 is an example of a photovoltaic power generation panel according to the embodiment. The array 1 is configured by arranging the concentrating solar power generation modules 1M on the rear frame 11 (FIG. 2). In the example of FIG. 1, an array 1 is formed as an aggregate of a total of 200 modules 1M including 192 (96 (= 12 × 8) × 2) constituting the left and right wings, and 8 at the central transition portion. Is configured.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。支柱21の下端近傍には、電気接続及び電気回路収納のためのボックス13(図2)が設けられている。 The support device 2 includes a column 21, a base 22, a biaxial drive unit 23, and a horizontal shaft 24 (FIG. 2) that serves as a drive shaft. The column 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 at the upper end. A box 13 (FIG. 2) for electrical connection and electrical circuit storage is provided near the lower end of the column 21.
 図2において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。水平軸24は、架台11に固定されている。従って、水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 2, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the support column 21 is vertical and the horizontal axis 24 is horizontal. The biaxial drive unit 23 can rotate the horizontal axis 24 in two directions, that is, an azimuth angle (an angle with the column 21 as a central axis) and an elevation angle (an angle with the horizontal axis 24 as a central axis). The horizontal shaft 24 is fixed to the gantry 11. Therefore, if the horizontal axis 24 rotates in the direction of azimuth or elevation, the array 1 also rotates in that direction.
 なお、図1,図2では1本の支柱21でアレイ1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、アレイ1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。 1 and 2 show the support device 2 that supports the array 1 with one support column 21, the configuration of the support device 2 is not limited to this. In short, any support device that can support the array 1 so as to be movable in two axes (azimuth angle and elevation angle) may be used.
 モジュール1Mは、集光型の太陽光発電モジュールであり、例えば金属製で長方形の平底容器状の筐体の内部に光電変換素子であるセルが複数配置され、筐体の上に蓋のように取り付けられる集光部に集光レンズが設けられた構成とされる。かかるモジュール1Mでは、集光レンズが太陽光を収束し、収束された光をセルが受けることによって発電する。 The module 1M is a concentrating solar power generation module. For example, a plurality of cells, which are photoelectric conversion elements, are disposed inside a rectangular flat-bottomed casing made of metal, and a lid is placed on the casing. It is set as the structure by which the condensing lens was provided in the condensing part attached. In such a module 1M, the condenser lens converges sunlight, and the cell receives the converged light to generate electric power.
 上記のような構成の太陽光発電装置100は、太陽追尾を実行可能である。太陽追尾では、アレイ1の受光面が太陽に正対するように、即ち、アレイ1の受光面への太陽光の入射角が0°となるように、アレイ1が方位角方向及び仰角方向に回動され、アレイ1の姿勢が制御される。 The solar power generation device 100 configured as described above can perform solar tracking. In sun tracking, the array 1 rotates in the azimuth and elevation directions so that the light receiving surface of the array 1 faces the sun, that is, the incident angle of sunlight on the light receiving surface of the array 1 is 0 °. The attitude of the array 1 is controlled.
 [2.太陽光発電システムの構成]
 図3は、本実施形態に係る太陽光発電システムの構成の一例を示す図である。図3では、上空から太陽光発電装置100が並んだ様子を示している。
[2. Configuration of solar power generation system]
FIG. 3 is a diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment. FIG. 3 shows a state in which the solar power generation devices 100 are arranged from above.
 太陽光発電システム600を運営する組織の敷地内などに設けられた設置領域500に、複数の太陽光発電装置100が設置される。図3に示す例では、5行7列のマトリックス状に35基の太陽光発電装置100が設置されている。各太陽光発電装置100は、太陽追尾を行いながら発電する。このため、太陽追尾中に各太陽光発電装置100同士が接触しないように、隣り合う太陽光発電装置100は所定の間隔を隔てている。 A plurality of solar power generation devices 100 are installed in an installation area 500 provided in the site of an organization that operates the solar power generation system 600. In the example shown in FIG. 3, 35 solar power generation devices 100 are installed in a matrix of 5 rows and 7 columns. Each solar power generation device 100 generates power while performing solar tracking. For this reason, the adjacent solar power generation devices 100 are spaced apart from each other so that the solar power generation devices 100 do not contact each other during solar tracking.
 設置領域500の一部の区画510には、直流電力を交流電力に変換する複数のインバータ装置200が配置される。インバータ装置200は、太陽光発電装置100と同数(35基)設けられ、太陽光発電装置100とインバータ装置200とは、直流ケーブル300によって一対一に接続されている。各インバータ装置200は、MPP(Maximum Power Point Tracking)制御によって、接続された太陽光発電装置100に効率的な発電を行わせる。区画510は、設置領域500の概ね中央に設けられる。これにより、太陽光発電装置100間での、接続されるインバータ装置200との距離の差を抑制することができる。なお、図3では、区画510が設置領域500の中央よりも若干右側に偏った位置に設けられる例を示しているが、これに限定されない。区画510は、設置領域500内の任意の位置に設けることができる。例えば、太陽光発電装置100を並べる列又は行の数を偶数にして設置領域500の中央に太陽光発電装置100が配置されないようにし、区画510を設置領域500の中央に設けてもよい。また、区画510を設置領域500の端に設けてもよい。 A plurality of inverter devices 200 that convert DC power into AC power are arranged in some of the sections 510 of the installation area 500. The inverter devices 200 are provided in the same number (35) as the solar power generation devices 100, and the solar power generation devices 100 and the inverter devices 200 are connected one-to-one by DC cables 300. Each inverter device 200 causes the connected photovoltaic power generation device 100 to perform efficient power generation by MPP (Maximum Power Point Tracking) control. The section 510 is provided approximately at the center of the installation area 500. Thereby, the difference of the distance with the inverter apparatus 200 connected between the photovoltaic power generation apparatuses 100 can be suppressed. 3 shows an example in which the section 510 is provided at a position slightly deviated to the right side from the center of the installation area 500, the present invention is not limited to this. The section 510 can be provided at any position within the installation area 500. For example, the number of columns or rows in which the photovoltaic power generation apparatuses 100 are arranged may be an even number so that the photovoltaic power generation apparatus 100 is not disposed in the center of the installation area 500, and the section 510 may be provided in the center of the installation area 500. Further, the section 510 may be provided at the end of the installation area 500.
 太陽光発電装置100とインバータ装置200とを接続する各直流ケーブル300には、同一の規格のケーブルが用いられる。この規格では、太さ、即ち直径又は断面積、材料、構造が規定される。つまり、各直流ケーブル300の太さ、材料、構造は統一される。また、直流ケーブル300の規格には、太さ、材料、構造以外の項目、例えば、加工方法、及び性能のうちの少なくとも1つが規定されていてもよい。また、性能には、単位長さ当たりの抵抗値が含まれていてもよい。 The same standard cable is used for each DC cable 300 that connects the photovoltaic power generation device 100 and the inverter device 200. This standard defines thickness, ie diameter or cross-sectional area, material and structure. That is, the thickness, material, and structure of each DC cable 300 are unified. Further, the standard of the DC cable 300 may define at least one of items other than thickness, material, and structure, for example, a processing method and performance. The performance may include a resistance value per unit length.
 上述したように、互いに接続される太陽光発電装置100とインバータ装置200との間の距離は様々である。つまり、太陽光発電装置100毎に直流ケーブル300の配線長は異なる。各直流ケーブル300の太さ(規格)は同一であるため、長さによって直流ケーブル300の抵抗値は異なる。したがって、各太陽光発電装置100の出力電圧が同じであったとしても、インバータ装置200における入力電圧は異なることになる。本実施形態では、インバータ装置200を太陽光発電装置毎に設けている。このため、各インバータ装置200の入力電圧が異なっていても、インバータ装置200毎に異なる変圧比によって電圧変換を行い、電圧を均一化した上で直流電力を交流電力に変換することができる。 As described above, the distance between the photovoltaic power generation apparatus 100 and the inverter apparatus 200 connected to each other varies. That is, the wiring length of the DC cable 300 is different for each photovoltaic power generation apparatus 100. Since the thickness (standard) of each DC cable 300 is the same, the resistance value of the DC cable 300 differs depending on the length. Therefore, even if the output voltage of each solar power generation device 100 is the same, the input voltage in the inverter device 200 is different. In this embodiment, the inverter apparatus 200 is provided for every photovoltaic power generation apparatus. For this reason, even if the input voltage of each inverter device 200 is different, voltage conversion is performed with a different transformation ratio for each inverter device 200, and the DC power can be converted to AC power after equalizing the voltage.
 また、本実施形態に係る太陽光発電システム600は、複数の太陽光発電装置100によって発電された直流を複数のインバータ装置200によって分散して交流に変換する構成であるため、定格電力が小さい小型のインバータ装置200を用いることができる。複数の小型のインバータ装置200の価格は、1基の大型のインバータ装置の価格よりも低い場合が考えられ、上記の構成とすることでシステム全体のコストを抑制することができる。 Moreover, since the photovoltaic power generation system 600 according to the present embodiment is configured to disperse the direct current generated by the plurality of photovoltaic power generation devices 100 and convert the direct current to the alternating current by the plurality of inverter devices 200, the small rated power is small. Inverter device 200 can be used. The price of the plurality of small inverter devices 200 may be lower than the price of one large inverter device, and the cost of the entire system can be suppressed by adopting the above configuration.
 上記のように各直流ケーブル300の規格を同一にすることにより、太陽光発電装置100毎に直流ケーブルの規格を選定する必要がない。このため、同一規格の直流ケーブルを一括して購入することでコストを抑制することができる。また、配線作業の際に、接続すべき直流ケーブル300の間違いを防止することができると共に、太陽光発電装置100毎に適合する種類(規格)の直流ケーブル300を選ぶ手間を削減することができ、作業性が向上する。さらに、配線の設計において、太陽光発電装置100毎に直流ケーブル300の規格を選定する必要がなく、設計効率が向上する。 It is not necessary to select a DC cable standard for each photovoltaic power generation apparatus 100 by making the standard of each DC cable 300 the same as described above. For this reason, cost can be suppressed by purchasing DC cables of the same standard in a lump. In addition, it is possible to prevent mistakes in the DC cable 300 to be connected during wiring work, and it is possible to reduce the trouble of selecting a type (standard) DC cable 300 that is suitable for each photovoltaic power generation apparatus 100. , Workability is improved. Furthermore, in wiring design, it is not necessary to select the standard of the DC cable 300 for each photovoltaic power generation apparatus 100, and the design efficiency is improved.
 太陽光発電装置100とインバータ装置200との接続についてさらに詳細に説明する。図4は、太陽光発電システム600の電気的な接続関係を示す図である。各太陽光発電装置100には、接続箱101が設けられる。アレイ1では、複数のモジュール1M(例えば、アレイ1において一列に並ぶ各モジュール1M)が直列接続されたストリング(図示せず)が複数構成される。接続箱101には、各ストリングからの配線が収容され、逆流防止用のダイオード及び開閉器等を介して各ストリングからの出力電流が集められる。接続箱101は、+及び-で一対の直流ケーブル300を介してインバータ装置200に一対一に接続される。 The connection between the photovoltaic power generation device 100 and the inverter device 200 will be described in more detail. FIG. 4 is a diagram showing an electrical connection relationship of the photovoltaic power generation system 600. Each solar power generation device 100 is provided with a connection box 101. The array 1 includes a plurality of strings (not shown) in which a plurality of modules 1M (for example, the modules 1M arranged in a line in the array 1) are connected in series. In the connection box 101, wiring from each string is accommodated, and output current from each string is collected via a diode and a switch for preventing backflow. The connection box 101 is connected to the inverter device 200 one-on-one via a pair of DC cables 300 at + and −.
 各インバータ装置200の出力側には交流ケーブル310の一端が接続される。交流ケーブル310は、インバータ装置200毎に設けられる。区画510の近傍には、1台の変電設備400が設置される(図3参照)。各交流ケーブル310の他端は、変電設備400の入力側に接続される。 One end of an AC cable 310 is connected to the output side of each inverter device 200. The AC cable 310 is provided for each inverter device 200. One substation equipment 400 is installed in the vicinity of the section 510 (see FIG. 3). The other end of each AC cable 310 is connected to the input side of the substation equipment 400.
 図5A及び図5Bは、インバータ装置200と変電設備400との電気的な接続関係の一例を示す図であり、図5Aには平面図を、図5Bには側面図を示す。図5A及び図5Bの例では、インバータ装置200の出力側から延びる交流ケーブル310は、インバータ装置200の取付架台210に設けられた管状のケーブル支持部211に集約され、3つの束にまとめられた状態でケーブル支持部211から地中へと延びる。交流ケーブル310の束のそれぞれは、地下1メートルの位置で水平に延び、変電設備400の下方において地上から変電設備400の内部に延びて変電設備400に内蔵された交流集電盤410に接続される。上記のように、各インバータ装置200を区画510に集約して設置することで、各インバータ装置200と変電設備400との距離を概ね揃えることができる。このため、上記のように交流ケーブル310を配線することで、交流ケーブル310の長さが概ね均一となる。 5A and 5B are diagrams showing an example of an electrical connection relationship between the inverter device 200 and the substation equipment 400. FIG. 5A shows a plan view and FIG. 5B shows a side view. In the example of FIG. 5A and FIG. 5B, the AC cable 310 extending from the output side of the inverter device 200 is concentrated on the tubular cable support portion 211 provided on the mounting base 210 of the inverter device 200 and collected into three bundles. In the state, it extends from the cable support portion 211 to the ground. Each of the bundles of AC cables 310 extends horizontally at a position of 1 meter below the ground, and extends from the ground to the inside of the substation facilities 400 below the substation facilities 400 and is connected to an AC current collector panel 410 built in the substation facilities 400. The As described above, by installing the inverter devices 200 in the section 510 in a concentrated manner, the distances between the inverter devices 200 and the substation equipment 400 can be substantially uniform. For this reason, the length of the AC cable 310 becomes substantially uniform by wiring the AC cable 310 as described above.
 各インバータ装置200から出力される交流は、交流ケーブル310によって変電設備400に入力される。変電設備400は、入力された交流電圧を変換する。変電設備400の出力側からは送電ケーブル320が延びており、出力交流が送電ケーブル320によって電力系統に送られる。 The alternating current output from each inverter device 200 is input to the substation facility 400 through the alternating current cable 310. The substation equipment 400 converts the input AC voltage. A power transmission cable 320 extends from the output side of the substation facility 400, and output alternating current is sent to the power system by the power transmission cable 320.
 各交流ケーブル310には、同一の規格のケーブルが用いられる。この規格では、太さ、即ち直径又は断面積、材料、構造が規定される。つまり、各交流ケーブル310の太さ、材料、構造は統一される。また、交流ケーブル310の規格には、太さ、材料、構造以外の項目、例えば、加工方法、及び性能のうちの少なくとも1つが規定されていてもよい。また、性能には、単位長さ当たりのインピーダンスが含まれていてもよい。 The same standard cable is used for each AC cable 310. This standard defines thickness, ie diameter or cross-sectional area, material and structure. That is, the thickness, material, and structure of each AC cable 310 are unified. Further, the standard of the AC cable 310 may define at least one of items other than thickness, material, and structure, for example, a processing method and performance. The performance may include an impedance per unit length.
 各インバータ装置200は、区画510に集約して設置されている。したがって、各インバータ装置200と変電設備400との間の距離の差は小さい。このため、各交流ケーブル310の長さは概ね均一にすることができる。よって、同一規格の交流ケーブル310を使用することにより、交流ケーブル310のインピーダンスが概ね均一に揃えられる。また、さらに好ましくは、各交流ケーブル310の長さを同一にしてもよい。これにより、交流ケーブル310のインピーダンスをより正確に揃えることができる。 The inverter devices 200 are collectively installed in the section 510. Therefore, the difference in distance between each inverter device 200 and the substation equipment 400 is small. For this reason, the length of each AC cable 310 can be made substantially uniform. Therefore, by using the AC cable 310 of the same standard, the impedance of the AC cable 310 is substantially uniform. More preferably, the length of each AC cable 310 may be the same. Thereby, the impedance of the AC cable 310 can be more accurately aligned.
 上記のように各交流ケーブル310の規格を同一にすることにより、インバータ装置200毎に交流ケーブルの規格を選定する必要がない。このため、同一規格の交流ケーブルを一括して購入することでコストを抑制することができる。また、配線作業の際に、接続すべき交流ケーブル310の間違いを防止することができると共に、インバータ装置200毎に適合する種類(規格)の交流ケーブル310を選ぶ手間を削減することができ、作業性が向上する。さらに、配線の設計において、インバータ装置200毎に交流ケーブル310の規格を選定する必要がなく、設計効率が向上する。 It is not necessary to select an AC cable standard for each inverter device 200 by making the standards of each AC cable 310 the same as described above. For this reason, cost can be suppressed by purchasing the AC cable of the same standard collectively. Further, it is possible to prevent mistakes in the AC cable 310 to be connected during wiring work, and it is possible to reduce the trouble of selecting the type (standard) of the AC cable 310 suitable for each inverter device 200. Improves. Furthermore, in the wiring design, it is not necessary to select the standard of the AC cable 310 for each inverter device 200, and the design efficiency is improved.
 [3.補記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[3. Addendum]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 アレイ
 2 支持装置
 11 架台
 13 ボックス
 1M 集光型太陽光発電モジュール
 21 支柱
 22 基礎
 23 2軸駆動部
 24 水平軸
 100 太陽光発電装置
 101 接続箱
 200 インバータ装置
 210 取付架台
 211 ケーブル支持部
 300 直流ケーブル
 310 交流ケーブル
 320 送電ケーブル
 400 変電設備
 410 交流集電盤
 500 設置領域
 510 区画
 600 太陽光発電システム
 
DESCRIPTION OF SYMBOLS 1 Array 2 Support apparatus 11 Mounting base 13 Box 1M Concentration type photovoltaic power generation module 21 Support | pillar 22 Base 23 Two-axis drive part 24 Horizontal axis 100 Solar power generation apparatus 101 Connection box 200 Inverter apparatus 210 Mounting stand 211 Cable support part 300 DC cable 310 AC Cable 320 Transmission Cable 400 Substation Equipment 410 AC Current Collector 500 Installation Area 510 Section 600 Solar Power Generation System

Claims (3)

  1.  姿勢の変化が可能な太陽光発電パネルをそれぞれ有し、設置領域において互いに離隔して設置された複数の太陽光発電装置と、
     前記複数の太陽光発電装置のそれぞれに接続され、前記太陽光発電装置が出力する直流電力を送る、太さ、材料、及び構造を定める規格が同一の複数の直流ケーブルと、
     前記直流ケーブルに接続され、前記直流ケーブルによって送られた直流電力を交流電力に変換する複数のインバータ装置と、
     を備え、
     前記複数のインバータ装置は、前記設置領域内の一の領域に集約して配置される、
     太陽光発電システム。
    A plurality of photovoltaic power generation devices each having a photovoltaic power generation panel capable of changing the posture, and installed separately from each other in the installation area;
    A plurality of direct current cables connected to each of the plurality of solar power generation devices and sending the direct current power output by the solar power generation device, with the same standard defining thickness, material, and structure,
    A plurality of inverter devices connected to the DC cable, for converting DC power sent by the DC cable into AC power;
    With
    The plurality of inverter devices are arranged in one area in the installation area.
    Solar power system.
  2.  前記インバータ装置は、前記太陽光発電装置と同数設けられ、
     前記太陽光発電装置及び前記インバータ装置は、前記直流ケーブルによって一対一に接続されている、
     請求項1に記載の太陽光発電システム。
    The inverter device is provided in the same number as the solar power generation device,
    The solar power generation device and the inverter device are connected one-to-one by the DC cable,
    The photovoltaic power generation system according to claim 1.
  3.  前記複数のインバータ装置のそれぞれに接続され、前記インバータ装置が出力する交流電力を送る、太さ、材料、及び構造を定める規格が同一の複数の交流ケーブルと、
     前記複数の交流ケーブルのそれぞれに接続された変電設備と、
     をさらに備える、
     請求項1又は請求項2に記載の太陽光発電システム。
     
    A plurality of AC cables that are connected to each of the plurality of inverter devices, send AC power output by the inverter devices, and have the same standard that defines the thickness, material, and structure,
    Substation equipment connected to each of the plurality of AC cables;
    Further comprising
    The photovoltaic power generation system according to claim 1 or 2.
PCT/JP2019/018320 2018-05-24 2019-05-08 Solar power generation system WO2019225309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018099934 2018-05-24
JP2018-099934 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225309A1 true WO2019225309A1 (en) 2019-11-28

Family

ID=68615597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018320 WO2019225309A1 (en) 2018-05-24 2019-05-08 Solar power generation system

Country Status (2)

Country Link
TW (1) TW202013880A (en)
WO (1) WO2019225309A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069610A (en) * 2010-09-21 2012-04-05 Solar Energy Research Institute Sunlight tracking device assembly system
JP2013250094A (en) * 2012-05-30 2013-12-12 Shimizu Corp Solar power generation system
US20140266289A1 (en) * 2013-03-15 2014-09-18 Technology Research Corporation Interface for renewable energy system
WO2015027104A1 (en) * 2013-08-21 2015-02-26 Tenksolar, Inc. Fully redundant photovoltaic array
JP2015126211A (en) * 2013-12-27 2015-07-06 ダイキン工業株式会社 Photovoltaic power generation system
JP2016007874A (en) * 2014-06-23 2016-01-18 川崎重工業株式会社 Floating solar power generation system
WO2017109871A1 (en) * 2015-12-24 2017-06-29 株式会社 東芝 Solar power generation system and supporting device for solar power generation apparatus
JP2017195772A (en) * 2013-01-17 2017-10-26 田淵電機株式会社 Controller in photovoltaic power generation device, and control system
JP2018011484A (en) * 2016-07-15 2018-01-18 シャープ株式会社 Installation structure and maintenance method for photovoltaic power generation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069610A (en) * 2010-09-21 2012-04-05 Solar Energy Research Institute Sunlight tracking device assembly system
JP2013250094A (en) * 2012-05-30 2013-12-12 Shimizu Corp Solar power generation system
JP2017195772A (en) * 2013-01-17 2017-10-26 田淵電機株式会社 Controller in photovoltaic power generation device, and control system
US20140266289A1 (en) * 2013-03-15 2014-09-18 Technology Research Corporation Interface for renewable energy system
WO2015027104A1 (en) * 2013-08-21 2015-02-26 Tenksolar, Inc. Fully redundant photovoltaic array
JP2015126211A (en) * 2013-12-27 2015-07-06 ダイキン工業株式会社 Photovoltaic power generation system
JP2016007874A (en) * 2014-06-23 2016-01-18 川崎重工業株式会社 Floating solar power generation system
WO2017109871A1 (en) * 2015-12-24 2017-06-29 株式会社 東芝 Solar power generation system and supporting device for solar power generation apparatus
JP2018011484A (en) * 2016-07-15 2018-01-18 シャープ株式会社 Installation structure and maintenance method for photovoltaic power generation system

Also Published As

Publication number Publication date
TW202013880A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US9231405B2 (en) System and method for operating a distributed energy generating plant using a renewable source of energy
US8513515B1 (en) Generating alternating current from concentrated sunlight
US20090020151A1 (en) Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US10833629B2 (en) Interface for renewable energy system
US8106537B2 (en) Photovoltaic DC/DC micro-converter
US7932621B1 (en) Method and apparatus for an integrated wind-solar energy system utilizing an existing wind turbine infrastructure
KR20190008846A (en) Advanced Solar PV System with Robot Assembly
JP3326207B2 (en) Solar cell module
US8274029B2 (en) Inverter with integrated control and regulation for a tracker
KR20120007249A (en) Solar power generation system for high efficient
KR102008569B1 (en) Solar power generation apparatus
Antón et al. Losses caused by dispersion of optical parameters and misalignments in PV concentrators
WO2019225309A1 (en) Solar power generation system
TW201911733A (en) Photovoltaic system and photovoltaic panel attitude control method
KR102097114B1 (en) Photovoltaic power generation and power distribution system using utility pole for electric power distribution
WO2012106041A1 (en) Solar collector frame
US9559518B2 (en) System and method of solar module biasing
KR101481452B1 (en) Photovoltaic power generation system
KR102104579B1 (en) Photovoltaic cell panel direction angle adjusting apparatus
KR100987750B1 (en) Light-concentrating apparatus in solar power generator
US20100139731A1 (en) Wire-based hanging wire-way for photovoltaic modules or module groups
JP2021145496A (en) Photovoltaic power generation system based on horizontal wiring method and photovoltaic power generation method based on horizontal wiring method
JP3164059U (en) Solar power plant
Yaghi et al. Toward Green LIU campuses using PV systems
Singh et al. Design and Simulation of 100 KW Photovoltaic Grid Connected System Using Boost Convertor and MPPT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP