WO2019146983A1 - Capacitive strain sensor and manufacturing method therefor - Google Patents

Capacitive strain sensor and manufacturing method therefor Download PDF

Info

Publication number
WO2019146983A1
WO2019146983A1 PCT/KR2019/000859 KR2019000859W WO2019146983A1 WO 2019146983 A1 WO2019146983 A1 WO 2019146983A1 KR 2019000859 W KR2019000859 W KR 2019000859W WO 2019146983 A1 WO2019146983 A1 WO 2019146983A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain sensor
poisson
ratio
filler
type strain
Prior art date
Application number
PCT/KR2019/000859
Other languages
French (fr)
Korean (ko)
Inventor
주영창
최인석
이영주
임승민
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190006444A external-priority patent/KR102173494B1/en
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2019146983A1 publication Critical patent/WO2019146983A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a capacitor type strain sensor and a manufacturing method thereof. More particularly, the present invention relates to a capacitor-type strain sensor including an oxic structure and exceeding mechanical property inherent to the elastic body, and a method of manufacturing the same.
  • Poisson's ration is an index of material behavior that is considered important in understanding the deformation in the elastic deformation region with the ratio of transverse strain to longitudinal strain when normal stress is applied to the material. Most materials have a positive Poisson's ratio in which the material shrinks in the horizontal direction when tension is applied to the material in the axial direction and expands horizontally when compressed in the axial direction.
  • FIG. 1 is a graph showing Young's modulus and Poisson's ratio for various materials
  • FIG. 2 is a graph showing Non-auxetic and Auxetic.
  • the elastic modulus of the elastomer can be adjusted in the same material by controlling the synthesis conditions.
  • oxetic structure is designed not only for hard material but also for soft material, and is utilized as shock absorption and shape change material.
  • etchant it is inevitable for the etchant to have voids therein because of its structure, and this void structure limits the actual application of the etchant in terms of process feasibility.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an oxetitive composite having a negative Poisson's ratio by inserting an oxic structure into a filler.
  • a capacitor-type strain sensor comprising an oxide composite including an oxide structure and an electrode portion disposed on both surfaces of the oxide complex.
  • the oxetic composite may be an oxide structure inserted into the filler.
  • the Poisson's ratio of the filler may be 0.47 to 0.52.
  • the Poisson's ratio in the planar direction of the oxic structure is a negative value, and the Poisson's ratio in the thickness direction may be a positive value.
  • the Poisson's ratio in the thickness direction of the oxic compound can be larger than the Poisson's ratio inherent in the thickness direction of the filler.
  • the Young's modulus of the filler and the oxic structure constituting material may be 0.006 MPa to 7.5 MPa.
  • the oxetic composite may have a Young's modulus of 1000 times or more different from that of the filler and the oxic structure.
  • the electrode portion may be a conductive polymer gel electrode.
  • the gauge factor (GF) of the strain sensor may be greater than 3.2.
  • planar regions covered by the electrode portion and the oxic structure may not overlap each other.
  • a capacitor-type strain sensor comprising: (a) forming an oxic complex including an oxic structure; and (b) forming an electrode portion on both sides of the oxic complex. And a manufacturing method thereof.
  • (a) may comprise (a1) fabricating a patterned oxic structure and (a2) inserting an oxic structure in the pillar.
  • the Poisson's ratio of the filler may be 0.47 to 0.52.
  • the Poisson's ratio in the planar direction of the oxic structure is a negative value, and the Poisson's ratio in the thickness direction may be a positive value.
  • the Young's modulus of the filler and the oxic structure constituting material may be 0.006 MPa to 7.5 MPa.
  • the electrode portion may be a conductive polymer gel electrode.
  • step (b) may include the steps of (b1) attaching an electrode to both surfaces of the oxic complex, and (b2) molding the electrode with a filler and encapsulating the electrode.
  • a filler having a positive Poisson's ratio in a planar direction and a thickness direction; And a filler, wherein the Poisson's ratio in the planar direction is a negative value, and the Poisson's ratio in the thickness direction is a positive value.
  • the present invention has an effect of providing a manufacturing method of a capacitor type strain sensor having an improved elasticity including an oxic structure.
  • 1 is a graph showing Young's modulus and Poisson's ratio for various materials.
  • FIG. 2 is a diagram showing Non-auxetic and Auxetic.
  • FIG. 3 is a diagram illustrating a non-oocytic material and an oxetic complex according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a strain sensor, in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a manufacturing process of a strain sensor according to an embodiment of the present invention.
  • Figure 7 shows the normal stresses in tension according to one embodiment of the present invention.
  • FIG 9 is an image of a strain sensor according to an experimental example of the present invention.
  • FIG. 10 is a graph showing a change in capacitance according to a tension of a strain sensor according to an example of the present invention.
  • 11 shows the reliability evaluation result of the sensor according to the repetitive strain of the strain sensor according to an experimental example of the present invention.
  • FIG. 12 is a graph showing a capacitance according to movement after attaching to an elbow according to an experimental example of the present invention.
  • 13 is a graph showing changes in the width and thickness of the filler and the oxicitic structure when the oxetitic composite is stretched through computer simulation.
  • FIG. 14 is a graph showing a capacitance change when an electrode of a strain sensor is set inside an oxide structure through a computer simulation.
  • FIG. 2 is a diagram showing Non-auxetic and Auxetic.
  • the Poisson's ratio which means the ratio of transverse strain to transverse strain due to normal stress in the material, has a positive number.
  • an Auxetic material or materials having an Auxetic structure
  • Poisson's ratio has a negative number
  • FIG. 3 is a diagram illustrating a non-oocytic material and an oxetic complex according to an embodiment of the present invention.
  • description has been made on the basis of the planar structure.
  • FIG. 3 a structure having a predetermined thickness will be described.
  • the non-auxetic materials when stress is applied to both sides (for example, the x-axis direction), the non-auxetic materials are stretched in the corresponding direction, and at the same time, Axis direction).
  • the volume of the material is kept constant, the non-oxcetic material having a predetermined thickness can be partially reduced in thickness along with the transverse and longitudinal deformations. Therefore, the Poisson's ratio in the plane direction is a positive value, and the Poisson's ratio in the thickness direction can also have a positive value.
  • the oxetic composite 10 of the present invention is characterized in that an Auxetic material (or a material having an Auxetic structure) is contained in a predetermined elastic body .
  • an Auxetic material or a material having an Auxetic structure
  • the oxic structure 12 may have a unit frame in which a pair of triangles face each other and vertices of the triangles overlap and are integrally connected. Such a unit frame may be repeatedly arranged in the horizontal direction and the vertical direction.
  • the oxic structure 12 is not necessarily limited to this shape. If the Poisson's ratio is a negative number, it can be employed as the oxic structure 12 of the present invention.
  • the oxide structure 12 is preferably made of an elastic material so that when the stress is applied and released, the oxic structure 12 can be restored to its original shape.
  • the oxicitic composite 10 has a structure in which the oxic structure 12 is embedded in a non-opaque material (filler 11), and the thickness of the filler 11 may be thicker than the oxide structure 12. Since the filler 11 itself is a noxious material, the Poisson's ratio in the planar direction and the thickness direction has a positive value as in Fig. 3 (a). On the contrary, the Poisson's ratio in the planar direction of the oxide structure 12 has a negative value. However, since the volume of the oxide structure 12 must be kept constant by deformation, the thickness of the oxide structure 12 Can have a positive value.
  • the oxic structure 12 occupies an area in the planar direction in the oxic structure 10 of the present invention in which the oxic structure 12 is embedded in the filler 11, which is a non-
  • the Poisson's ratio in the plane direction can have a negative value. Therefore, when stress is applied to both sides (e.g., the x-axis direction) of the oxic complex 10, contraction can be performed in a direction perpendicular to the plane (for example, the y-axis direction).
  • the volume of the material has to be kept constant, the area in the planar direction when the stress is applied is increased more than that of FIG. 3 (a) a).
  • the filler 11 (or the oxicitic material 10) (or the nontoxic material) is included in the oxide structure 12 rather than the unique Poisson's ratio in the thickness direction,
  • the Poisson's ratio in the thickness direction can be larger.
  • the Poisson's ratio of the oxethetic elastomer is closer to a positive value as the Young's modulus difference between the different materials is narrowed, and Poisson's ratio distribution gradually decreases according to the geometric elements have. It can be seen that when controlling the difference in physical properties between different materials, it can be extended to a wider area than the Poisson's ratio distribution obtained from the geometric element control. Thus, it can be predicted that the mechanical behavior of the oxetic complex can be tailored to the desired properties through the combination of appropriate geometric elements and materials
  • FIG. 5 is a schematic diagram of a strain sensor, in accordance with an embodiment of the present invention.
  • FIG. 5A is a schematic perspective view of the strain sensor 100 of the present invention
  • FIG. 5B is a schematic side cross-sectional view when viewed from the side.
  • the strain sensor 100 of the present invention may include an oxic composite 10 including an oxide structure 12 and an electrode portion 20 disposed on both sides of the oxide complex 10.
  • the oxetic composite 10 is composed of a filler 11 and an oxic structure 12. At this time, the oxic complex can be used as the dielectric layer of the strain sensor 100.
  • the filler 11 is preferably made of a flexible and stretchable elastic material as the constituent material of the oxic structure 12.
  • the material of the filler 11 may be one selected from materials having a Poisson's ratio of 0.47 to 0.52 and a Young's modulus of 0.006 MPa to 7.5 MPa.
  • Ecoflex, PDMS, etc. can be used.
  • the constituent material of the oxicitec structure 12 is preferably made of an elastic material having flexibility and stretchability.
  • the material of the oxic structure 12 may be one selected from materials having a Poisson's ratio of 0.47 to 0.52 and a Young's modulus of 0.006 MPa to 7.5 MPa.
  • a polyurethane sheet or the like can be used.
  • the constituent materials of the filler 11 and the oxic structure 12 may be different from each other. Specifically, it is preferable that the modulus of Young's modulus of the constituent material of the filler 11 and the oxic structure 12 is 1000 times or more different.
  • the electrode portion 20 of the present invention may be located on both sides of the oxic composite 10.
  • a layer of a filler 11 'for encapsulation may be further formed on the electrode part to prevent the electrode part 20 from being detached.
  • the electrode part may be selected from flexible and stretchable electrodes, for example, a conductive polymer gel electrode may be used.
  • the dielectric layer of the strain sensor is the oxic composite 10, and the thickness of the strain sensor in the planar direction is much smaller than that of the non-occtic material.
  • the distance between the electrode portions 20 located on the upper and lower surfaces of the oxic composite 10 corresponds to the thickness of the dielectric layer.
  • the capacitance is proportional to the area and inversely proportional to the thickness.
  • the strain sensor of the present invention the area is increased by the tensile force, and at the same time, the thickness is further largely reduced. . This can directly lead to the improvement of the sensitivity of the sensor.
  • FIG. 6 is a schematic view showing a manufacturing process of a strain sensor according to an embodiment of the present invention.
  • the step of forming the oxic composite 10 may include the step of manufacturing the oxide structure 12 and the step of inserting the oxide structure 12 in the filler 11.
  • the oxic structure 12 can be prepared by preparing a polyurethane substrate on which an oxic structure is to be formed, and then forming a pattern on the substrate.
  • the oxic structure 12 may be porous and patterned. In order to form a pattern on the substrate, a pattern can be formed on the substrate by using a floating cutter. 2 (c), the Poisson's ratio in the planar direction is a negative value, and the Poisson's ratio in the thickness direction can be a positive value.
  • the oxicitic structure 12 can be inserted into the filler 11 to form the oxicitic composite 10.
  • the porous material (hollow space) of the oxicitic structure 12 may be filled with the filler 11, so that the porous material may not exist.
  • the oxetic composite 10 is in the form of a composite having the oxetic structure 12 having a variable structure therein, the elastic properties of the oxetic composite 10 are not limited to the geometric elements of the inner frame, It can be predictably adjusted according to the difference in physical properties.
  • the oxic composite 10 in which the oxide structure 12 is embedded in the filler 11 can act as the dielectric layer 10 in the capacitor type strain sensor 100.
  • the electrode portions 20 can be formed on both sides of the oxic composite 10 (S120).
  • the electrode portion 20 can be formed by a capacitor type (electrostatic capacity type).
  • Step S120 of forming the electrode part 20 may include attaching electrodes to both surfaces of the oxic composite 10 and molding and encapsulating the electrode with the filler 11 '. At this time, the encapsulating step is performed to prevent the electrode unit 20 from being attached or detached, and a known method capable of preventing detachment of the electrode unit 20 can be used.
  • the capacitor type strain sensor 100 is characterized in that when the tensile force is applied to at least one side of the filler 11, the inherent Poisson's ratio in the thickness direction of the filler 11, The Poisson's ratio in the thickness direction of the composite layer 10 (or the dielectric layer 10) may be larger. This is as described above in Fig. 2 (b).
  • a 0.5 mm polyurethane sheet was patterned through a poling cutter (Silhouette CAMEO) to form a porous oxic structure. Thereafter, an empty space of the porous polyurethane oxic structure was filled using an Ecoflex elastomer to prepare an oxetic composite.
  • the ECOCLEX of the oxethetic composite of Experimental Example 1 was attached to both sides of the pre-hardening composite with PEDOT: PSS / Acrylamide-based conductive polymer electrode and then contacted with external electronic devices through nickel wire and silver adhesive. The encapsulated strain sensor was then fabricated by applying the Ecoflex again.
  • Figure 7 shows the normal stresses in tension according to one embodiment of the present invention.
  • Fig. 7 (a) is a uniaxial tensile test in order to analyze the mechanical characteristics of the three-dimensional oxetic composite. It is confirmed that the oxetic composite of Example 1 expands in the plane direction of the tensile direction as the tensile progresses . On the contrary, when the ecoflex sheet of Comparative Example 1 is stretched to the same level, it can be confirmed that it is contracted in the plane direction of the tensile direction.
  • Fig. 7 (b) is a measurement of the Poisson's ratio in the planar direction (see Fig. 2, Poisson's ratio of the x-axis with respect to the y-axis) in accordance with the tensile.
  • the film having a positive Poisson's ratio can be confirmed.
  • the experiment shows that the oxetic complex of 1 has a Poisson's ratio of about -0.4.
  • Fig. 7 (c) shows the Poisson's ratio in the thickness direction (see Fig. 2, Poisson's ratio of the z axis with respect to the y-axis) measured in accordance with the tensile test.
  • the Poisson's ratio in the thickness direction can also be expected to be 0.5, and the actual results are also substantially similar.
  • the Poisson's ratio in the thickness direction is up to 1.95 when the tensile strength is about 10%, which means that the thickness shrinkage ratio is almost four times greater than that of a normal elastomer.
  • this characteristic can be regarded as a new elastic property that the conventional material can not approach. Further, since the volume of the oxetic complex should be maintained in accordance with the deformation, it can be understood that when the Poisson's ratio in the plane direction gradually increases, the Poisson's ratio in the thickness direction decreases accordingly.
  • FIG. 8 is a photograph of a change in external shape of an oxetic composite and an echo flex substrate according to a tensile test according to an experimental example of the present invention by a three-dimensional scanning method.
  • Comparative Example 1 appears to be gentle, but in Experimental Example 1, the shadows gradually become more severe in the filler portion except for the oxic structure. As a result, it can be seen that the thickness reduction is prominent in the filler portion.
  • FIG 9 is an image of a strain sensor according to an experimental example of the present invention.
  • FIG. 9 (a) is an image of a strain sensor manufactured according to the present method and an image obtained by stretching the strain sensor, and it can be confirmed that the tensile direction expands in a plane direction of the tensile direction as the tensile is progressed.
  • FIG. 9 (b) shows a change in external shape due to movement after attaching the strain sensor to the elbow. As shown in FIG. 9 (b)
  • FIG. 10 is a graph showing a change in capacitance according to a tension of a strain sensor according to an example of the present invention.
  • the electrostatic capacity change ratio (GF) of the strain sensor manufactured by using the eco flex sheet of Comparative Example 1 is one.
  • the capacitance change rate of the strain sensor manufactured using the oxetitic composite of Example 1 is 3.2, and it is confirmed that the signal amplified 3.2 times that of the sensor of Comparative Example 1 is obtained. It can also be seen that a signal linearly proportional to the tensile is obtained when 100% tensile is applied.
  • 11 shows the reliability evaluation result of the sensor according to the repetitive strain of the strain sensor according to an experimental example of the present invention.
  • FIG. 12 is a graph showing a capacitance according to movement after attaching to an elbow according to an experimental example of the present invention.
  • 13 is a graph showing changes in the width and thickness of the filler and the oxicitic structure when the oxetitic composite is stretched through computer simulation.
  • FIG. 14 is a graph showing a capacitance change when an electrode of a strain sensor is set inside an oxide structure through a computer simulation.
  • Equation 1 Since the oxetic structure and the filler (elastomer filling material) are connected in parallel in the oxetic complex, the sum of their capacitances can be calculated as shown in Equation 1.
  • Equation 2 the change in capacitance of the composite can be estimated as shown in Equation 2.
  • the gauge factor which is the main performance index of the strain sensor, is the change in capacitance due to the increased length, and can be summarized as Equation 5 or Equation 6 below.
  • the planar regions covered by the electrode portion and the occliced structure do not overlap each other.

Abstract

The present invention relates to a capacitive strain sensor and a manufacturing method therefor. The capacitive strain sensor of the present invention comprises: an auxetic composite having an auxetic structure; and electrode units arranged on both surfaces of the auxetic composite.

Description

캐패시터형 스트레인 센서 및 그 제조방법Capacitor type strain sensor and manufacturing method thereof
본 발명은 캐패시터형 스트레인 센서 및 그 제조방법에 관한 것이다. 보다 상세하게는, 옥세틱 구조체를 포함하고 탄성체 고유의 기계적 특성 한계를 뛰어 넘는 캐패시터형 스트레인 센서 및 그 제조방법에 관한 것이다.The present invention relates to a capacitor type strain sensor and a manufacturing method thereof. More particularly, the present invention relates to a capacitor-type strain sensor including an oxic structure and exceeding mechanical property inherent to the elastic body, and a method of manufacturing the same.
푸아송비(Poisson's ration)는 재료에 수직 응력을 주었을 때의 가로 변형과 세로 변형의 비로, 탄성 변형 영역에서의 변형을 파악함에 있어서 중요하게 고려되는 재료 거동의 지표이다. 대부분의 재료들은 재료에 축 방향으로 인장이 가해졌을 때 그 재료가 수평방향으로 수축되고, 축 방향으로 압축되었을 때는 수평방향으로 확장되는 양의 푸아송비를 갖는다. Poisson's ration is an index of material behavior that is considered important in understanding the deformation in the elastic deformation region with the ratio of transverse strain to longitudinal strain when normal stress is applied to the material. Most materials have a positive Poisson's ratio in which the material shrinks in the horizontal direction when tension is applied to the material in the axial direction and expands horizontally when compressed in the axial direction.
도 1은 각종 재료에 대한 영률(Young's modulus), 푸아송비(Poisson's ratio)를 나타내는 그래프이며, 도2는 논옥세틱(Non-auxetic)과 옥세틱(Auxetic)을 나타내는 도면이다. 엘라스토머의 탄성 계수는 같은 소재에서도 합성 조건 제어를 통해 그 범위를 조절할 수 있다. FIG. 1 is a graph showing Young's modulus and Poisson's ratio for various materials, and FIG. 2 is a graph showing Non-auxetic and Auxetic. FIG. The elastic modulus of the elastomer can be adjusted in the same material by controlling the synthesis conditions.
푸아송 비의 경우 대부분의 소프트 재료가 0.5에 가까운 것을 알 수 있으며 사실상 재료의 합성 제어를 통해서는 변화시킬 수 없는 것을 알 수 있다. 대신, 재료의 푸아송비는 내부에 세포 구조를 도입하여 고유한 값에서 벗어날 수 있다. It can be seen that most soft materials are close to 0.5 in the case of Poisson's ratio and can not be changed by virtue of composition control of the material. Instead, the Poisson's ratio of the material can escape its inherent value by introducing a cellular structure inside.
이것은 어떤 특정한 기하학적 구조가 재료에 포함되어 설계될 경우 나타날 수 있는데, 우리는 이것을 "옥세틱 구조"라고 부른다. 최근 연구에서는 단단한 재료뿐 아니라 연질 재료에도 옥세틱 구조를 설계하여 충격흡수 및 형상변화재료로 활용하는 결과가 보고된 바 있다. 그러나, 옥세틱은 그 구조상 내부에 공극을 지닐 수 밖에 없는데, 이러한 공극구조는 공정 실현 가능성 측면에서 옥세틱의 실제 적용을 제한할 수 밖에 없다.This can occur when a particular geometry is designed to be included in the material, which we call an "oxetic structure". In recent research, it has been reported that oxetic structure is designed not only for hard material but also for soft material, and is utilized as shock absorption and shape change material. However, it is inevitable for the etchant to have voids therein because of its structure, and this void structure limits the actual application of the etchant in terms of process feasibility.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로, 필러에 옥세틱 구조체를 삽입함으로써 음의 푸아송비를 갖는 옥세틱 복합체를 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an oxetitive composite having a negative Poisson's ratio by inserting an oxic structure into a filler.
또한, 옥세틱 복합체를 포함하는 신축성이 향상된 캐패시터형 스트레인 센서 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a capacitor type strain sensor having improved elasticity including an oxetic complex.
또한, 본 발명은 옥세틱 구조체를 포함하는 신축성이 향상된 캐패시터형 스트레인 센서의 제조방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method of manufacturing a capacitor-type strain sensor having an improved elasticity including an oxide structure.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are exemplary and do not limit the scope of the present invention.
상기 목적을 달성하기 위한 본 발명의 일 관점에 따르면, 옥세틱 구조체를 포함하는 옥세틱 복합체 및 옥세틱 복합체의 양면에 배치되는 전극부를 포함하는, 캐패시터형 스트레인 센서를 제공한다.According to an aspect of the present invention, there is provided a capacitor-type strain sensor comprising an oxide composite including an oxide structure and an electrode portion disposed on both surfaces of the oxide complex.
본 발명의 일 실시예에 따르면, 옥세틱 복합체는 필러에 옥세틱 구조체가 삽입되는 것일 수 있다. According to one embodiment of the present invention, the oxetic composite may be an oxide structure inserted into the filler.
본 발명의 일 실시예에 따르면, 필러의 푸아송비(Poisson's ratio)는 0.47 내지 0.52일 수 있다.According to one embodiment of the present invention, the Poisson's ratio of the filler may be 0.47 to 0.52.
본 발명의 일 실시예에 따르면, 옥세틱 구조체의 평면 방향으로의 푸아송비는 음의 값이고, 두께 방향으로의 푸아송비는 양의 값일 수 있다. According to one embodiment of the present invention, the Poisson's ratio in the planar direction of the oxic structure is a negative value, and the Poisson's ratio in the thickness direction may be a positive value.
본 발명의 일 실시예에 따르면, 캐패시터형 스트레인 센서의 적어도 일측으로 인장력이 가해질 때, 필러의 두께 방향으로의 고유한 푸아송비보다, 옥세틱 복합체의 두께 방향의 푸아송비가 더 커질 수 있다.According to an embodiment of the present invention, when the tensile force is applied to at least one side of the capacitor-type strain sensor, the Poisson's ratio in the thickness direction of the oxic compound can be larger than the Poisson's ratio inherent in the thickness direction of the filler.
본 발명의 일 실시예에 따르면, 필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa일 수 있다.According to an embodiment of the present invention, the Young's modulus of the filler and the oxic structure constituting material may be 0.006 MPa to 7.5 MPa.
본 발명의 일 실시예에 따르면, 옥세틱 복합체는 필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)가 1000배 이상 차이가 나는 것일 수 있다.According to an embodiment of the present invention, the oxetic composite may have a Young's modulus of 1000 times or more different from that of the filler and the oxic structure.
본 발명의 일 실시예에 따르면, 전극부는 전도성 고분자 젤 전극일 수 있다.According to an embodiment of the present invention, the electrode portion may be a conductive polymer gel electrode.
본 발명의 일 실시예에 따르면, 스트레인 센서의 게이지 팩터(Gauge Factor, GF)는 3.2 보다 클 수 있다.According to one embodiment of the present invention, the gauge factor (GF) of the strain sensor may be greater than 3.2.
본 발명의 일 실시예에 따르면, 전극부와 옥세틱 구조체가 각각 커버하는 평면 상의 영역이 중첩되지 않을 수 있다.According to an embodiment of the present invention, planar regions covered by the electrode portion and the oxic structure may not overlap each other.
본 발명의 또 다른 일 관점에 따르면, (a) 옥세틱 구조체를 포함하는 옥세틱 복합체를 형성하는 단계 및 (b) 옥세틱 복합체의 양면에 전극부를 형성하는 단계를 포함하는, 캐패시터형 스트레인 센서의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a capacitor-type strain sensor comprising: (a) forming an oxic complex including an oxic structure; and (b) forming an electrode portion on both sides of the oxic complex. And a manufacturing method thereof.
본 발명의 일 실시예에 따르면, (a) 단계는 (a1) 패터닝된 옥세틱 구조체를 제조하는 단계 및 (a2) 필러 내에 옥세틱 구조체를 삽입하는 단계를 포함할 수 있다.According to an embodiment of the present invention, (a) may comprise (a1) fabricating a patterned oxic structure and (a2) inserting an oxic structure in the pillar.
본 발명의 일 실시예에 따르면, 필러의 푸아송비(Poisson's ratio)는 0.47 내지 0.52일 수 있다. According to one embodiment of the present invention, the Poisson's ratio of the filler may be 0.47 to 0.52.
본 발명의 일 실시예에 따르면, 옥세틱 구조체의 평면 방향으로의 푸아송비는 음의 값이고, 두께 방향으로의 푸아송비는 양의 값일 수 있다.According to one embodiment of the present invention, the Poisson's ratio in the planar direction of the oxic structure is a negative value, and the Poisson's ratio in the thickness direction may be a positive value.
본 발명의 일 실시예에 따르면, 필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa일 수 있다.According to an embodiment of the present invention, the Young's modulus of the filler and the oxic structure constituting material may be 0.006 MPa to 7.5 MPa.
본 발명의 일 실시예에 따르면, 전극부는 전도성 고분자 젤 전극 일 수 있다.According to an embodiment of the present invention, the electrode portion may be a conductive polymer gel electrode.
본 발명의 일 실시예에 따르면, (b) 단계는 (b1) 옥세틱 복합체의 양면에 전극을 부착하는 단계 및 (b2) 전극을 필러로 몰딩하여 캡슐화(encapsulation)하는 단계를 포함할 수 있다.According to an embodiment of the present invention, step (b) may include the steps of (b1) attaching an electrode to both surfaces of the oxic complex, and (b2) molding the electrode with a filler and encapsulating the electrode.
본 발명의 또 다른 일 관점에 따르면, 평면 방향 및 두께 방향으로의 푸아송비(Poisson's ratio)가 양의 값인 필러; 및 필러에 삽입되며, 평면 방향으로의 푸아송비가 음의 값이고, 두께 방향으로의 푸아송비가 양의 값인 옥세틱 구조체를 제공한다.According to another aspect of the present invention, there is provided a filler having a positive Poisson's ratio in a planar direction and a thickness direction; And a filler, wherein the Poisson's ratio in the planar direction is a negative value, and the Poisson's ratio in the thickness direction is a positive value.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 필러에 옥세틱 구조체를 삽입함으로써 음의 푸아송비를 갖는 옥세틱 복합체를 제공하는 효과가 있다.According to one embodiment of the present invention as described above, there is an effect of providing an oxetitive composite having a negative Poisson's ratio by inserting an oxic structure into the filler.
또한, 옥세틱 복합체를 포함하는 신축성이 향상된 캐패시터형 스트레인 센서 제공하는 효과가 있다.Further, there is an effect of providing a capacitor type strain sensor having improved elasticity including an oxetic complex.
또한, 본 발명은 옥세틱 구조체를 포함하는 신축성이 향상된 캐패시터형 스트레인 센서의 제조방법을 제공하는 효과가 있다.In addition, the present invention has an effect of providing a manufacturing method of a capacitor type strain sensor having an improved elasticity including an oxic structure.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are exemplary and do not limit the scope of the present invention.
도 1은 각종 재료에 대한 영률(Young's modulus) 및 푸아송비(Poisson's ratio)를 나타내는 그래프이다.1 is a graph showing Young's modulus and Poisson's ratio for various materials.
도 2는 논옥세틱(Non-auxetic)과 옥세틱(Auxetic)을 나타내는 도면이다.FIG. 2 is a diagram showing Non-auxetic and Auxetic. FIG.
도 3은 논옥세틱 물질과 본 발명의 일 실시예에 따른 옥세틱 복합체를 나타내는 도면이다.3 is a diagram illustrating a non-oocytic material and an oxetic complex according to an embodiment of the present invention.
도 4는 엘라스토머의 조합에 따른 예상 푸아송비의 변화를 나타내는 그래프이다.4 is a graph showing a change in the expected Poisson's ratio according to the combination of the elastomers.
도 5는 본 발명의 일 실시예에 따른, 스트레인 센서의 개략도이다.5 is a schematic diagram of a strain sensor, in accordance with an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른, 스트레인 센서의 제조과정을 나타내는 모식도이다.6 is a schematic view showing a manufacturing process of a strain sensor according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른, 인장에 따른 수직응력을 나타낸 것이다. Figure 7 shows the normal stresses in tension according to one embodiment of the present invention.
도 8은 본 발명의 일 실험예에 따른, 인장율에 따른 옥세틱 복합체 및 에코플렉스 기판의 외형 변화를 나타낸 이미지이다.8 is an image showing changes in the external shape of the oxetic composite and the ecoflex substrate according to the tensile ratios according to an experimental example of the present invention.
도 9는 본 발명의 일 실험예에 따른, 스트레인 센서의 이미지이다.9 is an image of a strain sensor according to an experimental example of the present invention.
도 10은 본 발명의 일 실험예에 따른, 스트레인 센서의 인장에 따른 전기용량(Capacitance)의 변화를 나타낸 그래프이다.10 is a graph showing a change in capacitance according to a tension of a strain sensor according to an example of the present invention.
도 11은 본 발명의 일 실험예에 따른, 스트레인 센서의 반복 변형에 따른 센서의 신뢰성 평가 결과를 나타낸다.11 shows the reliability evaluation result of the sensor according to the repetitive strain of the strain sensor according to an experimental example of the present invention.
도 12는 본 발명의 일 실험예에 따른, 팔꿈치에 부착 후 움직임에 따른 전기용량 변화(Capacitance)를 나타낸 그래프이다.FIG. 12 is a graph showing a capacitance according to movement after attaching to an elbow according to an experimental example of the present invention. FIG.
도 13은 전산모사를 통하여 옥세틱 복합체의 인장시 필러와 옥세틱 구조체의 넓이 및 두께 변화를 나타낸 그래프이다.13 is a graph showing changes in the width and thickness of the filler and the oxicitic structure when the oxetitic composite is stretched through computer simulation.
도 14는 전산모사를 통하여 스트레인 센서의 전극을 옥세틱 구조체 내부에 설정할 경우 전기용량 변화(Capacitance)를 나타낸 그래프이다.FIG. 14 is a graph showing a capacitance change when an electrode of a strain sensor is set inside an oxide structure through a computer simulation.
<부호의 설명><Description of Symbols>
100: 스트레인 센서100: Strain sensor
10: 옥세틱 복합체10: oxetic complex
11, 11': 필러 11, 11 ': filler
12: 옥세틱 구조체12: Oxetitic structure
20: 전극부20:
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 편의를 위하여 과장되어 표현될 수도 있다.The following detailed description of the invention refers to the accompanying drawings, which illustrate, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different, but need not be mutually exclusive. For example, certain features, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the invention in connection with an embodiment. It is also to be understood that the position or arrangement of the individual components within each disclosed embodiment may be varied without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is to be limited only by the appended claims, along with the full scope of equivalents to which such claims are entitled, if properly explained. In the drawings, like reference numerals refer to the same or similar functions throughout the several views and may be exaggerated for convenience.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily carry out the present invention.
도 2는 논옥세틱(Non-auxetic)과 옥세틱(Auxetic)을 나타내는 도면이다.FIG. 2 is a diagram showing Non-auxetic and Auxetic. FIG.
도 2의 (a)를 참조하면, 일반적인 물질, 즉, 논옥세틱(Non-auxetic) 물질들은 물질 내부에 응력이 가해지면 해당 방향으로 신장함과 동시에 수직 방향으로 수축이 행해진다. 따라서, 재료 내부에 생기는 수직 응력에 의한 가로 변형과 세로 변형과의 비를 의미하는 푸아송비(Poisson's ratio)는 양수를 가진다.Referring to FIG. 2 (a), when a stress is applied to a general material, that is, non-auxetic materials, the material is stretched in the corresponding direction and contracted in the vertical direction. Therefore, the Poisson's ratio, which means the ratio of transverse strain to transverse strain due to normal stress in the material, has a positive number.
도 2의 (b)를 참조하면, 반대로, 옥세틱(Auxetic) 물질[또는, 팽창 구조(Auxetic structure)를 가지는 물질]들은 물질 내부에 응력이 가해지면 해당 방향과 수직 방향으로 모두 신장될 수 있다. 따라서, 푸아송비는 음수를 가진다.Referring to FIG. 2 (b), conversely, an Auxetic material (or materials having an Auxetic structure) can be stretched both vertically and vertically when stress is applied to the interior of the material . Therefore, Poisson's ratio has a negative number.
옥세틱 복합체Oxetic complex
도 3은 논옥세틱 물질과 본 발명의 일 실시예에 따른 옥세틱 복합체를 나타내는 도면이다. 도 2에서는 평면의 구조를 기준으로 설명하였으나, 도 3에서는 소정의 두께를 가진 구조를 기준으로 설명한다.3 is a diagram illustrating a non-oocytic material and an oxetic complex according to an embodiment of the present invention. In FIG. 2, description has been made on the basis of the planar structure. In FIG. 3, a structure having a predetermined thickness will be described.
도 3의 (a)를 참조하면, 논옥세틱(Non-auxetic) 물질들은 양측(일 예로, x축 방향)에 응력이 가해지면 해당 방향으로 신장함과 동시에 평면상 수직하는 방향(일 예로, y축 방향)으로 수축이 행해진다. 또한, 물질의 부피가 일정하게 유지되므로, 소정 두께를 가지는 논옥세틱 물질은 가로, 세로 변형과 더불어 두께도 일부 줄어들 수 있다. 따라서, 평면 방향으로의 푸아송비는 양의 값이고, 두께 방향으로의 푸아송비도 양의 값을 가질 수 있다.3 (a), when stress is applied to both sides (for example, the x-axis direction), the non-auxetic materials are stretched in the corresponding direction, and at the same time, Axis direction). In addition, since the volume of the material is kept constant, the non-oxcetic material having a predetermined thickness can be partially reduced in thickness along with the transverse and longitudinal deformations. Therefore, the Poisson's ratio in the plane direction is a positive value, and the Poisson's ratio in the thickness direction can also have a positive value.
도 3의 (b)를 참조하면, 본원발명의 옥세틱 복합체(10)는 옥세틱(Auxetic) 물질[또는, 팽창 구조(Auxetic structure)를 가지는 물질]이 소정의 탄성체 내에 포함된 것을 특징으로 한다. 자세한 구조에 대해서는 도 5를 통해 후술한다.Referring to FIG. 3 (b), the oxetic composite 10 of the present invention is characterized in that an Auxetic material (or a material having an Auxetic structure) is contained in a predetermined elastic body . The detailed structure will be described later with reference to FIG.
옥세틱 구조체(12)는 한 쌍의 삼각형이 상호 대향하고, 삼각형의 꼭지점 부분이 중첩되어 일체로 연결된 듯한 단위 테두리를 가질 수 있다. 이러한 단위 테두리가 가로 방향 및 세로 방향으로 빈틈없이 반복 배치된 형태를 가질 수 있다. 하지만, 반드시 옥세틱 구조체(12)가 반드시 이 형상에 제한되는 것은 아니며, 푸아송비가 음수를 가지는 구조라면 본 발명의 옥세틱 구조체(12)로 채용할 수 있다.The oxic structure 12 may have a unit frame in which a pair of triangles face each other and vertices of the triangles overlap and are integrally connected. Such a unit frame may be repeatedly arranged in the horizontal direction and the vertical direction. However, the oxic structure 12 is not necessarily limited to this shape. If the Poisson's ratio is a negative number, it can be employed as the oxic structure 12 of the present invention.
옥세틱 구조체(12)에 응력이 가해지면 해당 응력 인가 방향과 그에 수직하는 방향으로 모두 신장될 수 있다. 즉, 옥세틱 구조체(12)가 점유하는 면적이 커지는 방향으로 신장될 수 있다. 응력이 인가되었다가 해제되면 다시 옥세틱 구조체(12)가 원래의 형태로 원상복구 될 수 있도록, 옥세틱 구조체(12)는 탄성 재질로 구성되는 것이 바람직하다.When the oxic structure 12 is stressed, it can be stretched both in the stress applying direction and in the direction perpendicular thereto. In other words, it can be stretched in a direction in which the area occupied by the oxic structure 12 becomes large. The oxide structure 12 is preferably made of an elastic material so that when the stress is applied and released, the oxic structure 12 can be restored to its original shape.
옥세틱 복합체(10)는 논옥세틱 물질[필러(11)] 내에 옥세틱 구조체(12)가 삽입된 형태로서, 필러(11)의 두께가 옥세틱 구조체(12)보다 더 두꺼울 수 있다. 필러(11) 자체는 녹옥세틱 물질이기 때문에 도 3의 (a)와 마찬가지로 평면 방향 및 두께 방향으로의 푸아송비가 양의 값을 가진다. 이에 반해, 옥세틱 구조체(12)는 평면 방향으로의 푸아송비는 음의 값을 가지며, 다만 옥세틱 구조체(12)의 부피는 변형에 의해서도 일정하게 유지되어야 하므로 옥세틱 구조체(12)의 두께 방향의 푸아송비는 양의 값을 가질 수 있다.The oxicitic composite 10 has a structure in which the oxic structure 12 is embedded in a non-opaque material (filler 11), and the thickness of the filler 11 may be thicker than the oxide structure 12. Since the filler 11 itself is a noxious material, the Poisson's ratio in the planar direction and the thickness direction has a positive value as in Fig. 3 (a). On the contrary, the Poisson's ratio in the planar direction of the oxide structure 12 has a negative value. However, since the volume of the oxide structure 12 must be kept constant by deformation, the thickness of the oxide structure 12 Can have a positive value.
도 3의 (b)와 같이 논옥세틱 물질인 필러(11) 내에 옥세틱 구조체(12)가 삽입된 본원발명의 옥세틱 복합체(10)에서 옥세틱 구조체(12)가 평면 방향으로의 면적을 점유하고 있으므로, 평면 방향으로의 푸아송비가 음의 값을 가질 수 있다. 따라서, 옥세틱 복합체(10)는 양측(일 예로, x축 방향)에 응력이 가해지면 해당 방향으로 신장함과 동시에 평면상 수직하는 방향(일 예로, y축 방향)으로 수축이 행해질 수 있다. 또한, 물질의 부피가 일정하게 유지되어야 하는 반면, 응력이 가해질때 평면 방향으로의 면적은 도 3의 (a)보다 더 크게 늘어나게 되므로, 가로, 세로 변형과 더불어 두께가 줄어드는 수치는 도 3의 (a)보다 더 클 수 있다.3 (b), the oxic structure 12 occupies an area in the planar direction in the oxic structure 10 of the present invention in which the oxic structure 12 is embedded in the filler 11, which is a non- The Poisson's ratio in the plane direction can have a negative value. Therefore, when stress is applied to both sides (e.g., the x-axis direction) of the oxic complex 10, contraction can be performed in a direction perpendicular to the plane (for example, the y-axis direction). In addition, while the volume of the material has to be kept constant, the area in the planar direction when the stress is applied is increased more than that of FIG. 3 (a) a).
다시 말해, 필러(11)[또는, 논옥세틱 물질]의 두께 방향으로의 고유한 푸아송비보다, 옥세틱 구조체(12)를 포함하게 됨에 따라, 필러(11)[또는, 옥세틱 복합체(10)]의 두께 방향으로의 푸아송비가 더 커질 수 있다.In other words, since the filler 11 (or the oxicitic material 10) (or the nontoxic material) is included in the oxide structure 12 rather than the unique Poisson's ratio in the thickness direction, The Poisson's ratio in the thickness direction can be larger.
도 4는 엘라스토머의 조합에 따른 예상 푸아송비의 변화를 나타내는 그래프이다. 4 is a graph showing a change in the expected Poisson's ratio according to the combination of the elastomers.
도 4를 참고하면, 이종 물질 간의 영률 차이가 좁혀짐에 따라 옥세틱 엘라스토머의 푸아송비는 더욱 양의 값에 가까워지는 것을 확인할 수 있으며, 기하 요소에 따라 푸아송비 분포는 점차 작아지는 것을 확인 할 수 있다. 이종 재료 간의 물성차를 조절할 경우 기하 요소 제어로부터 얻을 수 있는 푸아송 비 분포 영역보다 더 넓은 영역으로 확장할 수 있음을 알 수 있다. 따라서, 적절한 기하요소와 재료의 조합을 통하여 옥세틱 복합체의 기계적 거동을 원하는 물성에 맞출 수 있다는 것을 예측할 수 있다Referring to FIG. 4, it can be seen that the Poisson's ratio of the oxethetic elastomer is closer to a positive value as the Young's modulus difference between the different materials is narrowed, and Poisson's ratio distribution gradually decreases according to the geometric elements have. It can be seen that when controlling the difference in physical properties between different materials, it can be extended to a wider area than the Poisson's ratio distribution obtained from the geometric element control. Thus, it can be predicted that the mechanical behavior of the oxetic complex can be tailored to the desired properties through the combination of appropriate geometric elements and materials
도 5는 본 발명의 일 실시예에 따른, 스트레인 센서의 개략도이다. 도 5 의 (a)는 본 발명의 스트레인 센서(100)를 개략 사시도이고, (b)는 측면에서 보았을 때의 개략 측단면도이다. 5 is a schematic diagram of a strain sensor, in accordance with an embodiment of the present invention. FIG. 5A is a schematic perspective view of the strain sensor 100 of the present invention, and FIG. 5B is a schematic side cross-sectional view when viewed from the side.
본 발명의 스트레인 센서(100)는 옥세틱 구조체(12)를 포함하는 옥세틱 복합체(10) 및 옥세틱 복합체(10)의 양면에 배치되는 전극부(20)를 포함할 수 있다. The strain sensor 100 of the present invention may include an oxic composite 10 including an oxide structure 12 and an electrode portion 20 disposed on both sides of the oxide complex 10.
옥세틱 복합체(10)는 필러(11) 및 옥세틱 구조체(12)로 구성되어 있다. 이때 옥세틱 복합체는 스트레인 센서(100)의 유전층으로 사용될 수 있다.The oxetic composite 10 is composed of a filler 11 and an oxic structure 12. At this time, the oxic complex can be used as the dielectric layer of the strain sensor 100.
필러(11)는 옥세틱 구조체(12)의 구성재질과 같이 유연성 및 신축성이 있는 탄성 재질로 구성되는 것이 바람직하다. 일 실시예에 따르면, 필러(11)의 재질은 푸아송비(Poisson's ratio)는 0.47 내지 0.52이고, 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa를 갖는 물질 중에서 선택되는 하나일 수 있다. 예를 들어 에코플렉스, PDMS 등을 사용할 수 있다.The filler 11 is preferably made of a flexible and stretchable elastic material as the constituent material of the oxic structure 12. According to one embodiment, the material of the filler 11 may be one selected from materials having a Poisson's ratio of 0.47 to 0.52 and a Young's modulus of 0.006 MPa to 7.5 MPa. For example, Ecoflex, PDMS, etc. can be used.
옥세틱 구조체(12)의 구성재질은 유연성 및 신축성이 있는 탄성 재질로 구성되는 것이 바람직하다. 일 실시예에 따르면, 옥세틱 구조체(12)의 재질은 푸아송비(Poisson's ratio)는 0.47 내지 0.52이고, 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa를 갖는 물질 중에서 선택되는 하나일 수 있다. 예를들어 폴리우레탄 시트 등을 사용할 수 있다.The constituent material of the oxicitec structure 12 is preferably made of an elastic material having flexibility and stretchability. According to one embodiment, the material of the oxic structure 12 may be one selected from materials having a Poisson's ratio of 0.47 to 0.52 and a Young's modulus of 0.006 MPa to 7.5 MPa. For example, a polyurethane sheet or the like can be used.
필러(11)와 옥세틱 구조체(12)의 구성물질은 서로 다른 각각의 물질일 수 있다. 구체적으로는 필러(11) 및 옥세틱 구조체(12) 구성재질의 탄성계수(Young's modulus)가 1000배 이상 차이가 나는 것이 바람직하다.The constituent materials of the filler 11 and the oxic structure 12 may be different from each other. Specifically, it is preferable that the modulus of Young's modulus of the constituent material of the filler 11 and the oxic structure 12 is 1000 times or more different.
마지막으로, 본 발명의 전극부(20)는 옥세틱 복합체(10)의 양면에 위치할 수 있다. 추가적으로 전극부(20)의 탈착을 방지하기 위하여 전극부의 상부에 캡슐화(encapsulation)를 위한 필러(11')층이 더 형성될 수 있다. 이때 전극부는 유연성 및 신축성이 있는 전극 중 선택하여 적용할 수 있으며, 일 예로 전도성 고분자 젤 전극을 사용할 수 있다.Finally, the electrode portion 20 of the present invention may be located on both sides of the oxic composite 10. In addition, a layer of a filler 11 'for encapsulation may be further formed on the electrode part to prevent the electrode part 20 from being detached. In this case, the electrode part may be selected from flexible and stretchable electrodes, for example, a conductive polymer gel electrode may be used.
도 3의 (b)에서 살펴본 바와 같이, 스트레인 센서의 유전층은 옥세틱 복합체(10)이며, 평면 방향으로의 신장시 두께가 줄어드는 수치는 논옥세틱 물질보다 훨씬 크게 된다. 옥세틱 복합체(10)의 상하면에 위치하는 전극부(20) 사이의 거리는 곧 유전층의 두께에 대응하게 된다. 캐패시터형 센서에서 정전용량은 면적에 비례하고, 두께에 반비례하게 되는데, 본원발명의 스트레인 센서는 인장에 의해 면적은 늘어나면서 동시에 두께는 더욱 크게 줄어들기 때문에, 정전용량의 수치가 현저하게 상승할 수 있게 된다. 이는 센서의 감도 향상에 직결될 수 있다.As shown in FIG. 3 (b), the dielectric layer of the strain sensor is the oxic composite 10, and the thickness of the strain sensor in the planar direction is much smaller than that of the non-occtic material. The distance between the electrode portions 20 located on the upper and lower surfaces of the oxic composite 10 corresponds to the thickness of the dielectric layer. In the capacitor type sensor, the capacitance is proportional to the area and inversely proportional to the thickness. In the strain sensor of the present invention, the area is increased by the tensile force, and at the same time, the thickness is further largely reduced. . This can directly lead to the improvement of the sensitivity of the sensor.
도 6은 본 발명의 일 실시예에 따른, 스트레인 센서의 제조과정을 나타내는 모식도이다.6 is a schematic view showing a manufacturing process of a strain sensor according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 스트레인 센서(100)를 제조(S100)하기 위하여 옥세틱 구조체(12)를 포함하는 옥세틱 복합체(10)를 형성하는 단계(S110) 및 옥세틱 복합체(10)의 양면에 전극부(20)를 형성하는 단계(S120)를 포함할 수 있다. Referring to FIG. 6, a step S110 of forming an oxic composite 10 including an oxide structure 12 to form the strain sensor 100 of the present invention (S100) And forming the electrode unit 20 on both sides of the electrode unit 20 (S120).
먼저, 옥세틱 복합체(10)를 형성하는 단계(S110)는 옥세틱 구조체(12)를 제조하는 단계 및 필러(11) 내에 옥세틱 구조체(12)를 삽입하는 단계를 포함할 수 있다.First, the step of forming the oxic composite 10 (S110) may include the step of manufacturing the oxide structure 12 and the step of inserting the oxide structure 12 in the filler 11.
옥세틱 구조체(12)는 옥세틱 구조체를 형성할 폴리우레탄 재질의 기판을 준비한 후, 기판에 패턴을 형성하여 제조할 수 있다. 옥세틱 구조체(12)는 패턴이 형성되어 다공성일 수 있다. 기판에 패턴을 형성하기 위하여, 플로팅 커터를 이용하여 기판에 패턴을 형성할 수 있다. 도 2의 (c)와 같은 옥세틱 구조체(12)는 평면 방향으로의 푸아송비는 음의 값이고, 두께 방향으로의 푸아송비는 양의 값일 수 있다. The oxic structure 12 can be prepared by preparing a polyurethane substrate on which an oxic structure is to be formed, and then forming a pattern on the substrate. The oxic structure 12 may be porous and patterned. In order to form a pattern on the substrate, a pattern can be formed on the substrate by using a floating cutter. 2 (c), the Poisson's ratio in the planar direction is a negative value, and the Poisson's ratio in the thickness direction can be a positive value.
옥세틱 구조체(12)가 제조되면 옥세틱 구조체(12)를 필러(11) 내에 삽입하여 옥세틱 복합체(10)를 형성할 수 있다. 이때, 옥세틱 복합체(10)는 옥세틱 구조체(12)의 다공성 부분(빈 공간)이 필러(11)로 채워진 형태로 공극이 존재하지 않을 수 있다. Once the oxicitic structure 12 is formed, the oxicitic structure 12 can be inserted into the filler 11 to form the oxicitic composite 10. At this time, the porous material (hollow space) of the oxicitic structure 12 may be filled with the filler 11, so that the porous material may not exist.
따라서, 옥세틱 복합체(10)는 내부에 가변구조인 옥세틱 구조체(12)를 갖는 복합체의 형태이므로, 옥세틱 복합체(10)의 탄성 물성은 내부 프레임의 기하요소와 더불어, 두 이종 재료간의 기계적 물성 차이에 따라 예측 가능하게 조절될 수 있다.Therefore, since the oxetic composite 10 is in the form of a composite having the oxetic structure 12 having a variable structure therein, the elastic properties of the oxetic composite 10 are not limited to the geometric elements of the inner frame, It can be predictably adjusted according to the difference in physical properties.
필러(11) 내에 옥세틱 구조체(12)가 삽입된 옥세틱 복합체(10)는 캐패시터형 스트레인 센서(100)에서 유전층(10)으로 작용할 수 있다.The oxic composite 10 in which the oxide structure 12 is embedded in the filler 11 can act as the dielectric layer 10 in the capacitor type strain sensor 100.
다음으로, 옥세틱 복합체(10)의 양면에 전극부(20)를 형성할 수 있다(S120). 그리하여, 캐패시터형(정전용량 방식)으로 전극부(20)를 형성할 수 있다.Next, the electrode portions 20 can be formed on both sides of the oxic composite 10 (S120). Thus, the electrode portion 20 can be formed by a capacitor type (electrostatic capacity type).
전극부(20)를 형성하는 단계(S120)는 옥세틱 복합체(10)의 양면에 전극을 부착하는 단계 및 전극을 필러(11')로 몰딩하여 캡슐화(encapsulation)하는 단계를 포함할 수 있다. 이때, 캡슐화하는 단계는 전극부(20)의 탈착을 방지하기 위한 것으로, 전극부(20)의 탈착을 방지할 수 있는 공지의 방법을 이용할 수 있다.Step S120 of forming the electrode part 20 may include attaching electrodes to both surfaces of the oxic composite 10 and molding and encapsulating the electrode with the filler 11 '. At this time, the encapsulating step is performed to prevent the electrode unit 20 from being attached or detached, and a known method capable of preventing detachment of the electrode unit 20 can be used.
본 발명의 캐패시터형 스트레인 센서(100)는 적어도 일측으로 인장력이 가해질 때, 필러(11)의 두께 방향으로의 고유한 푸아송비보다, 필러(11) 내에 옥세틱 구조체(12)가 삽입된 옥세틱 복합체층(10)[또는, 유전층(10)]의 두께 방향의 푸아송비가 더 커질 수 있다. 이는 도 2의 (b)에서 상술한 바와 같다.The capacitor type strain sensor 100 according to the present invention is characterized in that when the tensile force is applied to at least one side of the filler 11, the inherent Poisson's ratio in the thickness direction of the filler 11, The Poisson's ratio in the thickness direction of the composite layer 10 (or the dielectric layer 10) may be larger. This is as described above in Fig. 2 (b).
이하에서는, 본 발명의 이해를 돕기 위한 실시예 및 실험예들을 설명한다. 다만, 하기의 실시예 및 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 실시예 및 실험예들이 아래의 실시예 및 실험예들만으로 한정되는 것은 아니다.Hereinafter, examples and experimental examples for helping understanding of the present invention will be described. It should be understood, however, that the following examples and experimental examples are provided only to facilitate understanding of the present invention, and the examples and experimental examples of the present invention are not limited to the following examples and experimental examples.
실험예 및 비교예Experimental Examples and Comparative Examples
옥세틱 복합체의 제조Preparation of oxetic complexes
0.5mm의 폴리우레탄 시트를 폴로팅 커터(Silhouette CAMEO)를 통해 패터닝 하여 다공성의 옥세틱 구조체를 형성하였다. 이후, 에코플렉스(Ecoflex) 탄성체를 이용하여 다공성의 폴리우레탄 옥세틱 구조체의 빈 공간을 채워 옥세틱 복합체를 제조하였다.A 0.5 mm polyurethane sheet was patterned through a poling cutter (Silhouette CAMEO) to form a porous oxic structure. Thereafter, an empty space of the porous polyurethane oxic structure was filled using an Ecoflex elastomer to prepare an oxetic composite.
본 방법에 따라 제조된 옥세틱 복합체를 실험예 1로 지칭한다. 또한, 폴리우레탄이 포함되지 않은 에코플렉스 시트를 비교예 1로 지칭한다.The oxetic complexes prepared according to this method are referred to as Experimental Example 1. Further, an eco flex sheet not containing polyurethane is referred to as Comparative Example 1.
옥세틱 복합체를 포함하는 스트레인 센서 제조Manufacture of strain sensors including oxetic complexes
실험예 1의 옥세틱 복합체의 에코플렉스가 굳기 전 복합체의 양면에 PEDOT:PSS/Acrylamide 기반 전도성 고분자 전극을 부착시킨 후 니켈 와이어 및 은 접착제를 통해 외부 전자기기와 접촉시켜 주었다. 그 후 에코플렉스를 다시 한 번 도포하여 캡슐화(Encapsulation)된 스트레인 센서를 제조하였다.The ECOCLEX of the oxethetic composite of Experimental Example 1 was attached to both sides of the pre-hardening composite with PEDOT: PSS / Acrylamide-based conductive polymer electrode and then contacted with external electronic devices through nickel wire and silver adhesive. The encapsulated strain sensor was then fabricated by applying the Ecoflex again.
도 7은 본 발명의 일 실시예에 따른, 인장에 따른 수직응력을 나타낸 것이다. Figure 7 shows the normal stresses in tension according to one embodiment of the present invention.
도 7의 (a)는 3차원의 옥세틱 복합체의 기계적 특징을 분석하기 위해 단축 인장 실험을 한 것으로, 실시예 1의 옥세틱 복합체는 인장이 진행됨에 따라 인장 방향의 평면 방향으로 팽창하는 것을 확인할 수 있다. 이에 반해 비교예 1의 에코플렉스 시트는 동일한 수준으로 인장될 때 인장방향의 평면방향으로 수축되는 것을 확인 할 수 있다.Fig. 7 (a) is a uniaxial tensile test in order to analyze the mechanical characteristics of the three-dimensional oxetic composite. It is confirmed that the oxetic composite of Example 1 expands in the plane direction of the tensile direction as the tensile progresses . On the contrary, when the ecoflex sheet of Comparative Example 1 is stretched to the same level, it can be confirmed that it is contracted in the plane direction of the tensile direction.
도 7의 (b)는 인장에 따른 평면방향의 푸아송비(도 2 참고, y축에 대한 x 축의 푸아송비)를 측정한 것으로 실험예 1의 복합체의 경우 음의 푸아송비를 나타내며, 비교예 1의 필름의 경우 양의 푸아송비를 갖는 것을 확인할 수 있다. 결과적으로, 푸아송 비가 0.5 인 비교예 1과 달리 실험에 1의 옥세틱 복합체는 약 -0.4 수준의 푸아송 비를 가짐을 확인할 수 있다. 특이한 점은 실험예 1의 푸아송 비가 10 % 가량의 스트레칭 이후로는 일정하게 유지되지 않는다는 점인데, 이는 내재된 옥세틱 구조체의 구조적 열림이 모두 진행된 이후 구조체 구성재질 자체가 함께 신장을 하게 되므로 점차 푸아송 비가 양의 값으로 증가하는 것으로 이해할 수 있다.Fig. 7 (b) is a measurement of the Poisson's ratio in the planar direction (see Fig. 2, Poisson's ratio of the x-axis with respect to the y-axis) in accordance with the tensile. In the case of the composite of Experimental Example 1, The film having a positive Poisson's ratio can be confirmed. As a result, unlike Comparative Example 1, in which the Poisson's ratio is 0.5, the experiment shows that the oxetic complex of 1 has a Poisson's ratio of about -0.4. The peculiar point is that the Poisson's ratio of Experimental Example 1 is not kept constant after stretching of about 10% because the structural constitution material itself grows together after the structural opening of the inherent oxic structure progresses, It can be understood that the Poisson's ratio increases by a positive value.
도 7의 (c)는 인장에 따른 두께방향의 푸아송비(도 2 참고, y축에 대한 z축의 푸아송비)를 측정한 것으로 실험예 1 및 비교예 1 모두 양의 푸아송비를 갖는 것을 확인할 수 있다. 즉, 비교예 1 시트는 3차원 등방성 재료이기 때문에 두께방향으로의 푸아송 비 역시 0.5라고 예상할 수 있으며, 실제 결과값도 이와 거의 유사함을 확인하였다. 실험예 1의 복합체의 경우, 10 % 가량 인장된 시점에서 두께방향 푸아송 비가 1.95까지 나타남을 확인할 수 있으며, 이는 곧 두께 수축률이 통상의 엘라스토머보다 거의 4배이상 크다고 생각해볼 수 있다. 즉, 이러한 특징은 종전 재료가 접근할 수 없었던 새로운 탄성 물성이라고 볼 수 있다. 또한, 옥세틱 복합체의 부피는 변형에 따라 유지되어야 하기 때문에, 평면 방향으로의 푸아송 비가 점차 증가하면, 두께 방향으로의 푸아송 비는 이를 따라 감소하게 되는 것으로 이해할 수 있다.Fig. 7 (c) shows the Poisson's ratio in the thickness direction (see Fig. 2, Poisson's ratio of the z axis with respect to the y-axis) measured in accordance with the tensile test. In both of Experimental Example 1 and Comparative Example 1, have. That is, since the sheet of Comparative Example 1 is a three-dimensional isotropic material, the Poisson's ratio in the thickness direction can also be expected to be 0.5, and the actual results are also substantially similar. In the case of the composite of Experimental Example 1, it can be seen that the Poisson's ratio in the thickness direction is up to 1.95 when the tensile strength is about 10%, which means that the thickness shrinkage ratio is almost four times greater than that of a normal elastomer. In other words, this characteristic can be regarded as a new elastic property that the conventional material can not approach. Further, since the volume of the oxetic complex should be maintained in accordance with the deformation, it can be understood that when the Poisson's ratio in the plane direction gradually increases, the Poisson's ratio in the thickness direction decreases accordingly.
도 8은 본 발명의 일 실험예에 따른, 인장에 따른 옥세틱 복합체 및 에코플렉스 기판의 외형 변화를 3차원 스캐닝 방식으로 촬영한 것이다.FIG. 8 is a photograph of a change in external shape of an oxetic composite and an echo flex substrate according to a tensile test according to an experimental example of the present invention by a three-dimensional scanning method.
도 8을 참고하면, 비교예 1의 표면 형상은 균인한 것으로 나타나지만, 실험예 1의 경우 옥세틱 구조체를 제외한 필러 부분에서 음영이 점차 심하게 발생하는 것을 확인할 수 있다. 이를 통하여 필러 부분에서 두께 감소가 두드러지게 발생함을 확인할 수 있다.Referring to FIG. 8, the surface shape of Comparative Example 1 appears to be gentle, but in Experimental Example 1, the shadows gradually become more severe in the filler portion except for the oxic structure. As a result, it can be seen that the thickness reduction is prominent in the filler portion.
도 9는 본 발명의 일 실험예에 따른, 스트레인 센서의 이미지이다.9 is an image of a strain sensor according to an experimental example of the present invention.
도 9의 (a)는 본 실험 방법에 따라 제조된 스트레인 센서 및 이를 인장하였을 때의 이미지로, 앞서 살펴본 옥세틱 복합체와 마찬가지로 인장이 진행됨에 따라 인장 방향의 평면 방향으로 팽창하는 것을 확인할 수 있다.FIG. 9 (a) is an image of a strain sensor manufactured according to the present method and an image obtained by stretching the strain sensor, and it can be confirmed that the tensile direction expands in a plane direction of the tensile direction as the tensile is progressed.
도 9의 (b)는 스트레인 센서를 팔꿈치에 부착 후 움직임에 따른 외형 변화를 확인한 것으로, 인장하였을 때와 마찬가지로 평면방향으로 수축없이 팽창되는 것을 확인할 수 있다. FIG. 9 (b) shows a change in external shape due to movement after attaching the strain sensor to the elbow. As shown in FIG. 9 (b)
도 10은 본 발명의 일 실험예에 따른, 스트레인 센서의 인장에 따른 전기용량(Capacitance)의 변화를 나타낸 그래프이다.10 is a graph showing a change in capacitance according to a tension of a strain sensor according to an example of the present invention.
도 10을 참고하면, 비교예 1의 에코플렉스 시트를 이용하여 제조한 스트레인 센서의 정전용량 변화율(gauge factor, GF)는 1인 것을 확인 할 수 있다. 이에 반해, 실시예 1의 옥세틱 복합체를 이용하여 제조한 스트레인 센서의 정전용량 변화율은 3.2로 비교예 1의 센서보다 3.2배 증폭된 신호를 얻는 것을 확인 할 수 있다. 또한, 100% 인장하였을 때도 인장에 선형적으로 비례하는 신호를 얻는 것을 확인 할 수 있다.Referring to FIG. 10, it can be confirmed that the electrostatic capacity change ratio (GF) of the strain sensor manufactured by using the eco flex sheet of Comparative Example 1 is one. On the other hand, the capacitance change rate of the strain sensor manufactured using the oxetitic composite of Example 1 is 3.2, and it is confirmed that the signal amplified 3.2 times that of the sensor of Comparative Example 1 is obtained. It can also be seen that a signal linearly proportional to the tensile is obtained when 100% tensile is applied.
도 11은 본 발명의 일 실험예에 따른, 스트레인 센서의 반복 변형에 따른 센서의 신뢰성 평가 결과를 나타낸다.11 shows the reliability evaluation result of the sensor according to the repetitive strain of the strain sensor according to an experimental example of the present invention.
도 11을 참고하면, 30% 연신율 조건에서 반복 인장 변형을 진행한 것으로, 5천번의 반복 변형에도 불구하고 정전용량의 출력 신호감소나 이력현상이 발생하지 않는 것을 확인할 수 있다. 이를 통하여 기계적 안정성이 뛰어남을 확인할 수 있다.Referring to FIG. 11, it can be seen that the repeated tensile deformation was carried out under the 30% elongation condition, and the output signal of the capacitance was not reduced or hysteresis did not occur despite the repetitive deformation of 5,000 times. This shows that the mechanical stability is excellent.
도 12는 본 발명의 일 실험예에 따른, 팔꿈치에 부착 후 움직임에 따른 전기용량 변화(Capacitance)를 나타낸 그래프이다.FIG. 12 is a graph showing a capacitance according to movement after attaching to an elbow according to an experimental example of the present invention. FIG.
도 12를 참고하면, 실제 팔꿈치에 부착하여도 동일하게 증폭된 신호를 얻을 수 있는 것을 확인하였으며, 이를 통하여 인장뿐만 아니라 굽힘 변형에 있어서도 게이지 팩터 상승이 유효함을 확인할 수 있다.Referring to FIG. 12, it was confirmed that even when attached to the actual elbow, the same amplified signal can be obtained. As a result, it can be confirmed that the gauge factor rise is effective not only in tension but also in bending strain.
도 13은 전산모사를 통하여 옥세틱 복합체의 인장시 필러와 옥세틱 구조체의 넓이 및 두께 변화를 나타낸 그래프이다.13 is a graph showing changes in the width and thickness of the filler and the oxicitic structure when the oxetitic composite is stretched through computer simulation.
도 14는 전산모사를 통하여 스트레인 센서의 전극을 옥세틱 구조체 내부에 설정할 경우 전기용량 변화(Capacitance)를 나타낸 그래프이다.FIG. 14 is a graph showing a capacitance change when an electrode of a strain sensor is set inside an oxide structure through a computer simulation.
먼저, 도 13을 참고하면, 옥세틱 구조체는 영역변화, 두께변화가 거의 없는 반면, 필러의 경우 영역이 매우 크게 증가하고, 두께는 크게 수축하는 것을 확인할 수 있다. 이를 통하여 정전용량에 기여하는 부분은 필러의 변형임을 확인할 수 있다.First, referring to FIG. 13, it can be seen that the area of the oxic structure is hardly changed, and the thickness of the filler is greatly increased and the thickness is largely shrunk. As a result, it can be confirmed that the part contributing to the capacitance is the deformation of the filler.
이를 바탕으로 옥세틱 복합체기반 변형 센서의 추가 성능향상 가능 요소를 파악하기 위하여 이론 연구를 진행하였다.On the basis of this, theoretical research was carried out in order to grasp the possibility of additional performance improvement of the oxetic composite based strain sensor.
옥세틱 복합체는 옥세틱 구조체와 필러(탄성체 충진 물질)가 병렬적인 결합을 이루고 있기 때문에 이들의 정전용량의 총합은 식 1과 같이 계산할 수 있다.Since the oxetic structure and the filler (elastomer filling material) are connected in parallel in the oxetic complex, the sum of their capacitances can be calculated as shown in Equation 1.
식 1. Equation 1.
Figure PCTKR2019000859-appb-I000001
Figure PCTKR2019000859-appb-I000001
이를 통해 복합체의 정전용량 변화량은 식 2와 같이 추정할 수 있다.Thus, the change in capacitance of the composite can be estimated as shown in Equation 2.
식 2. Equation 2.
Figure PCTKR2019000859-appb-I000002
Figure PCTKR2019000859-appb-I000002
Cfill,0 과 Caux,0은 각각 필러와 옥세틱 구조체가 가지고 있는 정전 용량을 뜻한다. 이떄, 앞서 밝혔듯이 옥세틱 복합체의 대부분의 두께 변화는 탄성체인 필러 영역에서 이루어지기 때문에 ΔCaux =0 로 두고 계산을 하면 식 3과 같다.C fill, 0 and C aux, 0 mean the capacitance of the filler and the oxic structure, respectively. Yittyae, most of the changes in thickness of said oxide as setik complex previously when calculating the leave the aux ΔC = 0, since the elastic body made in the filler area equal to the equation (3).
식 3. Equation 3.
Figure PCTKR2019000859-appb-I000003
Figure PCTKR2019000859-appb-I000003
이때 변형에 따른 정전용량의 변화를 유추하기 위해 늘어난 길이(stretch, λ)를 도입하면, 식 4와 같이 표현이 가능하다.In this case, if the stretch length (λ) is introduced to approximate the change in capacitance due to the deformation, Expression 4 is possible.
식 4. Equation 4.
Figure PCTKR2019000859-appb-I000004
Figure PCTKR2019000859-appb-I000004
변형 센서의 주요 성능 지표인 게이지 팩터(Gauge Factor)는 늘어난 길이에 의한 정전용량 변화를 의미하므로 이를 계산하면 아래의 식 5 또는 식 6과 같이 정리할 수 있다.The gauge factor, which is the main performance index of the strain sensor, is the change in capacitance due to the increased length, and can be summarized as Equation 5 or Equation 6 below.
식 5. Equation 5.
Figure PCTKR2019000859-appb-I000005
Figure PCTKR2019000859-appb-I000005
식 6. Equation 6.
Figure PCTKR2019000859-appb-I000006
Figure PCTKR2019000859-appb-I000006
식 5 및 식 6을 통해 살펴보았을 때 옥세틱 복합체 기반의 변형센서의 게이지 팩터 성능은 필러가 옥세틱 구조체 내의 공간에서 차지하는 넓이의 비와 유전율 차이에 의존함을 알 수 있다. From the results of Equation 5 and Equation 6, it can be seen that the gauge factor performance of the strain sensor based on the oxetic composite depends on the ratio of the width occupied by the filler in the space of the oxide structure and the permittivity difference.
실제로 이를 확인하기 위해 전산모사를 통한 검증작업을 진행하였으며 이에 대한 결과를 도 14에 나타내었다. 도 14를 참고하면, 전극부의 커버 영역을 옥세틱 구조체 부분과 최대한 겹지치 않고 필러의 영역에 한정시켰을 때 7이상의 높은 게이지 팩터를 가질 수 있음을 확인하였다.In order to confirm this fact, the verification work was carried out through computer simulation and the results are shown in FIG. Referring to FIG. 14, it was confirmed that when the cover region of the electrode portion is limited to the filler region without being overlapped with the occliced structure portion as high as possible, it can have a high gauge factor of 7 or more.
즉, 본 발명의 스트레인 센서에 있어서 전극부와 옥세틱 구조체가 각각 커버하는 평면 상의 영역이 중첩되지 않는 것이 바람직하다.That is, in the strain sensor of the present invention, it is preferable that the planar regions covered by the electrode portion and the occliced structure do not overlap each other.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 청구범위의 범위 내에 속하는 것으로 보아야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken in conjunction with the present invention. Variations and changes are possible. Such variations and modifications are to be considered as falling within the scope of the invention and the appended claims.

Claims (18)

  1. 옥세틱 구조체를 포함하는 옥세틱 복합체; 및An oxetic complex comprising an oxetic structure; And
    옥세틱 복합체의 양면에 배치되는 전극부;An electrode portion disposed on both sides of the oxicitic composite;
    를 포함하는, / RTI &gt;
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  2. 제1항에 있어서, The method according to claim 1,
    옥세틱 복합체는 필러에 옥세틱 구조체가 삽입되는 것인,The oxetic composite is characterized in that an oxic structure is inserted into the filler.
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  3. 제2항에 있어서, 3. The method of claim 2,
    필러의 푸아송비(Poisson's ratio)는 0.47 내지 0.52인,The Poisson's ratio of the filler is from 0.47 to 0.52,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  4. 제2항에 있어서, 3. The method of claim 2,
    옥세틱 구조체의 평면 방향으로의 푸아송비는 음의 값이고, 두께 방향으로의 푸아송비는 양의 값인,The Poisson's ratio in the planar direction of the oxicitic structure is a negative value, and the Poisson's ratio in the thickness direction is a positive value,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  5. 제2항에 있어서, 3. The method of claim 2,
    캐패시터형 스트레인 센서의 적어도 일측으로 인장력이 가해질 때,When a tensile force is applied to at least one side of the capacitor type strain sensor,
    필러의 두께 방향으로의 고유한 푸아송비보다, 옥세틱 복합체의 두께 방향의 푸아송비가 더 커지는,The Poisson's ratio in the thickness direction of the oxic composite is larger than the Poisson's ratio inherent in the thickness direction of the filler,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  6. 제2항에 있어서,3. The method of claim 2,
    필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa인, The Young's modulus of the constituent material of the filler and the oxethetic structure is 0.006 MPa to 7.5 MPa,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  7. 제1항에 있어서,The method according to claim 1,
    옥세틱 복합체는 필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)가 1000배 이상 차이가 나는 것인,The oxetic composite has a Young's modulus of 1000 times or more different from that of the filler and the oxic structure.
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  8. 제1항에 있어서,The method according to claim 1,
    전극부는 전도성 고분자 젤 전극인,The electrode portion is a conductive polymer gel electrode,
    캐패시터형 스트레인 센서. Capacitor type strain sensor.
  9. 제1항에 있어서,The method according to claim 1,
    스트레인 센서의 게이지 팩터(Gauge Factor, GF)는 3.2보다 큰,The strain sensor's gauge factor (GF) is greater than 3.2,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  10. 제1항에 있어서,The method according to claim 1,
    전극부와 옥세틱 구조체가 각각 커버하는 평면 상의 영역이 중첩되지 않는,The planar regions covered by the electrode portion and the oxide structure do not overlap each other,
    캐패시터형 스트레인 센서.Capacitor type strain sensor.
  11. (a) 옥세틱 구조체를 포함하는 옥세틱 복합체를 형성하는 단계; 및(a) forming an oxetic complex comprising an oxetic structure; And
    (b) 옥세틱 복합체의 양면에 전극부를 형성하는 단계;(b) forming an electrode portion on both sides of the oxic complex;
    를 포함하는,/ RTI &gt;
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  12. 제11항에 있어서, 12. The method of claim 11,
    (a) 단계는,(a)
    (a1) 패터닝된 옥세틱 구조체를 제조하는 단계; 및(a1) fabricating a patterned oxic structure; And
    (a2) 필러 내에 옥세틱 구조체를 삽입하는 단계;(a2) inserting an oxic structure into the filler;
    를 포함하는,/ RTI &gt;
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  13. 제11항에 있어서, 12. The method of claim 11,
    필러의 푸아송비(Poisson's ratio)는 0.47 내지 0.52인, The Poisson's ratio of the filler is from 0.47 to 0.52,
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  14. 제11항에 있어서, 12. The method of claim 11,
    옥세틱 구조체의 평면 방향으로의 푸아송비는 음의 값이고, 두께 방향으로의 푸아송비는 양의 값인,The Poisson's ratio in the planar direction of the oxicitic structure is a negative value, and the Poisson's ratio in the thickness direction is a positive value,
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  15. 제11항에 있어서,12. The method of claim 11,
    필러 및 옥세틱 구조체 구성재질의 탄성계수(Young's modulus)는 0.006MPa 내지 7.5MPa인, The Young's modulus of the constituent material of the filler and the oxethetic structure is 0.006 MPa to 7.5 MPa,
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  16. 제11항에 있어서,12. The method of claim 11,
    전극부는 전도성 고분자 젤 전극인,The electrode portion is a conductive polymer gel electrode,
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  17. 제11항에 있어서,12. The method of claim 11,
    (b) 단계는,(b)
    (b1) 옥세틱 복합체의 양면에 전극을 부착하는 단계; 및(b1) attaching electrodes to both sides of the oxicitic composite; And
    (b2) 전극을 필러로 몰딩하여 캡슐화(encapsulation)하는 단계;(b2) encapsulating the electrode with a filler to encapsulate the electrode;
    를 포함하는,/ RTI &gt;
    캐패시터형 스트레인 센서의 제조방법.A method of manufacturing a capacitor type strain sensor.
  18. 평면 방향 및 두께 방향으로의 푸아송비(Poisson's ratio)가 양의 값인 필러; 및A filler having a positive Poisson's ratio in the plane direction and the thickness direction; And
    필러에 삽입되며, 평면 방향으로의 푸아송비가 음의 값이고, 두께 방향으로의 푸아송비가 양의 값인 옥세틱 구조체Wherein the Poisson's ratio in the plane direction is a negative value and the Poisson's ratio in the thickness direction is a positive value,
    를 포함하는 옥세틱 복합체.&Lt; / RTI &gt;
PCT/KR2019/000859 2018-01-24 2019-01-22 Capacitive strain sensor and manufacturing method therefor WO2019146983A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0008869 2018-01-24
KR20180008869 2018-01-24
KR1020190006444A KR102173494B1 (en) 2018-01-24 2019-01-17 Capacitor type strain sensor and manufacturing method thereof
KR10-2019-0006444 2019-01-17

Publications (1)

Publication Number Publication Date
WO2019146983A1 true WO2019146983A1 (en) 2019-08-01

Family

ID=67394706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000859 WO2019146983A1 (en) 2018-01-24 2019-01-22 Capacitive strain sensor and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019146983A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432589A (en) * 2020-11-30 2021-03-02 中南大学 Parallel flexible strain sensor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134992A1 (en) * 2010-05-12 2013-05-30 Xiangdong Zhu Sensor sleeve for health monitoring an article
JP2013534833A (en) * 2010-05-07 2013-09-09 ヤン,チャンミン Method and system for physiological signal generation by a textile capacitance sensor
JP2015059845A (en) * 2013-09-19 2015-03-30 バンドー化学株式会社 Capacitive sensor and method of measuring elastic deformation amount, elastic deformation distribution, or surface pressure distribution
WO2016179245A1 (en) * 2015-05-04 2016-11-10 The Florida State University Research Foundation, Inc. Negative poisson ratio piezoresistive sensor and method of manufacture
US20170129146A1 (en) * 2014-07-25 2017-05-11 The Florida State University Research Foundation, Inc. Material systems and methods of manufacture for auxetic foams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534833A (en) * 2010-05-07 2013-09-09 ヤン,チャンミン Method and system for physiological signal generation by a textile capacitance sensor
US20130134992A1 (en) * 2010-05-12 2013-05-30 Xiangdong Zhu Sensor sleeve for health monitoring an article
JP2015059845A (en) * 2013-09-19 2015-03-30 バンドー化学株式会社 Capacitive sensor and method of measuring elastic deformation amount, elastic deformation distribution, or surface pressure distribution
US20170129146A1 (en) * 2014-07-25 2017-05-11 The Florida State University Research Foundation, Inc. Material systems and methods of manufacture for auxetic foams
WO2016179245A1 (en) * 2015-05-04 2016-11-10 The Florida State University Research Foundation, Inc. Negative poisson ratio piezoresistive sensor and method of manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432589A (en) * 2020-11-30 2021-03-02 中南大学 Parallel flexible strain sensor and preparation method thereof
CN112432589B (en) * 2020-11-30 2022-06-24 中南大学 Parallel flexible strain sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2019146983A1 (en) Capacitive strain sensor and manufacturing method therefor
KR20190090341A (en) Capacitor type strain sensor and manufacturing method thereof
US8614492B2 (en) Nanowire stress sensors, stress sensor integrated circuits, and design structures for a stress sensor integrated circuit
Hsu et al. The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit
KR100262031B1 (en) Semiconductor sensor
US20110303992A1 (en) Semiconductor device and method of manufacture thereof
US8484836B2 (en) Flexible network
WO2011081288A2 (en) Mems microphone and method for manufacturing same
JP2022105964A (en) Electrostatic capacity type sensor
WO2020159057A1 (en) Soft sensor-embedded glove and method for manufacturing same
WO2016185813A1 (en) Multi-axis tactile sensor and method for manufacturing multi-axis tactile sensor
WO2018088881A1 (en) Heat convection-type acceleration sensor and method for manufacturing same
US7617599B2 (en) Sensor packaging method for a human contact interface
JPH10270598A (en) Semiconductor die adhesive stress isolation assembly and method of stress isolation
CA2332525C (en) High voltage insulator for optical fibers
JP2021518635A (en) Flexible switches, sensors and circuits
Lötters et al. Polydimethylsiloxane, a photocurable rubberelastic polymer used as spring material in micromechanical sensors
Stassi et al. A tactile sensor device exploiting the tunable sensitivity of copper-PDMS piezoresistive composite
WO2022255509A1 (en) Magnetorheological elastic body-based strain gauge capable of sensitivity control, and sensing apparatus comprising same
WO2017159979A1 (en) Piezoresistive accelerometer and method for packaging piezoresistive accelerometer
KR101920782B1 (en) 3-axis strain sensor and manufacturing method of the same
WO2010047503A2 (en) Thin sensor device protected by resin
US20110296919A1 (en) Micromechanical system
EP1346378B1 (en) Water sensing wire and power cable using a water sensing wire
WO2023121360A1 (en) Method of manufacturing pouch case for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744532

Country of ref document: EP

Kind code of ref document: A1